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Summary 
 
The methodology proposed in this research work explores the use of the strain 

injection concept in a combination of classical strain localization methods and 
embedded strong discontinuities, to remove the flaws (stress locking and mesh 
bias dependence) of the former, and simultaneously abdicate of the global track-
ing algorithms usually required by the later. The basic idea is to use, after the 
bifurcation instant, i.e. after the time that elements are amenable to develop dis-
continuities, a mixed continuous displacements - discontinuous constant strains 
condensable finite element formulation (Q1/ 0e ) for quadrilaterals in 2D. This 
formulation provides improved behavior results, specially, in avoiding mesh bias 
dependence. In a first, very short, stage after the bifurcation the concept of strong 
discontinuity is then left aside, and the apparent displacement jump is captured 
across the finite element length (smeared) like in classical strain localization set-
tings. Immediately after, in a second stage, the kinematics of those finite elements 
that have developed deep enough strain localization is enriched with the injection 
of a weak/strong discontinuity mode that minimizes the stress locking defects. 
The necessary data to inject the discontinuity (the discontinuity direction and its 
position inside the finite element) is obtained by a post process of the strain-like 
internal variable field obtained in the first stage, this giving rise to a local (ele-
mental based) tracking algorithm (the crack propagation problem) that can be 
locally and straightforwardly implemented in a finite element code in a non inva-
sive manner. The obtained approach enjoys the benefits of embedded strong dis-
continuity methods (stress locking free, mesh bias independence and low compu-
tational cost), at a complexity similar to the classical, and simpler, though less 
accurate, strain localization methods. Moreover, the methodology is applicable to 
any constitutive model (damage, elasto-plasticity, etc.) without apparent limita-
tions. Representative numerical simulations validate the proposed approach. 
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Chapter 1                                      
Introduction 

Failure Mechanics has attracted large interest in the last decades being object 
of intensive research and important developments. Notwithstanding, nowadays 
modeling failure processes still remains a challenging problem. Research on this 
field is justified by an important variety of practical applications. In the ambit of 
civil engineering, structures are designed to behave in linear elastic regimes, far 
from the possible collapse mechanism. Nevertheless, structures which failure can 
potentially cause possible catastrophic scenarios, like dams, bridges, oil/gas pipe-
lines etc., can be object of additional deep studies related to failure scenarios.  

In addition, in the ambit of mechanical engineering, failure analysis is an im-
portant tool when ships, planes, cars and its respective components and accesso-
ries are being designed and developed. Possible additional applications of this 
research topic can encompass the development of new materials, fracture in the 
biomedical engineering field, nuclear engineering, etc. 

1.1. State of the art 

In this Section a general insight about failure analysis is given. It is not in-
tended to provide a detailed state of art review. Instead, the aim here is to refer 
the most important historical and actual lines of research. For a more detailed 
review, see e.g. [Gerstle 1997; Bazant and Planas 1998].  

In the beginning of the 20th century, supported by the classic elasticity theory, 
failure processes began to be studied. The first steps were done by Inglis in 1913 
[Inglis 1913], who introduce some new concepts like “the stress concentration 
factor”. Later on, Griffith [Griffith 1921] propose an energy criterion of failure to 
study the stability or propagation of pre-existing crack. The contributions of both 
authors gave rise to a new discipline called: Linear Elastic Fracture Mechanics. 
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This discipline was then developed by other authors, like Irwin [Irwin 1948] that 
systematized the different modes of fracture.  

The advent of computers in 1940s and the subsequent rapid development of 
the finite element method in the 1950s have permitted, in the 1960s, a rapid in-
crement of practical contributions related to computational failure mechanics. 
Linear Elastic Fracture Mechanics was just applicable to very brittle materials 
such as glass. In this class of materials, discrete cracks or displacement jumps 
develop almost instantly. In contrast, highly ductile materials exhibit real dis-
placement jumps only for very late stages of failure. The quasi-brittle1 materials 
are in a intermediate stage where in a first period strains start localizing in thin 
diffuse zones (as microcracks or other distinct dissipative phenomena is growing) 
that collapse afterwards in physical discontinuities.  

To extend the application of failure mechanics to quasi-brittle and ductile ma-
terials, classical non-linear fracture mechanics theories start being developed 
considering a yielding zone in the tip of the crack [Gallagher 1971]. Two major 
descriptions were developed: equivalent elastic crack models and cohesive crack 
models. In the former, the treatment is similar to that used in linear fracture me-
chanics, being the model formulated in terms of stress intensity factors. Neverthe-
less, some additional rules are added to express how the equivalent crack extends 
under increasing load [Kraft et al. 1961; Jenq and Shah 1985]. In the later, dis-
crete constitutive equations (tractions vs. displacement jumps) are introduced i.e. 
the crack is assumed to open while is still transferring stresses, from one face to 
the other face of the crack, according the correspondent constitutive equation 
[Hillerborg et al. 1976] [Dugdale 1960]. 

Parallelly to these methodologies, which are based in fracture mechanics, 
another large family of methodologies, based on the continuum mechanics, was 
developed. This new class of methodologies uses standard continuum (stress vs. 
strain) constitutive models equipped with strain softening to approach a phe-
nomenon physically discrete: the fracture. This family of methodologies can be 
termed in general as classical strain localization methods (see Chapter 2) since 
their main assumption/idea is that the fracture can be studied as a consequence of 
concentration of strains in narrow bands (strain localization), being therefore, the 
fracture displacement jumps captured through a finite length in a “smeared” man-
ner [Rashid 1968]. This approach has attracted considerable attention of the 
scientific community due to its inherent simplicity and easiness of implementa-
tion in the finite element context. On the other hand, very soon it was detected 
that the finite element solution suffers from numerical pathologies. Rots systema-
tized the principal problems: stress locking and directional mesh bias dependence 
[Rots 1988]. In the nineteen’s, in the ambit of continuum mechanics, two sub-
families were developed to face the numerical problems inherent to the classical 
localization methods.  

One of them is based on the regularization of the standard strain-softening 
continua (by incorporating a internal characteristic length): non-local [Pijaudier 

                                                        
1 A wide range of engineering materials can be considered as quasi-brittle materials as 

concrete, masonry, some metals, polymers, etc. 
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Cabot and Bazant 1987], gradient [de Borst and Mühlhaus 1992], micro-polar 
[Muhlhaus and Vardoulakis 1987] methods fall within this category that 
proved to be efficient in achieving results independent of the mesh directions. 
The principal inconvenient of these methods is that, in order to capture that 
internal length, the resulting localization band has to encompass a certain 
number of finite elements, which, due the small character of the involved 
internal length, demands the use of very fine finite element discretizations or 
auxiliary re-meshing techniques.  

The second sub-family is the so-called Strong Discontinuity Approach (SDA). 
This methodology was inspired in the original work of Ortiz  involving embedded 
discontinuities [Ortiz et al. 1987]. It essentially consists of enriching the (conti-
nuous) displacement modes of the standard finite elements, with additional 
(discontinuous) displacements, devised for capturing the physical discontinui-
ty. The discontinuity is placed inside the elements irrespective of the size and 
specific orientation of them. For the enriching technique, two possibilities can 
be distinguished in terms of the support of the enriching functions: elemental-
based enrichment (embedded-discontinuities) [Simo et al. 1993] or nodal-based 
enrichment (X-FEM methods)[Belytschko et al. 2001]. These methodologies, 
associated to global tracking algorithms (that rule the crack propagation) proved 
to be efficient in providing results free from either stress-locking or mesh-bias 
dependence, for impressive coarse meshes. The SDA permits also to establish a 
direct link between the methods based on continuum mechanics (using stress-
strain constitutive models) with those coming from fracture mechanics (typi-
cally based on traction-separation models embedded into the localization 
band) [Oliver et al. 2002]. This theoretical result has high significance since 
establishes direct connections between methodologies developed from very 
different starting points. The principal drawback of the methodology is related 
with the need to resort to global crack tracking algorithms, which increase the 
sophistication of the methodology (the procedure is not purely local). Moreover, 
global tracking algorithms seem to impose some limitation in applications to 
dynamics problems, when more complex phenomena, like branching, is intended 
to be modeled.  

Still in the ambit of continuous methods, a new group of methodologies is re-
cently emerging – the phase field models [Francfort and Marigo 1998; Miehe et 
al. 2010a; Miehe et al. 2010b]. The phase-field refers to a variable that interpo-
lates between the unbroken and the broken states of the material. The crack prop-
agation is then controlled by suitable equations (e.g. dissipation functions ob-
tained by minimization principles) that govern the evolution of the crack phase 
field. These procedures are generally computationally demanding, since fine 
meshes are required. 

Outside the ambit of the finite element method (FEM), discrete element me-
thods (DEM) have also been used to analyze fracture processes [Bažant et al. 
1990] [Potyondy and Cundall 1996]. These models leave aside the idea of conti-
nuum media, and concepts like stress strain relations being formulated in terms of 
rigid discrete elements that interact with each other according to contact laws. For 



Chapter 1 Introduction 4 
 

modeling fracture the discrete elements are generally chosen to be circular or 
spherical particles and the correspondent inter-particle contacts can either be 
assumed as brittle or following a given softening curve [Meguro and Hakuno 
1989] [Azevedo et al. 2008]. These discrete models use generally the meso-
structure of the material being therefore computationally more demanding than 
the continuum models (that are at the macro-scale level). For this reason, intend-
ing to reduce the computational cost, also some hybrid models FEM-DEM have 
been developed [Azevedo and Lemos 2006], that use the finite element method 
outside the fracture process area and the discrete particle element method in the 
areas of interest.  

Lattice models have also been used for modeling fracture. In these models, 
developed to deal with random heterogeneous [Herrmann and Roux 1990], the 
material is discritized as a lattice composed of Bernoulli beams that transfer nor-
mal forces shear forces and bending moments. Usually linear elastic analyses are 
performed and beam elements that exceed tensile strength are removed 
[Schlangen and Garboczi 1997; Kozicki and Tejchman 2006]. 

In addition, some more sophisticated multi-scale approaches have been devel-
oped (see [Saether et al. 2009] for a general insight). Usually in the multi-scale 
approaches, near the crack tip some micro scale approach is used intending to 
capture the complex phenomena of fracture deriving from the material micro-
structure (e.g. the atomistic simulations of [Gumbsch 1995]), whereas in regions 
away from the crack tip a macro approach is used (typically based in elasticity 
and the finite element method). A different multi-scale approach was used in 
[Belytschko et al. 2008] in the context of continuum mechanics and strong dis-
continuities. In this approach, the authors use the concept of unit cell which pro-
vide the stress response, the orientation and magnitude of the displacement dis-
continuity that is afterwards introduced in the coarse-scale model by the X-FEM 
method. 

 

1.2. Adopted approach  

In this work, when we refer to classical strain localization methods we mean: 
finite element solutions of material failure problems based uniquely on strain 
localization techniques, using standard continuum stress-strain constitutive mod-
els equipped with strain softening. The softening modulus is properly regularized 
in order to give objectivity to the model (e.g. using the characteristic element size 
[Oliver 1989]). 

The approach adopted in this work, uses the finite element method in a conti-
nuum mechanics framework and the main assumptions are the isothermal quasi-
static regime and small deformations. The material is assumed homogeneous and 
isotropic.  
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The proposed methodologies explore a combination of classical strain locali-
zation methods and strong discontinuity approaches to remove the flaws (stress-
locking and mesh bias dependence) of the former, and simultaneously abdicate of 
global tracking, that are usually used in conjunction with the later. The idea is to 
use, after bifurcation, i.e. after the time that elements are amenable to develop 
discontinuities, a mixed continuous displacements - discontinuous constant 
strains condensable finite element formulation. This formulation provides im-
proved behavior results, specially, in terms of avoiding mesh bias dependence 
(this issue has also been reported by other authors using a non-condensable mixed 
continuous displacements and strains formulation [Cervera et al. 2011]. In earlier 
stages of localization (in a first stage) the concept of strong discontinuity is then 
leaved aside, being the displacement jump captured through the finite element 
length (smeared) in a classical strain localization setting. However, in a second 
stage, and in order to minimize stress locking, the elemental kinematics of those 
finite elements that are developing deep enough strain localization is enhanced 
with the injection of a weak/strong discontinuity mode. The necessary data to 
inject the discontinuity (the discontinuity direction and its position inside the 
finite element) is not obtained by resorting to global tracking algorithm, but in-
stead, is obtained with a local methodology based in the strain-like internal varia-
ble field that is computed with the mixed finite element formulation (the crack-
propagation problem). 

1.3. Objectives 

The main objectives of this research work are: 
 Develop a method enjoying the benefits of the strong discontinuities ap-

proach (stress locking free and mesh bias independent), at a complexity 
similar to the classical and simpler localization methods, i.e. a pure local 
method is to be devised abdicating of auxiliary global (tracking) algo-
rithms. 

 The computational cost of the method should be kept low, i.e. in the or-
der of the standard finite element methods, and coarse meshes should be 
allowed for use. 

 The methodology should be applicable to any constitutive model (dam-
age, elasto-plasticity etc.). 

A secondary objective is to revisit the classical strain localization methods and 
inquire about the quality of the solutions provided by these classical methodolo-
gies. The main idea is to discern whether the finite element solutions of material 
failure problems based on strain localization techniques, using standard contin-
uum stress-strain constitutive models equipped with strain softening, have physi-
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cal sense as solutions of de-cohesive fracture mechanics problem. Thus, to assess 
quality of the solutions, several objective indicators to be computed without a-
priori knowledge of the exact fracture mechanism of the problem will be pro-
posed.  

1.4. Outline 

This research work has four main Chapters (2-5), an introduction (Chapter 1), 
where a very general state of art is included, and conclusions (Chapter 6) where 
the main conclusions of the work are presented and future lines of work are sug-
gested.  

Chapter 2 is a preliminary Chapter where most of the ingredients necessary 
for developing the subsequent Chapters are included. All the ingredients inte-
grated in this Chapter make part of the state of art i.e. no original contributions 
are given. A general insight of the strain localization phenomena and classical 
strain localization models is given, with emphasis in its classical flaws (mesh bias 
dependence (2.4.4) and stress locking (2.4.5). 

The subsequent three Chapters introduce developing issues where original 
contributions are given. All of them are organized in an analogous form: in the 
beginning, a specific state-of-art is included and the main ideas that motivate the 
Chapter are mentioned. Then, in the core part of the Chapter, the principal ma-
thematical ingredients are introduced and developed. Finally, in its last part, rep-
resentative numerical simulations are shown (illustrating the methodology and 
validating the proposals of this work) and the main conclusions of the Chapter are 
summarized2.  

In Chapter 3, to overcome the classic mesh bias dependence of standard irre-
ducible formulations, a condensable mixed displacement-strain finite element 
formulation is developed. In order to avoid instabilities related with hourglass 
modes, an injected version is proposed: the constant strain mode injection.  

In Chapter 4, several objective indicators to assess quality of classical strain 
localization methods solutions, which can be computed without a-priori know-
ledge of the exact fracture mechanism of the problem, are proposed. 

In Chapter 5, inspired in the strong discontinuity approach, a full methodology 
for material failure modeling is proposed, based in the injection, in two stages, of 
specific strain modes: the constant strain mode and the weak/strong discontinuity 
mode. 

 
 

                                                        
2 In chapter 5, are not included conclusions since they are postponed for the chapter 6 

where general conclusions are given. 
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Chapter 2                                          
Strain Localization 

In the context of Continuum Solid Mechanics, strain localization is a natural 
consequence of the introduction of softening in constitutive relations between 
stresses and strains. To motivate some important aspects of this Work, we present 
a brief summary of a one-dimensional problem, which is often used in the litera-
ture ([Bazant and Planas 1998],[de Borst 1986] and [Oliver 2002]) to illustrate 
the strain localization phenomena. 

Let us consider a homogenous bar loaded uniaxially. The material is linearly 
elastic until the moment that the uniaxial stresses   exceed the ultimate tensile 
strength u . After this point the material softens according to the linear softening 

diagram presented in Figure 2.1, where E and H are the Young’s and softening 
modulus respectively (in Section 2.2 some nonlinear continuum constitutive 
models are presented in detail). 

 
a) b) 

P

L

h

 

u

0.05 0.5





HE

Figure 2.1 A bar problem with strain softening material: a) homogenous bar, 
b)stress-strain relations. 

 
Since the structure is perfectly homogenous, all points of the bar reach the ul-

timate stress at the same time. Afterwards, they will enter into softening regime 
and the consequence is a homogenous solution with constant values of stresses 
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and strains   along the bar length. The total elongation is then equal to 
.l L LD = =0 5  (see Figure 2.2-b). 

In practice, the bar cannot be perfectly homogenous; and some part/section is 
slightly weaker (due to some imperfection, etc.). In this view, the structural beha-
vior of the bar is completely different relatively to the homogeneous case. In fact, 
since some point of the bar has the lowest ultimate strength, the stress limit is 
reached in advance, and after that, the point softens. Due to equilibrium consider-
ations, stresses in the remaining part of the bar have also mandatorily to decrease, 
nevertheless, since the correspondent ultimate stress was not reached yet, stresses 
do not soften, but instead, unload elastically, giving a localized solution, with 
nonlinear loading in the localization band and linear unloading in the remaining 
part of the body. 

Let us admit that the central part Lh = 5  of the bar (Figure 2.1) is slightly 

weaker. At the end of the loading process, in this central region, strains are deeply 
localized and stresses fully released. By equilibrium, elastic stresses outside the 
localization band are zero and, consequently, strains in this region also vanish. 

The total elongation of the bar is then .Ll h LD = = = 0 15  . 
 

a) b) 

u

0.05 0.5




 

Figure 2.2 a) Stress-strain relation, b) force-displacement solutions. 
 
Two different solutions for the same problem were presented. From the point 

of view of statics both solutions are possible, since them satisfy the complete 
governing equations of the boundary value problem (see Section 2.1). The point 
B in Figure 2.2-b is called a bifurcation point (see Section 2.3), since after this 
point, depending on the width and the position of the localization band, a multip-
licity of solutions are admissible. From a mathematical point of view, it is said 
that the character of the governing set of differential equations cease to be ellip-
tical ( [Marsden and Hughes 1983] [Knops and Payne 1971]), the problem loses 
uniqueness and this simple problem becomes mathematically ill-posed (in the 
sense of Hadamard [Hadamard 1902]).  

The homogeneous solution is said to be unstable (almost impossible to obtain 
in practice) since a slight perturbation on the homogeneity of the bar will cause a 
sudden change in the structural behavior to a “more stable” localized solution 
[Crisfield 1998]. In this view, one can think that deformations in real problems 

Homogeous

0.5L

F

P

0.1L L

Localized
Solution

Solution

B

C 
O 
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are localized on the minimum length, since this solution would tend to be less 
dissipative and, therefore, would be more stable. However, this question is not 
straightforward since this conclusion leads to an inconsistency solution. Note that, 
for the theoretical bar problem of Figure 2.1, for h  0 , the softening branch B-
C approaches the initial elastic loading path O-B, giving a brittle fracture pro-
gressing with null energy dissipation, what is unacceptable3 from a physical point 
of view. This unacceptable behavior gives raise to the classical lack of objectivity 
of models that study the fracture as a consequence of strain concentration in nar-
row zones (the strain localization methods).  

It is known from experience, that formation of cracks is a gradual process that 
evolves throughout different stages. This process can be associated to three dif-
ferent spatial zones that define the commonly termed Fracture Process 
Zone[Bazant 1983; Oliver and Huespe 2004b]: 

 

Figure 2.3 Fracture process zones (adapted from [Oliver and Huespe 2004b]). 
 

 Diffuse failure zone. It corresponds to the initiation of the dissipa-
tive phenomena. Notwithstanding the increase of strain concentration, 
the stress and strain fields remain spatially smooth. 

 Weak discontinuity zone. The diffuse zone becomes narrower and 
the strain concentration sharper up to collapse in a discontinuous strain 
field. Despite of this fact, the displacement field remains continuous, 
however it exhibits an apparent jump across both sides of the weak dis-
continuity localization band. 

  Strong discontinuity zone. The narrower process of the previous 
zone evolves up to collapse in a zero thickness discontinuity band. Now, 

                                                        
3 This paradoxical result was understood on the light of the strong discontinuity ap-

proach [Oliver 2000], where the softening modulus was reinterpreted in a distributional 
sense, allowing dissipation to occur in a region of zero measure. 



Chapter 2 Strain Localization 10 
 

the displacement field become discontinuous, exhibiting a real jump and 
the correspondent strain field becomes therefore unbounded.  

 
This theoretical phenomenological model intends representing the fracture 

phenomena for a wide range of materials, where strain localization stems from 
different physical mechanisms4, and where the process eventually evolves up to 
the collapse into a macroscopical discontinuity.  

In the light of this evolutive process, the identification of a fixed length for 
crack formation analysis, as was done in the previously presented bar example of 
Figure 2.1, may be regarded as an artifice for convenience of the simulation. Ad-
ditionally, to overcome the lack of objectivity of the strain localization methods, 
concepts like the regularization of the softening modulus (that link the regularized 
softening modulus to the fracture energy) were introduced in order to ensure rea-
listic energy dissipation. In ambit of the strong discontinuity approach, by means 
of a variable bandwidth model [Oliver 2000], a gradual transition from a weak 
discontinuity that collapses in a strong discontinuity of zero thickness was pro-
posed. At the strong discontinuity regime, since strains are unbounded, the regu-
larization of the softening modulus has a distributional sense (so the stresses re-
main regular). An interesting consequence of this interpretation is that dissipation 
can occur in a region of zero measure. 

2.1. The initial boundary value problem in non-
linear solid mechanics  

Let us consider the classical boundary value problem in nonlinear solid me-
chanics. In this work, infinitesimal deformations are assumed, thus the nonlineari-
ty arises from the constitutive behavior between stresses and strains. 

Denoting the continuum body by W, and by G its boundary that may be sub-
divided in two parts: Gu  where displacements ( ) *u x  are imposed (called, in the 

literature, essential boundary conditions) and Gs  where tractions ( ) *t x  are pre-

scribed (called natural boundary conditions), with G Ç Gus   and 

G ÈG G=Gus  , where the bar means set closure [Hughes 1987]. The vector n

, is the outward unit normal to G and b are the body forces.  
 

                                                        
4 Voids nucleation and coalescence in metals, micro cracking in concrete, shear band-

ing in soils, etc. 
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Figure 2.4 Continuum body. 
 
The rate equations (strong form) of the boundary value problem are summa-

rized in Box 2.1. 
 

Given the external actions ( )* : NWu x  , ( )* : NWt x  and 

( ) : NWb x  , find ( ) : NWu x  such that:  

, (equilibriumequation)⋅ + = " ÎWb x0s   (2.1)

( ) , (constitutiveequation)" ÎWxs=S e   (2.2)

, (compatibilityequation)s= " ÎWu xe   (2.3)

* ,
(boundary conditions)

* ,

ü= " Î G ïïýï⋅ = " Î G ïþ

uu u x

t x ss n

 


 (2.4)

Box 2.1 Strong form of the boundary value problem. 
 
In Box 2.1, N stands for the number of space dimensions,  stands for the set 

of real numbers and s  is the rate Cauchy stress tensor that is related to the infini-
tesimal rate strain tensor e  through a nonlinear constitutive function S  (the con-
stitutive model is detailed in Section 2.2). The infinitesimal strain tensor e  is 
computed from the compatibility equation (kinematics), whereas the superscript 

( )S· means the symmetric part of the tensor ( )· . 

W

G



b
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2.2. Material nonlinearity - continuum constitu-
tive models 

2.2.1. Plasticity models 

The mathematical theory of the macroscopic phenomenological plasticity 
theory has its roots on the pioneering work of Saint-Venant, Lévy, Tresca and 
von Mises at the end of the nineteenth century. These original works have been 
object of deep investigation over the last century. Nowadays, phenomenological 
plasticity models have been systematized by several authors, and are widely used 
in practical and research proposes.  

Applications are frequent to that class of materials that suffer ductile failure 
mechanisms, associated to irreversible (plastic) deformations, such as metals, 
some kind of soils and plastic materials. Moreover, with an adequate failure crite-
rion, the modern plasticity theory offers a proper mathematical framework for 
phenomenological modeling of a larger set of materials, where also the quasi-
brittle materials5 are included. 

Mathematical rate-independent plasticity with infinitesimal strain assumption, 
is here adopted. An internal variables approach with thermodynamic basis is 
used. A complete description can be consulted in the following references  [Simo 
and Hughes 1998], [Lubliner 1990], [Neto et al. 2008].  

The principal ingredients of the model are: 
 

1. Additive decomposition of the strain tensor (main assumption). 

e p e p= +  = -e e e e e e , (2.5) 

where ee  is the elastic strain tensor and pe  is the plastic irreversible strain, 
whose evolution is provided by the flow rule.  

 
2. Free energy. 

It is assumed that the specific free energy (disregarding the dependence 
on thermal effects) depends on: 

( ),e= e aj j , (2.6) 

where a  is the set of thermodynamically consistent strain-like internal va-
riables that rule the plastic effects. This set may contain scalar, vectorial or 
tensorial entities, depending on the complexity of the phenomenology that is 

                                                        
5 For this kind of materials, the “model internal variables”, like the irreversible plastic 

deformation pe , have a somewhat distinct physical meaning, than the one it has when it 
is used to describe ductile materials behavior, [Lubliner et al. 1989]. 



Chapter 2 Strain Localization 13 
 

intended to be captured. In this work, the analysis is restricted to isotropic 
softening materials, thus, just one scalar variable a  is required.  

Accordingly, regarding the decomposition of the strain tensor, the free 
energy may be rewritten as: 

( ) ( )e e p= +ej j j a , (2.7) 

where ej is the elastic free energy function (elasticity strain potential) 

: :e e el e=
1
2
e ej  , pj  is the plastic free energy depending on the  internal 

variable a  and el  stands for the linear elastic forth order tensor. 
 

3. Constitutive laws. 
Exploiting the Clausius-Duhem inequality (second law of thermodynam-

ics) with expression (2.7) (Coleman’s method) the constitutive relations fol-
lows as (see [Coleman and Noll 1963],[Lubliner 1990]): 

,
e

e

¶
=

¶
s

e
j

 (2.8) 

p

q
¶

=
¶
j

a , (2.9) 

where q  is the stress-like internal variable, thermodynamically conjugated 

with a  by the hardening law. Equations (2.8) and (2.5) lead to: 

( ):el p=s e-e . (2.10) 

 
4. Elastic domain. 

The elastic domain and yield surface are defined by means of a scalar 
function in the stress space, 

( , )f q £ 0s , (2.11) 

where q  is the stress-like internal variable, that controls the size of the elas-

tic domain. This function defines the admissible stress state and cannot be 
violated. From the preceding function the elastic domain and the yield sur-
face are defined, respectively, as:  

{ }= , ( , )q f q < 0s s �       ;      { }= , ( , )q f q¶ = 0s s �. (2.12)

For the family of plasticity models of our interest, the function that de-
fines the yield surface may be written in the particular form of (see Figure 
2.5-a)):  
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( )ˆ( , ) ,f q f q= -s s  

,yq q¥= =0 0 , 
(2.13) 

where ( )f̂ s  is the “effective stress” or “equivalent uniaxial stress” being a 

scalar valued function that depends exclusively on the actual stress state. 
The initial value q0  defines the initial size of the elastic domain and is there-

fore equal to the yield stress y  (the stress threshold from where material 

starts flowing). Since our attention is restricted to strain softening models, 
we consider that at the end of the loading process the material is completely 
exhausted ( )q¥ = 0 . 

 
5. Flow rule. 

The flow rule governs the evolution of plastic flow and can be assumed 
to have the general form of: 

( , ),p q= me s g  

( , )s q= s g , 
(2.14) 

where m  is a function defining the direction of the flow, ³ 0g is termed the 

consistency or plastic multiplier parameter that defines the magnitude of the 
plastic deformations, and s³0  is a proportionality factor between g  and a 

. 
The flow rule is termed associative if the prescribed function assumes the 

particular form of: 

; qf s f= =-m s¶ ¶ , (2.15) 

i.e, for this case the flow rule is associated to a flow potential that coincides 
with the yield surface, 

,p f= ¶se g  

q f=- ¶ =a g g . 
(2.16) 

 
6. Hardening law. 

The hardening law defines the type of hardening/softening and the evolu-
tion of q (see Figure 2.5-b)). Using equation (2.9), 

 

p

q q
q q

H H- -

¶¶
= =

¶ ¶

2

2

1 1

ja
a   , 

(2.17) 

and rewriting the previous equation:  

( )q H= a a , (2.18) 

where the function ( )H £ 0a  is the isotropic softening modulus that de-

pends on the strain-like internal variable. Distinct definitions of pj (or 
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( )H a ), lead to distinct forms of softening (linear, exponential, etc.). The li-

near isotropic softening case arises from admitting H  constant and inde-
pendent of a . 

 
a) b) 

 
Figure 2.5 a) Elastic domain and yielding surface, b) hardening law. 
 

7. Karush-Kuhn-Tucker Loading/un-loading conditions. 

; ( , ) ; ( , )f q f q³ £ =0 0 0s sg g . (2.19) 

This condition implies that for ( , )f q < 0s : =0g , i.e., when the stress 

state is inside the elastic domain no plastic flow takes place. In the other 
hand, ( , )f q = 0s means that the pair ( , )qs  is on the yield surface and plas-

tic flow can occur. 
 

8. Consistency condition. 

( , )f q =0sg . (2.20) 

The previous expression is derived from (2.19) and requires that for plas-
tic deformation rising( )> 0g , the pair ( , )qs  must persist on the yield sur-

face ( , )f q =0s . Manipulating that equation the consistency parameter may 

be explicitly solved (see [Simo and Hughes 1998]).  
 

9. Tangent elastoplastic operator. 
The tangent elastoplastic operator, is the fourth order tensor that relates 

the incremental stresses with the incremental strains( ):ep=s e  . It has the 

following general form: 
if

: :
if

: :

el

ep el el
el

el

f f

f f H

ì üï ï=ï ïï ïï ï=í ý¶ Ä ¶ï ï- >ï ïï ï¶ ¶ +ï ïî þ

0

0s s

s s






  


. (2.21) 

This expression is obtained by substituting the explicit expression of the 
consistency parameter (obtained by the consistency condition) on the incre-

¶ ( f = q)

 £( f q)

 f >q
Non-admissible a

q
H=

sy

¶
¶a

q
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mental constitutive equation ( ):el f= - ¶ss e g , and rearranging terms 

on the form :ep=s e  . The tensor expressed by (2.21) is symmetric since 
the flow rule is considered associative ( )f=¶m s .  

2.2.1.1. Rankine plasticity model 

The Rankine plasticity model falls into a kind of more general models known 
on the classical literature as multisurface plasticity models. The elastic domain is 
then composed, in general, by n smooth yield surfaces ( ), ,...,if i n= 1  that inter-

sect each other nonsmoothly. The mathematical ingredients may be generalized 
from the single surface plasticity models. 

Each boundary of the elastic domain is now defined by the i-th equation:  

ˆ( , ) ( )i if q f q= - = 0s s  (2.22) 

Therefore, the elastic domain and yield surface are defined, respectively, as:  
[ ]{ }= , ( , ) , for some ,...,iq f q i n¶ = Î0 1s s �.

[ ]{ }= , ( , ) , ,..., ,iq f q i n< " Î0 1s s � 
(2.23) 

The generalizations of the flow rule and hardening law for multisurface plas-
ticity read, respectively, 

( ),
n

p i i

i

f q
=

= ¶å
1

se s g , (2.24) 

( )


n
i

i

q H
=

= å
1





a g

a

. 
(2.25) 

Similarly the Karush-Kuhn-Tucker loading/un-loading conditions read: 

; ( , ) ; ( , )i i i if q f q³ £ =0 0 0s sg g , (2.26) 

where ig  is the i-th plastic consistency parameter (no summation on i). The con-

sistency condition reads: 

( , ) ,...,i if q i n= =0 1sg  . (2.27) 

The particularization of the general model for the Rankine’s model case is 
done by the specification of the yield surface: 

ˆ( , ) ( )i if q f q= -s s    ;   ˆ ( )i if =s   , , ,i I II III=  

,yq q¥= =0 0 , 
(2.28) 

where i  is the i  principal stress.  
Rankine proposed this yield criterion in 1876, and its principal feature it is the 

assumption that yield occurs when the maximum normal stress (the higher prin-
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cipal stress) reaches the yielding uniaxial stress. Since this model does not con-
sider the influence of shear stresses, it is not suitable for ductile materials model-
ing, nevertheless it is appropriated for concrete, masonry and other quasi-brittle 
materials. Here, the Rankine yield criterion is developed in the framework of 
computational plasticity, aiming to modeling concrete cracking in tension and 
disregarding crushing in compression. 

 
a) b) 

 







Hydrostatic axis

y



 y

 y

  




Figure 2.6 Rankine yield surface: a) three dimensional view, b) octahedral plane 
sections. 

 
Recalling the spectral representation of the stress tensor, 

III
i i i

i I=
= Äå p ps  , (2.29) 

where ip is the i-th principal direction, 

:i i i= Äp ps . (2.30) 

From the particularization of equation (2.24), the flow rule reads: 
III

p i i i

i I=
= Äå p pe g , (2.31) 

where i i i= Äm p p  is the flow tensor correspondent to the i-th yield surface. 

