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SUMMARY

The identification of the geological structure from seismic data is formulated as an inverse problem. The 
properties and the shape of the rock formations in the subsoil are described by material and geometric 
parameters, which are taken as input data for a predictive model. Here, the model is based on the Helmholtz 
equation, describing the acoustic response of the system for a given wave length. Thus, the inverse problem 
consists in identifying the values of these parameters such that the output of the model agrees the best with 
observations. This optimization algorithm requires multiple queries to the model with different values of 
the parameters. Reduced Order Models are especially well suited to significantly reduce the computational 
overhead of the multiple evaluations of the model.
In particular, the Proper Generalized Decomposition (PGD) produces a solution explicitly stating the 
parametric dependence, where the parameters play the same role as the physical coordinates. A PGD solver 
is devised to inexpensively explore the parametric space along the iterative process. This exploration of 
the parametric space is in fact seen as a post-process of the generalized solution. The approach adopted 
demonstrates its viability when tested in two illustrative examples.

KEY WORDS: parameterized Helmholtz problem; Proper Generalised decomposition (PGD); parameter

identification; inverse problems; seismic analysis

INTRODUCTION

Seismic inversion and parameter identification is a very important task in geophysics. In particular,

geologists are interested in understanding subsoil structures and layers, especially their physical

properties and dimensions. These properties are usually inferred from acoustic data, originated from

land or marine surveys. Different inversion techniques have been developed during the years in order

to deal with this problem [1, 2, 3].

The pressure field produced during the explorations is typically modelled with the transient wave

equation and the inversion is performed via the minimization of a suitable functional depending on

the records of the waves on the ground surface. We consider the Helmholtz equation in order to

properly describe the stationary pressure field during a seismic survey performed, for example, with

the vibroseis technique. The Helmholtz equation describes the phenomenon in a steady state case

∗Correspondence to: Marianna Signorini, marianna.signorini@polimi.it

Contract/grant sponsor: Spanish Ministry of Economy and Competitiveness; contract/grant number: CICYT-DPI2014-
51844-C2-2-R

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scipedia

https://core.ac.uk/display/296533043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 M. SIGNORINI, S. ZLOTNIK, P. DÍEZ

as a sum of harmonic waves and it is used in different fields in order to describe the physics of the

problem, such as in acoustics and seismology [4, 5, 6].

We deal with the identification of a number of parameters, that are necessary in order to describe

specific geometric or material properties of the subsoil. We perform the parameter identification by

minimizing a proper functional that takes into account the difference between the recorded solution

and the numerical one, as usually done. The minimization of such a functional, nevertheless,

requires multiple evaluations of the solution for slightly different values of the parameters, in order

to explore the space of design parameters (the ones to be identified). Moreover, the cost functional

may have many local minima and various minimizations could be required (starting from different

parametric guess). Therefore, we need an efficient numerical tool that allows us to evaluate the

solution of the Helmholtz equation for different choices of the design parameters in an efficient

way.

In order to have an easily evaluable solution of the problem, the idea is to solve the more complex

parameterized Helmholtz equation via a Reduced Order Model (ROM) method. (Examples of ROM

methods are, for example, the Proper Orthogonal Decomposition (POD) method [7] or the Reduced

Basis method [8]). With these kind of methods the parametric solution is produced during a costly

offline phase, but the solution is easily evaluated in real-time during the online phase, namely during

the minimization procedure. Moreover it is possible to evaluate the solution in all the points of the

parametric space with relatively low computational cost. This means that we can have an idea on the

influence of the different parameters on the solution restricteld to the observation boundary. Among

the ROM methods, we use the Proper Generalized Decomposition (PGD) method, described in

[9, 10]. The use of PGD with parameters controlling geometries has been proposed in [11] to control

the external boundary of the domain and later extended in [12] to the parameterization of internal

interfases. Moreover, parametric solutions involving frequency (with fixed domain) of transient heat

problems are described in [13]. Finally, PGD has also been used recently by Germoso et al. [14] to

account for non-linear soil mechanics during a seismic event.

Concerning the algorithm applied in order to perform the minimization, we use the matlab routine

fmincon, suitable for constrained minimization problems. In particular the method implemented

is the Sequential Quadratic Programming (SQP) algorithm, described in [15]. The constraints on the

parameters corresponds to the boundaries of the parametric space in which the parametric solution

of the Helmholtz problem is defined.

We underline that the proposed methodology is general, so it could be used also for real-time

monitoring of the electromagnetic field of electronic devices or simply to obtain a parametric and

real-time evaluable solution of the Helmholtz equation in other contexts. In this work we apply the

method to two test cases, a toy example and a more realistic one. We compare the performance of

the PGD method and of the inversion with different options, such as the solution of the problem

with or without compression or the inverse problem with various choices of the reference values.

This work is organized as follows.

In the first chapter the direct and the inverse problem are described. In particular, the

parameterized Helmholtz equation is introduced and the extended weak formulation of the

parameterized version of the associated boundary value problem is given.

The second chapter is devoted to the application of the PGD technique to the direct problem.

A separable expression of the solution is assumed and the separability of the extended weak

formulation is discussed. The alternated directions fixed-point algorithm, proper of the PGD method

([12]) is presented for this specific case in both its continuous and discretized version. The definition

of the required matrices can be found in the Appendix.

In the third chapter some computational aspects are formalized. One first big issue is how to

separate input data and the choice of the sampling parametric points (discussed also in the numerical

results). This problem is faced in the first two paragraphs of the chapter. In the third one the parallel

implementation is proposed for the separation of input data. In the remainder of the chapter the focus

is on the importance of compressing the PGD solution. Two alternative methods are introduced here

and compared in the numerical results. Finally the choice of the solver for the inverse problem is

described.
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The numerical results are presented in the forth chapter. Two test cases are considered. The first

test case is a synthetic example, while the second is a more realistic one, a simplified version of a

real ground profile described in [16].