 
In Box 2.2 the main ingredients of the Rankine constitutive model are summa-

rized. 
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Additive strain decom-
position 

e p+e= e e  (2.32) 

Constitutive equation ( ):el p=s e-e  (2.33) 

Yield surface 
ˆ( , ) ( )i if q f q= -s s  

ˆ ( )i if =s  , with , ,i I II III=  
(2.34) 

Flow rule ; ( )
III

p i i i i i

i I=
= = Äå m m p pe s g  (2.35) 

Hardening law 
III

i

i I

q H
=

= å g  (2.36) 

Loading-unloading 
conditions 

; ( , ) ; ( , )i i i if q f q³ £ =0 0 0s sg g  (2.37) 

Box 2.2 Rankine constitutive model. 

2.2.1.2. J2 (von Mises) plasticity model 

This yield surface was first introduced by von Mises in 1913. Actually, is one 
of the most widely used criteria for failure modeling of ductile materials.  

In crystalline materials such as metals, crystallographic plane slip is generally 
the principal mechanism of plastic deformation [Lubliner 1990], therefore in 
modeling such materials, pressure is generally negligible. Von Mises yield sur-
face is independent of the invariant I1, and is stated exclusively in terms of the 
second deviatoric invariant J2, implying that yielding derives from the deviatoric 
components of the stress tensor, and under hydrostatic loading, the model materi-
al behaves elastically. 

 
a) b) 

 

 



Hydrostatic axis



 

Figure 2.7 Von Mises yield surface: a) three dimensional perspective, b) deviator-
ic Section. 

 

  




R= 2
3

q
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Particularizing the general model for the Von Mises yield surface, 

ˆ( , ) ( )i if q f q= -s s     ,   ˆ ( ) ,if = s
3

2
s   

,yq q¥= =0 0 , 
(2.38) 

where s  is the deviatoric part of the stress tensor s  and the norm :=s s s  

represents the minimum distance from the current stress state s  to the hydrostat-
ic axis. 
From a geometric point of view, this function represents the external surface of an 

infinite cylinder with hydrostatic axis and initial radius yR =0
2
3
  (note that 

yq =0  ), (see Figure 2.7). 

Particularizing equation (2.24), the flow rule reads: 

p =
s
s

3
2

e g , (2.39) 

where =
s

m
s

3
2

is the flow tensor. 

 
In Box 2.3 the principal ingredients o J2 constitutive model are summarized: 
 
Additive strain de-

composition 
e p+e= e e  (2.40)

Constitutive equation ( )el : p=s e-e  (2.41)

Yield surface 

ˆ( , ) ( )f q f q= -s s  

ˆ ( )f = s
3
2

s  
(2.42)

Flow rule ( ) ; ( )p = =
s

m m
s

3
2

e s s g  (2.43)

Hardening law ( )q H= g  (2.44)

Loading-unloading 
conditions 

; ( , ) ; ( , )f q f q³ £ =0 0 0s sg g  (2.45)

Box 2.3 J2 constitutive model. 
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2.2.2. Damage models 

The scalar continuum damage model concept was first introduced by Kacha-
nov [Kachanov 1958] for the study of creep in metals, becoming after that an 
emerging field of intense research. An extensive list of models were then pro-
posed by different authors to model the constitutive behavior of brittle, quasi-
brittle and even ductile materials (see[Ju 1991; Lemaitre 1992] for a literature 
review). Due to its intrinsic nature, it is particularly appropriated for concrete 
constitutive modeling. In this context, the internal damage variable is associated 
to the material degradation i.e. to the initiation, growth and coalescence of micro-
cracks or microvoids. Depending on the complexity of the phenomenology that is 
intended to be captured, the damage variable can be a scalar, vectorial or tensorial 
entity. 

Here, the isotropic damage model proposed in [Oliver et al. 1990], that is 
based in the model originally presented in [Simó and Ju 1987], is used. In the 
following, the main ingredients are presented: 

 
1. Damage variable 

In this work, the damage variable is chosen as a scalar variable d  
representing an isotropic damage case (independent of the direction). The 
value d = 0  corresponds to the undamaged state whereas d =1  means a 
fully damage state. The following definition for d  is assumed: 

( )q r
d

r
= -1 , (2.46) 

where q  and r  are, respectively, the stress and strain like internal variables. 

 
2. Free energy. 

It is assumed that the specific free energy (disregarding the dependence 
on thermal effects) has the following form: 

( ) ( ) ( ), ( ) er d r= = -1e ej j j , (2.47) 

where ej is the elastic free energy function (elasticity strain potential) 

: :e el=
1
2
e ej  , and r  stands for the strain like internal variable.  

 
3. Constitutive laws . 

Exploiting the Clausius-Duhem inequality (second law of thermodynam-
ics) with expression (2.47) (Coleman’s method) the constitutive relations 
follows as (see [Coleman and Noll 1963]): 

( ) :
e

eld
¶

= = -
¶

1s e
e s

j
 , (2.48) 
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( )d= -1s s , 

q
r

=s s . 
(2.49) 

In equation (2.48) the term ( )d-1  can be interpreted as a reduction fac-

tor, being s  the effective elastic stress ( see [Lemaitre 1992] for a physical 
interpretation). 

 
4. Elastic domain. 

The elastic domain and damage surface can be defined by means of a 
scalar function in the strain space, 

( , )f r £ 0e , (2.50) 

where r  is the strain-like internal variable controlling the size of the elastic 
domain This function defines the admissible strain state and cannot be vi-
olated. From the preceding function the elastic domain and the damage sur-
face are defined, respectively, as:  

{ }= , ( , )r f r < 0e e �       ;      { }= , ( , )r f r¶ = 0e e �. (2.51)

For the family of models of our interest, the function that defines the 
damage surface may be written in the particular form of: 

( )( , ) ,f r r= -e e  

u
tr r

E
= = =0 0


, 

(2.52) 

where ( )e  is a scalar norm of the strains. The initial value r0  defines the 

initial size of the elastic domain.  
The norm ( )e  can admit different definitions depending on the materi-

al that is intended to be modeled. In this work we use the following two pos-
sibilities (see Figure 2.8): 

 
1.  Damage model with equal degradation in tension and compres-
sion: 

( ) : : : :el el-= =
1

e e e s s   . (2.53) 

This model exhibits equal compressive/tensile strength ratio being 
therefore inadequate to model concrete. 
 
2. Damage model with degradation only in tension: 

( ) : :el-+=
1

e s s  , (2.54)

where +s is the positive part of the effective stresses. 
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i i i

i

+

=
= Äå p p

3

1

s s , (2.55) 

where i  and ip are respectively the i-th principal stress and the i-th 
principal direction and ·  is referred to as the McCauley bracket, that 

has the following definition: 
if

if

i i
i

i

ìï >ï= íï £ïî

0

0 0

s s
s

s
. (2.56) 

Expression (2.54) defines an unbounded elastic domain in the com-
pression octants. Therefore this model is useful for those situations where 
tension is dominant, i.e. where tension leads to the structural failure. 

 
a) b) 
1-Equal degradation in tension and compression 

 
2-Degradation only in tension 

Figure 2.8 a) Illustration of the elastic domain and damage surface, b) Uniaxial 
generic curves. 

 

5. Evolution laws 
For the damage threshold ( )q r the following evolution law is defined: 

, [ , )r r r= Î ¥0g    , (2.57) 

where ³ 0g is termed the damage consistency parameter used to define the 

loading/unloading conditions according to the Karush-Kuhn-Tucker rela-
tions: 

; ( , ) ; ( , )f r f r³ £ =0 0 0e eg g . (2.58) 

£ ( q)

s



E

(1-d)E

s

s

1

2

¶ ( = q)   >q
Non-admissible

s



E

(1-d)E

   >q
Non-admissible

¶ ( = q)

£ ( q)

s

s

1

2
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6. Hardening law. 
The hardening law defines the type of hardening/softening and the evolu-

tion of q . 


q

q r
r

H

¶
=

¶
  , 

(2.59) 

where the function ( )H r £ 0  is the isotropic softening modulus that de-

pends on the strain-like internal variable. Distinct definitions of ( )H r , lead 

to distinct forms of softening (linear, exponential, etc.). The linear isotropic 
softening case arises from admitting H  constant and independent of r .  

 
7. Consistency condition. 

( , )f r =0eg  . (2.60) 

The previous expression requires that for damage status ( )> 0g , the 

pair ( , )re  must persist on the damage surface i.e. ( , )f r = 0e .  

 
8. Integration of the evolution law 

For loading cases r= > 0g   and ( , )f r = 0e   

( ) ( )( , )f r r r= - =  =0e e e  . (2.61) 

By the consistency condition (2.60): 

( )( , )f r r=  = =0e e g   , (2.62) 

so that tr  (the value of r at instant t) is given by the expression 

( )
[ , ]

max ( , , )t t
s t

r r s
Î

= 0
0

e . (2.63) 

 
9. Tangent operator. 

The tangent operator, is the fourth order tensor that relates the incremen-
tal stresses with the incremental strains( ):=s e  . Depending on the dam-

age surface, it  has the following forms: 
1. Damage model with equal degradation in tension and compres-
sion 

( ) if

( ) ( )
if

el el

el

q
d

r
q r q r Hr

r r

ì üï ïï ï- = =ï ïï ïï ï= í ýï ï-ï ï- Ä >ï ïï ïï ïî þ3

1 0

0s s





 



. (2.64) 

2. Damage model with degradation only in tension 

( ) if

( ) ( )
if

el el

el

q
d

r
q r q r Hr

r r
+

ì üï ïï ï- = =ï ïï ïï ï= í ýï ï-ï ï- Ä >ï ïï ïï ïî þ3

1 0

0s s





 



, (2.65)
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In Box 2.4 the principal ingredients of damage constitutive model are summa-
rized: 

Damage variable ( )q r
d

r
= -1  (2.66) 

Constitutive equation ( )( ) :eld r= -1s e
s

  (2.67) 

Damage surfaces: ( )( , ) ,f r r= -e e

(2.68) 1-Symmetric ( ) : :el-=
1

e s s   

2-Only tension ( ) : :el-+=
1

e s s   

Evolution law r = g ,  [ , )r rÎ ¥0  (2.69) 

Hardening law ; uq Hr q r
E

= = =0 0  
 (2.70) 

Loading-unloading 
conditions 

; ( , ) ; ( , )f r f r³ £ =0 0 0e eg g  (2.71) 

Box 2.4 Damage model. 

2.3. Material bifurcation - localization analysis 

At the beginning of this Chapter, a brief description of strain localization was 
given. It was mentioned that strain localization, in continuum numerical models, 
is a direct consequence of the introduction of softening in the constitutive model. 
As a consequence, in order to derive a methodology to detect the onset of strain 
localization, attention must be focused in the constitutive response. This approach 
has been developed by several authors. The basic theoretical principles were in-
troduced by Hadamard [Hadamard 1903] and Hill [Hill 1962]. Later, Rudnicki 
and Rice link these pioneering concepts to the onset of strain localization 
[Rudnicki and Rice 1975] [Rice 1976]. 

The main idea of the classical localization analysis is to verify under what 
conditions (related to the local constitutive response), the solution in terms of 
strains and stresses, is no longer continuous and smoothly varying, and may bi-
furcate giving rise to a highly concentrated band of localized strains (denoted as 

locW  in Figure 2.9). So let us consider the continuum body of Section 2.1 now 

subdivided into two parts by the discontinuity band locW , where n is the unit vec-

tor orthogonal to the discontinuity. 
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Figure 2.9 Continuum body with discontinuity. 
 

The basic assumption is to admit that the stress and strain rates display a jump 
across the discontinuity. In spite of that, the jump is not arbitrary, and it is con-
strained by two restrictions. One of them follows from equilibrium considera-
tions, the traction continuity, and implies that the traction rates must remain con-
tinuous across the localization band: 

\loc locW W W⋅ = ⋅n ns s  . (2.72) 

The second restriction is a kinematic constraint. The Maxwell’s compatibili-
ties relations define the admissible structure of the strain tensors displaying jumps 
or discontinuities (see e.g. [Huespe and Oliver 2011] for further details) 

( ) ( )\ \loc loc loc loc

SS S
W W W W W W = + Ä   = + Äu u n u u nb b , (2.73) 

where b is a vector that defines the jump on the strain field. 
A clear physical interpretation may be seen if we write = gb x , where 

=g b b  and = bx . The vector g represents the deformation mode and x  

its magnitude. The opening (mode I) and the sliding mode (mode II) are obtained 
for g n  and ^g n  respectively. For general cases, a mixed mode is obtained 

(see Table 2.1). 
 

a) Mixed mode b) Mode I c) Mode II 

( )
n t

S

t

g g

g

é ù
ê ú
ê úÄ = ê ú
ê ú
ê úë û
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1
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1
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( ) nS gé ù
ê úÄ =
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g n
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0 0  
( )

t
S

t

g

g

é ù
ê ú
ê úÄ = ê ú
ê ú
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g n

1
0

2
1

0
2

Table 2.1 Deformation modes. a) mixed mode, b) opening mode, c) sliding mode. 

The tensor ( )SÄg n  is expressed in two dimensional coordinate system with axes 

oriented with the discontinuity surface { }ˆˆ,n t . 
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When the incipient discontinuity is formed, two situations are admissible (see 
[Rice and Rudnicki 1980]): 

a)  Plastic loading inside and outside of the discontinuity band (continuous 
bifurcation). 
b)  Plastic loading inside the discontinuity band and elastic unloading out-
side (discontinuous bifurcation). 

 
From experience, it is known that in practice only discontinuous bifurcation is 

found, since around the localization zone the material unloads elastically. Never-
theless, it is interesting to examine both scenarios. 

The traction rate continuity equation (2.72) can be expressed as: 

\ \: :
loc loc loc locW W W W W W⋅ = e ⋅n ne   , (2.74) 

where for case a): \loc loc

ep
W W W= =    , and for case b): 

loc

ep
W =   ; 

\ loc

el
W W = 

. 
By substituting expression (2.73) in (2.74) and reorganizing terms, (2.74) 

yields respectively the two following conditions: 

a) Continuous bi-
furcation 

b) Discontinuous bifurcation  

( )ep⋅ ⋅ ⋅ =n n g 0x
 

( ) ( )\ \:
loc loc loc locW W W W W W⋅ ⋅ ⋅ = - ⋅n n g nex    (2.75) 

The bifurcation analysis consists of verifying when the previous equations are 
fulfilled for the first time (bifurcation time), for at least one critical direction 

critn . crit
contH  is the softening modulus superior limit that verify condition (2.75)-a) 

for a given critical direction and it is called the critical softening parameter. In 

that sense, one can ensure that for values crit
contH H>  the material does not bifur-

cate. The critical direction is obviously the direction that maximize crit
contH . 

Reminding some historical results, Hill showed that elastic/plastic bifurcation 
,case b), can never precede plastic/plastic bifurcation ,case a), [Hill 1962]. Later, 
it was shown by Rice and Rudnicky that “continuous bifurcations provide the 
lower limit to the range of deformations for which discontinuous bifurcations can 
occur”. The authors conclude that discontinuous bifurcation is just possible for 

H< crit
contH  [Rice and Rudnicki 1980]. 

This conclusion (the continuous bifurcation regarded as the lower limit of the 
discontinuous bifurcation), has an important consequence since the critical condi-
tion for discontinuous bifurcation may be found through the analysis of the conti-
nuous bifurcation expression, with a considerable gain of simplification. 

Defining loc ep= ⋅ ⋅Q n n , condition (2.75)-a) is written as: 
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loc ⋅ =Q g 0x , (2.76) 

where the second order tensor, ( )locQ n , is often called in the literature, localiza-

tion tensor. Equation (2.76) implies, for non-trivial solutions (i.e. for ¹ 0x ), the 

singularity of the tensor locQ (this condition corresponds to the loss of strong 

ellipticity of the tangent constitutive operator ep ), and from that implication 
follows the classical localization condition: 

( )det ,loc Hé ù =ë ûQ n 0 . (2.77) 

This condition may be interpreted, as a necessary condition for the appearance 
of a strain jump in the direction n . We remark that since the analysis is complete-
ly local, this condition is necessary but not sufficient. The onset and evolution of 
a discontinuity depends additionally on the surrounding material and on the 
boundary conditions.  

In the last 20 years, in the context of the finite element method, several ap-
proaches based in the assumed enhanced strain methods have been developed 
[Simo, Oliver et al. 1993], [Ortiz, Leroy et al. 1987]). These methodologies, 
among others, enrich the original shape functions with information provided 
by the bifurcation analysis. As a consequence of this practical application, 
bifurcation analysis become a very interesting research topic and a lot of ef-
fort has been dedicated to find analytical explicit expressions to compute the 

critical values ( critn and critH ) that fulfill the condition expressed in (2.77), for a 

wide range of constitutive models [Runesson et al. 1991; Oliver and Huespe 
2004a]).  

In this work, the analysis is restricted to associated plasticity and damage 
models in two dimensions, and the expression proposed by Oliver in [Oliver 
and Huespe 2004a] are used. For more general and complex cases, analytical 
expression may not be available. In [Oliver et al. 2010] a robust numerical 
algorithm to compute solutions to these situations is provided. 

2.4. Classical strain localization methods –
Standard (irreducible) finite element formulations 

Based on the earlier work of [Rashid 1968], standard finite element formula-
tions (Section 2.4.2), start to be fairly applied to the study of material failure. 
These classical strain localization methods employ a continuum mechanics 
framework, equipped with local stress-strain softening relations, to approach a 
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phenomenon physically discrete: the fracture. The main assumption/idea is that 
the fracture displacement jump is captured through the finite element length in a 
“smeared” manner. The main advantage, and the principal reason of its popularity 
among the scientific community, was the inherent simplicity and easiness of im-
plementation in the finite element context. On the other hand, soon it was de-
tected that the finite element solution was dependent on the element size (this 
problem became known as “lack of mesh objectivity”) (Section 2.5.3). To over-
take this problem the softening modulus, H, of the constitutive model was rein-
terpreted and linked to the fracture energy (enforcing, by means of this, the ener-
gy dissipated by the numerical model to have a physical meaning) [Bazant and 
Oh 1983], [Hillerborg, Modeer et al. 1976].  

Additionally, irreducible finite element formulations show also some other 
numerical pathologies related to the non-uniqueness of the solution. Rots syste-
matized the principal problems: Stress locking and directional mesh bias depen-
dence [Rots 1988]. In Sections 2.4.4 and 2.4.5 these pathologic phenomena are 
illustrated by several numerical examples. We remark that these numerical pa-
thologies cannot be easily removed. In the last years, considerable research effort 
has been dedicated to resolve these issues. The Strong Discontinuity Approach 
with elemental-based enrichment (embedded-discontinuities) [Simo, Oliver et al. 
1993] or nodal-based enrichment (X-FEM methods)[Belytschko, Moes et al. 
2001], associated to global tracking algorithms proved to be efficient in providing 
results free from either stress-locking and mesh-bias dependence, for impressive 
coarse meshes. Besides, also enhanced continuum regularization methods [de 
Borst 1993] have proved to provide good results at the expenses of higher compu-
tational costs. 

The development of a numerical methodology, in the ambit of the classical 
pure local methods, able to provide mesh independent results without adding any 
kind sophistication (non local regularizations, global tracking techniques) and 
without increasing the computational cost, is, due to the inherent simplicity of 
these methods, of evident convenience.  

2.4.1. Weak formulation of the boundary value problem 

The weak or variational formulation of the boundary value problem. may 
be derived in a traditional fashion from the strong form of Box 2.1 (see for 
example [Hughes 1987]). Thus, testing the strong form of the problem defined 
in the equations (2.1) with the test functionsh , and integrating over the do-

main, yields: 
*: ( ) ,s s d d d

W W G

é ùW- ⋅ W+ ⋅ G = " Îê úê úë ûò ò òu b t 0
s

h S h h h   

. 
(2.78) 

The previous expression, is equivalent to the one that is obtained by the 
principle of the virtual displacement, often used in the literature of solid me-
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chanics, where sh  represent the virtual strains and h  the virtual displace-

ments [Bathe 1982]. 
The weak form of the boundary value is completely defined after selecting 

the spaces where the solution functions u and the weighting functions h  

should belong. As usual, are selected the spaces that ensure the minimum 
necessary regularity, thus: 

( ){ }*: ; ,
n

H G
é ù= Î W =ë û u

u u u u1��   

( ){ }: ; ,nH G
é ù= Î W =ë û u

1 0h h h�   

where ( )H W1  is the space of square integrable functions defined in W, whose first 

derivatives are also square integrable [Hughes 1987].  
The weak form of the problem may be stated as: 
 

Given * : NG uu  , * : NG t s   and : NWb   find Îu   such that 

for all Îh   

*: ( )s s d d d
W W G

W= ⋅ W+ ⋅ Gò ò òu b t
s

h S h h     (2.79)

Box 2.5 Weak form of the boundary value problem. 

2.4.2. Finite element approximation  

The first step to introduce the finite element approximation to the conti-
nuum problem, defined in Box 2.5, is the definition the finite dimensional 

spaces h  and h� that approximate   and  : 

: ( ) ( )
nnodes

h h h
i i

i

N
=

ì üï ïï ï= =í ýï ïï ïî þ
åu u x x u
1

  � � ; ,h Ì �  (2.80) 

: ( ) ( )
nnodes

h h h
i i

i

N
=

ì üï ïï ï= =í ýï ïï ïî þ
åx x
1

h h h��� ; ,hÌ�    

where the vector iu contains the displacement degrees of freedom associated to 

the node i and iN  are the standard finite element isoparametric shape functions.  

Considering an element point of view, the discrete version of equation 
(2.79) that outcome from the choice of the finite element shape functions 
defined in (2.80), may be stated as: 
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Given the vector extF  find hu  such that:  

{ }{ }( )

( )int ( ) ( )
e

ee T s h ext

e
d

WÎW

æ ö÷ç ⋅ W =÷ç ÷çè ø
= òF B u FS A  

{ } { }
( ) ( )( )e es h e= ⋅u B u   

(2.81) 

Box 2.6 Discrete form of the boundary value problem. 
 
In Box 2.6, intF  and extF stands for the internal and external forces respec-

tively, A  is the assembling operator, ( )eB  is the standard deformation ma-

trix and { }( )eu  is the elemental vector of nodal displacements (Voigt notation 

is used). 

2.4.3. Lack of objectivity and regularization 

If the finite element method is used to solve the differential equations of the 
nonlinear boundary value problem of continuum mechanics, equipped with strain 
softening, strains will tend to concentrate (localize) in narrow bands correspond-
ing to the element size. Having in mind the discussion developed in the beginning 
of this Chapter, one realizes that the total amount of dissipated energy will de-
pend on the size of the finite element. The natural idea is that, independently of 
the element size, the dissipation of the continuum model should be enforced to 
match the material fracture energy6 fG (obtained experimentally).  

Note that continuum strain softening models dissipate energy on a per unit vo-
lume basis, since the crack opening (displacement jump) is captured in a smeared 
manner over a certain length  . This length parameter should therefore be intro-
duced to make the dissipated energy per unit area (i.e. fracture like). For softening 
models with tq =¥ = 0 , it can be written: 

f fG g ds= ò
0



, (2.82) 

where fg  is the specific energy (per unit of volume) consumed during the de-

formation process: 

:
t

f

t

g dt
=¥

=

= ò
0

s e . (2.83) 

Considering a discrete domain, and admitting a constant strain field in the lo-
calization domain, equation (2.82) may be rewritten as, 

                                                        
6 The fracture energy is the necessary energy to open a crack of unit area and was a 

concept originally developed in the ambit of fracture mechanics [Griffith 1921]. 
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( )e
f fG g=  , (2.84) 

where ( )e  is a finite element characteristic length, that depends on the size, the 
shape  and on the manner that the element is crossed by the crack [Oliver 1989].  

2.4.3.1. Softening regularization for elastoplastic models 

For the elastoplastic models considered in Section 2.2.1 the specific energy 
may be computed as: 

: : : :
t t t

p
f el

t t t

g dt dt dt
=¥ =¥ =¥

-

= = =

= = +ò ò ò1

0 0 0

s e s s s e  , (2.85) 

where the additive decomposition of the strain rate tensor e p= +e e e    and the 

constitutive relation el :e -= 1e s   are considered. 

Integrating on time the first term, and using the flow rule (2.16) 
ˆ ˆp f f= ¶ = ¶s se g a , we obtain: 

ˆ: : :
tt

f
t t

g f dt
=¥=¥

-

= =
=

é ù
= + ¶ê ú

ê úë û ò1

0 0
0

1
2 ss s sa 


 . (2.86) 

Considering that the function f̂  defined in (2.13) is homogenous of degree 

one7 with respect to the argument sigma, by the Euler’s theorem for homogene-
ous functions: 

( )ˆ ˆ:f f¶ =s s s . (2.87) 

For a loading processes, since = 0g a >  , the loading/unloading conditions 

defined in (2.19) imply ( , )f q = 0s , thus: 

( ) ( )ˆ ˆ( , )f q f q f q= - =  =0s s s . (2.88) 

Finally by considering (2.87) and (2.88), expression (2.86) yields:  
t

f

t

g q dt
=¥

=

= ò
0

a . (2.89) 

The integral in equation (2.89) represents the area below the qa -  curves. In 

following table, expressions for linear and exponential softening, are presented. 
 
 

                                                        
7 Note that this requirement is fulfilled by many usual yield functions (Von-Mises, 

Tresca, Rankine, etc.) [Khan 1995]. 



Chapter 2 Strain Localization 32 
 

a) Linear softening( )yq H= + a
( )H < 0  

b) Exponential softening ( )( )A
yq e= a

( )( );H A< <0 0a  
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Table 2.2 q -a curves a)linear softening, b)exponential softening. 

 
By substituting the results of Table 2.2 in equation (2.84) and solving for H 

and A: 

( ) ( )ˆy e e

f
H H

G
= - =

2

2
 


 ( ) ( )ˆy e e

f
A A

G
=- = 


. (2.90) 

The softening parameter H  and the A  parameter, that ensure objectivity 
between the constitutive model dissipation and the fracture energy, may be 
regarded as regularized forms of intrinsic material parameters Ĥ  and Â .  

These results are consistent with those obtained through the strong discon-
tinuity approach, where the strong discontinuity kinematics induce discrete 
constitutive relations (traction vs. displacement jump). In this approach, the 
parameter Ĥ  was identified as the discrete softening parameter [Oliver 
2000].  

2.4.3.2. Softening regularization for damage models 

As it was done for the elastoplastic models in Section 2.4.3.1, the specific 
energy may be computed for damage models as: 

: :
t t

f

t t

q
g dt dt

r

=¥ =¥

= =

= =ò ò
0 0

s e s e  . (2.91) 

For loading stages, from (2.62) and (2.63), ( )r =e  . Considering the damage 

model with equal degradation in tension and compression ( )( ): :el=e e e  , 

the time derivative of ( )r e , reads: 

y



q

q =
0

q =¥

y



q

q =
0

q =¥
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( ) : : :elr
r

r r
¶

= = =
¶

1 1
e e e e s e

e
    , (2.92) 

thus: 

:r
r

=
1
s e  , (2.93) 

and by substituting (2.93) in (2.91) we obtain 
t

f

t

g qr dt
=¥

=

= ò
0

 . (2.94) 

Notice that, for the Damage model with degradation only in tension expression 

(2.94) is also derived. For this case ( ) :r += =e s e  

( ):
: : : :

r
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, (2.95) 

and by substituting (2.95) in (2.91) expression (2.94) is obtained. 
The integral in equation (2.94) represents the area below the qa -  curves. In 

following table, expression for linear and exponential softening cases, are pre-
sented. 

 

a) Linear softening
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Table 2.3 q - a curves for damage models a)linear softening, b)exponential sof-

tening. 
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By substituting the results of Table 2.3 in equation (2.84) and solving for H 
and A: 

( ) ( )ˆu e e

f
H H

EG
=- =

2

2
   ( ) ( )ˆu e e

f
A A

EG
= - =

2

 
, (2.96) 

where parameters  H  and A , are the regularized forms of the intrinsic material 
parameters Ĥ  and Â . 

2.4.4. Mesh bias dependence 

One of the principal drawbacks of the localization methods based on local 
standard constitutive models is the spurious tendency of the crack to follow 
certain preferred directions related to the mesh alignment, i.e. the crack tends 
to propagate parallelly to the finite element mesh avoiding zigzagging. Sever-
al authors [Rots 1988], [de Borst et al. 1993],[Oliver, Cervera et al. 1990]), 
among others, have reported this undesirable behavior, that is termed in the 
literature, mesh bias or mesh alignment dependence. This issue is of maxi-
mum significance since results can become strongly mesh dependent, i.e. for 
different meshes, remarkable different results are obtained. Additionally, er-
roneous crack propagation can lead to unrealistic\unphysical failure mechan-
isms with consequences in the prediction of the ultimate structural load carry-
ing capacity, that may be over or under-estimated. 

Several approaches have been developed to face this problem. One of them 
is based on the regularization of the standard strain-softening continua (by 
incorporating a internal characteristic length): non-local [Pijaudier Cabot and 
Bazant 1987], gradient [de Borst and Mühlhaus 1992], micro-polar [Muhlhaus 
and Vardoulakis 1987] methods fall within this category that proved to be 
efficient in achieve results independent of the mesh directions. The principal 
inconvenient of these methods is that, in order to capture that internal length, 
the resulting localization band has to encompass a certain number of finite 
elements which, due the small character of the involved internal length, de-
mands the use of very fine finite element discretizations or auxiliary re-
meshing techniques. 

The use of global crack tracking techniques also demonstrate to be very ef-
fective, since the propagation of the localization band is controlled not by the 
local constitutive model but instead by a global tracking algorithm governed 
by a different set of differential equations. The use of these kind of 
algorithms, in the ambit of the strong discontinuity approach [Oliver et al. 
2004], provide mesh independent results for impressive coarse meshes. We 
remark that when strong discontinuities are used, the tracking algorithms are 
essential for achieving results not depending in mesh alignment. In [Mosler 
and Meschke 2004] the authors, by using embedded discontinuities without 
resorting to global tracking algorithms, also conclude this issue. Outside the 
ambit of the strong discontinuity approach, these algorithms have also been 
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used with success, for example, for a local continuum damage models 
[Cervera and Chiumenti 2006]). Recently, the use of mixed strain-displacement 
finite element formulations have been also advocated as a way to alleviate this 
flaw, at the expense of adding additional strain degrees of freedom (3 per node 
for two dimensional analyses) [Cervera et al. 2010]. 

2.4.4.1. Assessment of the mesh bias dependence through representative numer-
ical solutions 

To have a better understanding about mesh bias influence in standard finite 
element formulations, some numerical simulations of a rectangular strip stret-
ching in the horizontal direction, are here presented.  

 

1.0 m

0.
5 

m

u

u

90º
 

Figure 2.10 Strip stretching in the horizontal direction. 
 

The material is modeled by means of two different constitutive models: an 
isotropic damage model and a Rankine plasticity model. For both options, the 
plain strain problem, predicts the some analytical solution, corresponding to a 
vertical crack, in mode I of fracture.  

It is well known, that for a perfectly aligned vertical mesh, the obtained result 
would match exactly the theoretical solution. Therefore, to evidence mesh bias 
dependence, a 65º inclined mesh is used. Note that this mesh is chosen such that 
the row inclination in the zone where strains localize, strongly challenges the 
theoretical vertical propagation of the localization band. 

It is also showed the mesh refinement influence by using three different de-
grees of mesh refinement (the meshes are obtained from the previous by subdi-
viding the quads in four new elements). For all meshes, the yield stress of a small 
area (at the lower part of the strip) is perturbed, in order to break the problem 
homogeneity and trigger the strain localization at that zone. In order to make 
possible a rigorous comparison, the perturbed area is the same in all cases. 

In Figure 2.11 and Figure 2.12, for the different degrees of mesh refinement, 
plots of the displacement field contours at the end of analysis (when the structural 
load carrying capacity is totally exhausted), are shown. In these Figures, it must 
be noted that strain localization zones are represented by a clustering of iso-
displacement contours meaning the developing of a crack, slip line, shear band, 
etc.. 
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 Isotropic damage model 

Mesh a) Mesh b) 

Mesh c)  

 

Figure 2.11 Iso-displacement curves at the end of analysis (damage model) 
(standard finite element formulation).

 Rankine plasticity model 

Mesh a) Mesh b) 

Mesh c)  

 

Figure 2.12 Iso-displacement curves at the end of analysis (Rankine plasticity 
model)(standard finite element formulation). 

 
The previous results show two main ideas that corroborate some “be-

lieves” about the traditional localization methods: 
 Both constitutive models, either plasticity or damage, suffer from mesh 

bias. Notice that the localization band tends to follow the mesh align-
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ment avoiding zigzagging. Then, the obtained numerical strain localiza-
tion localized solutions do not coincide with the vertical crack pre-
dicted by the theoretical solution. Moreover, the isotropic damage 
model seems to be more susceptible to this issue (mesh bias depen-
dence).  

 Mesh refinement reduce mesh sensitivity, however it is not completely 
removed (or would be needed extremely impracticable fine meshes). 

In this topic we recall here some published results. Rots (in [Rots 1988]) 
refer that “mesh bias sensitivity seems to vanish for very fine meshes” (at least for 
quadrilateral elements). Jirasék in a recent publication [Jirasek and Grassl 
2008] refer that “mesh refinement often reduces sensitivity to the mesh orien-
tation, but is not a universal remedy”. Moreover, the same authors report that 
some constitutive models are more susceptible to mesh bias influence that 
others, for example the isotropic damage model is strongly sensitive while the 
anisotropic version is much less sensitive.  

2.4.5. Stress locking 

In the context of strain localization, stress locking refers to the lack of ability 
of standard finite elements formulations to capture strain localization, in a one-
element-width band without spurious stress transfer to the neighboring elements.  

The causes of stress locking are mainly related to the poor strain kinematics 
that derives from displacement compatibility. This kinematic flaw, is compen-
sated by the finite element displacement interpolation, by smearing the disconti-
nuity out, over several elements, inducing consequently stress locking. An addi-
tional inconvenient, is that, since the fundamental assumption on the displace-
ment compatibility is always considered, stress locking is not expected to be re-
duced on mesh refinement [Rots 1988]. 

Stress locking was primarily reported in the ambit of the smeared crack mod-
els [Rots 1988]. Moreover, it has been also reported, that local plasticity models 
also suffer from this feature. Local damage models, are less affected by this issue, 
since stresses totally vanish as soon as the damage variable reaches the unity 
([Jirásek 1998]). Even though, for earlier stages of the strain localization process, 
this model still locks as is shown in the example of Section 2.4.5.1 (see Figure 
2.15 a)). 

The practical undesirable consequence of stress locking is the over-stiffer be-
havior of the structure that leads to an overestimation of the ultimate structural 
load carrying capacity load. Additionally, thinking in the force-displacement 
diagram, one should expect that for sufficiently high displacements, the resisting 
force should vanish. Nevertheless, if the numerical solution experiences stress 
locking, the force-displacement curve would tend to a residual value of the load 
carrying capacity, this reflecting the spurious stresses being transferred by the 
open crack.  
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In general, stress locking is noticeable for zigzagging crack patterns and is not 
observed when the discontinuity propagates parallelly to the elements sides.  

A natural and effective solution to remove this flaw, is the one proposed by 
the Strong Discontinuity Approach (SDA), where the elemental kinematics is 
enhanced by a discontinuous deformation mode [Simo, Oliver et al. 1993]. The 
principal inconvenient of this methodology is the decision about which elements 
have to be enriched and about the position of the discontinuity inside each finite 
element. In the SDA, this information is generally obtained by resorting to global 
tracking algorithms. This algorithm also guarantees the geometric continuity of 
the band across the finite element mesh. 

2.4.5.1. Assessment of stress locking through representative numerical solu-
tions 

The numerical example considered previously in Section 2.4.4, is re-
examined, being now the attention focalized in the stress locking effects (see 
Figure 2.10).  

First, the load patterns (i.e. the elements that are in nonlinear loading condi-
tion) are presented. The interest of these pictures lays in the fact that, for prob-
lems with no locking effects, the localization band should be one-element-with, 
and therefore, the neighboring elements (to those displaying strain localization) 
should unload elastically. For that reason, when the localization band encom-
passes several elements, this gives a local idea of stress locking. Results for two 
different representative stages of loading (earlier and deep stages of localization) 
are shown in Figure 2.13 and Figure 2.14 for damage and rankine plasticity mod-
els, respectively.  

Secondly, the force-displacement curves are presented, where a global idea of 
stress locking is given in terms of the extra dissipation (area below the curves) 
and in terms of the residual loading that is still spuriously transferred through the 
crack surfaces. 

 Isotropic damage model 

Mesh b)  Mesh c) 

.

ud =
0 04
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Figure 2.13 Load patterns for two different stages of the deformation process 
(standard finite element formulation). 

 Rankine plasticity model 

Mesh b)  Mesh c) 
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Figure 2.14 Load patterns for two different stages of the deformation process 
(standard finite element formulation). 

 
a)Isotropic damage b) Rankine plasticity model 

 
Figure 2.15 Force-displacement curves: a)Isotropic damage, b)Rankine plasticity 

model (standard finite element formulation). 
 
 

0 0.04 0.08 0.12 0.16
0

0.2

0.4

0.6

0.8

1

(m)

P
(k

N
)

 

 
Theoretical
Mesh a)
Mesh b) 
Mesh c) 

0 0.04 0.08 0.12 0.16 0.2
0

0.2

0.4

0.6

0.8

1

(m)

P
(k

N
)

 

 
Theoretical
Mesh a)
Mesh b) 
Mesh c) 



Chapter 2 Strain Localization 40 
 

Analyzing the preceding results in terms of stress locking, some important 
observations should be remarked: 

 The damage model is almost stress locking free at the end of analysis. 
However, from Figure 2.13, it is shown that for earlier stages of locali-
zation, the finite element solution still locks. On the other hand, as 
stresses decreased (i.e. .d 1 0 ), the neighboring “locked in” elements 
tend to unload elastically. Finally, the residual load being transferred by 
the crack surfaces, almost vanish. 

 The Rankine plasticity model is significantly affected by stress locking. 
This may be observed in Figure 2.15-b) by the extra dissipation and re-
sidual load. Additionally, in the patterns presented in Figure 2.14, it is 
clearly shown that the discontinuity is smeared out over several ele-
ments along the complete analysis. 

 Mesh refinement does not reduce stress locking. 
 In this example, the ultimate structural load carrying capacity was cor-

rectly predicted. This is mainly related to the specific quasi-
homogeneous character of this problem. For more general problems, 
the ultimate load, is expected to be overestimated for solutions suffer-
ing of stress locking. 

The observations here remarked and in Section 2.4.4, have also been re-
ported by several authors, are well known by the research fracture communi-
ty, and illustrate the traditional flaws of the strain localization classical me-
thods in terms of mesh bias and stress locking.  

2.5. Integration of the constitutive equation - 
IMPL-EX scheme 

When nonlinear softening constitutive models are used for material failure 
modeling, the robustness of the numerical procedure is a very important issue. 
The problems involving lack of robustness are well known in the context of mod-
eling crack formation/propagation with the finite element method and are well 
described in the literature [Crisfield 1997].  

Discretizing in time, [ ],t TÎ 0 , the nonlinear problem of solid mechanics of 

Box 2.6, the momentum balance equations at the time step n +1  reads (Voigt 
notation is used): 

( ) ,int ext
n n n+ + +- = =F u F G1 1 1 0  

{ }( )( )

( )( ) ( )
e

eint e T s
nn

e

d++ WÎW
⋅ W= òF B u 11 sA  , 

(2.97) 
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where n+G 1 is the out-of-balance force vector which we intend to make null. 

Using a traditional iterative Newton-Raphson procedure, the displacement 
vector n+u 1  is updated until the out of balance forces are lower than a given to-

lerance. In this process the updated tangent stiffness matrix is computed as: 
( ) { }( )( )

( ) ( ) ,
e

int
ntang alge T e

n n
en

d+
+ +W+

¶
= = ⋅ ⋅ W

¶ ò
F u

K B B
u

1
1 1

1
A   

alg n
n

n

+
+

+

¶
=

¶
1

1
1

s
e

 . 

(2.98) 

Since in our case the non-linearity arises from the constitutive model,

( )n n+ +=1 1s S e , the algorithmic tangent constitutive tensor alg
n+1  is updated in 

the iterative process. 
During the loading process in the softening regime, after bifurcation, negative 

eigenvalues arise in the constitutive tangent algorithm operator alg
n+1  (that looses 

positive definiteness), which translate afterwards in negative eigenvalues in the 
element stiffness matrix. As load progress, and more elements localize, the global 
stiffness matrix becomes worse conditioned, the numerical procedure become 
further ill posed and convergence may not be achieved [Oliver et al. 2008a]. 
Theoretically, this is related to the existence of several possible equilibrium paths 
(loss of uniqueness of the BVP). Crisfield [Crisfield 1982] refers that when sev-
eral closed equilibrium states are possible, numerical procedures appear to en-
counter great difficulty in deciding on which equilibrium state to converge, in-
creasing significantly the difficulty of obtaining numerical convergence, even 
when powerful numerical control techniques, like arc-length methods and line-
searches, are used. 

In this work, in order to avoid this kind of difficulties the implicit/explicit 
(IMPL-EX) integration of the constitutive model proposed by Oliver [Oliver, 
Huespe et al. 2008a] [Oliver et al. 2006] is adopted. This strategy is a combina-
tion of implicit and explicit integration schemes aiming to exploit the benefits and 
minimize the drawbacks of both. 

The main idea of IMPL-EX integration scheme is the extrapolation of the 
strain like internal variable for the time step n+1a 8, from its implicit value com-

puted in previous time step na .  

n
n n n

n

t
t
+

+
D

= + D
D

1
1a a a . (2.99) 

where n n nt t t+ +D = -1 1 , n n nt t t -D = - 1  and n n n-D = - 1a a a . 

With this extrapolated variable, an explicit evaluation of the stress tensor s  is 
performed and the momentum balance (2.81) is imposed in terms of these IMPL-
EX stresses: 

                                                        
8 Relatively to the stress like internal variable, the strain like variable, a , has the ad-

vantage of being strictly increasing. 
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( )int ext
n n n+ + +- = =F u F G1 1 1 0  

( ) { }
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(2.100) 

The most significant properties of the IMPL-EX integration are [Oliver, 
Huespe et al. 2006]: 

1. The algorithmic tangent operators are semi-positive definite. This 
numerical attribute has particular relevance, since numerical problems re-
lated to the ill-condition of the global tangent stiffness matrix should dis-
appear, improving considerably the robustness of the methodology. 
2. In general (for damage models, and for linear plastic flow cases), the 
dependence of the IMPL-EX stresses n+1s (that emerge from the extrapo-

lated values of the strain-like internal variable n+1a ) on the actual value of 

the strain n+1e  becomes linear. From this feature, a step linear algorithm 
with a constant tangent operator arises naturally, that provide important 
benefits in terms of computational cost, since the Newton Raphson proce-
dure will converge in just one iteration, 
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e
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(2.101) 

The principal drawback of the methodology lays on the introduction of a 
specific error associated to the extrapolation of the internal variable. Note that 
due the explicit character of n+1s , the consistency condition (2.20) is violated. 

For this reason, shorter time steps are necessary to facilitate results with the de-
sired degree of accuracy. Thinking on the fact that the correspondent implicit 
scheme also demands short time steps in order to achieve convergence (in the 
strain localization modeling context), this drawback does not seem to introduce 
any practical limitation, in terms of additional computational cost. Contrarily, 
since convergence is attained in the first iteration, the computational cost is gen-
erally highly reduced if compared with a fully implicit integration scheme.  

Details of the methodology may be consulted in the reference [Oliver, Huespe 
et al. 2006], where the implementation of the IMPL-EX algorithm, for the iso-
tropic damage and for the J2 plasticity model are presented. Details relative to the 
IMPL-EX implementation for the Rankine plasticity model, can be found in Ap-
pendix A. 
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Chapter 3                                     
Mixed Finite Element 
Formulations and Localized 
Strain Injection                

3.1. Mixed strain-displacement formulation 

In solid mechanics, mixed finite formulations have been mainly used in the 
context of near incompressible media and in the analysis of bending dominated 
problems. For both cases, the motivation for using mixed interpolations is related 
to the poor performance of standard displacement formulations due volumetric 
and shear locking respectively ([Hughes 2000] [Bathe 1982]). 

In the seventies, several families of methodologies were introduced to over-
come this problem. One of them was based on the selective/reduced integration 
[Zienkiewicz et al. 1971]. For plate analysis, it was found that reducing the inte-
gration order of the shear stress, or of the complete stress tensor, leads to consi-
derably improved behavior. The inconvenient of performing full reduced integra-
tion turns out to be the propagation of zero energy (hourglass) modes that become 
dominant, polluting the solution in terms of the displacement field. For this rea-
son, for the analysis of elastic incompressible media, selective reduced tech-
niques, where just the volumetric part is under-integrated, become preferable 
[Malkus 1976]. Moreover in [Hughes 1980], the selective integration procedures 
were generalized to nonlinear problems and the methodology became recognized 
as B-bar method. Nevertheless, due the lower computational cost of full reduced 
integration schemes, this method become also very popular, especially in the 
ambit of explicit dynamic computations and some hourglass control techniques 
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were proposed to avoid the development of the spurious modes [Flanagan and 
Belytschko 1981].  

Other family of methods was based in a different concept. The idea was not to 
degenerate, but instead, augment the strain field. The method of incompatible 
modes was first introduced by Wilson aiming to enhance the performance of low-
order (typically 4-node) elements in bending dominated problems [Wilson et al. 
1973]. 

This class of methods (reduced integration, incompatible modes), provide un-
questionable improved results, however, in its beginnings, they were just seen as 
“useful tricks”, due to the lack of mathematical variational foundations. Malkus 
and Hughes proved the equivalence of a class of mixed models with the re-
duced/selective integration of the displacement formulation [Malkus and Hughes 
1978]. For example, the mixed bilinear displacement constant pressure element 
(Q1-P0) turns out to be equivalent to the B-bar element. The authors remarked the 
theoretical significance of this equivalence result, since “convergence proofs and 
error estimates developed for the mixed methods [Babuska et al. 1977] imme-
diately apply to the reduced/selective integration displacement elements”.  

A very general variational framework was introduced by Simo based on a 
nonlinear version of a three-field Hu-Washizu variational principle involving the 
displacement, stress, and an enhanced strain [Simo and Rifai 1990]. Additionally, 
if the space of stresses is required to be L2-orthogonal to the space of the en-
hanced strains, stresses can be eliminated from the problem. This class of mixed 
assumed strain methods proposed by Simo allows the systematic development of 
low order elements possessing good accuracy properties for coarse meshes. De-
pending on the chosen interpolating fields, the methodology, encompass a variety 
of finite element procedures like the previously referred B-bar or incompatible 
modes methods. Also, some more recent methodologies, like the Strong Discon-
tinuity Approach fall inside this variational framework [Oliver 1996a]. 

In practical applications, the previous methodologies were used to improve the 
performance of low order elements, typically the 4-node quadrilateral element, 
without increasing the computational cost since the additional discontinuous in-
terpolated field is eliminated at the element level by a standard condensation 
procedure. Applications of some of the previous methodologies to the simplicial 
element (triangle in 2D and tetrahedral in 3D) are not straightforward. For exam-
ple, techniques based on under-integration do not apply to this element, since the 
element is fully integrated with just one quadrature (gauss) point. 

To approach the incompressible problem, using simplicial elements, attention 
was therefore focus in mixed u,p  formulations [Herrmann 1965] with continuous 
pressure interpolation. The practical interest of this approach is related to the easy 
tetrahedral mesh generation for 3D complex geometries, and the principal incon-
veniences are the higher computational cost (since the additional continuous pres-
sure field cannot be eliminated at the elemental level) and the lack of stability that 
derive from the fact that equal order displacement pressure interpolations do not 
verify the Babuska-Brezzi inf-sup condition [Brezzi and Fortin 1991]. To cir-
cumvent this condition, stabilization procedures inspired in those used for the 
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stokes problem of fluid dynamics have been proposed [Pastor et al. 1997] [Klaas 
et al. 1999]. Also the discontinuous pressure element (Q1-P0) does not verify the 
inf-sup condition. Nevertheless, for this elements some theoretical results have 
been obtained that explain its good performance without any stabilization tech-
nique. In [Johnson and Pitkäranta 1982] the author had obtained optimal conver-
gence rate for the displacement field. For the pressure field the author had not 
obtained convergence but proved that a simple local averaging process gives 
convergence for the smoothed pressure. Following a similar analysis, analogous 
results were obtained for the Simo enhanced element [Reddy and Simo 1995]. 

In the context of non-linear solid mechanics, and particularly in strain locali-
zation analysis, mixed formulations have been applied when isochoric plastic 
flow constitutive models are used, i.e. for materials that do not exhibit plastic 
change of volume, as is the case of the J2 constitutive model. The previously 
referred methods, developed in the ambit of the incompressible elasticity, have 
been tested for strain localization purposes by several authors. An example of a 
B-bar element applied to nonlinear analysis is the one proposed in [Nagtegaal et 
al. 1990]. In [Steinmann and Willam 1991a] the author compares the performance 
of several condensable elements (B-bar, enhanced elements, etc.) for capturing 
localized failure. Recently, also some stabilized mixed continuous pressure for-
mulations have been used, for example the works presented in [Sánchez et al. 
2008] and [Cervera et al. 2004]. 

We remark here, that the mixed methods used in the ambit of strain localiza-
tion analysis, have been applied to address the problem of volumetric locking 
inherent to the isochoric constitutive models. Recently, Cervera had used a stabi-
lized mixed linear displacement linear strain formulation, with the purpose of 
addressing the mesh bias dependence of the classical localization methods 
[Cervera, Chiumenti et al. 2011]. 

3.1.1. Using mixed (u,e) formulations for strain localization 

problems: motivation 

In Section 2.4.4, the mesh bias dependence was explained and exemplified 
with practical examples. The reasons why cracks tend to spuriously propagate 
parallelly to the mesh directions are not completely clear. Standard finite element 
formulations appear to be excessively stiffer9, and the crack seems to be locked in 
the mesh alignment avoiding zigzag. Mixed strain-displacement formulations, 
deriving from the weakly enforcement of the compatibility equation, may give 
some flexibility to the finite elements allowing them, to adapt their kinematic to 
the large distortions required to reproduce strain localization bands reducing the 
mesh bias dependence. In [Argyris and Willam 1974] the authors, based on ei-

                                                        
9 It is known that the standard finite element formulations underestimate displacements 
and hence the stiffness is overestimated [Bathe 1982]. 
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genvalues analysis on the stiffness matrices, conclude that mixed strain-
displacement models are more flexible than the associated displacement models. 

Moreover, one can think that, when the crack is propagating, stresses in the tip 
of the crack may not be accurately predicted10. In standard finite element formu-
lation strains (that are used to compute stresses) are usually obtained by differen-
tiation of the displacement solution at the points of interest. This direct operation 
results in lower order of accuracy, i.e. generally stresses and strains have one 
order less of accuracy than the nodal displacements. 

In reference [Cervera, Chiumenti et al. 2011], the authors suggest that this 
spurious behavior is related to the “lack of point-wise convergence of the strains 
and stresses in quasi-singular situations. For the linear case, such a convergence 
cannot be proved for the standard approach, but it happens in the mixed case”. 
Nevertheless, the authors also refer, that for the non-linear case of interest no 
rigorous analysis of the mixed formulation is available. Apart of this theoretical 
reason, the authors report a clear improvement of the results when a mixed linear 
displacement linear strain formulation is used. The drawback of this formulation 
is that the additional degrees of freedom (3 and 6 per node, for 2D and 3D respec-
tively) are not condensable at the elemental level and therefore the computational 
cost is higher.  

In next Section a condensable mixed constant strain linear displacement for-
mulation is proposed. Improvements in terms of avoiding mesh bias dependence 
and in terms of stress locking reduction are reported. 

3.1.2. Mixed constant strain linear displacement variational 
formulation 

The mixed strain-displacement formulation is introduced considering, in addi-
tion to the displacement, the strain field as an independent variable. The neces-
sary additional equation to solve the new unknown is obtained imposing the com-
patibility equation in a weak form. Thus, testing the strong form of the problem 
defined in the equations (2.1) and (2.2) with the test functions Îh  , Îm   and 

integrating over the domain, yields: 

( ) *: , (equilibrium),

ext

s d d d
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h S e h h h
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  
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

( ): , (compatibility)s d
W

- W= " Îò u 0m e m  . 

(3.1) 

The integrals in the previous equation are meaningful if the spaces of strains 
e  and test functionsm  (  and  respectively) consist of symmetric second or-

                                                        
10 Following the linear elastic fracture theory developed by Inglis the stresses in the 

crack tip are singular [Inglis 1913]. 
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der tensors with components in ( )L W2  (space of square integrable functions 

defined in W): 
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2e e� .  

The displacement space   and   are defined as: 
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where ( )H W1  is the space of square integrable functions defined in W, whose 

first derivatives are also square integrable [Hughes 1987].  
The weak form of the problem is summarized in Box 3.1. 
 

Given * : NG uu  , * : NG t s   and : NWb  ; find Îu � and Îe 

such that for all Îh   and Îm   

( ): ,s extd
W

W- =ò f 0h S e 
 

( ): s d
W

- W=ò u 0m e   
(3.2)

Box 3.1 Weak form of the boundary value problem (mixed u , e formulation). 

3.1.3. Finite element approximation  

When mixed methods are used, a wide range of possible interpolation pairs 
are possible. Here, in order to obtain a computationally efficient condensable 
formulation, a quadrilateral finite element (Q1/ 0e ) equipped with standard bili-
near interpolations in the displacement field and element-wise constant disconti-
nuous interpolations for the strains, is used (see Figure 3.1). 

 

Figure 3.1 Finite element with continuous liner displacements ( )eu  and element-

wise constant discontinuous strains ( )ee . 
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Likewise for the irreducible formulation case in Section 2.4.2, the displace-
ment field is approximated by the standard linear shape functions: 

( ) ( ) ; ( ) ( )
nnodes nnodes

h h
i i i i

i i

N N
= =

= =å åu x x u x x
1 1

h h  , (3.3) 

whereas the finite element approximations h  and h � for the spaces �and  : 

( ) ( ) ( ) ( )( ) ( ) ; ( ) ( ) ,
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h e e h e e

e e= =
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1 1

e e m mf f   (3.4) 

where nelem and nnode  are, respectively, the number of nodes and elements of 
the finite element mesh, iN stands for the standard shape function associated to 

node i, iu  and ( )ee  stand, respectively, for the corresponding nodal displacement 

and elemental strain degrees of freedom. The element-wise-constant function 
( )ef  is defined on ( )eW ,as 
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Considering the previous finite element approximations, equation (3.2) reads: 
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 (3.5) 

Since the weighting function ( )em  and the interpolated strain ( )ee  are ele-

ment-wise constant, equation (3.5)-b) can be trivially solved at the element level 
for ( )ee : 
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By substituting equation (3.6) into (3.5)-(a), it yields: 
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Remark 3.1.3.1: In the view of equation (3.6), 
( )es h

mean u  refers to the mean 

value of the symmetric gradient of the displacement field. For convenience of the 
finite element implementation, this will be replaced by the evaluation of this ker-

nel in a sampling point coincident with the finite element centroid 
( )e

s h u , i.e.: 

( )
( ) , .

e
e s h e= " ÎWue   (3.8) 

Notice that with mesh refinement 
( ) ( )e es h s h

mean  u u   and thus, also 
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Remark 3.1.3.2: Notice that
( )

( )
e

s uS   is constant within the element domain, 

thus: 

( )

( )
: ,

e

e
s h s h ext h h

e

d
WÎW

æ ö÷ç W = " Î÷ç ÷çè øå òu fS h h   . (3.10) 

Due to the linear character of s hh   
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where 
( )e

s hh  is the value of 
( )es hh  evaluated in the central point of the finite 

element. Expression (3.7) may then alternatively be written in the following form: 
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where, the symmetric character of the nonlinear system of equations is evident. 
 
Taking in mind Remark 3.1.3.1, the equivalence of the chosen two field ,u e  

mixed formulation (Q1/ 0e ) with a reduced integration procedure of the dis-
placement based formulation approach11, with an integration point at the element 
centroid, becomes obvious, i.e.:  
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11In [Malkus and Hughes 1978] was proven the equivalence of a class of mixed mod-

els with the reduced/selective integration of the displacement formulation. 
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It is well known that this kind of full reduced integration techniques lead to 
propagation of zero energy (hourglass) modes, that become dominant polluting 
the solution in terms of the displacement field. For the point of view of the equiv-
alent mixed problem, the interpolation pairs: bilinear displacement constant 
strain, do not fulfill the inf-sup condition [Brezzi and Fortin 1991] and therefore 
no stability on the interpolated fields can be guaranteed. 

3.1.4. Stabilization 

In the past, some hourglass control techniques with different theoretical foun-
dations have been proposed to overcome the lack of stability of the reduced inte-
gration methods [Kosloff and Frazier 1978; Belytschko and Bachrach 1986]. 
Here we propose the following stabilization term (3.12): 

( ) ( )( )
( )

( ) ( ):
e

estab s h e s h d
W

= -  Wòf uh S e St    , (3.14) 

that must be added to expression (3.12) as follows: 
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where t is the stabilization parameter. Notice that the term proposed in (3.14) 
does not correspond to the residual of the equilibrium equation (3.5)-a) neither to 
the residual of the compatibility equation (3.5)-b). However, equation (3.5)-b) 
implies that, with mesh refinement: ( )e s h ue  , and since the constitutive equa-

tion is point-wisely imposed also: ( ) ( )( )e s h  uS e S   , meaning this, that the 

stabilization forces of (3.14) decrease with mesh refinement and vanish for exact 
solutions (regardless the value of the stabilization parameter t ). By this reason 
the proposed stabilization term (3.14) can be considered to belong to the family of 
consistently stabilized methods (see e.g. [Bochev and Gunzburger 2004] 
[Dohrmann and Bochev 2004]). 

Considering the result of (3.8): 
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e s h= ue  , and the property remarked at 
3.1.3.2., equation (3.15) can be written, after rearranging terms, as: 
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 (3.16) 

 
Remark 3.1.4.1: Analyzing expression (3.16), it is noticeable that for = 1t  

the method is equivalent to the standard irreducible formulation, whereas for 
= 0t , the stabilization term vanishes and the unstable mixed formulation is 

recovered. 
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Remark 3.1.4.2: The stabilized formulation (3.16) may be regarded as a 
weighted combination of the irreducible displacement based formulation (fully 
integrated term) with the mixed displacement-strain formulation (reduced inte-
grated term), weighted by t and 1-t  respectively. The t  term, associated to the 
displacement formulation, provides stability to the mixed formulation. 

 
Remark 3.1.4.3: Expression (3.16) may be rewritten in a more compact equiv-

alent form: 

( )

( )

( )

( )
( ) ( )
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( ) ( ),
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e

e
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d
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åò f

u u1

h s

s S St t



   


 (3.17) 

where ( )es  is interpreted as a stabilized stress. Notice that this version preserves 
the typical structure of the internal force vector of a standard non-linear finite 
element code, where the tensor ( )es  is substituted by ( )es . Hence, the previous 
expression can be integrated by a standard quadrature rule, for example using  
´2 2  Gauss integration points. The nuance is that, previously to the integration of 

expression (3.17), the tensor 
( )

( )
e

s h uS   should be evaluated and stored at the 

additional central sampling point12 and then kept constant in the integration pro-
cedure.  

3.1.5. Matrix equations 

In this Section the problem matrix equations are summarized (Voigt notation 
is used): 

 

Given the external force vector extF , find hu  such that  

{ }

{ } ( ){ } { }

{ } { } { } { }

{ } { } { } { }
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( )( )
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(3.18)

( ) { } { }( ) ( )

tang ( ) ep ( ) ( ) ep ( )( )
e e

e T e e T e

e
d d

W WÎW
= - ⋅ ⋅ W+ ⋅ ⋅ Wò òK B B B B1 t tA   (3.19)

Box 3.2 Stabilized mixed formulation. Matrix equations. 
 

                                                        
12 This additional sampling point can be therefore regarded as a zero weight integra-

tion point, just used for stress evaluation. 
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In Box 3.2, < <0 1t  stands for stabilization parameter (that should be speci-
fied by the user), ( )eB  is the standard deformation matrix, ( )eB is the (constant) 
B-matrix evaluated at the center of the finite element and tangK  is the tangent 
stiffness matrix that steams from (3.18). 

3.1.6. A first set of representative numerical examples 

To assess the performance of the proposed stabilized mixed ,u e  formulation, 
several numerical simulations, considering different constitutive models, are pre-
sented in the next Sections. 

3.1.6.1. Isotropic continuum damage model: double cantilever beam (DCB) 
with diagonal loads 

Figure 3.1a) shows the geometric description and the spatial and temporal loading 
conditions of the problem [Kobayashi et al. 1985]. It is considered a plane strain 
model. The diagonal compression forces, F2 , are initially introduced together with 

the wedge loads, F1 , increasing along the time, until reaching 3.78 KN. Then, the 

diagonal loads remain constant while the wedge loads increase.  
It is used a damage model with degradation only in tension and the material para-

meters are: Young´s modulus: E =30500 MPa, Poisson’s ratio: =n 0.2, fracture 
energy: fG =  100 N/m, ultimate tensile strength: y =  3 MPa and specimen thick-

ness: 50.8 mm. 
 

a) b) c) 

 
Figure 3.2 Double cantilever beam with diagonal load: a) geometrical data, b) 

loading data, c) finite element discretization. 
 
The reported experimental crack path follows a straight line (inclined ºa =19

with the vertical axis) as shown in Figure 3.2-a). Therefore, vertical meshes lines 
(Figure 3.1c) will strongly challenge the standard finite element formulations 
since the experimentally observed discontinuity path intersects the elements in 
directions not coincident with the mesh alignment. 
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Regarding the proposed stabilized method, it was referred on Remark 3.1.4.1, 
that for values of t approaching the unity (i.e. for 1t ) the method is equiva-
lent to the irreducible standard finite element approximation and therefore, the 
benefits inherent to the mixed formulations are expected to vanish. Figure 3.3 
shows the localization pattern for different values of the stabilization parameter t
. 

a) = 1t  b) .= 0 5t  c) .= 0 1t  

Figure 3.3 Iso-displacement plots for different stabilization parameters t . 
 
It is notorious the improvement on the element performance in terms of mesh 

bias independence for decreasing values of t . For .= 0 1t ,it is shown the good 
agreement between the simulated strain localization pattern with that reported by 
experimental observation, while for = 1t  the crack is clearly affected by the 
vertical mesh alignment only zigzagging to the next raw after having propagated 
vertically a large number of elements.  

Figure 3.4 displays the deformed mesh for solutions corresponding to = 1t  
and .= 0 1t . 

 
a) = 1t  c) .= 0 1t  

 
Figure 3.4 Deformed mesh. 

 
For = 0t  the unstable mixed formulation is recovered. On this view, for de-

creasing values of t (i.e. for 0t ), it is expected that instabilities may come 
out. Figure 3.5 and Figure 3.6 present the numerical solutions obtained with 

.= 0 0001t .  

8º 11º 18º
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a) b) 

 
Figure 3.5 Result for .= 0 0001t : a)mesh deformation, b) iso-displacement con-

tours. 
 
In Figure 3.5, it is noticeable the appearance of hourglass modes dominating 

the solution in terms of the displacement field. These spurious modes propagate 
across the mesh leading to a miss predicted collapse mechanism. 

 

Figure 3.6 Force-displacement curves. 
 
Figure 3.6 plots the force vs. displacements curves for solutions with different 

parameters t . As it can be observed in the Figure the, stabilized mixed formula-
tion ( ).= 0 1t  is slightly more dissipative than the irreducible formulation. Note 

that, this extra dissipation is not attributed to an increment of stress locking for 
the mixed formulation13, but, instead, it is caused by the differences in the col-
lapse mechanisms. For the mixed formulation, the localization pattern is more 
inclined (Figure 3.3) giving a larger crack length that justifies the extra-
dissipation. The lower residual load obtained for the mixed formulation supports 
this argument. 

                                                        
13 on the contrary, stress locking is expected to decrease when the mixed formulation 

is used, as it will be shown on the next examples. 
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Relatively to the unstable solution ( .= 0 0001t ), the miss predicted collapse 
mechanism leads to an unrealistic force-displacement curve.  

3.1.6.2. Strip undergoing an homogeneous uniaxial tensile stress state 

Next, the example shown  in Section 2.4.4. is re-examined. Results previously 
presented in that Section, are now complemented with solutions obtained using 
the stabilized mixed approach and taking .= 0 1t . We recall that the theoretical 
solution consists of a vertical crack passing through the perturbed elements. The 
three meshes used to obtain the numerical solutions are coincident with those 
adopted in Section 2.4.4. 

 

 

Figure 3.7 Strip stretching in the horizontal direction. 
 
Figure 3.8 and Figure 3.9 show the displacement contour lines of the solutions 

obtained by using .= 1 0t  and .= 0 1t , and adopting the damage and Rankine 
plastic models.  

 Isotropic damage model 

= 1t   .= 0 1t  

Mesh 
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b) 
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Mesh 
c) 

 
Figure 3.8 Iso-displacement plots (isotropic damage model). Results obtained with the 
irreducible formulation ( = 1t ) and with mixed stabilized formulation ( .= 0 1t ) are 
shown in the left and in the right hand side of the figure respectively, for three differ-

ent levels of discretization. 

 Rankine plasticity model 

= 1t  .= 0 1t

 

Mesh 
a) 

 

Mesh 
b) 

 

Mesh 
c) 

Figure 3.9 Iso-displacement plots (plasticity Rankine model). Results obtained with the 
irreducible formulation ( = 1t ) and with mixed stabilized formulation ( .= 0 1t ) are 
shown in the left and in the right hand side of the figure respectively, for three differ-

ent levels of discretization. 
 
The solutions with .= 1 0t  coincides with that shown in Section 2.4.4. (Figure 

2.11 and Figure 2.12.) since the same finite element formulation is used. For 
.= 0 1t , a clear improvement in terms of mesh bias independence is noticed.  

Note that for both constitutive models and for meshes b) and c) the stabilized 
mixed formulation ( .= 0 1t ), approaches well the vertical theoretical solution.  

89º83º

87º81º 

78º 78º 

88º 83º 
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a)Isotropic damage b) Rankine plasticity model 

 
Figure 3.10 Force-displacement curves: a) Isotropic damage, b) Rankine plasticity 

model. 
 
In Figure 3.10, the force-displacement curves are presented. A small decrease 

in terms of stress locking is generally obtained with the stabilized mixed method, 
which can be better observed in the curves correspondent to the Rankine constitu-
tive model for Mesh c) (less dissipation and lower residual load). Nevertheless, 
the change is not significant, and the result clearly overestimates the dissipative 
energy, due to stress locking. This fact evidences that the element equipped with 
-u e  kinematics still exhibits a limited capability to resolve a discontinuity in a 

one-element band, and like in the irreducible formulation, the discontinuity is 
smeared out over several elements. In Chapter 4 this issue is addressed. 