1. PROBLEM STATEMENT

1.1. Direct Problem: the Helmholtz Equation

The Boundary Value Problem (BVP) under consideration consists in complementing the Helmholtz

equation with proper boundary conditions and reads: find a complex-valued function p taking values

in Ω (see Figure 1) such that






−σω2p−∇ · (∇p) = 0 in Ω

∇p · n− i
√
σωp = 0 on ΓR

∇p · n = g on ΓN

, (1)

where p is the unknown complex pressure field, ω is the given angular frequency, σ is the squared

slowness of the medium (equal to the squared inverse of the propagation velocity of the waves in the

medium) and g represents a sound source on the boundary. For g = 0, ΓN is a reflecting boundary.

The boundary condition on ΓR represents full absorption of the sound.

Ω

ΓN = Γtop

ΓR = ∂Ω \ ΓN

Figure 1. Domain

Accordingly, the standard weak formulation of the problem reads: find p ∈ H1(Ω;C) such that

a(p, q) = l(q) ∀q ∈ H1(Ω;C) (2)

where the bilinear and the linear forms a(·, ·) and l(·) are defined as:

a(p, q) = −
∫

Ω

σω2pq̄ dx+

∫

Ω

∇p · ∇q̄ dx− i

∫

ΓR

√
σωpq̄ ds (3)

l(q) =

∫

ΓN

gq̄ ds (4)

being q̄ the complex conjugate of q.

1.2. Parameterization of the Problem

The field of material properties, σ, is assumed to be piecewise constant. Thus, σ is characterized

by 1) the shape, size and location of the different rock formations (that is, geometric parameters

describing a set of subdomains where the material properties are uniform) and 2) the material

properties of each type of rock (that is, the material parameters).

Accordingly, we assume that, on the one hand, there are nθ geometric parameters

θj ∈ Iθj for j = 1, . . . , nθ .
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describing the shape of subdomains in Ω with uniform propagation velocity. On the other hand we

consider nσ material parameters

σs ∈ Iσs
for s = 1, . . . , nσ .

representing the squared slowness, uniform in one or more subdomains. The intervals Iθj and Iσs

stand for the expected ranges of variation of the parameters. We aim at providing the solution for all

the values in these ranges.

The procedure for parameter identification requires multiple queries to the model, each with a

different set of parametric values. We aim at producing an offline computed generalized solution,

explicitly stating the parametric dependence of p (both for geometric and material parameters). Once

this solution is available, exploring the parametric space does not require successive computations

of the model but simple and fast evaluations as a post-process.

The compact notation θ and σ is used to denote the geometric and material parameters,

respectively. Consequently, the spaces where these parameters lie read

Iθ = Iθ1 × · · · × Iθnθ
and Iσ = Iσ1

× · · · × Iσnσ
(5)

The input data of the problem, σ, depends on (x, θ,σ) and therefore the parametric solution

p(x, θ,σ) takes values on D = Ω× Iθ × Iσ .

As it is standard in the PGD setup, the extended weak formulation of the parametrized version of

(1) reads: find p ∈ H1(Ω)⊗ L2(Iθ)⊗ L2(Iσ) such that

A(p, q) = L(q) ∀q ∈ H1(Ω)⊗ L2(Iθ)⊗ L2(Iσ) , (6)

where the bilinear and linear forms are:

A(p, q) =

∫

Iσ

∫

Iθ

a(p, q) dθ dσ and L(q) =

∫

Iσ

∫

Iθ

l(q) dθ dσ (7)

It is worth noting that the tensor product H1(Ω)⊗ L2(Iθ)⊗ L2(Iσ) does not assume the separability

of the functions and therefore the complexity of the described problem increases with the number

of parametric dimensions.

1.3. Inverse Problem

Seismic inversion is a well-known problem in geophysics [3, 2, 17, 18], consisting in recovering the

ground velocity profile (distribution of material properties), from a set of measures on the surface

during seismic explorations (experimental observations). Different techniques have been developed

in order to deal with this inverse problem. Despite the problem may be ill-posed because different

velocity profiles can explain the same observations, often these techniques allow determining

the main features of the geologic profile. As indicated above, the inverse problem involves an

optimization procedure requiring multiple queries and therefore the evaluation of the solution of

the problem for a large number of slightly different subsoil configurations.

In the previous section, a simplified geological model is proposed taking into account the main

features of the geologic profile and describing the principal unknown characteristics of the subsoil

with a set of geometric and material parameters, θ and σ. Thus, the inverse problem consists in

identifying θ and σ by minimizing a suitable cost functional, e.g. the same used in the full waveform

inversion method [3]. This cost functional accounts for the misfit between the observations and the

computed outcome of the parametric model, measured with a properly defined norm (typically a L2

norm restricted to the boundary where the observations are taken).

Let pobs denote the observed data in a portion of the surface Γobs. The cost functional J(θ,σ) is

introduced as

J(θ,σ) =

∫

Γobs

(p(x, θ,σ)|Γobs
− pobs)

2 ds. (8)
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The minimization problem reads: find (θ,σ) such that

(θ,σ) = argmin
θ∈Iθ ;σ∈Iσ

J(θ,σ) ,

Solving the minimization problem requires multiple evaluation of the solution p of the problem

(1). As described in the next section, the PGD technique provides a solution p
PGD

(x, θ,σ) ≃
p(x, θ,σ) with explicitly parametric dependence.

2. NUMERICAL METHODOLOGY

2.1. PGD formulation

The Proper Generalized Decomposition (PGD) method [12, 10] is particularized to the Helmholtz

equation with geometric and material parameters. The standard PGD formulation in briefly recalled

before concentrating in this specific case.

The ideas behind the PGD technique are readily summarized as follows: 1) the solution is

assumed to be separable (expressed as a sum of terms consisting in a product of functions depending

of one parameter each), 2) a greedy algorithm is used to compute the terms sequentially and 3) each

term is computed iterating in each parametric dimension using an alternated directions fixed-point

algorithm. The two first items are discussed here while the third is illustrated in section 2.2.

The separability assumption states that the solution p(x, θ,σ) of the problem (6) is approximated

by a sum of n separated terms (also denoted by modes), namely

p(x, θ,σ) ≈ pn
PGD

(x, θ,σ) =

n∑

m=1

(

Fm
x (x)

nθ∏

j=1

Fm
θj (θj)

nσ∏

s=1

Fm
σs
(σs)

)

= pn−1
PGD

(x, θ,σ) + Fn
x (x)

nθ∏

j=1

Fn
θj (θj)

nσ∏

s=1

Fn
σs
(σs).

(9)

where, in the case under consideration, functions Fm
x , Fθj and Fσs

take complex values. Note that

an alternative option is accounting for the complex character only with one function (e.g. Fm
x ) and

assuming Fm
θj

and Fm
σs

to be real. This would reduce the richness of the proposed approximation

and would require a larger number of modes to achieve the same accuracy. We notice that the

implementation with Matlabr does not have any additional complexity with respect to the case in

which the unknowns are real numbers.

The fundamental concepts and the notation to derive PGD for both material and geometric

parameters are briefly recalled following [12].

The essential idea is making the geometric parameters θ to appear explicitly in the weak

formulation (6). This is a natural feature for the material parameters σ, but the effect of θ in (6)

is hidden, affecting the description of the shape of Ω and the different material subdomains (internal

boundaries).

For the sake of a simpler presentation, the boundary source term g is taken independent of θ

and σ and such that the geometric parameters θ do not affect the boundary of Ω, only the internal

boundaries (the identification of shape and location of the rock formations). On the contrary, the

material property σ(x, θ,σ) has a an explicit parametric dependence described in Appendix A.

The following strategy is adopted to make the geometric parameters θ appear explicitly in

the formulation. It is a generalization to the geometrical parameterization proposed in [11]. The

domain Ω is partitioned into a set of simple (triangular) macro-elements T1, · · · , TnT
, having shapes

depending on θ. The macro-elements are inside the material subdomains (no macro-element is

overlapping two material subdomains) and are located in order to properly describe the internal

boundaries. A reference element T̂ is introduced such that each macro-element Te, e = 1, . . . , nT ,

is assumed to be the image of T̂ by an isogeometric mapping depending on θ,

Ψe : T̂ → Te

x̂ 7→ x = Ψe(x̂).
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The mappings Ψe are explicitly dependent of θ and therefore also their Jacobian matrices, denoted

by Je(θ), do.

The body integrals appearing in (6) are rewritten accounting for the mappings and showing the

explicit dependence on the parameters

A(p, q) =

∫

Iθ

∫

Iσ

∫

Ω

(
−σω2pq̄ +∇p · ∇q̄

)
dx dθ dσ

− i

∫

Iθ

∫

Iσ

∫

ΓR

√
σωpq̄ ds dθ dσ

=

nT∑

e=1

∫

Iθ

∫

Iσ

∫

T̂

(
−σω2peq̄e|Je(θ)|+∇

x̂
pe · (De(θ)∇x̂

q̄e)
)
dx̂ dθ dσ

− i

∫

Iθ

∫

Iσ

∫

ΓR

√
σωpq̄ ds dθ dσ,

(10)

where De := |Je|J−T

e J
−1
e , pe is the restriction of p to Te such that

p =

nT∑

e=1

pe ◦Ψ−1
e ,

and analogously for qe.

The input data of the problem describing the bilinear form A(·, ·) has to be expressed in a

separable form in terms of the selected parameters, θ and σ. This is natural for the material

parameters (σ is straightforwardly expressed as a separated function of σ). For the geometric

parameters, separable representations of the determinant of the Jacobian matrix, |Je|, and matrix

De are required. In practice, this means obtaining the expressions given in the Appendix A in (15).

The procedure is detailed in Section 3.1.

2.2. Alternated directions fixed-point iterations

The PGD greedy algorithm consists in computing sequentially pn
PGD

for n = 1, 2, . . . to reach a

satisfactory approximation as indicated in (9). In practice, pn
PGD

is computed assuming that pn−1
PGD

is available, taking as unknown only the last term, namely Fn
x , Fn

θj
and Fn

σs
, for j = 1, . . . , nθ and

s = 1, . . . , nσ . In the following, the dependence on n of the unknown functions is omitted in the

notation, that is the unknown modes are denoted by Fx, Fθj and Fσs
.

Thus, for each PGD term, the unknown is a single separated function p̂, the product of the

unknown modes:

p̂ = pn
PGD

− pn−1
PGD

= Fx

nθ∏

j=1

Fθj

nσ∏

s=1

Fσs
. (11)

Consequently, the test function q in (6) is selected as a variation of p̂, formally

q = δp̂ =δFx

nθ∏

j=1

Fθj

nσ∏

s=1

Fσs
+ Fx

nθ∑

̃=1

δFθ̃

∏

j 6=̃

Fθj

nσ∏

s=1

Fσs

+ Fx

nθ∏

j=1

Fθj

nσ∑

s̃=1

δFσs̃

∏

s6=s̃

Fσs
,

(12)

where δFx, δFθ̃ and δFσs̃
are the test functions corresponding to each parametric dimension.

The alternated directions strategy consists in taking as unknown only one of the modes (searching

direction) and considering all the other modes known. Let us denote by F⋆ the unknown mode,

where now ⋆ stands for the searching direction and takes any of the values x, θj and σs, for

j = 1, . . . , nθ and s = 1, . . . , nσ. Note that, with this notation, (12) is readily rewritten as

q =
∑

⋆

δF⋆

∏

⋆̃6=⋆

F⋆̃. (13)
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Let V⋆ denote the natural functional space for the variable ⋆, that is H1(Ω) for ⋆ = x and L2(I⋆) for

other values.

Thus, one iteration requires solving for some value of ⋆ the following problem: given all the

modes but F⋆, that is given F⋆̃ for all ⋆̃ 6= ⋆, find F⋆ ∈ V⋆ such that

A(F⋆

∏

⋆̃6=⋆

F⋆̃, q⋆) = L(q⋆)−A(pn−1
PGD

, q⋆) for all δF⋆ ∈ V⋆, being q⋆ = δF⋆

∏

⋆̃6=⋆

F⋆̃. (14)

Note that solving (14) for some direction ⋆ is a linear problem in a 1D setup for ⋆ = θj and for

⋆ = σs (the geometric and material parameters). For ⋆ = x, it has the dimension of the original

problem.