 J2 plasticity model 

Next the potential applicability of the stabilized mixed element to isochoric 
plastic flow constitutive models is examined, i.e. for materials that do not exhibit 
plastic change of volume, as is the case of the J2 constitutive model. It is known 
that due to the incompressibility of the plastic flow, the irreducible formulation 
fully locks and no strain localization is obtained. Thinking on the similar aspects 
between the stabilized mixed method and the selective integration [Malkus 1976], 
here, not only the hydrostatic part, but all the stress tensor is under-integrated. 
Thus, if no relevant instabilities occur, and if the stabilization forces are not sig-
nificant, the benefits of the selective integration should be recovered by the pre-
sented mixed formulation.  

For this constitutive model the considered material properties are the follow-

ing: Young´s modulus: E =120  kPa, Poisson’s ratio: n = 0.49, fracture energy: Gf 

= 22.72 N/m, and yield stress: y  = 1 kPa. The theoretical solution of the prob-

lem consists of a straight shear band inclined º45 . 
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Figure 3.11 Strip stretched in the horizontal direction (J2 plasticity model). 
 

a) .= 1 0t  b) .= 0 1t  

c) .= 0 01t  d) .= 0 001t  

e) .= 0 0001t   

 

Figure 3.12 Iso-displacement plots.(J2 plasticity model). Results obtained with 
the mixed stabilized formulation for different values of t , at the final stage of 

analysis. 
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Figure 3.13 Force-displacement curve. 

 
In Figure 3.12 and Figure 3.13 it is observed that the irreducible formulation (

.= 1 0t ) fully locks and no strain localization is obtained. For decreasing values 
of t , the solution improves in terms of the sharpness of the localization band and 
in terms of the correspondent force-displacement curves that show lower energy 
dissipation. However, Figure 3.12-e) shows that for .= 0 0001t  hourglass insta-
bilities are present polluting the solution in terms of the displacement field. It is 
interesting to note, that despite the instabilities on the displacement field, the 
solution in terms of the force-displacement curve is quite good (either in terms of 
the ultimate load and post bifurcation behavior, see Figure 3.13). This fact would 
have been expected since zero energy modes do not generate forces and the nu-
merical example was carried out under displacement control. Nevertheless this 
behavior cannot be expected in general, as it was seen in the example presented in 
Section 3.1.6.1. In that case, the appearance of instabilities leads to underestimate 
the ultimate structural load carrying capacity. For additional comparison, the 
results obtained for this problem using the B-bar formulation have also been in-
cluded in Figure 3.13. 

3.2. Constant strain mode injection. Domain re-
stricted mixed ( ,u e ) formulation 

From the previous results it was observed that the proposed t -stabilized 
mixed formulation incorporate considerable benefits without significantly in-
creasing the numerical costs, and with a trivial finite element implementation. 
The benefits are related to the mesh bias dependence, which is strongly alleviated. 
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Additionally, stress locking is also reduced. This reduction is not substantial for 
the Rankine plasticity model, but is very significant for the J2 plasticity model, 
what gives generality to the formulation, since incompressible problems may also 
be handled.  

In the other hand, the principal drawback of the -t stabilized method is the 
requirement of a specification of the stabilization parameter t . This specification 
usually requires experience from the user about the range of possible “good” 
values for t . Additionally, the optimal value of t  is generally problem depen-
dent (since may depend on geometry, on the elastic properties and on the finite 
element discretization), being often difficult to find an optimum value, since for 
small values of t  ( 0t ) instabilities may destroy the solution, and for higher 
values ( 1t ) the benefits of the mixed stabilized formulation may cancel. Due 
to these drawbacks, dispending of this “user” parameter and at the same time 
potentiate the benefits of the mixed formulation is the main motivation for using a 
domain restricted mixed ,u e  formulation. 

The basic idea is to restrict the mixed formulation to the part of the domain 
where the fracture is being processed. Numerical experiences show that by re-
stricting the reduced integration procedure to a small part of the domain, instabili-
ties due to zero energy modes are avoided (even for = 0t ), while the benefits 
related to the mixed formulation are maintained, since the part of the domain 
where strains localize is still “specifically treated” by a mixed formulation. Note 
that this strategy also allows potentiates the benefits of a pure mixed displacement 
strain formulation, since the stabilizing forces are no-longer necessary, and these 
forces may have a “perverse” effect on the element performance, as it was ob-
served in the previous numerical examples.  

3.2.1. The mixed injection domain 

Regarding the idea of using the one-point integration procedure in a reduced 
part of the domain, one may reinterpret the restricted mixed constant strain linear 
displacement formulation, as a Constant Strain14 Mode (CSM) being injected on 
those elements that belong to the domain part of interest. This part of the domain 
is then called the mixed injection domain mixedW  (see Figure 3.14), that we pro-

pose to be identified by means of bifurcation analysis (Section 2.3), i.e. as the 
geometrical locus of in-loading bifurcated points: 

{ }( ) : | ( ) ; ( , )mixed Bt t t tW = ÎW ³ >x x x 0a . (3.20) 

The motivation for the definition (3.20) is rather intuitive. The bifurcated 
points are the points amenable to develop a localization of a strain field. Addi-

                                                        
14 The constant strain interpretation of reduced integration was referred also by other 

authors without relay in the equivalent mixed constant strain finite element formulation 
[Steinmann and Willam 1991b], [Argyris and Willam 1974]. The main innovation here is 
the injection concept. 
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tionally strain localization cannot develop in unloading processes ( , )t =x 0a . 

Notice that when an element unloads, it leaves the mixed injection domain, and 
by means of this, this domain remains as smaller as possible. 

 
a) b) 

 
Figure 3.14 a) Mixed injection domain, b) Hardening softening law. 

 
Remark 3.2.1.1: In the finite element context, we propose to verify the in-

loading bifurcated condition at the Gauss point of the reduced integration scheme 
(centroid of the element). Note that this point is coincident with the commonly 
called optimal stress points. These points, are optimal in the sense that stresses 
and strains are there better accurately predicted than at any other point of the 
finite element [Barlow 1976]. Moreover, Barlow had also related its accuracy 
properties with the improved behavior of the reduced integrations schemes 
[Barlow 1989]. These points, also identified in the literature as superconvergent 
points15, had attracted large attention due its practical interest [Zienkiewicz and 
Zhu 1992], nevertheless for general non-linear problems and distorted meshes, 
there is neither theoretical nor computer-based profs on the existence of the su-
perconvergent points [Babuška et al. 1996]. 

3.2.2. Variational formulation 

The variational equations corresponding to the restricted mixed ,u e   formula-
tion, in rate form, read as follows: 
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15 In those points one order more of convergence is obtained for the derivatives of the 

displacement field, i.e. the strains computed at the superconvergent point have the some 
order of convergence that the nodal displacements.  
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where ( )e
inje  is the element-wise-constant injected strain rate field and ( )em  the 

corresponding (element-wise-constant) weighting function. Comparing equation 
(3.21) with (3.5), the difference lies on the kinematic equation that now is weakly 
imposed only for those elements belonging to the mixed injection domain.  

Solution of (3.21)-b) is trivially found, and it is given by: 
( )

( ) , ,
e

e s h
mixedinj e=  " ÎWue   (3.22) 

and substitution of equation (3.22) in (3.21)-a) yields: 

( )

( ) ( )

\
: ( ) : ( )

e
mixed

mixed

e e
s h s h s s h ext

e

d d
W W W

ÎW

W+  W =åò òu u fh S h S      . (3.23) 

As explained previously, the term “injection” for this procedure is justified 
since equation (3.23) corresponds to the virtual work principle where the constant 

strain field, 
( )e

s h u , is injected into the constitutive equation only in those ele-
ments belonging to the injection zone, defined here as the mixed injection domain  
(see Figure 3.14). Moreover this interpretation is also convenient since additional 
strain modes, may be proposed to be injected, to further enhance the localization 
performance of the finite elements as it will be done in Chapter 5. 

3.2.3. Isochoric constitutive model – special treatment 

The idea behind the injection concept is to enrich that part of the domain 
where strains localize, enhancing the performance of the finite elements in terms 
of propagation and localization. Intuitively, it seems reasonable to define the 
domain of injection as the set of elements where discontinuous material bifurca-
tion is detected. Nevertheless, when J2 plasticity is used, an additional difficulty 
emerges due the isochoric character of this constitutive model. In fact, for this 
model, in earlier stages of the nonlinear loading, the irreducible formulation fully 
locks (unlike for other constitutive models). So for this specific case, we propose 
a slightly different strategy. The idea is to use as underlying element, not the 
irreducible, but instead the mixed formulation with a stabilization parameter (

.= 0 1t )16,. The injection of the CSM is then performed as explained before. 
Thus, by considering (3.17) and (3.23): 

( )

( ) ( )

( )
( )( )

\

: : ,
e

e e

mixed mixed

e
es h e s ext

e e

d d
W W

ÎW W ÎW

W + W =å åò ò fh s h s   

( )
( )( ) ( ) ; .
ee e= - + =1 0 1s s st t t   . 

(3.24) 

From now on, for simplification of the writing, we abbreviate the notation as 

follows: 
( )

( )
e

e s hæ ö÷ç=  ÷ç ÷çè ø
us S   and ( )( )e s h=  us S  . 

                                                        
16 In practice, no instabilities have been noticed with .= 0 1t  
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3.2.4. Implementation aspects 

For implementation proposes, it is advantageous writing equation (3.24) in the 
following equivalent form: 
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(3.25)

Box 3.3 Constant strain mode injection. Rate form.  
 

Notice that the stabilization parameter , ( )et , can now take specific values for 
every element (e). 

The implementation of the injection procedure (3.25), in a non-linear finite 
element code equipped with linear quadrilateral elements is remarkably simple17.  
The first step, in the numerical implementation of the procedure, consists of in-
troducing an additional quadrature point (in addition to the standard ( ´2 2 ) gauss 
points), positioned in the center of the finite element, where ( )es  is evaluated. 

The second step consists of defining the domains \ mixedW W  and mixedW . Initially, 

all the elements are considered to belong to \ mixedW W , and so, according to (3.25)
( )et  is set to 1.0 or 0.1 (depending on the constitutive model). Then, in all ele-

ments and for all the time steps, equation (3.20) should be verified with the con-
verged values of ( )es . If conditions of equation (3.20) are fulfilled, the element is 
flagged as belonging to the mixed domain, and for this element the parameter 

( )et  is automatically set to zero, giving ( ) ( )e e=s s  . 

3.2.5. Total vs. incremental time formulations 

In this work, the governing equations have been presented  in a “rate” form. In 
fact it is convenient that the finite element implementation pays attention to this 
issue. Alternatively, if a ”total” implementation of the formulation is used, the 
evolution of the mixed domain can potentially cause sudden changes in the total 

                                                        
17 Notice that equation (3.25)-a), has the structure of the standard finite element formu-

lation internal force vector, where s  is substituted by s . 
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stiffness of the domain18 , which translates afterwards into spurious oscillations, 
as may be observed in Figure 3.25. Equations in Box 3.4 correspond to a “total” 
time-discretized version of the equilibrium equations obtained with the injection 
strategy, which can be derived in a similar manner, as it was done for the rate 
version. 
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(3.26) 

Box 3.4 Constant strain injection. “Total” form  
 
Numerous finite element programs are developed in a “total” implementation 

framework, and, in order to maintain the generality of the code, performing mod-
ifications at this level is usually not convenient. For that case, the strategy sum-
marized at Box 3.5 may be applied:
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(3.27) 

Box 3.5 Constant strain injection. Incremental strategy.  
 
Even thought equation (3.27)-a) is defined with the “total” stress tensor, it is 

important to remark, that this version of the formulation is equivalent to an in-
cremental procedure. Notice that any modification on the ( )et  value of the finite 

                                                        
18 When reduced integration is used, the computed element stiffness is generally softer 

than that obtained with full integration. The evolution of the mixed domain, causes conti-
nuous modifications on the number of elements to be fully or under-integrated which, 
therefore, produces sudden changes on total stiffness of the domain. 
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element, would only affect the increment ( )e
n+D 1s , and not the total stress tensor, 

( )e
n+1s . The previous time step values, ( )e

ns , ( )e
ns and ( )e

ns , should be stored in 

memory. 

3.2.6. Matrix equations 

In this Section the matrix equations of the problem are summarized (Voigt no-
tation is used): 

 

Given the external force vector extF , find 
hu  such that  
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Box 3.6 Constant strain injection. Matrix equations. 
 
where ( )eB  is the standard deformation matrix, ( )eB is the (constant) B-matrix 
evaluated at the center of the finite element and tangK  is the tangent stiffness 
matrix that steams from (3.28). 

3.2.7. A second set of representative numerical examples - 
Numerical assessment of the injection procedure 

To illustrate the differences and similitudes between the stabilized mixed for-
mulation and the domain restricted mixed formulation (CSM injection), several 
numerical simulations are presented in the following. 
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3.2.7.1. Isotropic continuum damage model: double cantilever beam (DCB) 
with diagonal loads 

Here, the example of Section 3.1.6.1 is re-examined. Now results obtained with 
the injection of the CSM (Box 3.6) are compared with those obtained with the sta-
bilized mixed formulation (Box 3.2). 

 
a) b) c) 

 
Figure 3.15 Double cantilever beam with diagonal load: a) geometrical data, b) 

loading data, c) finite element discretization. 
 
For this non-homogeneous problem, where the strain localization band 

evolves along time, it is interesting to see the evolution of the mixed injection 
domain. In Figure 3.16 the mixed domain evolution is depicted in four representa-
tive sequential time steps. 

 
a)t=1 b)t=2 c)t=3 d)t=4 

Figure 3.16 Evolution of the mixed injection domain (shaded zones) along different 
times of the analysis. 

 
Notice that for initial stages of loading (Figure 3.16-a)) the body behaves elas-

tically (thus no injection domain is observed) and the irreducible standard formu-
lation is applied all over the body. For increasing loading, (Figure 3.16-b)), some 
elements enter in a nonlinear regime and material bifurcation is detected. Those 

elements are then considered to belong to the mixed domain mixedW , and therefore 

the CSM is injected. For this example, the mixed domain is bulb-shaped, propa-
gating at the tip of the advancing localization band. Soon later (Figure 3.16-c) and 
d)), most of the bifurcated elements behind the bulb unload (i.e. = 0a ) returning 
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to an elastic condition so they leave the mixedW  domain, according to equation 

(3.20), except for an inclined band, behind the bulb, which remains in inelastic 
loading and corresponds to the strain localization band. 

Figure 3.17-a) depicts the deformed mesh obtained with the CSM injection 
procedure, and Figure 3.17-b) the final crack simulated with it. In terms of prop-
agation, the crack pattern is almost identical to the one obtained previously with 
the stabilized mixed formulation ( .= 0 1t ) (see Figure 3.17-b) and Figure 3.3-
c)).The principal difference is found on the force-displacement curves (see Figure 
3.18). The CSM injection provides a somewhat more flexible response, that 
seems to be a consequence of a diminution of the stress locking in earlier stages 
of the non-linear damage process.  

 
a)  b)  

Figure 3.17 Results for the injection strategy: a) deformed mesh, b) Iso-displacement 
plots. 

 

 
Figure 3.18 Curves, F1 vs. Crack Mouth Opening Displacement (CMOD), ob-

tained with different procedures. 
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3.2.7.2. Strip subjected to homogeneous uniaxial tensile stress state 

Next, the examples introduced in Sections 2.4.4 and 3.1.6.2. are re-examined 
with the CSM injection methodology.  

 Rankine plasticity model 

 

Figure 3.19 Strip stretching in the horizontal direction. 
 

For this example, was also found that the localization pattern obtained with 
CSM injection coincides with the result obtained with the mixed method (see 
Figure 3.9). For that reason we do not reproduce here the iso-displacement con-
tours. Moreover, from force-displacement curves (see Figure 3.20), it can be con-
cluded that stress locking slightly decrease when the strain injection procedure is 
used. 
 

Figure 3.20 Force-displacement curves (for mesh c) – see Figure 3.9) obtained with 
different procedures. 
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 J2 plasticity model 

 

Figure 3.21 Strip stretching in the horizontal direction. 
 
In Figure 3.22, the mixed domains for two different time steps are displayed. 

The first picture a), corresponds to earlier stages of loading when the body be-
haves elastically, thus no mixed domain is observed. The second picture, b), cor-
responds to the bifurcation point (identified in Figure 3.23 by point B). In this 
plot two different branches related to the theoretical solutions of the problem 
( )º45  are observed. As the loading process  progresses, due to the shape of the 

numerical perturbation, strain localization collapses in one of the branches, as it is 
shown in picture c). 

 
a) b) c) 

Figure 3.22 Evolution of the mixed injection domain (shaded zones) during different 
stages of the analysis. 

 
In Section 3.1.6.2 (for the J2  plasticity model), it was mentioned that, when 

using the stabilized mixed formulation ( . )= 0 0001t , “despite, the instabilities on 

the displacement field, the solution in terms of the force-displacement curve is 
quite good”. It is shown in the load vs. displacement plots of Figure 3.23, that 
using the injection strategy, the numerical solution in terms of force-displacement 
curve is similar to the mixed procedure with .= 0 0001t ; however, the solution in 
terms of the displacement field is now fully stable, i.e. no hourglass modes devel-
op (see Figure 3.24). 
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Figure 3.23 Force-displacement curves obtained with different procedures. 
 

a) b) 

 
Figure 3.24 Iso-displacement plots a) Mixed form ( . )= 0 0001 ,b) CSM Injection. 

 
It is important to notice that all the previous results were obtained with an “in-

cremental” implementation version of the injection procedure. Here, in this prac-
tical example, it is remarked the importance of this issue. In Figure 3.25 results 
obtained with the “incremental” formulation Box 3.5 are compared with those 
obtained with the “total” formulation Box 3.4.  
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When a “total” formulation is used, oscillations are observable after crossing 

the bifurcation point B, since it is at this point that the mixed domain changes 
quickly (see Figure 3.22). Moreover, after crossing the point C, the localization 
band is already formed, thus the mixed domain does not change anymore and the 
smooth response of the plot is recovered. This comment is valid for more general 
examples and constitutive models. 

3.3. Summary and conclusions  

In this Chapter it was shown that, restricting the mixed formulation to a part of 
the domain (i.e. using the strain injection procedure), the obtained results are 
similar or better than those provided by the stabilized mixed formulation, with the 
advantage that the injected method does not depend on a stabilization parameter 
defined by the user, and the danger of instabilities is avoided.  

The improved behavior of the reduced integration methods, to face strain loca-
lization problem, has been also previously reported by other authors. In 
[Steinmann and Willam 1991a] the authors state that “The reduced one point 
integration strategy is equally capable in reproducing weak localization, however 
at the cost of the rank-two deficiency of the eigenspectrum. Stabilization would 
eliminate not only the hour-glass modes, but also destroy its excellent localization 
properties”. The authors also state that controlling the instabilities on the struc-
tural, rather than on the element level (by stabilization), would make the reduced 

 
Figure 3.25  Force-displacement curves. Comparison of results using the incre-

mental and total versions of the injection formulation. 
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integration element readily for application to localization problems. The injection 
strategy falls inside this definition, since the use of the standard formulation in the 
larger part of the domain (outside the localization band) prevents the hourglass 
modes to propagate at the structural level. Additionally, the reduced integration 
points have also advantages in terms of accuracy, since stresses are there better 
accurately predicted than at any other point of the finite element (optimal stress 
points, see Remark 3.2.1.1). 

In other cases, authors are reluctant to use reduced integration techniques for 
non-linear problems. For example, in [Crisfield 1986] the author advert against 
“the dangers of under-integration”, nevertheless in those earlier works, no stabi-
lization or any method to prevent hourglass instabilities were used.  

Moreover, was shown at Section 3.2.3 that, the combination of the constant 
strain injection with the mixed stabilized element (used as underlying element), 
gives generality to the formulation, since problems involving volumetric locking 
can also be handled. Therefore, the methodology can be also regarded as an inter-
esting alternative to the B-bar methods, when nonlinear isochoric constitutive 
models (e.g. J2 plasticity) are used for strain localization analysis. 

However, despite the improvements, reported in the preceding Sections in 
terms of propagation (mesh bias independence) and in terms of stress locking, it 
is observed that results are still not entirely satisfactory. The obtained solutions 
still suffer from stress locking, as it is shown in Figure 3.20 and Figure 3.23 by 
the extra dissipation and residual loads. Additionally, it is seen in Figure 3.22 that 
the localization band encompasses more than one element. This indicates that 
constant strain kinematics is not sufficiently rich to describe the strain localiza-
tion in an one-element band, in other words, the finite element kinematics is not 
able to describe a weak discontinuity. 

In next Chapter, inspired by the Strong Discontinuity Approach [Oliver 
1996a], this problem is analyzed in detail. 
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Chapter 4                                      
Strain localization, strong 
discontinuities and material 
fracture 

In Chapter 3, a methodology aiming at improving the capabilities of the clas-
sical strain localization methods for material fracture modeling was proposed. 
This Chapter focuses on the quality of solutions obtained by means of those me-
thods. That is, the idea here is to discern whether the finite element solutions of 
material failure problems based on strain localization techniques, using standard 
continuum stress-strain constitutive models equipped with strain softening, have 
physical sense as solutions of de-cohesive fracture mechanics problems 
[Hillerborg 1985].  

The methodology to be proposed, takes into consideration the well-established 
links between the continuum strong discontinuity approach and cohesive fracture 
[Oliver, Huespe et al. 2002], i.e. the strong discontinuity approach represents here 
an intermediate link between strain localization and fractures mechanics. Thus, 
since the link between the strong discontinuity approach and fracture mechanics 
is already well-established, attention will be focused on the connections between 
strain localization methods and the strong discontinuity approach, such that, the 
ability of the standard finite element solutions to represent discrete fractures will 
be then analyzed in the sense that the solution in terms of the displacement field 
might be interpreted as a regularized strong discontinuity embedded into the loca-
lization band. To assess this equivalence, several objective indicators will be 
proposed.  
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4.1. The continuum strong discontinuity ap-
proach 

The continuum strong discontinuity approach was introduced in the nineties 
[Simo, Oliver et al. 1993; Oliver 1996a]. Its main ingredient was the reformula-
tion of the kinematics (Section 4.1.1), admitting discontinuous displacement 
fields19 within a continuum framework. Soon it was recognized that strong dis-
continuities can only be successfully induced, if the stress states fulfill certain 
restrictions – the so called strong discontinuity conditions [Oliver et al. 1999]. A 
variable bandwidth model was introduced in order to induce such stress state 
prior to the introduction of a strong discontinuity inside the localization band. 
Subsequently, in the beginnings of 2000’s, the methodology was further explored 
[Oliver 2000; Oliver, Huespe et al. 2002; Oliver and Huespe 2004b]. In those 
contributions, a clear link between the methods based on continuum mechanics 
(using stress-strain -s e  constitutive models) with those based on cohesive 
fracture techniques [Dvorkin et al. 1990; Lofti and Shing 1995] typically based 
on traction-separation  - u� models embedded into the localization band, was 

established. From this link, some significant theoretical points were clarified: 
 It was shown the consistence between continuum stress-strain constitutive 

models and traction separation ones, since the introduction of the strong 
discontinuity kinematics in the former, automatically induces the later at 
the discontinuity path. That is, the traction-separation  - u�  model is a 

projection of the original continuum -s e  model (which lives in a 3D 
domain W) onto the 2D domain of the discontinuity interface  . 

 The re-interpretation of the softening law in a distributional sense (ensur-
ing bounded stresses for even unbounded strains) provides a clear physical 
interpretation of the softening modulus, since the discrete softening mod-
ulus is straightforwardly related to the fracture energy, establishing a direct 
connection between the material parameters of both models.  

 Moreover, the re-interpretation of the softening law in a distributional 
sense also makes possible dissipation to occur in a region of zero measure, 
what helped to clarify the classic paradoxical unacceptable result of the 
strain localization methods, where, localization bands of zero thickness 
imply brittle fracture progressing with null energy dissipation (see Chapter 
2).  

 The concept of characteristic length20, i.e. the constant width of the strain 
localization band, that do not meet an equivalent parameter on the cohesive 

                                                        
19 At the discontinuity surface, the displacement field is discontinuous (a jump appear) 

and strains are therefore unbounded. 
20 The strain localization width in the ambit of the smearing crack models, has been 

claimed to be a material property [Bazant 1983], representing e.g. the width of “bands of 
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models, loses physical sense at the strong discontinuity regime, since this 
length play no role further than the Dirac’s regularization, that is limited by 
the machine precision (see Section 4.1.2). Nevertheless, prior to the intro-
duction of the strong discontinuity, the bandwidth evolution law21, rather 
than a useful numerical technical to induce strong discontinuities, can be 
understood as a physical length [Oliver and Huespe 2004b] that characte-
rizes the fracture process zone [Bazant and Planas 1998] (see Chapter 2) 
for different kind of materials (this issue is not explored in this work). 

Taking in mind the previously mentioned links between the continuum strong 
discontinuity approach and cohesive fracture, in the evaluation set proposed here, 
the ability of strain localization solutions to represent real, physical meaningful, 
fracture mechanics solutions, it is considered as good as its ability to be inter-
preted as a strong discontinuity embedded into the localization band. Remark, 
that once a general localized strain field matches a strong discontinuity all the 
theoretical links between the strong discontinuity approach and the cohesive frac-
ture mechanics apply to that solution.  

On the other hand, it is known that standard finite element solutions suffer 
from numerical flaws (stress locking and mesh bias dependence – see Sections 
2.4.4 and 2.4.5) and hence, in general, these solutions would fail to represent 
strong discontinuities, or they are representative just for a very specific set of 
cases, (e.g. when the finite element mesh is properly aligned with the fracture to 
be modeled). Nevertheless, by relating the results of the strain localization models 
with the ones obtained by the strong discontinuity approach, indicators to access 
the quality of the former models may be derived. This subject will be developed 
in the following Sections. 

4.1.1. Strong discontinuity kinematics 

Let us consider the continuum body W  (see Figure 4.1), divided in two parts 
+W and -W  by a strong discontinuity  . Across the discontinuity, the displace-

ment field ( )u x  experiences a jump   + -ÎW Ç ÎW Ç= -x xu u u  .  

 
 
 
 
 
 
 

                                                                                                                                    
micro-cracks” in brittle materials. On the other hand, in the ambit of the strong discontinu-
ity approach, this parameter loses physical sense. 

21 The bandwidth evolution law or variable bandwidth model, governs the transition 
between the weak and strong discontinuity regime. 



Chapter 4 Strain localization, strong discontinuities and material fracture 76 
 

a) b) 

 

Figure 4.1 a) Continuum body with strong discontinuity, b) Strong discontinuity 
kinematics.

 
where n is the unit vector orthogonal to  . The rate of the displacement field 
may be mathematically described as [Oliver and Huespe 2004b]: 

 ,= +u u u   (4.1) 

where u  stands for the smooth part of the displacement field and  stands for 

the Heaviside (step) function ( ( ) -= " ÎWx x0 and ( ) )+= " ÎWx x1 .The 

corresponding compatible strain field (strong discontinuity kinematics) reads: 

 ( )  ( ) ,

(singular)(regular)

SS S S = +  + Äu u u u ne=

e

d      
(4.2) 

where d is the Dirac’s distribution, shifted to   fulfilling [Stakgold 1998]: 

* *
( ) ( ) ( )d d

W
W =ò òx x xj d j


 , (4.3) 

for any test function ( )xj  sufficiently regular and for any portion *W of W(
*W ÌW ) containing a portion * of  ( * Ì   and * *ºW Ì  , see Figure 

4.2).  
 

Figure 4.2 Continuum body a with strong discontinuity.
 

Assuming the required regularity for the term  ( )SÄu n , the specific applica-

tion of equation (4.3) to the singular term of equation (4.2) reads: 
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4.1.2. Regularized strong discontinuities kinematics 

Let us now consider the discontinuity band locW , of very small bandwidth k 

(the regularization parameter) containing  , as shown in Figure 4.3. 
 

a) b) 

 
Figure 4.3 a) Continuum body with discontinuity band b) Regularized strong 

discontinuity kinematics. 
 
The Dirac’s function can be regularized over locW  as: 

loc
kWd m , where 

locWm is a collocation function on locW  such that: 

( )
\

loc

loc

loc

W

ì " ÎWïï=íï " ÎW Wïî

x
x

x

1

0
m . (4.5) 

Thus the regularized version of equation (4.2) reads: 

 ( ) ,loc SS

k
W= = + Äu u ne e

m   (4.6) 

where the term k1 in equation (4.6) may be interpreted as an intensification 

factor of the strains in locW , see Figure 4.4.  

 

Figure 4.4 Regularized Dirac’s delta function. 
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As k  0  then locW    and 
loc

kW m d , in the sense of distributions; i.e.: 

* * *

( )
lim ( ) ( ) ( ) ( )loc

k
d d d

k
W

 W W
W= W=ò ò ò

x
x x x x

0

m
j j d j


 . (4.7) 

4.2. Strain localization and strong discontinui-
ties 

So far, in Chapters 2 and 3, for material fracture modeling, classical strain lo-
calization methods were used and no strong discontinuity enrichment was intro-
duced. Here, we intend to relate the obtained results with the strong discontinuity 
approach in order to assess the quality of those results. 

Let us now consider a general strain field loce  exhibiting strain localization in 

the band locW . For this general case, the strain field structure is assumed as fol-

lows: 

localized
component

,locS
loc k

W=  = +u Le e
m 


 
(4.8) 

where loce  is subdivided in a nonlocalized term, e , plus a localized component 

which intensity is proportional to the inverse of the bandwidth k. 
The fundamental point is if a general strain field, as the one expressed by (4.8)

, may be representative of a strong discontinuity and what are the conditions that 
L  must fulfill in order to accomplish this equivalence. 

Comparing expressions (4.8) and (4.6), and having in mind (4.7), for they to 
be equivalent the following equality has to be fulfilled: 

 ( )
* *

lim lim .loc loc S

k k
d d

k k
W W

 W W
W= Ä Wò òL u n

0 0

m m   (4.9) 

Taking a sufficiently small domain * *DW ºW  such that the corresponding 
portion of the discontinuity path *D ºDW Ç   is sufficiently small for n to be 
considered constant, equation (4.9) can be rewritten as: 

 
* *

lim limloc loc

S

k k
d d

k k
W W

 DW DW

æ ö÷çW= WÄ ÷ç ÷÷çè øò òL u n
0 0

m m  . (4.10) 

Considering  for all points of  , the local orthonormal basis { }ˆ ˆ ˆ, ,=e n e e1 2 3 , 

the components of the tensorial entities  u ,  ( )SÄu n and L  are: 



Chapter 4 Strain localization, strong discontinuities and material fracture 79 
 

 

 

 

 

 ( )

     

 

 

; ;S

L L L

L L L

L L L

é ù
ê ú
ê ú é ùé ù ê ú ê úê ú ê ú ê úê ú ê ú ê ú= Ä = =ê ú ê ú ê úê ú ê ú ê úê ú ê ú ê úê úë û ë ûê ú
ê úê úë û

u u u
u

u u u n u L

u
u

1 2 3

11 12 131

12 22 232 2

13 23 333

3

1 1
2 2

1
0 0

2

1
0 0

2

  
  

      

  


. (4.11) 

Thus, for the equivalence expressed by (4.10), the following requirements on 
L  appear: 
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(4.12) 

which can be formalized to: 
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where ML will be termed the strain localization mismatch, i.e. the part of L  not 

matching the strong discontinuity format  ( )SÄu n ; and M  stands for the 

fourth order strain localization mismatch operator.  
Let us assume, as it is usually done in computational material failure, that after 

the localized part of the strain ( )
loc

kW Lm   corresponds to the inelastic strain, 
inele , whereas the remaining part of the strain is its elastic counterpart ele : 

( ) : ; locel unl inel

k
- W= = = L
1

e e s e
m   , 

loc el inel
loc k

W= + = +Le e e e
m    , 

(4.15) 

where unl is the unloading constitutive operator. Under the previous assump-
tions, restrictions (4.13) read: 

*

*lim inel
M

k
d

 DW
W = " DW ÌWò0 0e , (4.16) 

where: 
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: :loc locinel inel
M M M Mk k

W W= = =L Le e
m m   � . (4.17) 

Expression (4.16) establishes a restriction on the inelastic strain ( , )inele s s   to 

be representative of a strong discontinuity. Here we emphasize the dependence of 

the inelastic strain ( , )inele s s   on the stress state s and on the stress evolution s . 

Note that conditions of equation (4.16) have already been identified in the context 
of the strong discontinuity approach, constituting the so-called strong discontinui-
ty conditions [Oliver, Cervera et al. 1999]. 

4.3. Strain localization mismatch indicators 

When the localized component inele , of a general strain field loce  ,obtained 

via classical strain localization methods, verifies conditions (4.16), it is said that 
loce  matches a strong discontinuity deformation mode. However, in general, 

these restrictions are not fulfilled, or they do so for very specific cases, e.g. when 
the finite element mesh is properly aligned with the fracture propagation direc-
tion. This fact is related to the traditional flaws observed with classical strain 
localization methods (stress locking and mesh bias dependence exposed in Sec-
tions 2.4.4 and 2.4.5). Moreover, expression (4.16) suggests the development of 
indicators that could be used to evaluate the quality of the strain localization pat-
terns obtained in the finite element computations. 

For this purpose, let us consider a body discretized through a finite element 
mesh, where a set of elements defining the localization band or localization do-
main locW  (see Section 4.4) is identified (Figure 4.5). 

 

Figure 4.5 Discritized body with localization band.
 