Remark 1

The option of selecting δF⋆ ∈ V⋆ is natural for ⋆ = x (Galerkin formulation). In the case of the

parametric directions, for ⋆ = θj and for ⋆ = σs, taking δF⋆ ∈ V⋆ results in a least-squares criterion

to approximate F⋆. This is the option adopted here. However, other authors implement the PGD

iteration for the parametric dimensions using other variational setups. For instance, in [19], a point

collocation method is employed such that the pointwise values of F⋆ are obtained in a 1D grid of

points and the function is interpolated. In this case, the test functions δF⋆ are taken as Dirac delta

functions centered in the grid nodes.

3. COMPUTATIONAL ASPECTS

3.1. Separation of input data

The determinant of the Jacobians |Je| and the matrices De appearing in the bilinear form A(·, ·) (see

eq. (10)) depend on θ1, · · · θnθ
in an a priori non-separable way. Nevertheless, in order to obtain the

separability of the bilinear form with respect to all the parametric dimensions, these functions are

required to be separable. The idea, therefore, is to build a separable approximation of |Je| and De.

Let us focus on a generic non-separable continuous funcion

f : Iθ → R , f = f(θ1, · · · θnθ
).

The goal is to find a separable function f sep ≃ f .

Let us introduce the following discretization of the parametric space

T h
θ

= T h
θ1 × · · · × T h

θnθ
, with T h

θj = [θ1j , · · · θ
nj

j ] ,

where nj is the number of sampling points in the jth direction. T h
θ

is a tensor of rank nθ, with
∏nθ

j=1 nj components.

In order to obtain f sep, first of all f is evaluated in the multidimensional grid T h
θ

, obtaining the

nθ rank tensor with
∏nθ

j=1 nj components

fh = f(T h
θ
) .

Then fh is separated in a compact representation by means of an algebraic method, such as the

High Order Singular Value Decomposition (HOSVD) [20], the Candecomp/Parafac (CP)[21, 22] or

a PGD-projection [23] to obtain,

f sep
h =

nf∑

m=1

am1 ⊗ · · · ⊗ amnθ
, with amj ∈ R

nj .

This approximation is a discrete separable function and it is described by a lower number of

coefficients nf

∑nθ

j=1 nj ≪
∏nθ

j=1 nj .

The continuous separable approximation of f , f sep, is defined in each point of the continuous

parametric space as the interpolation of fsep
h . Next section presents some details on fsep and the

error introduced by this separation. A detailed study of how separation of given data affects PGD

can be found in [24].



8 M. SIGNORINI, S. ZLOTNIK, P. DÍEZ

3.2. Selection of sampling points

The choice of the sampling points T h
θ

has an impact on the convergence of the PGD method as

shown in [24]. We compare two different choices. The first one considers as sampling points T h
θ

the

grid nodes defining the finite element space V h
θj

, while the second choice consists in sampling at the

Gauss points of each parametric dimension.

We recall that we perform the numerical integration with respect to the parameters at the Gauss

points. Therefore the separable approximations of |Je| and De have to be evaluated at these points.

This means that in the case of the first choice (grid nodes), an additional error is committed, due to

the need of transferring the information between the grid nodes and the Gauss points, through the

interpolation.

We underline that the choice of the sampling points is necessary only when a Galerkin

approximation is adopted for the parametric dimensions. In the case in which a collocation method

is used (see Remark 1), this problem is easily solved by taking the collocation points.

3.3. Separable approximation and parallel implementation

The separation of |Je| and De is required for each element of the of the coarse mesh e = 1, · · · , nT .

The functions to be separated, for each e, are 4: one scalar function |Je| and one 2× 2 symmetric

tensor De (equivalent to 3 scalar functions). Each of these functions have to be evaluated in the grid

T h
θ

and to be separated by means of HOSVD.

This means that the total of the scalar functions to be separated are 4nT . This could require a lot

of computational time if done sequentially, especially for an increasing number of coarse elements.

Actually, the computational effort increases linearly with nT . Nevertheless, all the functions to be

sepatated are independent to each other and therefore the separable approximations can be obtained

in parallel, before starting the PGD computation.

3.4. Compressed PGD and PGD+compression

The online phase (evaluation of the PGD solution) is faster if the number of modes of the PGD

solution is lower. This is the reason why we try to reduce the terms of the solution, by applying the

method called PGD compression [10, 23] in two different ways.

The PGD compression aims at reducing the number of terms in the PGD expansion while keeping

the accuracy of the representation. In fact, this is possible because the standard PGD algorithm is not

enforcing any orthogonality between successive terms and often the modes are strongly correlated.

Let us consider a general function computed with PGD, say

f
PGD

(z1, · · · , znp
) =

n
PGD∑

m=1

np∏

i=1

Fm
i (zi),

depending on np parameters z1, · · · , znp
. We aim at approximating f

PGD
with its compressed

counterpart

fcomp(z1, · · · , znp
) =

ncomp∑

m=1

np∏

i=1

F̃m
i (zi),

with ncomp < n
PGD

.

This approximation is obtained via the least-squares criterion, namely by minimizing

‖fcomp − f
PGD

‖L2(Iz) =

∫

Iz1

· · ·
∫

Iznp

(fcomp − f
PGD

)2 dznp
· · · dz1.

This is equivalent to solve the following variational problem: find fcomp ∈ V (V proper variational

space) s.t.

(fcomp, δf)L2(Iz)
︸ ︷︷ ︸

A(fcomp,δf)

= (f
PGD

, δf)L2(Iz)
︸ ︷︷ ︸

L(δf)

∀δf ∈ V.
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The compressed function fcomp is built by using the PGD greedy algorithm: given fn−1
comp, compute

fn
comp by projecting on each parametric space the difference between f

PGD
and fn−1

comp (see [23] for

further details.

We adopt two different strategies in order to obtain a final compressed PGD solution. In the

first case we compute the whole PGD solution and then we compress it, obtaining a solution

with a lower number of modes. With the second method, the compression is alternated with the

PGD computation. This means that it is performed each N PGD modes computed. Then the PGD

computation continues, using the new compressed intermediate solution. This second technique

allows us to obtain the same accuracy (in terms of error w.r.t. the classical finite element solution),

but saving in the computational effort during the offline phase. We will refer to the first method

with “compressed PGD” and to the second one with “PGD+compression”. Similar techniques has

been successfully applied in [10] and [23] to reduce the number of modes of the PGD solution. The

order of convergence of the PGD solution with the number of modes, although, does not seem to be

affected by adding the projection to the standard PGD algorithm. A systematic study is required to

understand the influence of the projection on PGD.

3.5. Solver for the inverse problem

Consider the reference finite element solution of the problem, e.g. the one obtained with the

reference velocity profile, and the PGD solution of the parameterized problem (6). In order to

identify the parameters that minimize the functional J defined in (8), we use the Matlab r function

fmincon, which performs the minimization with constraints. In particular, the constraints in our

case are given by the extreme values of the intervals in which the parameters are defined. The

fmincon function uses the sequential quadratic programming algorithm [15].

4. NUMERICAL RESULTS

In this section a parameterized Helmholtz problem is solved using the proposed PGD methodology.

Two test cases are presented: first, an academic example is used to evaluate the correctness of the

methodology by comparing PGD results with standard FE solutions. The example is also used to

test the different samplings proposed in Section 3.2 to obtain the separable versions of |Je| and

De. Moreover, the behaviour of the Compressed PGD and PGD+compression options described in

Section 3.4 are compared.

A second test case is based on a simplified version of a real geological cross section. This example

shows the behaviour of the method in a more realistic scenario. The geological cross section is

located in NW Germany in a basin where salt-tectonics is dominant [16]. Due the presence of salt,

seismic studies have difficulties to resolve the underground structure and it is usual to obtain areas

with high uncertainty (see for example Figures 4, 6 and 8 in [16]).

4.1. First test case

The spatial domain Ω of the first test case is composed be three different materials (as shown in

Figure 2), such that Ω̄ = Ω̄1 ∪ Ω̄2 ∪ Ω̄3. The material property present in the Helmholtz problem

(1) is the squared slowness σ = 1/c2, where c is the wave propagation velocity. When defining

the parameter, one has to decide if it represents the squares slowness σ, or if it represent the

propagation velocity c. The two options are equivalent, but, due to numerical reasons here σ is

defined as parameter. The range of values taken by σ is smaller than that of c.
Each subdomain Ωi has associated a (constant within the domain) squared slowness σi, for

i = 1, 2, 3. The values for σ1 and σ2 are considered parameters of the problem and span as follows,

σ1 s.t. v1 = σ
−1/2
1 ∈ (3500, 5500)

and

σ2 s.t. v2 = σ
−1/2
2 ∈ (2000, 4000)
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Figure 2. First test case: spatial domain (a) and geometric parameterization of the inner interface (b).

where the velocities vi are expressed in m/s. The squared slowness of σ3 is constant and is such that

v3 = σ
−1/2
3 = 2000 m/s.

Moreover, two geometric parameters, θ1 and θ2, determine the height and the width of Ω2 as

follows (Figure 2),

Ω2 = (−50− θ2, 50 + θ2)× (−250− θ1,−150 + θ1) ,

where distances are in meters.

A homogeneous Robin condition is applied on the bottom and on the two laterals of the domain,

while a Neumann condition with value g is applied on the top boundary Γtop with

g =

{

1 for x ∈ [100, 150]

0 elsewhere
.

The choice is made with no loss of generality, due to the linear character of the problem.

A fixed frequency of 15 Hz (corresponding to a minimum wavelength λmin ≃ 133 m) is

considered. Due to the simple geometry of the spatial domain, the coarse mesh used to introduce

the geometry parameters into the equation is composed by only nT = 18 macro-elements. The FE

mesh, on the other hand, is much finer and it is obtained by subdividing each coarse element into

1024 elements.

Example 1: influence of the sampling points

This first example shows the influence of the different sampling points used to separate |Je| and

De by the CP algorithm. The two options, as described in Section 3.2, are: i) sampling at FE grid

nodes of the parametric meshes, and ii) sampling at the integration points of all FE element of the

parametric meshes. Note that ii) prevents one interpolation (from nodes to integration points) when

solving the space subproblem of PGD scheme.

In order to test this effect in a simpler setup, only one geometric parameter, θ1, is considered

and the other three parameters are kept fixed with values θ2 = 0, σ1 s.t. v1 = 4000 m/s and σ2 s.t.

v2 = 2500 m/s.

Convergence curves of the PGD solution with the number of terms are shown in Figure 3. The

relative error plotted are computed as the L2(Ω) norm of the difference between the PGD solution

and the corresponding FE solution for some particular value of the parameter θ1.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
Prepared using nmeauth.cls DOI: 10.1002/nme
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Curves of Figure 3 show that, as expected, the lower bound of the errors for solutions computed

with sampling at integration points is approximately one order of magnitude smaller than those

computed with nodal sampling.

The final flattening of the convergence curves (meaning that the convergence towards the FE

solution has stopped even when new terms are added) is due to a relatively coarse discretization

of the parametric dimension. If parameter mesh is refined, the curves continue their convergence

towards the FE solution.
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Figure 3. Example 1: Convergence of the PGD solution depending on θ1, using different sampling nodes,
for two values of the parameter.

Example 2: PGD+compression vs. compressed PGD

The behaviour of the PGD+compression and the compressed PGD algorithms described in Section

3.4 is studied next. Two geometric parameters, θ1 and θ2, are considered while keeping the values

of the two material parameters σ1 and σ2 fixed with the same values as in the previous example.