The discrete version of (4.16) is obtained by considering * ( )e
locDW ºW ÌW  , 

and e k= , being e  the typical element size: 

loc
W W

locW



\
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
 , (4.18) 

where h stands for the finite element approximation. Assuming a small enough 
element size e L   (L standing for the typical dimension of W) equation (4.18) 

may be established as: 
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e

hinel e
M locd

W
W " W ÎWò 0e  , (4.19) 

Finally, equation (4.19) can be integrated along time, from the bifurcation time 

Bt  (onset of localization), to the current time, t, as: 
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4.3.1. Local mismatch indicator 

Motivated by equation (4.19), a first indicator: the ratio of the inelastic strain 
mismatch and the inelastic strain tensor is proposed (in elemental averages and 
measured in L2 norms): 
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Simplifying equation (4.21), and setting the indicator ( )ei  to zero for those 
elements outside the localization domain, the indicator of the strain localization 
mismatch, at a given time t, and for the specific element ( )eW , reads: 
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Inspection of the previous equation reveals that the proposed indicator has the 
following properties: 

 For perfectly localized elements (fully representing a strong discontinuity), 
( )ei is null. In fact, for those elements, the inelastic strain inele fulfills con-

dition (4.19), which substituted in equation (4.22) returns a null value of 
the indicator 

 For imperfectly localized elements in locW , the indicator returns a value 
( )ei< £0 1. The larger is the value of ( )ei  the larger is the localization 

mismatch of the element. Therefore the elemental map ( )ei  (in the interval
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[ ],0 1 ) across the finite element discretization provides a spatial description 

of the quality of the incremental strain localization (understood as its 
match with a regularized strong discontinuity). The examples presented in 
Section 4.5 illustrate this point. 

 For elements outside the localization domain, the index is null by defini-
tion. 

 If the indicator is computed for the case of embedded strong discontinui-
ties [Oliver and Huespe 2004b], it will return a null value since, again, the 
inelastic strain fulfills, by construction, equation (4.19). 

4.3.2. Global Mismatch indicators 

The local indicator in equation (4.22) provides a spatial map of the distribu-
tion, at every time of the analysis, of the localized strain mismatch over the finite 
element mesh. As an alternative to the indicator ( )ei , the following global incre-
mental strain localization mismatch indicator is proposed: 
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Notice that [ ]( ) ,I t Î1 0 1 is an extension of the local indicator ( ) ( )ei t , from the 

local domain, ( )eW , to the global domain locW . It exhibits the following proper-

ties: 
 The indicator is objective with the size of the bandwidth in the sense that, 

for a given domain W  and discontinuity path  , the result at the asymptot-
ic stage is independent of the localization bandwidth k. In fact, assuming a 
general (not necessarily perfect) localized strain field loce  we can write the 

entities in equation (4.23) as: 
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(4.24) 

where, the result of (4.7), the assumptions of (4.15) have been used, and 
( ) ( )e e= W Ç   stands for the portion of the discontinuity path in element 

( )e . Substitution of equations (4.24) into (4.23) yields: 
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not depending on the localization bandwidth k. 
 For time steps with no localizing elements, the index is null I =1 0 . This 

stems directly from the fact that locW =Æ , and thus, by definition, I =1 0 . 

 For time steps with perfect localization in all elements (fully representing a 
strong discontinuity that evolves across the mesh) the global indicator is 

null, since in this case inel
M =0e  in all elements. 

 The indicator is also null, by construction, when embedded strong discon-
tinuities are utilized. 

 For imperfect localization, the indicator returns a not null value in the in-
terval [ ],0 1 . This index gives a mean value idea about of the quality of the 

numerical solution for capturing a strain rate localization pattern The near-
er that the value I1  is to zero, the higher the quality of the localized strain 

field. 
The localization mismatch index I1  has an incremental character and informs 

about the quality of the localization of the rate (incremental) strains. In view of 
equations (4.19) and (4.20) the extension to the total strain case follows imme-
diately giving raise to the following global accumulated strain localization mis-
match indicator: 
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with properties similar to those of index I1 . The indicator I2  is expected to be 

smoother that I1 , since sudden changes on the incremental structural behavior 

will be directly reflected in the incremental index I1 , whereas they will be smoo-

thened in the accumulated one I2  (since this index takes into account the pre-

vious history). 
All the proposed indicators can be computed without an a-priori knowledge of 

the fracture mechanics “exact” solution of the problem, since the vector n, normal 
to the discontinuity path, may be computed by bifurcation analysis (see Section 
4.4). 
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4.4. The localization domain 

The indicators in equations (4.22), (4.23) and (4.26) are based on the know-

ledge of the inelastic strain mismatch inel
Me , which, in turn, requires the know-

ledge of the normal vector n to the discontinuity path. For this purpose, we resort 
to the material bifurcation analysis already discussed in Section 2.3. For the fami-
ly of constitutive models of our interest (associated plasticity and damage mod-
els), explicit expressions for n are available in the literature [Oliver and Huespe 
2004a]. Those expressions may be used to compute the normal vector n at the 
finite element centroid22. This normal is representative of a straight discontinuity 
surface (n is considered constant inside the finite element) that approximate the 
part of the discontinuity crossing the finite element ( ) ( )e e= W Ç   (see Figure 
4.6). 

 
a) b) 

 

Figure 4.6 a) Finite element crossed by discontinuity, b) Localization domain.  
 
Additionally, for the computation of the proposed indicators, definition of the 

localization domain is also necessary. Intuitively, defining the localization do-
main as the set of in-loading elements where bifurcation has been detected, as it 
was done for the mixed domain in Section 3.2.1 (see equation (3.20)), seems 
reasonable, since bifurcation is a necessary condition for the appearance of strain 
localization in the direction n. Nevertheless, since bifurcation analysis is a local 
procedure, this condition is necessary but not sufficient. The onset and evolution 
of a discontinuity depends additionally on the surrounding material and on the 
boundary conditions. 

In fact, in practical computations, large quantity of elements (e.g. on the vicin-
ity or at the tip of a propagating discontinuity) where the bifurcation condition is 
fulfilled (at a given time step) are observed but no discontinuity develops and the 
elements generally unload in subsequent time steps. To avoid noise in the pro-
posed indicators (produced by these elements that exhibit very reduced amount of 
strain localization), we also require in the definition of the localization domain 

                                                        
22 Note that for the case of standard quadrilateral elements, the central point (centroid) 

has usually special properties in terms of accuracy (see Remark 3.2.1.1) 

n
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locW , that the material point had experienced a sufficient degree of softening. This 

condition is evaluated in terms of the stress-like internal variable ( , )q tx  (decreas-

ing along the deformation process for softening models).  
Hence, the localization threshold, locq , is defined at each point as: 

[ ]( ) ( ) ; ,loc bifq q= Îx x 0 1g g , (4.27) 

being bifq the value of q evaluated at the bifurcation time ( ) ( , )bif Bq x q t= x , and 

g  a parameter controlling the softening “degree” (typically .= 0 95g ).  

The localization domain may be then formalized as: 

4.5. Numerical simulations 

In this Section, the proposed strain localization indicators are assessed through 
their application to a set of numerical examples. Some of the examples used in 
previous Sections are here re-examined. 

4.5.1. Strip in homogeneous uniaxial tensile stress state – 
Mode I fracture modeling  

This numerical example, already presented in Sections 2.4.4 and 3.1.6.2, ad-
mits an analytical solution corresponding to a straight vertical crack (for a iso-
tropic damage model). 

 

 

Figure 4.7 Strip stretching in the horizontal direction. 
 
For this case a well-aligned mesh (with the crack) can be constructed and re-

sults, in terms of the strain localization indicators, can be compared with the ones 
obtained by using misaligned meshes. 
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a) b) 

c) 

Figure 4.8 a) aligned mesh, b) misaligned mesh – irreducible formulation, c) misa-
ligned mesh – Constant strain mode injection. 

 
a) b) 

 
Figure 4.9 a) Force-displacement curves, b) Localization indicator I2.

 
In Figure 4.8, iso-displacement contours for different cases are presented. 

When a well oriented mesh is used, a perfect vertical solution is obtained (regard-
less of the employed formulation). Identical conclusion can also be extended to 
the force-displacement curves. Solutions match exactly the theoretical behavior, 
and thus, the indicator I2 is null  (Figure 4.9-b)). In the other hand, for the miss-
aligned meshes, the indicator I2 provides non-zero values, grading the results in 
terms of the mismatch with a regularized strong discontinuity.  

It is observed that, for the irreducible formulation, the mismatch predicted by 
the index I2 is higher, this indicating that results obtained by this formulation are 
strongly affected by mesh bias, as may be observed in Figure 4.8-b). With the 
constant strain mode (CSM) injection, mesh bias is alleviated and index I2 gives 
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lower values. Despite the improvement of the results, (already observed in pre-
vious Chapters), is noticeable that index I2 still gives non negligible values, indi-
cating that the solution cannot be interpreted as a regularized strong discontinuity.  

For the misaligned mesh, Figure 4.10 displays the spatial distribution map of 
the  local mismatch indicator ( )ei at two different stages of the analysis characte-
rized by the displacement d . For both cases, all elements of the localization band 
show a non negligible strain localization mismatch, whereas, the higher local 
values are generally obtained for the irreducible formulation. Alternatively, for 
the aligned structured mesh (that is not shown in the figure), the indicator remains 
zero. 
a)  b) 

.

d =

0 035
 

.

d =
0 07

 

Figure 4.10 Distribution of strain localization mismatch indicator ( )ei  a) irreducible 
formulation, b) Constant strain mode injection. 

4.5.2. Strip undergoing homogeneous uniaxial tensile stress 
state using a J2 plasticity model– Mode II fracture modeling  

In this case, previously presented in Sections 3.1.6.2 and 3.2.7.2, the analytical 
solution displays a mode II fracture characterized by a straight shear band cross-
ing the strip at 45º (see Figure 4.11) 

 

Figure 4.11 Strip stretching in the horizontal direction. 
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Likewise was done in the previous example, an well aligned mesh (with the 
theoretical solution) can be constructed. For this example the following meshes 
are considered: i) a mesh in which the central row of elements is exactly aligned 
with the theoretical inclination of the slip line intended to be captured, ii) a mesh 
of squared elements structured in such a way that the diagonals of the elements 
are aligned with the 45º inclination of the slip line and, finally, iii) an unstruc-
tured mesh with irregular mesh size. Here, the irreducible formulation is not con-
sidered since for this case no strain localization is obtained23. Results obtained 
with the mixed bilinear-displacements/constant pressure (B-bar element) [Hughes 
1980] and by the proposed injection procedure are compared. 

 
a)  b) 

 

Mesh 
i) 

Mesh 
ii) 

 

Mesh 
iii) 

 
Figure 4.12 Iso-displacement plots for three different meshes, a) B-bar element, b) 

Constant strain mode injection. 
In Figure 4.12, it is noticeable that for the aligned mesh i), and for both finite 

element formulations, perfect (one element bandwidth) slip lines are obtained, as 
is corroborated by the corresponding structural responses P-d  (Figure 4.13-a)), 
matching exactly the expected triangular analytical solution and by the incremen-
tal global mismatch indicator I1 that remains null throughout the analysis (Figure 
4.13-b)).  

                                                        
23 For the irreducible formulation, no localization is obtained due locking effects re-

lated with the incompressible character of the J2 plasticity model (as was shown is Section 
3.1.6.2). 
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When mesh ii) is used, it is also observed a one element localization band. 
Nevertheless, for the B-bar element some residual deformation are noticeable 
outside the localization band caused by stress locking24 during earlier stages of 
the loading process, as it can be observed in the corresponding force-
displacement curve, that exhibits a kind of bilinear softening behavior, and in the 
incremental indicator I1 , that is higher in initial stages. The good results obtained 
with meshes i) and ii) display the well-known ability of the B-bar (Q1-P0) ele-
ment to capture slip lines aligned with the element sides or diagonals. Here it was 
also shown (as was discussed in Sections 3.1.6.2 and 3.2.7.2) that the injection 
procedure based on the mixed -u e  formulation, even so that was not initially 
developed to face incompressible constitutive models25, is able to reproduce, or 
even enhance, the results obtained with the B-bar element. 

For unstructured meshes, the quality of the results deteriorates. It is now ob-
served that the localization bandwidth, due to stress locking, encompasses more 
than one element in some places. This fact is reflected in the structural curves by 
extra dissipation and nonzero residual loading obtained in the end of the analysis. 
Notwithstanding, the more important differences are found on the mismatch indi-
cator, that assumes now much higher values, reflecting that, for mesh c), the ob-
tained localization band is much far from represent a strong discontinuity, than 
when meshes a) or b) are used. 

 
a) b) 

Figure 4.13 a) Force-displacement curves, b) Localization indicator I2. 
 

The local mismatch indicator ( )ei provides additional information about the lo-
calization process. In Figure 4.14 maps of this indicator for meshes b) and c) 
computed with the CSM injection are presented, for two loading stages. To high-
light the results, different scales are adopted for each mesh in Figure 4.14 a) and 
b). 

                                                        
24 The initial bandwidth of the localization band is wider that one element in earlier 

stages of loading, but it gradually reduces to one element. 
25 The injection strategy was developed to face the mesh bias dependence, which is not 

an issue in this example, since all meshes, included the un-structured one, exhibit a 45ª 
localization band. 
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a)  b) 
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Figure 4.14 Spatial distribution of the local strain localization mismatch indica-

tor ( )ei  (CSM injection), a) diagonal aligned mesh (mesh ii)), b) unstructured mesh 
(mesh iii)). 

 
In accordance with previous results, it is observed in Figure 4.14 that for the 

unstructured mesh, high values of ( )ei  are attained (around 25%). In the other 
hand, for the diagonal aligned case, the values are almost negligible. 

4.5.3. Slope stability problem using a J2 plasticity model 

In the previous examples near-homogenous problems, where the propagation 
of the localization band is almost instantaneous, have been considered. Due to the 
particular homogeneous stress state, in those cases special meshes, fully aligned 
with the crack, can be easily constructed. For this type of meshes, the finite ele-
ment solution is fully representative of a de-cohesive fracture type, as it was 
shown in the previous examples, matching exactly the available analytical solu-
tion. 

However, in most cases of engineering interest, analytical solutions are not 
available, and material failure takes place under heterogeneous stress states where 
structural properties (related to the material, geometry and boundary conditions) 
provoke high stress intensification in a certain point determining the onset of the 
failure and giving rise to a propagating localization band. For this type of prob-
lems, the construction of meshes fully aligned with the localization band is a 
extremely difficult task.  

Figure 4.15 describes a typical embankment stability loss problem. The soil is 
simulated through a J2 plasticity model, under plain strain conditions. Since an 
analytical elasto-plastic solution is not available, the numerical solution using the 
continuum strong discontinuity approach is considered as the “reference” solu-
tion. This solution consists of a slip line, which can be nearly approximated by a 
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portion of a circle, as it is shown in Figure 4.15. Then, a first mesh of quadrilat-
eral finite elements is constructed approximately aligned with the slip line solu-
tion  provided by the reference procedure, as it is shown Figure 4.16-a) and a 
second misaligned mesh is considered as shown in Figure 4.16-b). For both 
meshes the computations are performed with the constant strain injection proce-
dure proposed in Box 3.5. The following material properties are adopted: elastic 
modulus E = 10000.0 MPa, Poisson’s ratio n = 0.45 , yield stress ys  = 100.0 

MPa and fracture energy Gf=8.0 MN/m. 
 

 
Figure 4.15 Slope stability problem.

 

a) b) 

Figure 4.16 Iso-displacement contours for two different meshes, a) Aligned mesh, b) 
Misaligned mesh. 

 

Figure 4.16 displays the iso-displacement contours, where the numerically ob-
tained localization bands can be observed. For the aligned mesh, the shear band is 
well captured by the aligned band of elements containing the slip line: the iso-
displacement contours are sharply concentrated inside a one-element-width local-
ization band capturing the propagating discontinuity at the considered time of the 
simulation. Instead, for the misaligned mesh of Figure 4.16-b), though the propa-
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gation of the discontinuity path seems to be correct, the bandwidth of the localiza-
tion band is wider than one element in a large portion of it, and that is translated 
into additional dissipation of the corresponding failure mechanism, as it can be 
observed in the structural force-displacement curves in Figure 4.17-a). 
a) b) 

 
Figure 4.17 a) Force-displacement curves, b) Global Localization indicator I2. 

(results obtained with the constant strain injection)
 

In Figure 4.17-b) ,the global accumulated mismatch indicator I2 confirms that 
results obtained with the non-aligned mesh fails in representing a strong disconti-
nuity. Note that Figure 4.17-b) shows a huge difference on the results provided by 
both  meshes (for the aligned mesh, the value of the indicator is much smaller 
than for the unaligned mesh). Also notice that, in this case, no exact analytical 
P - d solution is available; however the small values of the strain localization 
mismatch indicator suggest that, for the aligned mesh, the obtained solution is 
very close to the fracture mechanics one.  

Figure 4.18 displays the distribution of the local incremental strain localiza-
tion mismatch indicator, ( )ei , for the misaligned mesh, at two different stages of 
the loading process. The resulting spatial distribution of the indicator clearly 
shows the mismatch extending to a band encompassing several elements, this 
indicating an imperfect representation of a discrete fracture. 
a) = 0.12d  b) = 0.17d  

Figure 4.18 Spatial distribution of the local incremental strain localization mis-

match indicator ( )ei for two loading stages. 
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4.6. Summary and conclusions  

Along this Chapter, the issue of identification of strain localization solutions 
and the discrete fracture mechanics ones has been tackled, and some mismatch 
indicators to characterize the quality of the former, in terms of their ability to 
represent the later, have been derived. The application of such indicators to the 
strain localization solution of some well established benchmarks allows arriving 
to the following conclusions: 

 In general, strain localization solutions using standard continuum constitu-
tive models, do not match fracture mechanics solutions, excepting for very 
specific cases, typically finite element meshes specifically aligned with the 
fracture path (for these specific cases the indicators return null mismatch). 
This behavior has been also reported by other authors and is here further 
supported by the results provided by the proposed indicators. 

 The mismatch obtained for general unaligned meshes is caused by the li-
mited ability of finite element interpolation field to reproduce strong dis-
continuity embedded into them. This kinematic flaw is here identified as 
the ultimate reason of stress locking.  

 The injection procedure, based in a mixed ,u e  formulation, substantially 
reduces the mismatch. However, this improvement is not sufficient for the 
localized solution to be considered representative of a strong discontinuity, 
suggesting that, additional strain modes should be subsequently injected in 
order to further enhance the finite element kinematic performance. This is-
sue will be tackled in the next Chapter.  

 The proposed indicators, or similar ones to be derived, can be computed 
without an a-priori knowledge of the exact fracture mechanics solution of 
the problem, and used as an objective tool for the quantitative evaluation of 
the performance of strain localization based methods applied to general he-
terogeneous problems. 
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Chapter 5                                     
Weak\strong discontinuity 
injection procedures 

In Chapter 3, inspired in a ,u e  mixed finite element formulation, a constant 
strain mode was proposed to be injected in those elements that are amenable to 
develop strain localization. Despite the improvement on the obtained results, 
when compared with those provided by standard formulations, it was noticed that 
due to stress locking, and after complete failure, residual loads still remain, this 
meaning than no true separation between both surfaces of the crack is attained.  

In Chapter 4, this issue was studied in terms that the displacement field solu-
tion might be (or not) interpreted as a regularized strong discontinuity embedded 
into the localization band. Based on the mismatch indicators proposed in Chapter 
4, it was concluded, that this is generally not true, excepting for very specific set 
of cases where the discretization is fully aligned with the crack.  

This mismatch is related to a kinematic deficiency. In fact, the constant strain 
mode injection seems to provide extra flexibility in order to enhance propagation 
capabilities of the finite elements, but on the other hand, the constant kinematics 
still exhibits a limited capability to describe a discontinuity in a one-element fi-
nite element band. The natural subsequent idea, in the ambit of the proposed in-
jection procedure, is to further improve the finite element kinematics by the injec-
tion of an additional enhanced strain mode, on those elements that develop the 
discontinuity. This additional injection is inspired by the weak/strong discontinui-
ty kinematics and will be therefore termed as weak/strong discontinuity mode 
injection. 
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5.1. Strong discontinuities 

As it was mentioned at Chapter 4, the continuum strong discontinuity ap-
proach was proposed in the nineties [Simo, Oliver et al. 1993; Oliver 1996a] and 
subsequently, it was further developed and used in a variety of applications by 
several authors (e.g. [Armero and Garikipati 1996; Alfaiate et al. 2002; Alfaiate 
2003; Alfaiate et al. 2003; Mosler and Meschke 2003; Blanco et al. 2006; Linero 
et al. 2006; Linder and Armero 2007; Armero and Kim 2012]. 

In this Section, the strong discontinuity kinematics is recalled, and a three 

field mixed formulation  ˆ ˆ, ,u ue    is developed, considering a constant regular 

strain ê . Finally, by restricting the mixed formulation to a part of the domain (the 
injection domain) the strong discontinuity injection is introduced. 

5.1.1. The Strong discontinuity kinematics 

In Section 4.1.1 the strong discontinuity kinematics was introduced. Here we 
recall the basic ingredients of the regularized strong discontinuity kinematics: 

 = +u u u  , (5.1) 

where u  stands for the smooth part of the displacement field,   stands for the 

Heaviside (step) function ( ( ) -= " ÎWx x0 and ( ) )+= " ÎWx x1  and  u  

is the displacement jump between both sides of the discontinuity. 
Due to computational reasons, related to the imposition of the essential boun-

dary conditions, that we intend to impose just in terms of û , expression (5.1) 
may be reformulated through an equivalent expression (see [Oliver 1996b] for 
further details): 

    ( ) ˆ ˆ= - + = + -u u u u u uj j    


   , (5.2) 

wherej  is a continuous arbitrary function that fulfills the following two condi-

tions: 

( )

( )

\
( )

\

-

+

ìï " Î W Wïï= íïï " Î W Wïî

x
x

x

0

1
j





, (5.3) 

being the domain, W , the support of the “unit jump” function  (see Figure 

5.1). 
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The regularized strain field corresponding to equation (5.2) reads26: 

 ( )  ( )ˆ ,

ˆ

S SS S

k
=   -  Ä + Äu u u n ue =

e

m
j  

  (5.4) 

where n is the unit vector orthogonal to   and m is a collocation function on 

 : 

( )
\

ì " Îïï=íï " ÎWïî

x
x

x

1

0
m




. (5.5) 

 

 
Figure 5.1 Strong discontinuity kinematics.

The kinematics represented in equations (5.4) is borrowed from the strong 
discontinuity approach and it is the basic ingredient of the strong discontinuity 
injection.  

5.1.2. The boundary value problem with strong 
discontinuities 

In this Section, the strong form of the boundary value problem presented at 
Section 2.1 is reformulated, admitting now, a strong discontinuity crossing the 
continuum body. 

Figure 5.2 Continuum body with discontinuity. 

                                                        
26 The compatible strain field corresponding of (5.2) is  

   ˆS S S S=  + Ä + Äu u u ue =       

where the term  SÄ u  is bounded with support in W . For W    ( )W W

this term is negligible in front of the remaining terms and can be generally disregarded. 
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
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In Figure 5.2 the continuum body, W , of  boundary G , is subdivided in two 

parts, +W  and -W , by the strong discontinuity path  . The vector n , is the out-

ward unit normal to G , n  is the unit vector normal to the discontinuity and b are 
the body forces.  

The strong form of the boundary value problem, admitting a strong disconti-
nuities, is summarized in Box 5.1. 

 

Given the external actions ( )* : NWu x  , ( )* : NWt x  and 

( ) : NWb x  , find ( ) : NWu x  such that:  

⋅ + =b 0s  , \" ÎWx  (equilibriumequation)  (5.6)

( )s= S e ," ÎWx  (constitutiveequation)  (5.7)

   ( )ˆ S

k
= - + Äu u u n u

m
j  

 
," ÎWx  (strong disc. kinematics) (5.8) 

 ( )ˆˆ SS -  Äu ue= j  , \" ÎWx  (compatibilityequation)  (5.9)
 

 ( )ˆ Ss

k
=  = + Äu n u

1
e e 

 
," Îx  (compatibilityequation)  (5.10)

 
- +⋅ = ⋅n ns s  ," Îx  (outer traction continuity) (5.11)
+ ⋅ = ⋅n ns s   ," Îx   (inner traction continuity) (5.12)

*

*

=

⋅ =

u u

ts n

 
  

,

,

" Î G
" Î G

ux

x s  
(boundaryconditions)  (5.13)

 
Box 5.1 Strong form of the boundary value problem with discontinuity. 

 
In Box 5.1, -s  and +s  stand for the stress rate fields in both sides of the 

discontinuity, whereas s   stands for the stresses rate in  . 

Notice, that outside W : = 0j , therefore, equation (5.9) gives the standard 

compatibility equation ˆˆ S ue=  . 

5.1.3. A three field ( ˆ ˆ, ,u ue       ) mixed formulation 

In Section 3.1.2 based on the strong form of the boundary value problem pre-
sented at Section 2.1, a mixed ,u e  formulation, where strains were also consi-
dered an independent variable, was introduced. Here, motivated by the strong 

discontinuity kinematics, a three field formulation  ˆ ˆ, ,u ue    is proposed. In the 

strong discontinuity approach, generally a  ˆ,u u   formulation is used, i.e. the reg-
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ular part of the displacement field, û , and the displacement jump, u , are inter-

polated independently according the split stated in (5.2). Here, the regular part of 
the strain field ê , is also selected as an independent primal variable. The selec-

tion of ê , and not e , as the additional strain variable to interpolate is related to 
the strong discontinuity concept. When using strong discontinuities, due to the 
bounded nature of the stress field and the zero thickness of the discontinuity sur-
face, the stresses at the discontinuity surface do not contribute to the generation of 
internal forces, i.e.: 

( ) ( ) ( )
\

ˆ ˆˆ ˆ ˆ: : :s s sd d d
W W W

W= W= Wò ò òh S e h S e h S e   


   . (5.14) 

Likewise, in Section 3.1.2, we intend to interpolate element-wise-constant 
strain fields, thus a reasonable option is to choose ê  as the independent variable, 
instead of the total strain, since the equilibrium equation can be stated just in 
terms of this regular strain field, as it is shown in equation (5.14). 

To introduce the mixed formulation, equations (5.6) and (5.9) are tested with 
the test functions ĥ  and m . Integrating over the domain, and using the result of 

(5.14), yields: 

( )

 ( )( )

ˆˆˆ ˆ: , , )

ˆˆ: , , )

s ext

SS

d a

d b

W

W

W= " Î

é ù-  -  Ä W= " Îê úë û

ò

ò

f

u u

h S e h

m e mj

 

 

 

0
 (5.15) 

The functions appearing in equations (5.15)-b) are chosen to belong to the fol-
lowing functional spaces: 

( ){ } ( ){ }ˆ ˆ: , :
n n n n

L L
´ ´é ù é ù= Î W = = Î Wë û ë û

2 2e e m m m   , (5.16) 

whereas, for equation (5.15)-a), according the decomposition of the displacement 
field expressed in (5.2): 

( ) { }ˆ ˆ= Å = = + -u u u uj �  , (5.17) 

where: 

( ){ }     ( )[ ]{ }*ˆ ˆ ˆ ˆ: ; , :
n nH LG

é ù= Î W = = Î Wë û u
u u u u u u1

2
� � , 

and:
 

( ){ }ˆ ˆ ˆ ˆ: ;
n

H G
é ù= Î W =ë û u

1h h h 0 . (5.18) 

It can be proved, by standard arguments(see [Oliver 1996b]), that equation 
(5.15)-a) is equivalent to  

⋅ + =bs  0 , \" ÎWx  ,
(5.19) 

*⋅ = ts n  ," Î Gx s ,
- +⋅ = ⋅n ns s  ," Îx  ,  
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whereas equation (5.15)-b) is equivalent to: 

 ( )ˆˆ SS -  Äu ue= j  , \" ÎWx  , (5.20) 

this implying, that equations (5.6), (5.9), (5.11) and (5.13) are weakly satisfied. 
Additionally, the inner traction continuity equation (5.12), can be directly im-
posed, in a strong form, at the discontinuity surface, i.e.: 

,+⋅ = ⋅ " Îσ n σ n x   . (5.21) 

Notice that imposing directly equation (5.21) in a strong form leads to an un-
symmetric formulation (Petrov-Galerkin based), since the functional space of the 
solution functions   is different from the functional space of the weighting func-

tions ̂  ([Hughes 1987]). 

5.1.4. Three field mixed finite element formulation – Un-
symmetric formulation 

Regarding the finite element approximations, we follow the arguments used in 
Section 3.1.3, i.e. element-wise-constant discontinuous finite element interpola-
tions for the strains ê  and displacement jump u  are selected. For the smooth 

part of the displacement field û , standard continuous bilinear interpolations are 
used: 

 ( )ˆ ˆ( ) ( ) ;
nnodes nelem

eh h h h h h h
i i

i e

N
= =

ì üï ïï ï= Å = = + Ìí ýï ïï ïî þ
å åu u x u x u
1 1

  �   � �

where: ( ) ( )h h x= -x j 
 

ˆ ˆ ˆˆ ˆ ˆ: ( ) ( ) ;
nnodes

h h h h
i i

i

N
=

ì üï ïï ï= = Ìí ýï ïï ïî þ
åx x
1

h h h  

( ) ( ): ( ) ( ) ;
elemn

e eh h h h h

e=

ì üï ïï ï= = = Ìí ýï ïï ïî þ
åx x
1

m m m mf �  

( )( ): ( ) ( ) ;
elemn

h eh h e h

e=

ì üï ïï ï= = Ìí ýï ïï ïî þ
åx x
1

e e ef   �   , 

(5.22) 

where nelem and nnode  are, respectively, the number of nodes and elements of 

the finite element mesh, ˆiu  is the displacement vector associated to the node i, 

iN  are the standard finite element isoparametric shape functions,  ( )eu  and ( )ee  

are, respectively, the displacement jump and regular strains associated to the ele-

ment (e), and ( )ef  is a collocation function with elemental support: 



Chapter 5 Weak\strong discontinuity injection procedures 101 
 

( )
( )

( )

if
( )

if

e
e

e

ìï Î Wï= íï Ï Wïî

x
x

x

1

0
f .

 
Moreover, the function hj , appearing in equation (5.22) is chosen as follows:  

( ) ( ) ( )
nnodes nnodes

h
i i i

i i

N N

+

+
= =

= =å åx x x
1 1

j j , (5.23) 

where ij  is a nodal value27, assuming unit and null values for nodes belonging to 
+W and -W  ,respectively. The subscript + refer to nodes belonging to +W  (

i+
= 1j ) (see Figure 5.3-b) and Figure 5.4). 

 
a) b) 

Figure 5.3 a) Discretized body with discontinuity, b) Description of functions h

,  and hj  along line  . 

 

Figure 5.4 Elemental functions ( )e
 , ( )ej  and ( )e . 

                                                        
27 In order to construct the elemental vectors 

( )ej , distinction between nodes belonging to 

( )e
+W  and ( )e

-W  is necessary, being therefore required information about the position of the 

discontinuity inside the finite element. This issue will be tackled at Section 5.3.5. 
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At the element level, the unit vector ( )en , normal to the discontinuity is admit-

ted constant and orthonormal to that part of the discontinuity ( )e  crossing the 
finite element (approximated as a straight segment ( ) ( )e e= W Ç  ).  

Figure 5.5 Finite element with regularized strong discontinuity.
 

Regarding the finite element approximations, a discrete version of (5.15) 
reads: 

( )( )
( )

ˆˆˆ ˆ: ,s h e ext h h
e

e

d
WÎW

W = " Îå ò fh S e h   , (5.24) 

 ( )( )( )( ) ( )( )
( )

ˆˆ: , ,
See ee S h h h

e d e
W

- +  Ä W= " Î " ÎWò u u 0m e mj   � , (5.25) 

( )( ) ( ) ( )ˆ( ) ( ) ,ee e e e⋅ = ⋅ " ÎWn nS e S e    . (5.26) 

In equation (5.25), the strain field ( )ˆ ee , the displacement jump  ( )eu  and the 

weighting function ( )em  are chosen to be element-wise-constant and disconti-

nuous across elements. Therefore, equation (5.25) can be solved at the elemental 

level, being ( )ˆ ee  the projection of  ( )( )ˆ
SeS h -  Äu uj   on the elemental con-

stant space: 

 
( ) ( ) ( )( )

( ) ( )

( )( )

ˆ
ˆ ( )

( )ˆ( )

S h h
e e ee S

e e

eheS h
meanmean

d d
W W

 W  W
= - Ä

W W


ò òu
u

u

e
j

j


 

 


, (5.27) 

where the mean values of the entities ( )mean·  identified in equation (5.27), are 

replaced by the values at the central point of the finite element28 ( )· , according 

to Remark 3.1.3.1. 

( ) ( )  ( )  
( ) ( )( ) ( ) ( ) ( )( ) ˆ ˆˆ .

SeS ee e e ee S h h S h h
meanmean

æ ö÷ç=  -  Ä » -  Ä ÷ç ÷çè ø
u u u ue j j     (5.28) 

                                                        
28 In terms of the finite element implementation, this is achieved by adding an addi-

tional sampling point, at the center of the element. This procedure is analogous to the one 
presented in section 3.1.3 for the ,u e  formulation. 
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As for the traction continuity equation (5.26), ( )ˆ( )eS e   stands for the stress in 

the element (unloading) area outside the discontinuity, whereas, ( )( )eS e   stands 

for the stress field at the element discontinuity surface. The localized strain field 
( )ee can be evaluated in an additional sampling point representing the discontinui-

ty., hence: 

   ( )
( ) ( ) ( ) ( )( ) ( )ˆ ,

Se e Se ee S h h e

k
æ ö÷ç=  -  Ä + Ä÷ç ÷çè ø

u u n u
1

e j    (5.29) 

 

Remark 5.1.4.1 For the sake of simplicity, avoiding the determination of the 
exact position of the discontinuity in the element, the additional sampling point 

used to evaluated ( )( )eS e   is placed, also, at the center of the finite element. With 

mesh refinement, equation (5.26) yields equation (5.21), i.e. for h0 , 
( )( )e S e s    and ( )ˆ( )e +S e s  .  