Figure 4 shows the different convergence curves of the relative error with increasing number of

terms for two different values of the parameters. The PGD solution can be largely compressed,

reducing the number of terms from ∼ 240 to ∼ 45, by doing a projection after the complete offline

phase (compressed PGD). On the other hand, the projection can be done many times along the

greedy offline phase. Every a fixed number of computed terms (10 in this example), one projection

is performed. The computer time in this option is reduced to approximately one third (compared

with the PGD process with no compression) because the second term of the right hand side of (14)

includes a sum on all already computed terms. This sum is present on all the sub problems of the

greedy algorithm (space and parametric dimensions). Moreover, the projection process is extremely

fast and therefore the benefits of the reduced number of terms exceeds its overhead. As shown

in Figure 4, the PGD+compression algorithm produces almost the same convergence curve as the

compressed PGD.

Example 3: solution of the 4D inverse problem

In the next example a PGD solution depending on the four parameters (two geometric and two

material properties) is used to solve an synthetic inverse problem. The goal is to find the value of the

parameters that produces the solution that reproduce best some observations. The inverse problem is

stated as a constrained minimization of the functional defined in (8). The observed data is assumed

to be in Γobs, that corresponds to the top side of the computational domain (Figure 2). This situation

is similar to that of a seismic survey, were the measurements are done with surface seismometers

and the complete wave trajectories in the whole domain are inferred.

The synthetic version of this problem is build as follows: i) a reference solution pFE is created

by solving a FE problem with some reference values of the parameters (θref ,σref ), ii) the solution
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Figure 4. Example 2: Convergence curves of the error of PGD solution with different algorithms. Errors are
computed by comparing the PGD solution with a FE solution for a given value of the parameters. The PGD,

compressed PGD and PGD+compression algorithms are used until getting a relative error of ≈ 10−4.

pobs on Γobs is taken as observations, that is

pobs = pFE(θref ,σref )|Γobs
,

and finally, iii) the constrained minimization problem is solved using the parametric PGD solution

to try to recover the reference parameters from the observed data. The minimization method used

here is the Sequential Quadratic Programming (SQP) [15], and its implementation is the fmincon

function of Matlabr.

Results of the parameter recovery are shown in Table I for six different sets of reference values.

The maximum error in the recovered parameters is below 6% and the mean error in the tested cases

is ∼ 1%. The number of iterations used by the SQP method, which is the same that evaluation of

the functional J (Eq. (8)) or the number of “forward” problems solved to recover the parameters,

is indicated in the last column of Table I. In all cases more than 100 evaluations where required.

The fast evaluation of the PGD solution allows a very efficient solve of the inverse problem. This

is particularly important if a global minimum is being seek, because on that case many inverse

problems need to be solved starting from different initial guesses (due to the presence of local

minima).

The dimensionality of the problem considered in this test case is four (two space dimensions and

two parametric dimensions). The PGD technique, although, is able to deal with a larger number

of parameters (e.g. in [12] 11 parametric dimensions are successfully handled). Nevertheless, the

geometrical parameterization used here requires the separation of the Jacobian matrices involved in

the geometrical mapping. Because this separation is done with an a posteriori method, the number

of required evaluations of these functions grows exponentially with the number of geometrical

dimensions (the so-called “curse of dimensionality”, here restricted to the geometrical dimensions).

Therefore, it is recommended to keep to number of geometrical dimensions restricted to two or three.

Note that the addition of other kinds of dimensions to the parametric problem, for example material

parameters, does not produce an exponential grow and it can be done without a large penalization

in the performance.

4.2. Second test case

A more realistic setup, based on a geological cross section from [16], is considered as a second test

case. The spatial domain is 10km × 5km and the boundary conditions are the same as in previous

example. Neumann boundary conditions are now applied to x ∈ (6500, 6550) and frequency

considered is fixed to 5 Hz.

The spatial domain is divided into six material subdomains each one with a different propagation

velocity. Same as in the previous test case, the squared slowness σi are expressed in term of the
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Reference values Recovered values
Relative errors [%]

# it[m] [m/s] [m] [m/s]
L1 L2 v1 v2 L1 L2 v1 v2 L1 L2 v1 v2
50 50 2500 4000 51.07 50.84 2492 4002 1.7 2.1 0.30 0.057 161
50 50 3000 4000 50.07 49.91 3020 4009 0.18 0.14 0.68 0.23 155
50 50 3500 4000 50.34 49.39 3564 3999 1.2 0.68 1.8 0.013 189
50 50 2500 5000 47.08 50.18 2513 5029 0.36 5.8 0.51 0.57 163
50 80 3000 4000 50.19 80 3024 4020 0.38 0 0.82 0.50 127
60 80 3000 4000 60.15 80 2988 4044 0.25 0 0.41 1.1 101

Table I. Example 3: Results of the inverse problem for six different reference values. L1 and L2 are the
lengths of the x and y sides of subdomain Ω2 (controlled by parameters θ1 and θ2). v1 and v2 are the
propagation velocities on subdomains Ω1 and Ω2, respectively (controlled by parameters σ1 and σ2). The

last column shows the number of evaluations of the objective function required by the SQP algorithm.

corresponding wave propagation velocities. The first subdomain, corresponding to the salt body,

has a parameterized σ1 taking values in the range

σ1 s.t. v1 = σ
−1/2
1 ∈ (4450, 4700),

corresponding to standard velocities for salt [25]. The other five subdomains representing other rock

types have constant velocities with values (in m/s) as follows:

v2 v3 v4 v5 v6
2000 4000 3000 3500 2500

Moreover, two geometric parameters control the location of internal interfaces related to the

salt subdomain. Their effect on the geometry is shown at Figure 5. The first parameter controls

the smoothness of the upper part of the subdomain (called the diapir) and the second parameter

controls the thickness of the salt layer crossing the domain. The coarse geometry mesh is composed

by nT = 463 elements (shown At Figure 5), each one subdivided into 256 triangular FE elements.