 

Remark 5.1.4.2: The equilibrium equation (5.24) has dimensions of force 
whereas equation (5.26) has dimensions of traction. In order to supply dimensions 
of force to equation (5.26), it can be multiplied by the discontinuity length: 

( )( ) ( ) ( ) ( )ˆmeas( ) ( ) meas( ) ( ) ,ee e e e⋅ = ⋅n nS e S e     (5.30) 

that is equivalent to: 

( ) ( )

( )
( ) ( )( ) ( )

( )

( )

meas( )
ˆ( ) ( ) .

meas( )
e e

e
e ee e

e

e

d d
W

-

⋅ = ⋅ W
Wò òn n

1

S e S e 






  

(5.31) 

where ( )e  can be, by simplification, computed directly according to [Oliver 
1989], where the crack is admitted to pass through the finite element centroid. 

 

The un-symmetric finite element formulation is summarized in Box 5.2: 
 

Given * : NG uu  , * : NG t s   and : NWb  find ˆˆh hÎu � and   hÎu  � 

such that for all ˆˆh hÎh  : 

( )

( )ˆ: ( )
e

es h ext

e

d
WÎW

W=åò Fh S e 

 
( ) ( )

( ) ( )( ) ( ) ( ) ˆ( ) ( ) ,
e e

e ee e ed d e
-

W
⋅ = ⋅ W " ÎWò òn n

1
S e S e  

   
(5.32) 

   ( )

 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

where :

ˆ )

ˆˆ )

Se e Se ee S h h e

Se e ee S h h

a
k

b

æ ö÷ç=  -  Ä + Ä÷ç ÷çè ø

æ ö÷ç=  -  Ä ÷ç ÷çè ø

u u n u

u u

1
e

e

j

j

  

 



 (5.33) 

Box 5.2. Mixed  ˆ ˆ, ,u ue   . Un-symmetric formulation. 
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For those elements not belonging to W  (i.e. not crossed by the strong dis-

continuity) h = 0j , and according equation (5.33) ( ) ˆˆ e S h= ue  . 

 

Remark 5.1.4.2.: The chosen interpolation pairs for the mixed  ˆ ˆ, ,u ue    formu-

lation lead to an element-wise-constant approximation of the strain field in all the 
domain. Thus, according to the stated at Section 3.1.4, the stability of the interpo-
lated fields cannot be guaranteed. Therefore, to avoid hourglass instabilities, an 
injected strain formulation will be proposed at Section 5.1.6.  

 
Remark 5.1.4.3.: Analyzing expressions of Box 5.2 a significant difference 

relatively to the standard strong discontinuity approach can be found. In fact, the 

mixed  ˆ ˆ, ,u ue    leads to the element-wise-constant regular strain field expressed 

by (5.33)-b), that can be integrated with one single gauss point, whereas in stan-
dard discontinuity approach the regular strain field is not constant and therefore, 
four gauss points are necessary. The interesting property of this issue is that, by 

using the  ˆ ˆ, ,u ue    formulation, the stress locking problems associated to quadrila-

teral elements equipped with, piece-wise constant jump embedded discontinui-
ties29, are avoided (see Appendix B for an explanation of this improved behavior 
). 

5.1.5. Symmetric formulation 

In previous Sections, a un-symmetric formulation was presented. Alternative-
ly, in this Section a Galerkin method is followed which derives in a symmetric 
formulation of the three field mixed finite element. Thus, defining   and recal-
ling   from equation (5.17): 

{ }ˆ ˆ ,= Å = = +u u u u �  { }ˆ ˆ= Å = = +h h h h ��  , (5.34) 

where: 

( ){ }     ( )[ ]{ }( ) ( )*ˆ ˆ ˆ ˆ: ; , : ; ,
n ne eH LG

é ù= Î W = = = Î Wë û u
u u u u u u u u1

2
  � � 

and: 

( ){ } ( )[ ]{ }( ) ( )ˆ ˆ ˆ: ; ; : ;
n ne eH LG

é ù= Î W = = = Î Wë û u

1
20h h h h b b  � �  ,

 
                                                        
29 In [Linder and Armero 2007] and [Manzoli and Shing 2006] was reported that, bi-

linear quads equipped with piece-wise constant jump embedded discontinuities suffer 
from stress locking, in the sense that spurious stresses are transmitted through the discon-
tinuity, even for the fully soften state. This type of stress locking, that it is not noticed 
when the equivalent triangular element (with piece-wise constant jump embedded discon-
tinuities) is used, should not be confused with the classical stress locking of the traditional 
localization models (that was explained at Section 2.4.5). 
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and the finite element approximation of those functional spaces: 

 ( )( )ˆ ˆ( ) ( ) ;
nnodes nelem

eeh h h h h h h
i i

i e

N
= =

ì üï ïï ï= Å = = + Ìí ýï ïï ïî þ
å åu u x u x u
1 1

 �   � � , 

( ) ( )ˆ ˆ( ) ( ) ;
nnodes nelem

e eh h h h h h h
i i

i e

N
= =

ì üï ïï ï= Å = = + Ìí ýï ïï ïî þ
å åx x
1 1

h h h b �   � � . 

 
Additionally, for the functions e  and m , we select the spaces already defined 

in (5.16) i.e.   and   respectively.  
 
Remark 5.1.5.1.: Comparing the functional spaces of the solution functions   

and  , with the spaces of the weighting functions   and  , it is noticeable 
that, up to the homogeneous boundary, the spaces are equivalent, giving this a 
symmetric Galerkin formulation. 
 

Testing equations (5.6) and (5.9) with the functions hh  and ( )em , and inte-

grating over the domain, the following weak formulation is obtained: 

( )( )
( )

ˆˆ ˆ: ,s h e ext h h
e

e

d
WÎW

W = " Îåò fh S e h   , (5.35) 

( )

( ): ( ) ,
e

s h e h h

e

d
WÎW

W = " Îåò 0h S e h     , (5.36) 

 ( )( )( )( ) ( )( )
( )

ˆˆ: , ,
See ee S h h h

e d e
W

- +  Ä W= " Î " ÎWò u u 0m e mj   . (5.37) 

 
Likewise it was done in Section 5.1.4, equation (5.37) can be solved at the 

element level for ( )ˆ ee , giving: 

 
( ) ( ) ( )( ) ˆˆ

Se e ee S h hæ ö÷ç= -  Ä ÷ç ÷çè ø
u ue j  . (5.38) 

Since s h ¹ 0h , only for elements belonging to W , it yields: 

( )

( ): ( ) ) ,
e

s h e d e
W

W = " ÎWò 0h S e   , (5.39) 

and from (5.34):  

( ) ( )( ) ( ) ( )S Ss h h e e e=-  Ä + Änh b bj d  , (5.40) 

by substituting (5.40) in (5.39) and rearranging the terms: 

( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( ) , ,
e e

e ee h e e ed d e
W W

⋅  ⋅ W= ⋅ ⋅ W " " ÎWò ò nb S e b S e bj d    , (5.41)

For the terms on the right and left hand sides the following properties are 
used, respectively (see equation (4.4) and (5.14)):  
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( )

( ) ( )( ) ( )
( ) ( ) ( )

e

e ee e
e d d

W
⋅ W= ⋅ Wò òn nS e S ed   


, (5.42) 

( ) ( )
( ) ( ) ˆ( ) ( )e eh h
e ed d

W W
 ⋅ W=  ⋅ Wò òS e S ej j   , (5.43) 

yielding: 
( ) ( )( )

( ) ( )ˆ( ) ( )e eh e
e ed d

W
 ⋅ W= ⋅ Wò ò nS e S ej   


. (5.44) 

 
Moreover, since ( )ˆ ee  is constant inside the finite element (see Remark 3.1.3.2) 

the previous expression is equivalent to: 

( )

( )
( )( )ˆ( ) ( ) ,

e

e
eh ed d e

W
 ⋅ W= ⋅ " ÎWò ò nS e S ej    

 . (5.45) 

Integrating the previous expression yields  
( )

( ) ( )( ) ( ) ( )
\meas( ) ( ) meas( ) ( ) ,

e
e ee h e e eWW  ⋅ = ⋅ " ÎWnS e S ej      , (5.46) 

and simplifying, 
( ) ( )( ) ( )

\( ) ( ) ,e ee e eW⋅ = ⋅ " ÎWr nS e S e    , (5.47) 

being ( )er  a vector parallel to j  

( ) ( ) ( )
( ) ( )

( )

meas( )

meas( )

e e e
e h e h

e

W
=  = r j j


. (5.48) 

 
Remark 5.1.5.2: Notice that, unlike for the un-symmetric formulation, where 

traction continuity was directly imposed, expression (5.36) or (5.44) does not 
impose the traction continuity in a point-wise manner (excepting for the special 
case ( ) ( )e e=r n ). Nevertheless, it can be proven that this symmetric formulation 
imposes traction continuity in a variational manner ([Samaniego 2003]). There-
fore, it is expected that, with mesh refinement, the results obtained with the sym-
metric formulation converge to those obtained with the un-symmetrical formula-
tion. 

 
Remark 5.1.5.3: In [Oliver, Huespe et al. 2006] the authors identified the lack of 
symmetry of the finite element formulation as a possible cause of loss of robust-
ness of the numerical method. Therefore, although the symmetric formulation is 
more demanding it terms of computational costs, since finer meshes are required 
(see Remark 5.1.5.2), it is especially suitable for those problems where the ro-
bustness issues are critical. 
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The symmetric strong discontinuity finite element formulation is summarized 
in Box 5.3. 

Given * : NG uu  , * : NG t s   and : NWb  find h hÎu � such that for 

all h hÎh    

( )

( )ˆ: ( )
e

es h ext

e

d
WÎW

W=åò Fh S e 

 
( ) ( )

( )
( ) ( )( ) ˆ( ) ( ) ,

e e

e
e ee hd d e

W
⋅ =  ⋅ W " ÎWò òn S e S ej   

  

where: 

   ( )

 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

ˆ

ˆˆ

Se e Se ee S h h e

Se e ee S h h

k
æ ö÷ç=  -  Ä + Ä÷ç ÷çè ø

æ ö÷ç=  -  Ä ÷ç ÷çè ø

u u n u

u u

1
e

e

j

j

  

 



 

 

Box 5.3 Mixed  ˆ ˆ,u ue,   . Symmetric strong discontinuity formulation. 

5.1.6. The Strong discontinuity injection 

Restricting the three field mixed formulation to a domain of interest, the 
strong discontinuity injection can be introduced. The domain of interest is termed 
here, generically, as the injection domain injW  (a domain where are performed 

injections)30. The injected formulation is developed following a similar procedure 

to that used in Section 3.2.2, i.e., the functional spaces  ,  ,   and   are just 

defined in the injection domain, injW , whereas ̂  and ̂  are defined in the 

entire domain W . The following rate equations are derived: 

 ( ){ }
( )

( )

( )

\

( )( )( )

ˆ ˆˆ ˆ: ( ) : ( ) , )

ˆˆ: , . )

e
inj

inj

e

es h S h s h ext

e

Seee S h h
inj

d d a

d e b

W W WÎW

W

 W+ W=

- +  Ä W= " ÎW

åò ò

ò

u f

u u 0

h S h S e

m e j

   

 

 
 (5.49)

Where the injected strain field is solved at the elemental level: 

 
( ) ( ) ( )( ) ˆˆ ,

Se e ee S h h
inje

æ ö÷ç=  -  Ä " ÎW÷ç ÷çè ø
u ue j   (5.50)

The element-wise constant kinematics in equation (5.50), is now interpreted as 
a strong discontinuity mode to be injected into the constitutive equation of those 
elements belonging to the injection domain injW .  

                                                        
30 At Section 5.3.6 the injection domain where discontinuities are injected, is defined 

in detail. 
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As previously shown, depending on the selection of the functional spaces, a 
symmetric or a un-symmetric formulation can be derived. In Box 5.4 both options 
are summarized.  

 

Given * : NG uu R , * : NG t s   and : NWb  find ˆˆh hÎu � and   hÎu  � 

such that for all h hÎh  : 

( )

( )

\
ˆ ˆˆ ˆ: ( ) : ( )

e
inj

inj

es h S h s h ext

e

d d
W W WÎW

 W+ W=åò òu fh S h S e      (5.51) 

a) Un-symmetric formulation:   

( ) ( )

( ) ( )( ) ( ) ( ) ˆ( ) ( ) ,
e e

e ee e e
injd d e

-

W
⋅ = ⋅ W " ÎWò òn n

1
S e S e  

  (5.52) 

b) Symmetric formulation  

( ) ( )

( )
( ) ( )( ) ˆ( ) ( ) ,

e e

e
e ee h

injd d e
W

⋅ =  ⋅ W " ÎWò òn S e S ej  
�  (5.53) 

where: 

   ( )

 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

ˆ

ˆˆ

Se e Se ee S h h e

Se e ee S h h

k
æ ö÷ç=  -  Ä + Ä÷ç ÷çè ø

æ ö÷ç=  -  Ä ÷ç ÷çè ø

u u n u

u u

1
e

e

j

j

  

 



 

 

Box 5.4 Strong discontinuity injection. 
 
Remark 5.1.6.1: It is well known, that the strong discontinuity kinematics can 

be only successfully induced, for specific stress states, fulfilling certain restric-
tions - the so called strong discontinuity conditions ([Oliver, Cervera et al. 
1999]). To reach that conditions, a variable bandwidth model, ( )k q , function of 

the stress like internal variable q, needs to be introduced. At this point different 
options are possible. In this work a bandwidth changing according with an expo-
nential function is considered. Figure 5.6 sketches this concept. 

 

 

( )
.

( )
.

( )
.( )

,

SDinj

k

e
SDinj

q q
A

q qe
SDinj k

k

q q

k q k k e q q q

k q q

¥

æ ö- ÷ç ÷ç ÷ç ÷ç -è ø
¥ ¥ ¥

¥ ¥

ìï £ïïïïïï= - - < <íïïï ³ïïïïî



  

Figure 5.6 Variable bandwidth model, ( )k q . 

 
In Figure 5.6 .SD injq stands for the value of the stress like internal variable at 

the moment when the strong discontinuity is injected, kq ¥  establishes the end of 


(e)

k

qSD inj.

k

q
¥

qk¥



Chapter 5 Weak\strong discontinuity injection procedures 109 
 

the transition depicted in Figure 5.6,  ( )e is the finite element characteristic 
length, k¥  is a small regularizing parameter (a fraction of the element size) that 

can be chosen as small as permitted by the machine precision and A stands for a 
parameter characterizing the exponential curve. 

Notice that, at initial stages, immediately after the strong discontinuity injec-
tion, the regularizing parameter attains relatively large values with respect to the 
typical element size. Although, this case should not be confused with a weak 
discontinuity case31 (that will be introduced in next Section), since k  represents 
here just a regularizing parameter being the equilibrium equation (5.51) still ful-
filled in terms of the elastic strains (according to the strong discontinuity con-
cept). 

 
Remark 5.1.6.2: In the case described in Remark 5.1.6.1 (for values of k  not 

tending to zero), the strain field is not compatible with the displacement field (see 
Figure 5.7).  

 

 
Figure 5.7 Strong discontinuity with regularized kinematics. 

5.2. Weak discontinuities  

An embedded weak discontinuity model was first proposed in the pioneering 
work of Ortiz [Ortiz, Leroy et al. 1987]. Recently, in [Huespe et al. 2009] an 
application to ductile fracture analysis was performed. The conceptual difference 
between strong and weak discontinuities, concerns the displacement jump, that is 
captured, not in a zero thickness surface (as it happens in the strong discontinuity 
case), but instead, it is smeared over a finite length. The main consequences are 
that the displacement field, u , remains continuous and the strains, e , are 
bounded.  

                                                        
31 In the literature, this case is often referred as a weak discontinuity what is a small 

abuse of the nomenclature. 
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5.2.1. Weak discontinuity kinematics  

In Section 5.1.1 the regularized strong discontinuity kinematics was intro-
duced. Here, a weak discontinuity kinematics is written as follows, see Figure 
5.8: 

  ( ) ˆW W= + = + -u u u u uj  
 



  , 
(5.54) 

where u  stands for the smooth part of the displacement field, W  stands for the 

ramp function in the direction n, û  is a continuous part of the displacement,  u  

is the apparent displacement jump smeared in the domain W  and j  is a conti-

nuous arbitrary function that fulfills the following two conditions: 

( )

( )

\
( )

\

-

+

ìï " Î W Wïï= íïï " Î W Wïî

x
x

x

0

1
j





, (5.55) 

being the domain, W , the support of function   (see Figure 5.8). Notice that 

W ÌW , i.e. W  does not necessarily coincides with W . 

The strain field compatible with (5.54) reads: 

 ( )  ( )ˆ ,S SS

h

W
 -  Ä + Äu u n ue=

m
j     (5.56) 

where n is the unit vector orthogonal to  , Wm


is a collocation function on W  

and ( )h x is the finite thickness of the weak discontinuity.  

 

Figure 5.8 Weak discontinuity kinematics.
 
Comparing the regularized strong (5.4) and the weak (5.56) discontinuity ki-

nematics, the difference is that, in the former, k is a regularization parameter tend-
ing to zero (a mathematical artifact to deal with displacement discontinuities in an 
computational mechanics setting), while in the later, h , is a finite length 
representing the bandwidth of a weak discontinuity. The value of h , might cor-
respond to a physically meaning length (like in non local or gradient methods), or 
it can be selected for the convenience of the numerical simulation  

u

e

u

u





n
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Regardless the similar aspects between strong and weak discontinuities, that 
are evident, the conceptual kinematic difference between strong and weak discon-
tinuities implies also some important consequences in terms of practical numeri-
cal modeling (this differences will further remarked in the next Sections). 
 
Remark 5.2.1.1: Notice that if the bandwidth h  is reduced to very small value 
( )h  0  the weak discontinuity represented in (5.56) would collapse into a strong 

discontinuity since when h  0  
h

W


m
 d  and the ramp function W would 

tend to the step function  . In this work, this property is not exploited, since 

both finite element formulations are developed from different starting points. 
However, this issue can be the starting point for developing some more general 
methodologies, where the transition from a weak to a strong discontinuity is also 
modeled, according the fracture process presented at the beginning of Chapter 2 
(see Figure 2.3). 

5.2.2. Three field ( ˆ, ,u ue      ) mixed formulation 

In Section 5.1.3, based on the strong discontinuity kinematics, a mixed formu-

lation  ˆ ˆ, ,u ue    was proposed. Here we derive a mixed formulation for the case of 

the weak discontinuity kinematics. Unlike in the strong discontinuity kinematics 
case, here the discontinuity bandwidth has a finite length, this meaning, that the 
stresses at the discontinuity are no longer negligible in terms of their contribution 
to the equilibrium equation (5.14). Therefore, for the present case, the natural idea 
is to consider the full strain e  as the independent variable, instead of the regular 

part of the strain tensor ê  that was taken in Section 5.1.3. Thus, testing equations 
(5.6) and (5.9) with the test function ĥ  and m , and integrating over the domain, 

the following weak formulation is obtained: 

( )

 ( )  ( )

ˆ : ,

ˆ: ,

s ext

S SS

d

d
h

W

W

W

W=

æ æ öö÷÷ç ç ÷÷-  -  Ä + Ä W=ç ç ÷÷ç ç ÷÷÷÷ç çè è øø

ò

ò

f

u u n u 0

h S e

m e
m

j

 

  




 (5.57)

being the inner traction continuity imposed in a strong form: 

+⋅ = ⋅σ n σ n . (5.58)

Relatively to the functional spaces for the functions appearing in equations 
(5.57) the spaces already defined at Section 5.1.3 are selected. 
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5.2.3. Three field mixed formulation – Finite element 
approximation – Un-symmetric formulation 

Regarding to the finite element interpolations, the approximations specified at 
Section 5.1.3 are used, i.e. standard continuous bilinear interpolations for the 
smooth part of the displacement field û , and element-wise-constant disconti-
nuous finite element interpolations for the strains e  and displacement jump u  

(see equations (5.22)). 
In the context of the finite element method, the weak discontinuity bandwidth, 

( )eh , introduced in equation (5.56) can be linked to the finite element size, i.e. as 

a fraction of the element characteristic length ( )e : ( ) ( ), ( , ]e eh =k kÎ 01 . 

 
a) b) 

 

Figure 5.9 a) Discretized body with discontinuity, b) Elemental functions ( )e
W
 , ( )ej . 

 

The function hj , is constructed as in Section 5.1.4 (see equation (5.23)), being 

also h h
W= -j


   a function with elemental support.  

In this work, we consider the weak discontinuity bandwidth equal to the ele-

ment characteristic length [Oliver 1989], i.e. ( ) ( )e eh =  and thus W ºW  (see 

Figure 5.10). This case is of special interest, since the weak discontinuity is 
smeared over all the finite element length, likewise in the classical strain localiza-
tion methods (where the softening modulus is regularized with the element cha-
racteristic length). The advantage, relatively to the classical methods, is that, the 
enhanced kinematics will permit strain localization to occur, without spurious 
stress transfer to the neighboring elements. Additionally this option also allows 
obtaining an element-wise-constant strain field since, at the element level 

( ) ( )e eW ºW  and thus ( ) ( )\e eW W =Æ . 
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a) b) 

 

 
Figure 5.10 a) Finite element with embedded weak discontinuity, b) Weak discon-

tinuity band.
 
Regarding the finite element approximations, a discrete version of (5.57) 

reads: 

( )( )
( ) ˆ :s h e ext
e

e

d
WÎW

W =åò fh S e  , (5.59)

 ( )  ( )( ) ( )( ) ( ) ( )
( ) ( )

ˆ: ,
S Se ee e S h h e

e e
d e

W

W

æ ö÷ç ÷- +  Ä + Ä W= " ÎWç ÷ç ÷÷çè øò u u n u 0m e
m

j  



 
(5.60)

( ) ( )( ) ( )
\

ˆ( ) ( ) , h
e ee e e
W W W

⋅ = ⋅ " ÎWn nS e S e  


 
. (5.61)

where the strain field ( )ee , the displacement jump  ( )eu  and the weighting func-

tion ( )em  are chosen to be element-wise-constant and discontinuous between 

elements. Then, equation (5.60) can be solved at the element level, being ( )ee  the 

constant projection of  ( )  ( )( ) ( )( )
( )

ˆ
S Se eS h h e

e
 +  Ä + Äu u n u

1
j  


: 

   ( )
( ) ( ) ( ) ( )( ) ( )

( )
ˆ ,

Se e Se ee S h h e
e

e
Wæ ö÷ç=  +  Ä + Ä " ÎW÷ç ÷çè ø

u u n ue
m

j  

 . (5.62) 

Notice that outside W : 
( )

( ) ˆ
e

e S h= ue  , since 
( )e

h = 0j  and W = 0m


. 

 

As for the traction continuity equation (5.61), ( )( )e
W

S e 


 is the element-wise-

constant stress field representative of the weak discontinuity, being evaluated in a 
sampling point located in the centroid of the finite element. On the other hand, 

( )
\

ˆ( )e
W W

S e 


 stands for the stress under the “elastic strains” ( )
\

ˆ e
W W
e


. For simplicity 

reasons, the stress state, ( )
\

ˆ( )e
W W

S e 


 will be also evaluated in an additional gauss 
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point at the center of the finite element. In this point an elastic behavior is forced 
in order to guaranty an unloading process. 

   ( )
( ) ( ) ( ) ( )( ) ( )

( )
ˆ

Se e Se ee S h h e
eW

æ ö÷ç= +  Ä + Ä÷ç ÷çè ø
u u n u

1
e j  


, 

 
( ) ( ) ( )( )

\
ˆ ˆ

Se e ee S h h
W W

æ ö÷ç=  +  Ä ÷ç ÷çè ø
u ue j 


. 

(5.63) 

 
Moreover, in those elements belonging to W ,the integral in Equation (5.59) 

can be subdivided in two parts corresponding to ( )eW  and ( ) ( )\e eW W : 

( )

( )

( )( )

( )

( )
( )

\\\

( )

ˆˆˆ ˆ: :

ˆ : ,

ee

e

e
es h S h s h

e e

es h ext

e

d d

d

W WW W WÎW W ÎW

WWÎW

æ ö÷ç W+ W+÷ç ÷çè ø
=

+ W=

å åò ò

å ò

u

f

0

h S h S e

h S e

  


 

 







 



 (5.64) 

since ( )eh  was chosen to be equal to the element size ( ( ) ( )e eh =  ), the weak dis-

continuity will be smeared over all the element length, i.e. ( ) ( )e eW ºW  and

( )( ) ( )\e emeas W W = 0  this meaning that the second integral in (5.64) vanishes.  

 
Remark 5.2.3.1: Unlike in the strong discontinuity case, here, in those ele-

ments containing the discontinuity, the equilibrium equation involves the inelastic 
stresses, (see (5.64)). 

 
The finite element form of the problem may be then stated as: 

Given * : NG uu R , * : NG t s   and : NWb  find h hÎu � such that for 

all ˆˆh hÎh  : 

( )

( ): ( )
e

es h ext

e

d
WÎW

W=åò Fh S e 

 
( ) ( )( ) ( )

\
ˆ( ) ( ) ,e ee e e
W W W

⋅ = ⋅ " ÎWn nS e S e  
 

  

where: 

   ( )
( ) ( ) ( ) ( )( ) ( )

( )
ˆ

Se e Se ee S h h e
e

Wæ ö÷ç=  +  Ä + Ä÷ç ÷çè ø
u u n ue

m
j  


  

(5.65) 

Box 5.5 Mixed  ˆ- -u ue   weak discontinuity formulation. 
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5.2.4. The Weak discontinuity injection 

The weak discontinuity injection is introduced in the same manner than in 

Section 5.1.6, that is, by restricting the three field mixed formulation  ˆ, ,u ue  to 

the injection domain. 

 ( )  ( )

( )

( )

\

( ) ( )( ) ( ) ( )
( ) ( )

ˆˆ ˆ: ( ) : ( ) ,

ˆ: ,

e
inj

inj

es h S h s h ext

e

S Se ee e S h h e
inje e

d d

d e

W W WÎW

W

W

 W+ W=

æ ö÷ç ÷- +  Ä + Ä W= " ÎWç ÷ç ÷÷çè ø

åò ò

ò

u f

u u n u 0

h S h S e

m e
m

j

  

  


 



 (5.66) 

where the injected strain field is solved at the element level: 

   ( )
( ) ( ) ( ) ( )( ) ( )

( )
ˆ ,

Se e Se ee S h h e
inje

e
Wæ ö÷ç=  +  Ä + Ä " ÎW÷ç ÷çè ø

u u n ue
m

j  

 . (5.67) 

The constant kinematics represented in equation (5.67), is now interpreted as a 
weak discontinuity mode to be injected in the constitutive equation of those ele-

ments belonging to the injection domain injW .  
 

Remark 5.2.4.1: The weak discontinuity injection has interest since it can be 
regarded as a direct enhanced extension of the previous constant strain injection 
presented at Section 3.2. That is, the discontinuity is still smeared over all the 
finite element length, the equilibrium is fulfilled with the inelastic stresses 

( )( )e
W

S e 


 (representative of the discontinuity) and the softening regularization. is 

performed with the element characteristic length ( )e . 
 

Given * : NG uu R , * : NG t s   and : NWb  find ˆˆ hÎu � and  ( )e hÎu  � 

such that for all ˆˆh hÎh    

( )

( )

\
ˆˆ ˆ: ( ) : ( )

e
inj

inj

es h S h s h ext

e

d d
WW W WÎW

 W+ W=åò òu fh S h S e   


 

(5.68) 

( ) ( )( ) ( )
\

ˆ( ) ( ) ,e ee e
inje

W W W
⋅ = ⋅ " ÎWn nS e S e  

 
 

where: 
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( ) ( ) ( ) ( )( ) ( )
( )
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ˆ

ˆ ˆ

Se e Se ee S h h e
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Se e ee S h
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W W

æ ö÷ç=  -  Ä + Ä÷ç ÷çè ø

æ ö÷ç=  -  Ä ÷ç ÷çè ø

u u n u

u u

1
e

e

j

j

  


 





 

Box 5.6 Weak discontinuity injection. 
 

We remark that here it is admitted that injW ºW . 
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5.3. The crack path and the discontinuity do-
main 

It is well known that standard localization methods are able to provide loca-
lized solutions. However, due to kinematics flaws, their performance for captur-
ing real material fracture is considered insufficient (as shown in previous Chap-
ters). It was shown at Section 4.4 that, despite the improvements obtained with 
the CSM injection, namely in terms of mesh bias independence, results are still 
not satisfactory. The natural consequent idea is to enhance the element kinematic 
performance by injecting strong/weak discontinuity modes, as defined at Sections 
5.1.6 and 5.2.4 

In order to perform the discontinuous mode injection two typical questions 
arise: Which elements have to be injected? How does the discontinuity cross the 
finite element? In the ambit of the strong discontinuity approach, this information 
is generally obtained by resorting to global tracking algorithms that we aim to 
avoid.  

Here we propose an alternative procedure based on a local smoothing tech-
nique of the strain-like internal variable: The discontinuity injection is slightly 
delayed, relatively to the bifurcation time (computed for each element), in order 
to obtain a diffuse localizing strain field. Then, the idea is to determine where the 
strong/weak discontinuity “corresponding” to the imperfect localized strain field 
should be placed. In Section 5.3.2 this idea is formalized as the crack-propagation 
problem. The set of elements to be injected with a discontinuous mode will con-
stitute the discontinuity injection domain DisW . 

5.3.1. One-dimension-problem: Motivation (double 
smoothing) 

First, to illustrate the motivation of the methodology, let us analyze a hypo-
thetic one dimensional spatial distribution of a localizing strain-like internal vari-
able in a continuum problem.  

Figure 5.11 Hypothetical distribution of a localizing strain-like internal variable 
and its derivative in a continuum one dimensional problem. 

x

a

a
 x



a
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The basis of the proposed methodology is to introduce the strong discontinuity 
at the maximum value of the continuum function a , that coincides with a zero of 

the derivative 
¶
¶x

a
. For the one dimensional case presented in Figure 5.11,   

corresponds to the point, where the strong discontinuity should be inserted, i.e. to 
the crack propagation path.  

Let us now consider a hypothetic discrete case. In the finite element method 
the internal variables are usually computed at the gauss points being disconti-

nuous between elements. Thus, a smooth continuous approximation hy  to ha  is 
also considered (see Figure 5.12-a)). Moreover, in Figure 5.12-b), the derivative

h¶
¶x

y
, and, again, it continuous approximation hm  (a second smoothed variable), 

are shown. 
 

a) b) 

Figure 5.12 Discretized one dimensional problem a) Hypothetical distribution of a 
localizing strain-like internal variable. b) Hypothetical distribution of the derivative 

of a localizing strain-like internal variable. 
 

The continuous approximation hm , obtained by a double smoothing procedure 

(Figure 5.13), will be termed the crack propagation field and its zero contour 

level ( )h =0m defines the crack propagation path  . 

Figure 5.13 Double smoothing process. 
 

Remark 5.3.1.1: Notice that outside the localization zone (Figure 5.12-b)), hm  

takes also null values not corresponding to a maximum of ha  and corresponding 
instead, to the trivial case: 

h
h h h¶
=  =  =  =

¶x
0 0 0 0

y
a y m . (5.69) 
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In practice, these not interesting zones with h =0m  (not corresponding to  ) 

do not introduce any additional trouble since they are located in elements outside 
the non-linear zone where strains localize, whereas we are looking for condition 

h =0m  in those elements belonging to the localization domain (where h ¹ 0a ). 

5.3.2. The crack-propagation problem 

The idea exposed in the previous Section can be formalized through the fol-
lowing crack-propagation problem: 

 
Given Îa   find Îy   and Îm   such that for all Îu  : 

( ) ,d
W

- W= " Îò 0u y a u   (5.70) 

, ,
d

d
dnW

æ æ öö÷÷ç ç- W= " Î÷÷ç ç ÷÷ç çè è øøò 0
y

u m u   (5.71) 

Box 5.7 The crack-propagation problem. 
 
where u  stands for the weighing functions belonging to : 

( ){ }: ; ,
n

H G
é ù= Î W =ë û
1 0u u u��   (5.72) 

d
dn
y

 
stands for the derivative of y  in the direction of the unit vector orthogonal 

to the discontinuity n , i.e.: 
d
dn

= ⋅n
y

y , (5.73) 

and y Î  and Îm   stand for the projections of Îa   and 
d
dn

Î
y

  onto the 

space  , being the functional space   defined as: 

( ){ }: ; .
n

L G
é ù= Î W =ë û
2 0a a a�  (5.74) 

Notice that the functional space   is selected to be more regular than 
32, thus y  and m  are smooth approximations of the internal variable a  and of 

the normal directional derivative of the internal variable
d
dn
y

, respectively. 

                                                        
32 Notice that for the space   both, the function and its derivative, must be square in-

tegrable, whereas for the space,  , just the function is required to be square integrable. 
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5.3.3. Discretization 

Introducing now the finite dimensional spaces h  and h  approximating 

 and  , the problem defined in Box 5.7 reads as: 
 

Given h hÎa   find h hÎy  and  h hÎm  such that for all h hÎu  : 

( ) ,
h

h h h h hd
W

- W= " Îò 0u y a u   (5.75)

,
h

h
h h h hd

d
dnW

æ æ öö÷÷ç ç ÷÷- W= " Îç ç ÷÷ç ç ÷÷ç çè è øøò 0
y

u m u   (5.76)

Box 5.8 Discretized crack-propagation problem. 
 