Solutions presented next are obtained by using the PGD+compression method, with a

compression step done every 20 terms. This choice is not mandatory. The number of modes between

two successive compressions has been fixed to 20 after a trial and error procedure, in order to

guarantee that an effective compression is performed each time.
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Figure 5. Second test case: Coarse geometry mesh for two set of values of the geometric parameters.
Parameter 1 controls the smoothness of the upper part of the diapir and parameter 2 controls the thickness

of the salt layer crossing the domain. Element colours indicate the different subdomains.

Example 4: Parameter sensitivity

This example shows how the sensitivity of the parameters can be easily identified from the

parametric PGD solution. For this example the squared slowness of the fist subdomain (salt) is

considered fixed s.t. v1 = σ
−1/2
1 = 4500 m/s and, therefore, the PGD solution depends on two
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Reference values[-] Computed values[-] Relative errors [%]
# it

θ1 θ2 θ1 θ2 θ1 θ2
0.5 0.5 0.50149 0.48318 0.2983 3.3646 52

0.8 0.3 0.79893 0.29862 0.13381 0.45842 56

Table II. Example 4. Results of the parameter identification problem. See caption of Table I for references.

geometric parameters only. Figure 6 show the real part of the solution obtained via PGD and FE

for two given sets of parameters values.

θ1 = 0.5, θ2 = 0.5 θ1 = 0.8, θ2 = 0.3

F
E

P
G
D

Figure 6. Example 4: Real part of the solution for two sets of geometric parameters. FE solutions (top) and
PGD solutions (bottom).

An inverse problem similar to that of the previous section is solved to recover the two parameters.

The observed data is again restricted to the surface. Results of recovered parameters are shown in

Table II. The relative error of the recovered parameter θ1 are smaller than those of θ2. Due to the

extremely fast evaluation of the PGD solution, it is possible to plot the functional J in the parameter

space, as shown in Figure 7. In that Figure, it can be seen that the functional J is much more sensitive

to the first parameter. That explains why the SQP technique can recover θ1 with smaller errors than

θ2. This ability of the PGD solution to easily estimate the sensitivity on the parameters is extremely

helpful to setup efficiently the solver for the inverse problem.

Example 5: inverse problem with geophysical application

The last example consists in the recovery of the geometric and material parameters for the geologic

cross section. In addition to the geometric parameters of the previous example, here the squared

slowness of the salt (subdomain 1), σ1, is taken as parameter with values such that the velocity

range is v1 = σ
−1/2
1 ∈ (4450, 4700).

Results of the inverse problem are shown in Table III. Same as in last example, the sensitivity of

θ2 is lower that that of θ1. Errors in the recovered parameters are < 2% for θ1 and σ1, while up to

35% for θ2.

CONCLUSIONS

In this work we apply the PGD technique to a parametric formulation of the Helmholtz problem

that is relevant in the context of geological seismic studies. Parameters are of two kinds:
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Figure 7. Example 4: Plot of the functional J in two cases

Reference values Computed values
Relative errors [%]

# it[-] [m/s] [-] [m/s]

θ1 θ2 v1 θ1 θ2 v1 θ1 θ2 v1
0.8 0.3 4650 0.7967 0.1958 4652.3 0.41 34.7 0.050 114

0.5 0.5 4500 0.5029 0.5637 4509.3 0.59 12.7 0.207 88

0.2 0.6 4550 0.1968 0.5949 4541.9 1.61 0.84 0.179 81

Table III. Example 5. Results of the parameter identification problem. See caption of Table I for references.

material parameters, namely squared slowness of the different materials and geometric parameters,

determining the location of internal interfaces between materials.

After the offline phase, PGD allows to obtain in real time the spatial solution for any given set of

parameters. This extremely fast response is ideal for the solution of inverse problems, in which the

values of the parameters need to be recovered to fit some observed data. The multi-query character

(many evaluations of the objective function) of the inverse techniques, makes PGD perfectly suited

for that. Moreover, when a global minimum is required, the importance of having a fast forward

solver is even bigger, as many inverse problems starting from different initial guesses will be needed,

due to the presence of local minima.

Several synthetic examples of the inverse problem presented here show that both kind of

parameters can be recovered in most cases with accuracy smaller than ∼ 5%. Importantly, the PGD

solution allows to easily study the sensitivity of the parameters on the objective function. In this

way, it becomes clear when a parameter can or cannot be identified with a given set of observations.

The offline phase of the PDG method requires some algorithmic decisions. Some of them were

studied in this work: first, the sampling of the parameter dimensions used to compute the separated

Jacobians (required by the geometric parameterization) needs to be done at the integration points

in order to avoid interpolation errors that affect the final convergence of the PGD solution. Second,

“compressing” PGD solution to reduce its number of terms via a L2 projection allows to reduce the

time of both the online and offline phases. The added computational overhead of the compression

step is much smaller than the benefits of keeping the number of terms low.
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A. SEPARABLE APPROXIMATIONS AND MATRICES

The following separable approximations are introduced for each element e = 1, · · · , nT belonging

to the coarse mesh :

|Je| ≃
nJe
∑

l=1

nθ∏

j=1

T e,l
θj

and De ≃
3∑

a=1

na
De
∑

m=1

nθ∏

j=1

Ge,a,m
θj

Ia (15)

where

I1 =

[
1 0
0 0

]

I2 =

[
0 1
1 0

]

I3 =

[
0 0
0 1

]

The scalar σ̃e, associated with the macro-element Te, is defined to simplify notation in the matrix

formulation (Appendix B),

σ̃e =

{

1, if σ in Te is described by one of the parameters

σ|Te
, else (if the value ofσin Te is a fixed value)

The following definitions are used in the matrix formulation of the PGD algorithm (Appendix B),

Mx̂ =

∫

T̂

Nx̂N
T
x̂ dx̂ Ka

x̂ =

∫

T̂

∇NT
x̂ · (Ia∇Nx̂) dx̂ MR

x,e = A∂Te

∫

ΓR∩∂Te

N1D
x (N1D

x )T dx

M e,l
θj

=

∫

Iθj

T e,l
θj

NθjN
T
θjdθj M e,a,m

θj
=

∫

Iθj

Ge,a,m
θj

NθjN
T
θjdθj Mθj =

∫

Iθj

NθjN
T
θjdθj

M e
σs

=

∫

Iσs

[
σsδ̃se + (1− δ̃se)

]
Nσs

NT
σs
dσs M e√

σs
=

∫

Iσs

[√
σsδ̃se + (1− δ̃se)

]
Nσs

NT
σs
dσs

Mσs
=

∫

Iσs

Nσs
NT

σs
dσs

qx,e = A∂Te

∫

ΓN∩∂Te

g(x)N1D
x dx qθj =

∫

Iθj

Nθjdθj qσs
=

∫

Iσs

Nσs
dσs

where δ̃se is defined as

δ̃se =

{

1 the parameter σs describes the material properties of Te

0 otherwise
.