In Box 5.8, ha  is considered data of the problem, and hy , hm , hu  are ap-

proximated by standard linear shape functions: 

( ) ( ) ; ( ) ( ) ; ( ) ( ) ,
nnodes nnodes nnodes

h h h
i i i i i i

i i i

N N N
= = =

= = =å å åx x x x x x
1 1 1

m m y y u u  (5.77) 

where nnode  stands for the number of nodes of the finite element mesh, im , iy  

and iu  are degrees of freedom associated to the node i, and iN , stands for the 

standard finite element isoparametric shape functions 
 

Remark 5.3.3.1: The crack-propagation field ( , )h txm  is the fundamental 

unknown of the crack propagation problem (stated in Box 5.8), and its zero 

contour level ( )h = 0m  determine the crack propagation path  . 

5.3.4. Matrix equations  

Equations (5.75) and (5.76) consist of two smoothing processes. Introducing 
Voigt notation, equation (5.75) reads: 

( ) { } ( )( ) ( )

( ) ( ) ( ) ( )

( )

e e

T Te e e e

e e

e

d d
W W

⋅ W ⋅ = ⋅ Wò òN N N

M

y a


A A , 
(5.78) 

where ( )eN stands for the element vector composed by the 
( )e
iN  shape functions 

associated to node i ( { }( ) ( ) ( ) ( )( ) e e e ee N N N N=N 1 2 3 4 ), ( )eM  stands for the 

element mass matrix, ( )ea  stands for the value of a  associated to the element 
( )e  and { }y  stands for the global vector composed by the iy  degrees of free-
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dom { } { }, , ...,
T

nnodes= 1 2y y y y being nnodes the total number of nodes of the 

finite element mesh. 

{ } ( )( )

( ) ( )
e

Te e

e
d

W
⋅ = ⋅ WòM Ny aA , (5.79) 

where M  stand for the global mass matrix ( )( )e

e
=M MA . Substituting M  by 

a lumped mass matrix version LM , equation (5.79) can be easily solved for { }y  

{ } ( ) ( )( )

( ) ( )
e

Te e
L

e
d

-

W
= ⋅ ⋅ WòM N

1
y aA . (5.80) 

Alternatively to equation (5.80), it can be used an improved version proposed 
by Weyler33, consisting of the introduction of a correction in the extrapolation of 

the gauss point variable ( )ea  to the nodes. Then, as for equation (5.80), the extra-
polated corrected nodal values are weighted by the corresponding nodal masses 
(lumped global mass matrix): 

{ }
( )

( )( ) ( ) ( )

correction
e

Tee e e
L L

e
d

- -

W

æ ö÷ç ÷ç= ⋅ ⋅ ⋅ ⋅ W ÷ç ÷ç ÷çè ø
òM M M N

1 1
y aA . (5.81) 

Using the same procedure for equation (5.76): 

{ }
( )

( )
( )

e

e
Te

L
e

d
d

d
-

W

æ öæ ö ÷ç ÷ç ÷= ⋅ ⋅ Wç ÷ ÷ç ÷ç ç ÷è øçè øòM N
n

1
m

yA , (5.82) 

being { }m  the global vector { } { }, , ...,
T

nnodes= 1 2m m m m . The improved version, 

reads:: 

{ }
( )

( )
( )( ) ( )

e

e
Tee e

L L
e

d
d

dn
- -

W

æ öæ ö ÷ç ÷ç ÷= ⋅ ⋅ ⋅ ⋅ Wç ÷ ÷ç ÷ç ç ÷è øçè øòM M M N
1 1

m
yA , (5.83) 

where 
( )ed

dn
æ ö÷ç ÷ç ÷çè ø

y
can be computed, in an elemental basis, once equation (5.79) is 

solved for { }y : 

[ ] { }( )
( )

( ) ( ) ( )
e

e e ed
dn

æ ö÷ç =  ⋅ ⋅÷ç ÷çè ø
N ny

y
, (5.84) 

where { }( )ey  is the elemental vector { } { }( )
, , ,

Te = 1 2 3 4y y y y y and [ ]( )eN  

stands for the elemental matrix: 

[ ]( )e

N N N N
x x x x

N N N N
y y y y

é ù¶ ¶ ¶ ¶
ê ú
¶ ¶ ¶ ¶ê ú = ê ú¶ ¶ ¶ ¶ê ú

ê ú¶ ¶ ¶ ¶ë û

N

1 2 3 4

1 2 3 4
. (5.85) 

 

                                                        
33 R. Weyler, personal communication, 2012.  
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Remark 5.3.4.1: For the strong discontinuity case, the rate version of the ele-

ment integral 
( )

( ) ( )
e

Te e d
W

⋅ Wò N a  reads as: 

( )( )

( ) ( ) ( ) ( )
ee

T Te e e ed k d
W

⋅ W = ⋅ò òN Na a 


�. (5.86) 

For implementation proposes it is interesting (see Box 5.10 in Section 5.4.3) to 
make the following change of variable: ( )ˆ ea , such that: 

( ) ( )

( ) ( )

( )
( )

( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ˆ

ˆ ˆ meas( )

ˆ ˆ. .

e e

e e

e
e

e

T T T ee e e e e e e e

T Te e e e

k

k d d

d d
W W

= 

 ⋅ = ⋅ = ⋅ =

= ⋅ W= ⋅ W

ò ò

ò ò

N N N

N N

a
a

a a a

a a




   

 

 
    (5.87) 

where ( )TeN  stands for the value of ( )TeN  evaluated at the centroid of the finite 

element and ( )e  is a finite element characteristic length (according [Oliver 
1989]). The operations in (5.87) take in consideration the continuous character of 
the shape functions and the fact that the integration point in   was placed at the 
finite element centroid (see Remark 5.1.4.1). In equation (5.87), ( )ˆ ea  can be in-
terpreted as a distributed version, of the strong localized variable ( )ea , over the 
element bandwidth ( )e  (see Figure 5.14). 

 

 
Figure 5.14 Interpretation of variable ( )ˆ ea . 

5.3.5. The crack propagation path 

As soon as the element crack-propagation field hm  is solved for a given 

time step, its zero contour level (the crack propagation path) can be, in a ele-
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(e)

k


(e)

W
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(e)

a

a(e)

(e)
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mental basis, easily determined (see Figure 5.15). Notice that since hm  is conti-

nuous across elements, the crack propagation path h� (where ( )h =x 0m ), will 

be also continuous throughout the finite element mesh. 

{ }:= ; ( , )h h x tÎ W =x 0m�  ; ( ) ( )e h e= ÇW� � . (5.88) 

 

Figure 5.15 Elemental crack-propagation field 
( )e
im . 

 
Remark 5.3.5.1: Determination of h�is based on a local smoothing tech-

nique of the internal variable ( )ea . No additional constraints are introduced, 

and therefore, several paths h�(where h =0m ) can live together depending on 

the distribution of the internal variable ( )ea .   

Remark 5.3.5.2: Notice that, to construct the function hj  (see equation 

(5.23)), it is not necessary to know the exact position of h�, but just to detect 

the sides being crossed by the discontinuity, i.e. the sides where function hm  

changes its sign. 

 
Figure 5.16 Construction of the elemental vector 
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5.3.6. The discontinuity injection domain 

The discontinuity injection domain is that part of the discretized domain 
composed by the set of finite elements where a discontinuous strain mode is 
injected. Two conditions are to be fulfilled for  elements to be considered as 
belonging to the injection domain, DisW : 

a) The finite element should be crossed by the crack path ( )h h = 0m�  

b) The centroid of the finite element should be an in-loading ( )( )e ¹ 0a

bifurcated point experiencing a “sufficient degree” of softening.

( )bifq q£g  

Condition a) should be complemented with condition b) for two reasons. 
The first is related to the zero values of the propagation-crack field 

( )h h = 0m� , outside the localization zone ( )( )e h=  =0 0a m , not corres-

ponding to a crack path (see Remark 5.3.1.1). The second reason concerns the 

methodology developed to obtain the crack path h�- the crack-propagation 

problem. This methodology is based on a diffuse localizing strain field. There-
fore, in order to obtain this diffuse field the discontinuity injection should be 
slightly delayed, being this delay controlled by requiring a “sufficient degree” 
of softening. 

In Chapter 4, at Section 4.4, in a different context, the localization domain 
was defined as: 

{ }( ) : | ( ) ; ( , ) ; ( , ) ( ) ( )loc B loc bift t t t q x t q qW = ÎW ³ > £ =x x x x x0a g , (5.89) 

being [ ],Î 0 1g  a parameter controlling the softening “degree” (see Section 

4.4 and equation (4.28)). Notice that the definition of the localization domain 
(5.89) coincides with the requirements of condition b). 

Taking into account conditions a) and b) the discontinuity domain can be 
formally defined as a subset of the localization domain Dis locW ÌW  such that: 

{ }( )( ) | e h
Dis loctW = ÎW W Ç ¹x 0� , (5.90) 

i.e. the discontinuity injection domain is composed by those elements of the 
localization domain locW  crossed by the crack path h� (see Figure 5.17). In 

this Chapter, the localization domain locW  is merely auxiliary in the definition 

of the discontinuity domain DisW .  

 
Remark 5.3.6.1: The parameter g  establishing the threshold from where 

the discontinuity is injected must be introduced by the user. In the homogene-
ous bar problem of Section 3.2.7.2 the propagation of the localization band is 
almost instantaneous and, in this cases, the discontinuity injection can be per-
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formed almost immediately after the bifurcation (typically .= 0 99g ). On the 

other hand, in problems exhibiting propagating localization bands, numerical 
experience advises to delay a little more the discontinuity injection (typically 

.= 0 95g ). This delay allows tracing properly the crack path h� avoiding lack of 

robustness problems. The drawback is that some stress locking in earlier stages of 
localization may occur. Notwithstanding these effects are almost negligible, as it 
will be shown in the set of representative examples of Section 4.5.  

 

Figure 5.17 Localization and weak/strong discontinuity domains.

5.3.7. Staggered resolution of the coupled problem 

The crack-propagation problem defined in Box 5.8, is stated in terms of 
( )ea , which depends directly in the solution of the non-linear mechanical 

problem of Box 5.1. On the other hand the mechanical problem also depends 

on the crack path (obtained from the crack-propagation field hm ). Thus, both 

problems are coupled, and two sets of discretized, in time, equations can be 
written in terms of the corresponding residuals: 

. ( , ) )

( , ) , )

h h
mech n n

h h
crack n n

a

b

+ +

+ +

=

=

R u

R u

1 1

1 1

m

m




0,

0
, (5.91) 

being ( )( )
.

ˆ e
mech

eÎW
=R R

 A , the residual of the non-linear mechanical problem. 

Expressions for computing ( )ˆ eR


 are provided in Appendix C. crackR  stands for 

the residual of crack-propagation problem in Box 5.8. 
Thinking now of the injection procedure, it is noticed that in the initial 

stages of the non-linear loading, when locq q> , (see definition (5.89) and 

(5.90)) the discontinuity domain is an empty set of elements, DisW =Æ , no 

strong or weak discontinuity is injected and therefore the problem (5.91) is 

locW DisW locWÌ

(m(x)=0)
h

(m(x)=0)
h

 
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uncoupled. Thus equation (5.91)-a) can directly solved for h
n+u 1  and then, 

equation (5.91)-b) can be solved for h
n+1m : 

.

*

( ) , )

( , ) ( ) . )

h h
mech n n

h h h h
crack n n crack n n

a

b

+ +

+ + + +

= 

= = 

R u u

R u R

1 1

1 1 1 1m m m



 
0

0
 (5.92) 

As soon as at least one element is considered to belong to DisW , the problem 

becomes coupled according to (5.91). In spite of this, the coupled problem can be 
solved in a similar form. In fact the dependence of the mechanical problem in 
variable ( )h xm  is only trough the instantaneous position of the discontinuity, so 

that the coupling between h
n+u 1  and h

n+1m  in the term .( , )h h
mech n n+ +R u 1 1m  can be 

considered weak. This suggests the use of a staggered simplified procedure, 

replacing h
n+1m  by h

nm  in equation (5.91)-a), leading to the uncoupled equa-

tions: 
*

. .

*
,

( , ) ( ) , )

( , ) ( ) )

h h h h
mech n n mech n n

h h h h
crack n n crack n n

a

b

+ + +

+ + + +

= = 

= = 

R u R u u

R u R

1 1 1

1 1 1 1

m

m m m

 

 
0

0
 (5.93) 

that can be solved likewise in (5.92) (when DisW =Æ ). 

 
Remark 5.3.7.1: The staggered resolution of the coupled problem that lead to 

the uncoupled equations (5.93), allow us to outlook the crack-propagation 
problem as a post process procedure of the strain-like internal variable 

( )ea . The 
crack-propagation problem can be interpreted as a local (elemental based) track-
ing algorithm that can be locally and straightforwardly implemented in a finite 
element code in a non invasive manner. 

5.4. Summarizing the strain injection procedure 
as a two stage method 

In previous Sections, different strain modes were proposed to be injected: a 
constant strain mode (see Box 3.5) and a strong or weak discontinuity strain mode 
(See Box 5.4 and Box 5.6 respectively). At this Section, a unification of the pro-
posed methodology is provided and the main reasons that motivate the method 
are summarized.  

The method seeks to improve the performance of the classical strain localiza-
tion methods (in terms of reducing stress locking and mesh bias dependence), by 
injecting specific strain localization modes. The strain localization modes, are 
proposed to be injected in two different stages of the deformation process. 
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In a first stage (the tracer stage34), it is injected an elemental constant strain 
mode (CSM). This injection was already defined at Section 3.2 and its motivation 
relay on the better kinematic flexibly deriving from the weakly enforcement of 
the compatibility equation, that proves to exhibit remarkable properties for the 
correct propagation of the strain localization in initial stages (see examples of 
Section 3.2.7). This injection is performed on those elements that belong to the 
mixed injection domain as defined at Section 3.2.1.  

Nevertheless, for localization proposes, the element equipped with the con-
stant kinematics still exhibits a limited capability to replicate a strong discontinui-
ty (as concluded in Chapter 4), and some degree of stress-locking appear. There-
fore, in a second stage, as soon as the element is considered to belong to the 
discontinuity injection domain (Section 5.3.6), the element kinematics will be 
enhanced by the injection of an elemental discontinuity mode.  

 
Remark 5.4.1: In the strong discontinuity approach, the propagation of the dis-

continuity is ruled by a global tracking algorithm based in a different set of diffe-
rential equations. On the other hand, here, propagation will be controlled at a pure 
local elemental level by the mixed element equipped with a constant strain kine-
matics (CSM injection), that exhibits remarkable properties in terms of mesh bias 
indifference and proper capabilities of propagation. 

 
Remark 5.4.2: Notice that any other “strain localization procedure” providing 

good information about the strain localization and propagation could have been 
used in the first stage as “a tracer formulation” as an alternative to the constant 
strain injection, e.g. other mixed formulations, strain localization methods with 
limiter (gradient methods, non-local methods, etc.). 

5.4.1. The injection domains  

The injection domains injW  are those parts of the domain where injections are 

performed. In this work, two different types of injection domains were defined: 

the mixed injection domain mixedW  (see Section 3.2.1) and the discontinuity injec-

tion domain DisW  (see Section 5.3.6) { },inj mixed DisW º È W W . Typically, in an 

element crossed by the discontinuity path, the element will firstly fall inside the 
mixed domain and, in a subsequent stage, in the discontinuity domain, according 
to the value of the internal variable. (see Figure 5.18, and equations (5.94), (5.95) 
and (5.96)). 

 

                                                        
34 The name of this stage comes from the fact that the “strain localization procedure” 

used in the stage, associated to the crack propagation problem described at Section 5.3, 
allows tracing the position of the discontinuity (the crack propagation path). This informa-
tion is essential to inject, subsequently, weak or strong discontinuity modes.  
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Figure 5.18 Thresholds in the evolution of the stress/strain-like internal variables.
 

{ }( ) : | ( ) ; ( , ) ; ( , ) ( ) ( )loc B loc bift t t t q x t q qW = ÎW ³ > £ =x x x x x0a g , (5.94) 

{ }( )( ) | e h
Dis loctW = ÎW W Ç ¹x 0� , (5.95) 

{ }( )( ) : | ( ) ; ( , ) ; .e
mixed B Dist t t tW = ÎW ³ > W Ï Wx x x 0a  (5.96) 

5.4.2. Two stage method - equilibrium equations 

Considering a discretized body subdivided into three sub-domains where the 
different strain fields are selected to be injected, the equilibrium equation, corres-
ponding to the full injection procedure, reads35: 

( )



( )

( )

\

( )

.

: ( ) : ( )

: ( ) .

e
inj

mixed

e

Dis

e
s h s h s h s h
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
 (5.97) 

where 
( )e

s hu  stands for the constant strain mode (defined at Section 3.2.1), ( )e
Dise

represents the injected discontinuous strain field (defined at Section 5.1.6 and 

5.2.4 for the case of strong and weak discontinuity, respectively), mixedW  stands 

the mixed domain (Section 3.2.1), DisW is the discontinuity injection domain 

(Section 5.3.6) and \ injW W stand for the remaining part of the domain where no 

injections are performed. 
 

To give a better illustration of the methodology, a typical loading process is 
described in the following. For initial stages of loading, the body behaves elasti-
cally (thus without any injection domain, since condition (5.94) is not fulfilled for 
any element) and therefore the standard formulation is used all over the body. For 
increasing loading, some elements enter into the non-linear regime and bifurca-
tion is detected. According with definition (5.94) these elements are considered to 

                                                        
35 Additionally, in those elements belonging to DisW , the traction continuity equation 

should also be imposed, according to the weak/strong discontinuity mode to be injected. 
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belong to the mixed domain and therefore a CSM is injected (see Figure 5.19-a)). 
Later on, some of those elements unload, leaving the injection domain and reco-
vering the irreducible formulation. However, in some other elements, strains re-
main localizing and condition (5.96) can be subsequently fulfilled. At that mo-
ment those elements are considered to belong to the discontinuity domain and a 
Weak/Strong discontinuity (W/SD) strain mode is injected (see Figure 5.19-b) and 
c)). 

a) b) c) 

 
Figure 5.19 Evolution of the mixed and discontinuity domains for three typical 

stages of loding. 

5.4.3. Implementation aspects 

In previous Sections, the strain injection procedure was introduced and several 
strain modes were proposed to be injected: the constant strain mode and the 
strong or weak discontinuity strain mode. In this Section implementation aspects 
about those injections are presented. 

For the constant strain mode injection, it was mentioned in Section 3.2.4, that 
one additional sampling point, located at the centroid of the finite element, was 
needed. For strong/weak discontinuity, in order to impose the traction continuity 
equation, two additional gauss points are necessary. We arrive therefore to a qua-
drilateral element with 6 sampling points (see Figure 5.20): 

 

 The 4 standard quadrilateral gauss points, where the standard stresses ( )es  
are evaluated (see equation (5.100)) 

 A reduced integration gauss point, located at the centroid of the finite ele-

ment, where ( )ˆ( )e
W

S e 


 is evaluated, representing the inelastic zone, W , 

where strains localize. 

 An additional elastic gauss point, also located at the centroid of the ele-
ment, where an elastic behavior is explicitly forced at the moment that the 
strong/weak discontinuity is injected, representing the unloading zone 

( ) \eW W  adjacent to the discontinuity, where ( )( )

\
ˆ( )ee

W W
=s S e 



 is evaluated  

mixedW

injW\W injW\W injW\W
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DisW
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Figure 5.20 Sampling points involved in the numerical integration. 

 
Following a similar strategy to that used in Section 3.2.4, the equilibrium equ-

ation can be written in the, suitable for implementation, general form: 
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Box 5.9 Injection procedure. Matrix equations - Implementation 
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Additionally, for those elements that belong to the discontinuity domain, one 
of the following equations is imposed, in terms of the incremental stresses. The 

additional degrees of freedom,  ( )eu , are solved at the elemental level as de-

scribed in Appendix C. 

 Un-symmetric formulation (weak or strong discontinuity) 

{ } { }( ) ( )( ) ( ) , .e ee e
Disn n e+ +

é ù é ù⋅ D = D " ÎWë û ë ûn n1 1s s  (5.101) 

 Symmetric formulation (strong discontinuity) 

{ } { }( )

( )( ) ( )( ) , .
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ee ee
Disn nd d e+ +W

é ùé ù ⋅ D =  ⋅ D W " ÎWê úë û ë ûò òn 1 1s sj


        (5.102) 

Notice that for .= 0 0x  the procedure of Box 5.9 is equivalent to that of Box 

3.6 i.e. just the CSM is injected. The parameter 
\W SD

g , allows the user to select 

among the strong or the weak discontinuity injection, since, depending on this 
parameter, the incremental stresses, ( )e

n+D 1s , are equal to the elastic ( )e
n+D 1s  or 

inelastic stresses ( )es  (for 
\

.
W SD

=1 0g  and 
\

.
W SD

=0 0g , respectively). 

Regarding equation (5.100), it is noticed that the stresses in the central gauss 
points coincides until the moment that a given element falls inside the discontinu-
ity domain (see Figure 5.21). Then, in order to inject weak/strong discontinuity an 
elastic behavior is forced in the gauss point where ( )es  is evaluated.  

Figure 5.21 Stress-strain relation until the discontinuity injection in a hypotheti-
cal one dimensional case. 

 

We remark here that equation (5.98) has the structure of standard finite ele-
ment formulation internal force vector, where { }( )e

n+1s  is substituted by { }( )e
n+1s . 

This translates into a straightforward implementation of the injection procedure in 
a standard finite element code.  

Nevertheless, some extra implementation tasks are needed: 
1‐ Previously to the four standard gauss points loop where the elemental 

force vector is numerically integrated, the constant values of { }( )e
n+D 1s  

and { }( )e
n+D 1s  should have been already evaluated in order to compute 

{ }( )e
n+1s  inside the loop.  
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2- At the end of the time step, and for all elements, conditions (5.94) and 

(5.95) should be verified with the converged values of ( )es . If any of 

these conditions is fulfilled the element should be flagged as belonging to 

the respective domain of injection, mixedW  or DisW . 

3- For those elements belonging to the discontinuity domain the displace-
ment jump degrees of freedom should be solved by using a standard con-
densation procedure (see Appendix C). 

4‐ At the end of time step, the crack-path h�should be found by solving the 

crack-propagation problem36. Following, in Box 5.10 are summarized the 
discretized in time matrix equations of the crack propagation problem.  

Given the element values ( )e
n+D 1a , find { }n+1m  such that: 
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Box 5.10 Crack-propagation problem. Matrix equations – Implementation. 
 

In Box 5.10, remark 5.3.4.1 was taken in consideration. The value of 
Da  states for the value of Da  evaluated in the reduced integration 
sampling point, according to Figure 5.20. 

                                                        
36 This task can be omitted while the discontinuity domain is empty, i.e. if no disconti-

nuous modes are injected. 
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5.5. Representative numerical simulations 

In this Section, several examples illustrate the behavior of the preceding me-
thodologies in material failure modeling. The performance of the methodology is 
assed trough comparison with analytical, experimental or well-established numer-
ical results.  

5.5.1. Isotropic continuum damage model: double 
cantilever beam (DCB) with diagonal loads 

a) b) c) 

 

 

Figure 5.22 Double cantilever beam with diagonal loads: a) geometrical data, b) 
loading data, c) finite element discretization. 

 
The test used at Sections 3.1.6.1 and 3.2.7.1 is now repeated using the 

Weak\Strong discontinuity injection. According to Section 5.4, where the injec-
tion procedure is described, the methodology consists of the injection of two 
strain modes: in a first stage, it is injected a constant strain mode (CSM) and in 
the second stage a strong/weak discontinuity mode. Here just the injection deriv-
ing from the un-symmetric strong discontinuity formulation is used. This example 
is particularly interesting since it gives a clear illustration about the evolution of 
the domains of interest: where the constant strain (CSM inj.) and the strong dis-
continuity (SD inj.) are injected. The parameter g  establishing the threshold 

from where the discontinuity is injected is set to =g 0.95  (see Remark 

5.3.6.1). 
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a) t=1 b) t=2 

a) t=3 b) t=4 

 
Figure 5.23 Evolution of the injection zones along different times of the analy-

sis. 
 
In Figure 5.23 the evolution of domains of injection is depicted. Its evolution 

follows the scheme outlined at the end of Section 5.4. It can be observed a bulb-
shaped domain, at the tip of the advancing localization band where the material 
initially bifurcates (fulfilling condition (5.94)) and remains in in-loading state, so 
that the element-wise-constant deformation mode is injected (this domain corres-

ponds to mixedW ). Soon later, most of the bifurcated elements behind the bulb 

unload (i.e. = 0a ) so they leave the mixedW  domain, according to equation (5.94) 

excepting for an inclined band, crossed by the crack propagation path h� (shown 
in Figure 5.24), behind the bulb and encompassing one element size, which re-
mains in inelastic loading (see Figure 5.23-b). 

 
 
 
 
 
 

 mixedW
DisW
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a) t=2 b) t=4 

 
Figure 5.24 Crack propagation path ( )h h = 0m� , at two different times of analy-

sis. 
The crack path h�, according to the stated at Section 5.3, indicates the po-

sition of the strong/weak discontinuity path corresponding to the diffuse loca-
lization pattern provided by the constant strain mode injection. As soon as any 
element crossed by the line h�, verifies condition (5.94) ( locq q£ ), the element 

(according to (5.95)) is considered to belong to DisW , as it happens in the darker 

shaded zone behind the propagating bulb (see Figure 5.23). 
 

Figure 5.25 Force-displacement curves. 
 
In Figure 5.25, the force-displacement curve obtained with the strong disconti-

nuity injection is compared with results already presented at Section 3.2.7.1. The 
CSM inj. case shown in Figure 5.25 stands for the case introduced at Section 
3.2.1, where just the constant strain mode is injected and, then, no further en-
hanced injection is performed. A significant reduction in terms of stress locking is 
noticed. In terms of crack propagation no significant differences are found rela-
tively to the results computed at Section 3.2.7.1. with the CSM inj. (see  Figure 
3.17), and by this reason this result is not reproduced here. 
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5.5.2. Strip in homogeneous uniaxial tensile stress state – 
Mode II fracture modeling  

Figure 5.26 Strip stretching in the horizontal direction (J2 plasticity model). 
 
Figure 5.26 shows a homogeneous strip loaded in a uniaxial direction. The 

theoretical solution of this numerical example, using a J2 plasticity model, con-
sisting of a 45º degree slip line, was already introduced at Sections 3.1.6.2, 
3.2.7.2 and 4.5.2. Here, we aim to assess the performance of the injection proce-
dure. Using the proposed two-stage methodology, in a first stage, it is injected a 
constant strain mode and in the second stage, the three following possibilities are 
compared:  

1. The strong discontinuity injection (un-symmetric formulation) 
2. The strong discontinuity injection (symmetric formulation) 
3. The weak discontinuity injection 

Two different challenging meshes are selected. One of them, unstructured, 
with irregular mesh size and a second one, miss-aligned, i.e. the mesh lines and 
the slip line make different angles with the horizontal axis: 45º and 65º respec-
tively (see Figure 5.26 and -b)). For parameter g , establishing the threshold 

from where the discontinuity is injected, it is taken =g 0.99  (see Remark 

5.3.6.1) 
 

a) Mesh i) b) Mesh ii  

Figure 5.27 Finite element meshes: a) unstructured mesh, b) miss aligned mesh. 
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Figure 5.28 Force-displacement curves. 

 

In Figure 5.28 the obtained results with the different strategies are compared in 
terms of force-displacement curves. It is shown that results provided by the un-
symmetric strong discontinuity and by the weak discontinuity injection almost 
match the theoretical solution. For the symmetric strong discontinuity injection, a 
small but no depreciable negative residual load is obtained. Notice that for this 
formulation, the traction continuity equation is not directly imposed and thus fine 
meshes are required37.  

 

a)Mesh i)- W/SD Injection  b) Mesh ii)- W/SD Injection 

 
c)Mesh i)- B-bar  d) Mesh ii)- B-bar 

 
Figure 5.29 Iso-displacement contours (J2 plasticity mode). 

 

In terms of iso-displacement contours, the differences between results ob-
tained with the three enhanced formulations (weak, symmetric and un-symmetric 
strong discontinuity injections) are minimal and cannot be noticed. By this rea-

                                                        
37 The main motivation for proposing this formulation is mainly related to the robust-

ness aspects of the numerical method (and not to the accuracy properties) (see Remark 
5.1.5.2). 
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son, the some plot, shown at Figure 5.24 a) and labeled as W/SD injection is con-
sidered as being representative of the three enhanced cases. 

 

a)Mesh i)- W/SD Injection b) Mesh ii)- W/SD Injection 

c)Mesh i)- B-bar  d) Mesh ii)- B-bar 

Figure 5.30 Deformed finite element mesh (J2 plasticity mode). 
 

In Figure 5.29 and Figure 5.30 it is clearly noticed that for the W/SD Injection 
(unlike in the B-bar formulation), the discontinuity band is sharply captured in a 
one-element-width band, without spurious stress transfer to the neighboring ele-
ments that unload elastically. In Figure 5.31, the mixed and the discontinuity do-
mains are shown for the non-structured mesh.  

 

a) 

 
b) 

 
Figure 5.31 Injection domains for two different times of analysis: a) time imme-
diately after the bifurcation point (signalized with B at Figure 5.28-a), b) Time 

when the discontinuity injection threshold is attained . 

h�
 mixedW

DisW
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The first plot of Figure 5.31 corresponds to a time immediately after the bifur-
cation point (signalized with B at Figure 5.28-a)). The shaded elements symbolize 
the domain mixedW  where a constant strain mode is injected. The crack path h� 

where h =0m  is also shown in Figure 5.31-a). At this time, the discontinuity 

domain is an empty set of elements. As soon as the discontinuous modes are 
injected38, the elements not containing the crack path automatically unload, 
leaving the injection domain, that collapses in a single layer of elements with 
all of them belonging to the discontinuity domain (Figure 5.31-b)). 

5.5.3. Strip undergoing homogeneous uniaxial tensile stress 
– Mode I fracture modeling  

The homogeneous strip is again analyzed, considering now a damage and a 
Rankine plasticity model. For both cases, the theoretical solution consists of a 
vertical discontinuity opening in mode I of fracture. 

 

 

Figure 5.32 Strip stretching in the horizontal direction  
 
The results computed at Section 3.1.6.2, 3.2.7.2 and 4.5.1 are now comple-

mented by those obtained using a full injection procedure. In Section 5.5.2 results 
considering the three different enhanced modes are considered. Here, just the 
results obtained with the un-symmetric strong discontinuity injection are pre-
sented, since analogous results are obtained and no additional conclusions can be 
derived. The CSM inj., case shown in Figure 5.33, stands for the case of Box 3.5 , 
(where just the constant strain mode is injected and, then, no further enhanced 
injection is performed). 

 
 
 
 
 

                                                        
38 Notice that this numerical example is a near-homogenous problem, where the prop-

agation of the localization band is almost instantaneous. 
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a) b) 

Figure 5.33 Force-displacement curves: a) Isotropic damage, b) Rankine plastici-
ty model. 

 
In terms of force-displacement curve, the benefits obtained by using the SD 

inj. are clear. For both constitutive models, the corresponding force-displacement 
curves perfectly matches the theoretical solution giving also a negligible residual 
load, this displaying that locking free results are attained.  

5.5.3.1. Rankine plasticity model 

a) Irreducible formulation  b) CSM injection  

c) SD Injection d) SD Injection 

Figure 5.34 Rankine plasticity model: a), b) and c) Iso-displacement plots. d) 

Crack propagation path ( )h h = 0m� . 

 
In terms of crack propagation, it is shown again that the irreducible formula-

tion is strongly affected by mesh bias dependence (Figure 5.34-a)), whereas the 
constant strain and the strong discontinuity injection are much less affected 
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(Figure 5.34-b)). Given that the crack propagation obtained with the strong dis-
continuity injection is directly ruled by the previously injected constant strain 
mode (see Remark 5.4.1), its orientation (Figure 5.34-c)) almost coincides with 
that obtained by using just the CSM injection (Figure 5.34-b)).  

The relative improved behavior between both formulations (the SD and the 
CSM injection) is then related to the locking free results obtained by using the 
additional SD injection. Notice that, for this formulation, the deformations are 
sharply concentrated in a one-element-width band whereas for the CSM case they 
are smeared out over more than one element. In Figure 5.34-d) the obtained crack 
propagation path h� is depicted. 

5.5.3.2. Damage constitutive model 

a) Irreducible formulation  b) CSM injection  

 
c) SD Injection d) SD Injection 

Figure 5.35 Damage model. a), b) and c) Iso-displacement plots. d) crack propa-

gation path h�. 
 
When damage models are used, as the damage variable tends to the unity, 

stress locking effects vanish and deformations tend to concentrate in a unique 
layer of elements even when standard irreducible formulations are used (see Fig-
ure 5.35-a)). Thus, for this constitutive model and independently of the formula-
tion, residual loads also vanish (see Figure 5.33-a)). Nevertheless using the strong 
discontinuity injection, locking effects in earlier stages of localization are elimi-
nated and the “bilinear” form of force-displacement curves (see Figure 5.33-a)), 
obtained when using the irreducible or the CSM injection, it is not noticeable. 
Here, it is also shown that results computed by using the SD and CSM injections 
are mesh bias independent (see vertical crack pattern of Figure 5.35 b) and c), and 
the vertical crack path h�, of Figure 5.35 c)). 

h�
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5.5.4. Four point bending test 

The classical four point bending test, of a concrete beam reported in [Arrea 
and Ingraffea 1982] is now tackled. The geometry of the problem is depicted in 
Figure 5.36-a). The post-critical behavior is modeled by a Rankine plasticity mod-
el. The material parameters are summarized in Figure 5.36-b). According to phys-
ical experiments a fracture with curved trajectory is expected to develop from the 
notch tip as it is sketched in Figure 5.36-a). The numerical analysis was held by 
controlling the Crack Mouth Sliding Displacement (CMSD) in plane stress condi-
tions.  