B. MATRIX FORMULATION OF THE DISCRETE PROBLEM

The matrix formulation of the alternated directions scheme is described in the Algorithm 1.

Unknowns are denoted by f⋆ instead of by fn⋆ . All the matrices and vectors used in the algorithm

are defined next. Appendix A presents the definition of all the local matrices and vectors. Let us

recall that the symbol A stands for the matrix assembling operator.
The following matrices and vectors appear in the discrete version of the parametric problem.

M
m̃
x = A

nT

e=1






−ω

2



σ̃eMx̂





nJe
∑

l=1

nθ∏

j=1

(fm̃θj )
H
M

e,l
θj

f
m̃
θj





nσ∏

s=1

(fm̃σs
)HM

e
σs
f
m̃
σs





+

3∑

a=1



K
a
x̂

na
De
∑

m=1

nθ∏

j=1

(fm̃θj )
H
M

e,a,m
θj

f
m̃
θj





nσ∏

s=1

(fm̃σs
)HMσs f

m̃
σs

−iω




√
σ̃eM

R
x,e

nθ∏

j=1

(fm̃θj )
H
Mθj f

m̃
θj

nσ∏

s=1

(fm̃σs
)HM

e√
σs
f
m̃
σs











(16a)



18 M. SIGNORINI, S. ZLOTNIK, P. DÍEZ

Algorithm 1: Matrix formulation of the alternated directions scheme

% Computation of pn
PGD

given pn−1
PGD

Input: fmx , fmθj and fmσs
for j = 1, · · · , nθ, s = 1, · · · , nσ and m = 1, · · · , n− 1

Initialize fx, fθj and fσs

while the convergence is not reached, i.e. some f⋆ is not yet stationary do
[⋆ = x]: update fx such that

Mxfx = rx ,

where Mx = Mn
x , and Mm̃

x , rx are defined in (16a),(17a)

for ̃ = 1, · · ·nθ do
[⋆ = θ̃]: update fθ̃ such that

Mθ̃fθ̃ = rθ̃ ,

where Mθ̃ = Mn
θ̃

, and Mm̃
θ̃

, rθ̃ are defined in (16b),(17b)

for s̃ = 1, · · ·nσ do
[⋆ = θs̃]: update fσs̃

such that

Mσs̃
fσs̃

= rσs̃
,

where Mσs̃
= Mn

σs̃
, and Mm̃

σs̃
, rσs̃

are defined in (16c),(17c)

Check stationarity: |updated f⋆ − previous fold⋆ | < tolerance

M
m̃
θ̃ =

nT∑

e=1






−ω

2



σ̃e(f
m̃
x,e)

H
Mx̂f

m̃
x,e

nJe
∑

l=1




∏

j 6=̃

(fm̃θj )
H
M

e,l
θj

f
m̃
θj



M
e,l
θ̃

nσ∏

s=1

(fm̃σs
)HM

e
σs
f
m̃
σs





+

3∑

a=1



(fm̃x,e)
H
K

a
x̂ f

m̃
x,e

na
De
∑

m=1




∏

j 6=̃

(fm̃θj )
H
M

e,a,m
θj

f
m̃
θj



M
e,a,m
θ̃





nσ∏

s=1

(fm̃σs
)HMσs f

m̃
σs

−iω




√
σ̃e(f

m̃
x,e)

H
M

R
x,ef

m̃
x,e




∏

j 6=̃

(fm̃θj )
H
Mθj f

m̃
θj



Mθ̃

nσ∏

s=1

(fm̃σs
)HM

e√
σs

f
m̃
σs











(16b)

M
m̃
σs̃

=

nT∑

e=1






−ω

2



σ̃e(f
m̃
x,e)

H
Mx̂f

m̃
x,e

nJe
∑

l=1

nθ∏

j=1

(fm̃θj )
H
M

e,l
θj

f
m̃
θj




∏

s6=s̃

(fm̃σs
)HM

e
σs

f
m̃
σs



M
e
σs̃





+

3∑

a=1



(fm̃x,e)
H
K

a
x̂f

m̃
x,e

na
De
∑

m=1

nθ∏

j=1

(fm̃θj )
H
M

e,a,m
θj

f
m̃
θj








∏

s6=s̃

(fm̃σs
)HMσs f

m̃
σs



Mσs̃

−iω




√
σ̃e(f

m̃
x,e)

H
M

R
x,ef

m̃
x,e

nθ∏

j=1

(fm̃θj )
H
Mθj f

m̃
θj




∏

s6=s̃

(fm̃σs
)HM

e√
σs

f
m̃
σs



M
e√
σs̃











(16c)

Vectors definition

rx = A
nT

e=1qx,e

nθ∏

j=1

f
H
θj qθj

nσ∏

s=1

f
H
σs

qσs −
n−1∑

m=1

M
m
x f

m
x (17a)

rθ̃ =

nT∑

e=1

f
H
x,eqx,e




∏

j 6=̃

f
H
θj qθj



qθ̃

nσ∏

s=1

f
H
σs

qσs −
n−1∑

m=1

M
m
θ̃ f

m
θ̃ (17b)
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rσs̃ =

nT∑

e=1

f
H
x,eqx,e

nθ∏

j=1

f
H
θj qθj




∏

s6=s̃

f
H
σs

qσs



qσs̃ −
n−1∑

m=1

M
m
σs̃
f
m
σs̃

(17c)
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