 

Thickness=0.156 m 

Figure 5.36 Four points bending test.

5.5.4.1. Kinematic crack locking  

At this point, it is interesting to introduce the following discussion: it is well 
known, from strong discontinuity analysis, that the evolution of the displacement 
jump at the strong discontinuity regime is constrained by the so-called strong 
discontinuity conditions. These conditions imply, for a Rankine plasticity models, 
that just the normal component of the displacement jump  nu  can develop, 

whereas the tangential component has to be null  t =u 0 [Oliver, Cervera et al. 

1999] (pure mode I fracture). This example shows a fracture with curved trajecto-
ry. Since the normal vector (to the discontinuity) changes from element to ele-
ment along the localization band, the strong discontinuity, constrained to develop 
in mode I fracture, will not be compatible between elements and this issue will 
cause severe restrictions on the propagation of the crack. In other works, the 
crack will be locked in the finite element mesh being unable to progress along it, 
and this will be noticeable in extra energy dissipation, that can be appreciated in 
the force-displacement curve, as well as, in spurious cracking usually appearing 
transversally to the main crack.  

This type of “kinematic crack locking” should not be confused with the clas-
sical stress locking of the traditional localization models, explained at Section 
2.4.5, neither with the stress locking associated to fully integrated quads equipped 
with piece-wise constant jump embedded discontinuities, explained at Appendix 
B. 

Notice that the strong discontinuity conditions are effective when the regulari-
zation parameter k is set to zero, and therefore, it can be expected that the restric-
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tion on the displacement jump could be alleviated for increasing values of k, since 
mixed modes would be amenable to develop.  

Figure 5.37 Force-displacement curves. 
 

In Figure 5.37 the evolution of the Crack Mouth Sliding Displacement 
(CMSD) with the applied load P is depicted for several values of the regularizing 
parameter k. It is also shown the result obtained by using the Weak Discontinuity 
(WD) injection, considered in this case, as the reference solution. It is shown that 
for increasing values of k, the crack locking is alleviated, and the fracture can 
progress more through the finite element mesh dissipating less energy. Neverthe-
less, even for ( )ek =   the result does not match the reference weak discontinuity 
solution. 

 

a) b) 

 
Figure 5.38 Displacement jump vector: a) SD inj.( )( )ek E= -1 2 , b) WD inj.. 

 

In Figure 5.38 it is shown that for the strong discontinuity case (Figure 5.38-a)) 
the displacement jump vector is orthogonal to the discontinuity, this translating a 
opening mode (mode I). On the other hand, for to the weak discontinuity case 
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(Figure 5.38-b)), it is noticeable a rotation on the displacement jump vector, that 
displays a mixed mode of fracture with opening and sliding.  

 

a) b) 

Figure 5.39 Evolution of the injection domains: a) SD inj. (plot corresponding to 
point B of Figure 5.38), b) WD inj.(plot corresponding to point A of Figure 5.38). 

 

In Figure 5.39 the injection domains for a representative time of the analysis 
are compared. For the SD case it is noticeable that the mode I opening constrains 
the crack rotation. This issue is noticeable in Figure 5.39-a) by the spurious in-
loading bifurcated elements in the bottom part of the localization band where 
spurious transversal cracking start developing. At the point of the analysis de-
picted in Figure 5.39-a), the crack is strictly locked (see horizontal slope of the 

curve computed with the SD inj. ( )( )ek E= -1 2  - Figure 5.37) in the finite ele-

ment mesh and the computation does not converge. For the weak discontinuity 
case (Figure 5.39-b) ) the spurious in-loading elements are almost negligible and 
the crack can further progress. 

This kinematic crack locking effect, appearing when strong discontinuities as-
sociated to some continuum constitutive models (or equivalent discrete models) 
are used, is often neglected in the literature since this type of examples (concrete 
beams with curved crack patterns) are generally modeled by damage models, and 
for that case, the strong discontinuity conditions do not imply any constraint on 
the displacement jump evolution, and mixed modes can develop without restric-
tion (avoiding crack locking in the finite element mesh). Nevertheless, when 
modeling strong discontinuities, it is important to be well aware about this point, 
this being the reason that motivate the previous discussion.  

For straight crack patterns this problem is not an issue since the mode I frac-
ture can open without any geometrical constraint.  

 mixedW
DisW
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5.5.4.2. Comparison with experimental envelope  

Due the kinematic crack locking effects associated with the Rankine plasticity 
model, the strong discontinuity injection is left aside (for this particular example) 
being the weak discontinuity solution considered as our reference solution to be 
compared with results out coming from physical experiments. To verify the im-
proved behavior obtained with the weak discontinuity injection, results are also 
compared with those obtained by using the constant strain mode injection and 
with the irreducible formulation. The evolution of CMSD with the applied load P 
is depicted for the three different alternatives. 

Figure 5.40 Force-displacement curves. 
It is shown that when the irreducible formulation is used, due to stress locking, 

the post-critical behavior is excessively stiff, as it can be observed in the corres-
ponding curve located outside the experimental envelop. On the other hand, when 
the weak discontinuity is used the post-critical behavior tends to better fit the 
experimental envelop.  

a) b) 

Figure 5.41 Iso-displacement plots: a) WD Injection, b) Irreducible formulation. 
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For the WD Injection case, it can be noticed that the iso-displacement field is 
sharply concentrated inside a one-element-width localization band whereas for 
the irreducible case the localization band is smeared out over more than one ele-
ment (see Figure 5.41). 

 
a) t=1 b) t=2 

c) t=3 d) t=4 

 

Figure 5.42 Evolution of the injection domains (WD. Injection) different times of 
the analysis. 

 
In Figure 5.42 the evolution of the injection domains is depicted for several 

stages of the analysis. Stage 4 corresponds to the last stage of the analysis, just 
before the point where the computation stops to converge. At this point of analy-
sis, when the crack approaches the top part of the beam, some spurious cracking 
is also noticed in the bottom of the localization band. Notwithstanding, this effect 
is considered small since it just happens in the very final stages of the analysis. 

 
 

 mixedW
DisW
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a) t=2 b) t=4 

 
Figure 5.43 Crack propagation path h�, at two different times of analysis 

(WD. Injection). 
 
In Figure 5.43, the crack propagation path, obtained by using the weak discon-

tinuity injection, is shown for two different times of analysis. It is noticed, that 
the crack path evolves from the notch tip reaching the top surface of the specimen 
just right to the loading platen, corresponding this to the localization band shown 
in Figure 5.41 a). It is also noticed a second line, corresponding to elements that in 
a first moment bifurcate (such that >0a ), but in second stage unload elastically, 
so leaving the injection domain (this elements can be observed in Figure 5.42 b)).  

5.5.4.3. Mesh refinement  

To study mesh refinement influence, in Figure 5.44 and Figure 5.45, results 
obtained for three different degrees of mesh refinement39, using the weak discon-
tinuity injection, are presented. In terms of crack propagation, similar solutions 
are obtained whereas in terms of force deflection curves mesh a) produce higher 
dissipative results. 

 
 
 
 
 
 
 
 

                                                        
39 The results presented in the previous Sections were obtained by using mesh c). 
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Mesh a) Mesh b) Mesh c) 

Figure 5.44 Iso-displacement contours for three different degrees of mesh re-
finement (results obtained using the weak discontinuity injection). 

 

 

 
Figure 5.45 Force-displacement curves for three different degrees of mesh re-

finement (results obtained using the weak discontinuity injection). 

5.5.5. Slope stability problem using a J2 plasticity model 

Let us consider now an interesting engineering practical case, as the slope sta-
bility problem already presented at Section 4.5.3. There, it was shown that using a 
misaligned mesh, the B-bar element fails in terms of providing results fully repre-
sentative of a cohesive fracture.  
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Figure 5.46 Slope stability problem.
 
Here the results obtained with the B-bar element at Section 4.5.3 are comple-

mented by those obtained by the weak discontinuity injection (WD inj.). The 
result obtained with the aligned mesh (fully aligned with the slip line solution) is 
considered as the reference result40 (see Figure 5.48).  

 
a) b) 

 
Figure 5.47 Finite element meshes: a) aligned mesh, b) miss-aligned mesh. 

 

                                                        
40 Notice that results obtained with the aligned mesh are almost coincident indepen-

dently of the formulation employed (either B-bar or weak discontinuity injection). For that 
reason, they are condensed under the name of “aligned mesh”.  
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Figure 5.48 Force-displacement curves. 

In Figure 5.48, force-displacement curves are shown for the different alterna-
tives. Improved results when the weak discontinuity is injected are shown. Notice 
that the corresponding force-displacement curve almost match the result obtained 
with the aligned mesh (also a nearly zero residual load is obtained) this showing 
stress locking free results.  

a) b) 

Figure 5.49 a) Iso-displacement contours, b) In-loading bifurcated elements at 
the final stage of the analysis. 
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In Figure 5.49, the iso-displacement contours and load patterns (elements in 
non-linear loading) are shown. For the WD Injection (miss-aligned mesh) it can 
be appreciated that the iso-displacement field is sharply concentrate inside a one-
element-width localization band (as it happen when the aligned mesh is used), 
whereas for the B-bar case, the discontinuity is (due to stress locking) smeared 
out over several elements, this translating in the extra-dissipation of energy that 
can be appreciated in the corresponding force deflection curve of Figure 5.48. 

 
a) t=1 b) t=2 

c) t=3 d) t=4 

Figure 5.50 Evolution of the injection zones along different times of the analysis 
(Weak discontinuity injection). 

 
Figure 5.51 shows the evolution of the injection domains, for four representa-

tive time steps of the analysis. It is observed, that once the discontinuity mode is 
injected, the neighboring “locked in” elements tend to unload, and finally, the 
non-linear loading tends to concentrate in just a layer of elements, corresponding 
to the band where the discontinuity is injected. In Figure 5.51, the crack propaga-
tion path h�, corresponding to time t=2 and t=4, is shown. 

 
 
 
 
 
 
 
 

 mixedW
DisW
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a) t=2 b) t=4 

 

Figure 5.51 Crack propagation path 
h�, at two different times of analysis. 

(Weak discontinuity injection). 

5.5.6. Rigid strip footing using a J2 plasticity model 

The numerical example presented in this Section corresponds to the classical 
geo mechanical problem of an undrained soil layer subjected to a central loading 
(see Figure 5.52). The same problem was considered in references [Chen 1975; 
Oliver, Cervera et al. 1999]. Prandtl and Hill have proposed analytic solutions for 
this classical problem. When a rigid and rough surface footing is modeled, a 
Prandtl’s mechanism is expected to develop (Figure 5.52).  

 

Figure 5.52 Rigid strip footing using a J2 plasticity model. 
 
In this example, in order to get additional robustness, the value for g  (that 

establishes the threshold from where the discontinuity is injected) was taken 
lower than in the previous numerical examples =g 0.8 . The principal incon-

venient is that, some stress locking, at earlier stages of the localization 
process, can occur. In Figure 5.53, the force-displacement curves considering the 
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B-bar methodology and WD injection are plotted being the former more dissipa-
tive than the later.  

Figure 5.53 Force-displacement curves (The points plotted over the curve stand 
for the times depicted in Figure 5.53 to Figure 5.65). 

5.5.6.1. Weak discontinuity solution 

In the following pictures, a typical loading process obtained with the weak 
discontinuity injection procedure is described.  

 
Figure 5.54 Evolution of the inj. domain (WD Injection Step-A of Figure 5.53). 

 

In earlier stages of the non-linear loading, yielding initiates at the bottom cor-
ner of the footing spreading downwards and toward the centerline of the footing 
(see Figure 5.54 where the finite elements belonging to the injection domain are 
shown). At this point, triangular wedge of soil beneath the footing moving 
downwards, (jointly with the rigid footing) and remaining without any plastic 
deformation is displayed.  

 mixedW
DisW
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Figure 5.55 Evolution of the inj. domain (WD Injection, Step-B of Figure 5.53).

 

 
Figure 5.56 Crack propagation path ( )h h = 0m�  (WD Inj. Step-B of Figure 5.53). 

 
As loading progresses, the yielding zones remain spreading, now laterally, to-

wards the sides of the footing (see Figure 5.55).  
 

 
Figure 5.57 Evolution of the injection domain (WD Injection, Step-C of Figure 

5.53). 
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In Figure 5.57 the Prandtl’s mechanism, is already formed. In Prandtl’s me-
chanism, the moving downwards triangular wedge of soil beneath the footing 
induces an upward movement of two lateral wedges that slide with respect to the 
adjacent soil layers. The triangle wedges moving upwards also remain without 
any plastic deformation as it can be seen in Figure 5.57. Notice that the symmetric 
mechanism shown in Figure 5.57 is numerically unstable, i.e. small numerical 
perturbations, as those coming out from numerical errors of the finite element 
computations (note that an un-symmetric mesh is used) will tend to collapse the 
solution in a single mechanism as effectively happens in the simulation displayed 
in Figure 5.59. Notice that the un-symmetric mechanism will dissipate less energy 
that the symmetric Prandtl’s mechanism.  

 

  
Figure 5.58 Evolution of the injection domain (WD Injection, Step-D of Figure 

5.53).
 

Figure 5.59 Crack propagation path ( )h h = 0m�  (WD Injection, Step-D of Figure 

5.53). 
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At this point, when the Prandtl’s mechanism collapses in the un-symmetric 
mechanism, the footing rotates and almost all the elements associated to mechan-
ism D-X-F unload (see Figure 5.52). It is noticeable that the discontinuity domain 

DisW  start to evolve. Point E of Figure 5.53 corresponds to the time when the 

discontinuity injection is performed along all the slip line length. At this time 
most of the elements outside the slip line unload (see Figure 5.60) and plastic 
deformations tend to concentrate in a unique layer of finite elements. 

 
Figure 5.60 Evolution of the injection domain (WD Injection, Step – E of Figure 

5.53). 
 
In Figure 5.61 and Figure 5.62 the final step of the analysis The displacements 

contours and the deformed mesh at are shown, respectively 
 

 
Figure 5.61 Iso-displacement contours (WD Injection, Step – F of Figure 5.53).

 

 mixedW
DisW
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Figure 5.62 Deformed meshes (WD Injection, Step – F of Figure 5.53).

5.5.6.2. B-bar solution 

In the next Figures, results obtained by using the B-bar method are presented 
for two steps of the analysis. It is shown that a higher number of bifurcated in-
loading elements are noticed. In the final step of the analysis, Figure 5.65 displays 
that the iso-displacement contours encompass more than one finite element, this 
translating the extra dissipation already shown in Figure 5.53. 

 

Figure 5.63 Bifurcated in-loading elements (B-bar, Step-G of Figure 5.53).
 

Figure 5.64 Bifurcated in-loading elements (B-bar, Step-H of Figure 5.53).



Chapter 5 Weak\strong discontinuity injection procedures 157 
 

 
Figure 5.65 Iso-displacement contours (B-bar, Step-I of Figure 5.53). 

5.5.6.3. Mesh refinement influence (using WD injection) 

To study mesh refinement influence in next figures iso-displacement contours 
for three different degrees of mesh refinement are presented41. In terms of crack 
propagation, similar solutions are obtained (see Figure 5.66) whereas in terms of 
force deflection curves the coarse mesh produces higher dissipative results (see 
Figure 5.67). 

 

Mesh a) Mesh b) 

Mesh c) 

Figure 5.66 Iso-displacement contours for three different degrees of mesh re-
finement (results obtained by using the weak discontinuity injection). 

 
                                                        
41 The results presented in the previous Sections were obtained by using mesh c). 
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Figure 5.67 Force-displacement curves for three different degrees of mesh re-
finement (results obtained by using the weak discontinuity injection). 

 

5.5.6.4. Symmetric solution (using WD injection) 

It was shown that using a un-symmetric mesh, due to numerical perturbations, 
the Prandtl’s mechanism collapses in a un-symmetric mechanism (as shown in 
Figure 5.61). On the other hand, by considering the structural symmetry condi-
tions into the numerical analysis (see Figure 5.69-b)) a symmetric solution can be 
forced.  

 

 
Figure 5.68 Rigid strip footing.
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a) b)

 
Figure 5.69 a) Un-symmetric mesh (mesh already used at Section 5.5.6.3 (see

Figure 5.67-b)), b) Symmetric mesh. 
 
In Figure 5.70, the force-displacement curves obtained by using the symmetric 

and un-symmetric meshes, are shown. Until point B (of Figure 5.70) both curves 
coincide. After that, for the un-symmetric mesh, the solution collapse in a lower 
dissipative un-symmetric mechanism (according to the analysis of Section 5.5.6.1 
-see Figure 5.61), whereas, for the mesh b) of Figure 5.69, a symmetric mechan-
ism is obtained (see Figure 5.71). 

 

 
Figure 5.70 Force-displacement curves. 

(results obtained using the weak discontinuity injection). 
 
Notice that the theoretical critical load predicted by Prandtl Pcr=2374 kN 

match the numerical results. 
In Figure 5.71, Figure 5.72 and Figure 5.73, for the symmetric mesh; the iso-

displacement contours, the crack propagation path h� and the deformed mesh 
are shown. 
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Figure 5.71 Iso-displacement contours. 

Figure 5.72 Crack propagation path h�. 
 

Figure 5.73 Deformed mesh. 
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Chapter 6                                      
Conclusions 

In the preceding Chapters, an exploratory work about the effects of some new 
techniques for material failure modelling has been presented. 

The results presented at Chapter 3 show that, mixed formulations increase re-
markably the failure propagation capabilities of the finite elements for capturing 
strain localization, overcoming the classical mesh bias dependence. Moreover, by 
restricting the mixed ,u e  formulation (in this work described as a constant strain 
mode injection for quadrilaterals) to that part of the domain where the fracture is 
being processed, instabilities related with hourglass modes do not appear.  

On the other hand, despite the good information provided about crack propa-
gation, mixed finite elements, still exhibit a limited capability to describe a strong 
discontinuity in a one-element finite element band, due to kinematic limitations in 
their deformation capabilities. In Chapter 4, this issue is studied in detail and 
several objective mismatch indicators were proposed to evaluate these limitations. 
These mismatch indicators allow arriving to some conclusions: 

 The mismatch obtained for general unaligned meshes, is caused by the 
limited ability of standard finite element to reproduce strong disconti-
nuity embedded into them. This kinematic flaw is here identified as the 
ultimate reason of stress locking.  

 The proposed indicators, can be computed without a-priori knowledge 
of the exact fracture mechanics solution of the problem, and used as an 
objective tool for the quantitative evaluation of the performance of 
strain localization based methods in representing physical material frac-
ture through discontinuous interfaces. 

Application of those indicators to a set of benchmark problems, corroborates 
the limited capability of standard finite element formulations for representing 
material fracture. The aforementioned injection of a constant strain mode (CSM) 
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in quadrilateral elements was a first attempt to improve that capability. Apart 
from the obtained improvements, stress locking is still noticeable. By this reason, 
in Chapter 5, a second strain injection was proposed i.e., soon after the CSM 
injection, the elemental kinematics is enhanced by means of the injection of a 
strong or weak discontinuity strain mode. This second injection is performed, by 
using the local information obtained from the previous injection (in this sense, the 
reduced integration quadrilateral is considered as a tracer element). To extract 
that information and locate the discontinuity into the finite element mesh, an aux-
iliary methodology was developed and termed as “the crack propagation prob-
lem”. The staggered resolution of the coupled problem allows us to regard the 
crack-propagation problem as a local smoothing technique (a post process) of the 
strain-like internal variable that can be locally and straightforwardly implemented 
in a finite element code in a non invasive manner. 

The proposed strain injection method, tries to combine the best of two strate-
gies (strain localization and strong discontinuities) for capturing material failure. 
The principal benefits are: 

 The method keeps the simplicity of classical strain localization methods 
and global tracking algorithms can be circumvented. A pure local 
method for crack propagation was devised. 

 Low computational cost. The computational cost is kept in the order of 
standard finite element methods (notice that, as a consequence of using 
finite elements with embedded strong discontinuities, the additional de-
grees of freedom are always condensed at the elemental level).  

 The corresponding results show that the obtained crack patterns are in-
dependent on the mesh alignment.  

 The benefits of embedded (or X-FEM) strong discontinuities are ob-
tained (no stress locking and high accuracy).  

 The methodology is applicable to any constitutive model (damage, 
elasto-plasticity, etc.) without apparent limitations. 

 Coarse meshes can be used and local mesh refinement is not needed.  

 Richer information about the propagating crack pattern in comparison 
with tracking based methods is obtained. 

 The obtained results are encouraging in terms of the broadness of the 
application of the new techniques, developed in this work. 
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Appendix A                                           
Rankine model IMPL-EX 
integration 

In Section 2.2, the main mathematical relations of constitutive models were 
introduced. Additionally in Section 2.5, concepts related to the numerical integra-
tion of general constitutive equations via implicit or IMPL-EX algorithms were 
presented. Here attention is focused in the implementation aspects inherent to the 
IMPL-EX integration scheme for the Rankine constitutive model (presented in 
Section 2.2.1.1).  

As it was previously mentioned, the main idea of IMPL-EX integration 
scheme is the extrapolation of the strain like internal variable (plastic multiplier) 
for the time step n + 1 , from its implicit value computed in previous time step n . 
With this extrapolated variable an explicit evaluation of the stress tensor is per-
formed and the momentum balance (equation (2.97)) is imposed in terms of these 
IMPL-EX stresses.  

In Section A.1 of this appendix it is developed a procedure for the numerical 
computation of the implicit plastic multiplier. In Section A.2 expressions for the 
calculation of the IMPL-EX stresses and it consistent algorithmic tangent opera-
tor are developed. Finally in Section A.3 a step-by-step IMPL-EX algorithm of 
the Rankine constitutive model is summarized. 

Following, in Box A.1, the main ingredients of Rankine constitutive model are 
summarized. 
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Additive decomposition e p= +e e e  (A.1) 

Constitutive equation ( ):el p= -s e e  (A.2) 

Yield surface ( , )i if q q= -s s , , ,i I II III=  (A.3) 

Flow rule ; ( )
III

p i i i i i

i I=
= = Äå m m p pe sg  (A.4) 

Hardening law 
III

p i

i I

q H
=

= å g  (A.5) 

Box A.1 Rankine constitutive model. 

A.1. Implicit evaluation of the consistency para-
meter  

According to the implicit backward-Euler difference the plastic strain p
n+1e is 

updated as follows: 

p
n

III
p p i i

n nn
i I

+

++
=

D

= + Då m

1

11

e

e e g


. 
(A.6) 

By substituting the preceding equation into the constitutive relation (A.2), the 
expression for the stress tensor, at time step n + 1 , reads: 

( ): : : : ,pel e el e el p el
n n n n n n

trial
n

+ + + +

+

= + D = - - D1 1 1 1

1

s e e e e e

s


   

: ; ( )
III

trial el i i i i i
n n n n n n n

i I
+ + + + + + +

=
= - D = Äå m m p p1 1 1 1 1 1 1s s sg . 

(A.7)  

Since the linear elastic forth order tensor. el  is isotropic, the principal direc-

tions of n+1s are the same than the principal directions of trial
n+1s , so 

trialii
n n+ +=m m1 1 , and the previous expression may be evaluated in a coordinate 

system with axes oriented in the principal directions of trial
n+1s  and n+1s . 

Expression (A.7) may be written in the form: 
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,

el
R

trialI I I

II II II

III III III
n n n+ + +

é ùê úë û

é ù é ù é ùé ù+ Dê ú ê ú ê úê úê ú ê ú ê úê úê ú ê ú ê ú= - + Dê úê ú ê ú ê úê úê ú ê ú ê úê úl + m Dê ú ê ú ê úê úë ûë û ë û ë û1 1 1
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

 

{ } { } { }( )Δ .
triali i el i

n n R n+ + +é ù= - ë û1 1 1s s g  

(A.8) 

And, to update the stress-like internal variable, from equation (A.5) 

( ),
III

i I II III
n n n

i I

q q H q H+
=

= + D = + D +D +Då1 g g g g  

.

I

II

III
n n n

q q H H H

q q H H H

q q H H H+ +

é ùé ù é ù é ù Dê úê ú ê ú ê ú ê úê ú ê ú ê ú ê ú= + Dê ú ê ú ê ú ê úê ú ê ú ê ú ê úê ú ê ú ê ú Dê úê ú ê ú ê úë û ë û ë û ë û1 1

g

g

g

 

(A.9) 

where expression (A.9) was written in a matrix form in order to simplify the fol-
lowing algebraic manipulations. 

The yield surface expression (A.3) at time step n + 1  reads, 

( )

( )

( )

,

,

.

I I
n n y n

II II
n n y n

III III
n n y n

f q

f q
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+ + +

+ + +

+ + +
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s s
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 (A.10) 

By substituting expression (A.8) and (A.9) into the yield surface expression, 
yields, 

,

trialI I I

II II II

III III III
n n n

f f H H H

f f H H H

f f H H H
+ + +
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(A.11) 

where: 

.

trial trialI I

II II

III II
nn n

f q

f q

f q
+ +

é ù é ù é ùê ú ê ú ê úê ú ê ú ê úê ú ê ú= - ê úê ú ê ú ê úê ú ê ú ê úê ú ê ú ê úë ûë û ë û1 1

s

s

s

 (A.12) 
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Notice that, in loading state, it is possible to have just one, two or all the three 
surfaces actives. Therefore the equation (A.11) is solved recursively though the 
following procedure in Box A.1: 

 

1) Compute 
trialI

nf +1  with 
trial trialI I

n n nf q+ += -1 1s  
trialI

nf + <1 0  implies elastic behavior, then I
n+D =1 0g , II

n+D =1 0g  and 
III
n+D =1 0g  & EXIT  

2) If 
trialI

nf + ³1 0 , it is assumed that just I
nf +1  is violated (then II

n+D =1 0g  and 

III
n+D =1 0g ). Imposing I

nf + =1 0 , (A.11) yields 
( )

trialI
nI

n
f

H
+

+D =
+ +

1
1 2

g
l m

 

3) Verify II
nf + <1 0 , with ( )

trialII II I
n n nf f H+ + += - + D1 1 1l g  

If II
nf + <1 0  EXIT 

4) If II
nf + ³1 0 , is assumed that just I

nf +1  and II
nf +1 are violated ( )III

n+D =1 0g , 

imposing  in (A.11) If = 0and IIf = 0 : 
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Solving analytically the previous system of equations, yields: 
trial trialI II

n nI
n

af bf

a b
+ +

+
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D =
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1 1
1 2 2

g    and   
trial trialII I

n nII
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+
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D =
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g  

where  a H= + +2l m  and  b H= +l  

5) Verify III
nf + <1 0 , with ( ) ( )

trialIII III I II
n n n nf f H H+ + + += - + D - + D1 1 1 1l g l g  

If III
nf + <1 0  EXIT 

6) if III
nf + ³1 0 , all the surfaces are active then I
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III
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System of equations to be solved: 
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Box A.2 Determination of the plastic multiplier 
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A.2. Explicit evaluation of the stress tensor  

Considering a linear extrapolation for the plastic multiplier: 

.
def

ni
n n

n

t
t
+

+
D

D = D
D

1
1g g  (A.13) 

Then the explicit evaluation of the IMPL-EX stresses is obtained as: 

:
n

trial el i i
n n n n

i
+ + + +

=
= - Då m1 1 1 1

1

s s g   ,  with  ( ).i i
n n n+ + +=m m1 1 1s   (A.14) 

Differentiating with respect to the strains, the tangent algorithmic operator 
reads:  

: .
trial i

alg n n n nel i
nn

n n n ni

+ + + +
++

+ + + +=

¶ ¶ ¶
= = - D

¶ ¶ ¶ ¶å m3
1 1 1 1

11
1 1 1 11

s s s
e e s e

g
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

   (A.15) 

One of the most significant features, that one wants to attain, when using the 
IMPL-EX integration scheme, is the step-wise linear algorithm that emerges from 
the explicit extrapolation of the strain like internal variable (this aspect is impor-
tant in order to minimize the computational cost). Nevertheless inspecting the 

previous expression can be noticed that he term i
n n+ +¶ ¶m 1 1s   is not constant 

during the time step, since i
n+m 1 do not depend linearly on the stresses n+1s . In 

order to preserve that important property (step liner algorithm) Oliver suggests 
the linearization of the flow tensor around ns  [Oliver et al. 2008b]. 

( ) ( )

( )
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i i
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 (A.16) 

Truncation up to the linear term yields, 

( ): .
i
ni i

n n n n
n

+ +
¶

= + -
¶

m
m m1 1s s

s
  (A.17) 

The flow tensor m is a degree zero homogenous function of the stresses 
( ) ( )=m ms sl  (note that there’s no change on the principal directions when the 

stress tensor is multiplied by a factor l ). Therefore, applying the Euler’s theorem 
for homogeneous functions [Apostol 1967], it turns out that : 

( )
:

i
n n

n
n

¶
=

¶
m

0
s

s
s

. (A.18) 

Thus the linearized flow tensor reads: 
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:
i
ni i

n n n
n

+ +
¶

= +
¶

m
m m1 1s

s
 , (A.19) 

and the IMPL-EX stresses: 

: : .
n i

ntrial el i i
n n n n n

ni
+ + + +
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æ ö¶ ÷ç ÷= - D +ç ÷ç ÷ç ¶è øå m
m1 1 1 1

1

s s s
s

g    (A.20) 

After some algebraic manipulation, 

: : : .
III IIIi
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(A.21) 

Differentiating n+1s  with respect to the strains n+1e , the tangent algorithmic 

operator yields:  

:algn el
n

n

+ -
+

+

¶
= =

¶
1 1

1
1

s
e
   , (A.22) 

where: 

:
III i

nel i
n

ni I
+

=

¶
= + D

¶å m
1 s

g � , (A.23) 

where, now, the algorithmic tangent operator is constant during the time step 
n + 1 , i.e. the IMPL-EX integration scheme yield a step-wise linear problem and 
the iterative procedure will converge in just one iteration.  

The above expressions entail the calculation of the eigenvectors derivative 

with respect to the tensor itself 
i i¶ Ä
¶

p p
s

. Here, the expressions used in our im-

plementation are presented [Banerjee and Norris 2007]. For alternative expres-
sions interested readers may consult [Carlson and Hoger 1986]. 
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 (A.24) 

where: 
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and �stands  for forth order unit tensor and the product *s�  is defined as 

( )* ijmp pn ijnp pm= +σ
1
2

s s�     ;  ( )ijmp im jp ip jm= +
1
2

d d d d . (A.25) 

For repeated eigenvalues, the derivative given by the previous expression is 
unbounded and the procedure for its calculation becomes quite cumbersome 
[Friswell 1996] . In practical computations this case rarely occurs. In our imple-
mentation this rare case is circumvented by the introduction of a small numerical 
perturbation on one of the repeated eigenvalues. 

The forth order tensor   (see (A.23) appearing in expressions (A.21) and 
(A.22), may be easily evaluated in a coordinate system with axes oriented to the 
principal directions of ns , and then transformed to the general Cartesian system 

by a transformation rule. In principal coordinates and using Voigt  notation: 
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where: 
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With some trivial algebraic manipulation the term 
III i

ni
n

ni I
+

=

¶
D

¶å m
1 s

g  appearing 

in (A.23), can be written using Voigt notation as: 
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, (A.27) 

where 
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Finally, by using (A.27) in (A.23), the fourth order tensor  , can be ex-
pressed in Voigt’s notation as: 
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m
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  (A.28) 

Moreover, the term 
III

i i
n n

i I
+

=
Då m1g , appearing in equation (A.21) can be also 

evaluated in principal directions: 
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Then, the explicit stress n+1s  (A.21), can be, by using (A.28) and (A.29) 

computed in a the general coordinate system with the following expression: 
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(A.30) 

where [ ]T is the full transformation matrix and [ ]RT is a reduced transformation 

matrix, introduced here to benefit from the zero values present on the Voigt’s vec-
tor (A.29). 
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A.31)
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 (A.32) 

Also, the tangent algorithmic operator (A.22), can be computed in a the gener-
al coordinate system by using: 

{ } ( )[ ] ( ) ( )( ) [ ], : .talg
n n n nn T T

-
++

é ùé ù= ê úë û ë û
1

11 s s sl    (A.33) 

A.3. Integration scheme  

Data : { }n+1e ,{ }p
ne , i

nDg , nq , i
np , i

ns  

  

1. Implicit stage  

1.1 Compute trial stress { } { } { }( ):trial el p
n n n+ += -1 1s e e  

1.2 Compute principal directions of 

the stress tensor i
n+p 1  

Solve the eigenvalues problem: 
trial trial trialtrial i i i

n n n n+ + + +⋅ =p p1 1 1 1s s  

(Recall that ( ) ( )i i trial
n n+ +=p p1 1s s ) 

1.3 Compute plastic multiplier 
Solve procedure in Box A.1 for 

i
n+D 1g  

1.4 Compute principal stresses
i
n+s 1  

{ } { } [ ]{ }( )Δ
triali i

n n R n+ + += -1 1 1s s g  

1.5 Update historical variables nq +1
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2. Explicit stage  

2.1 Explicit extrapolation 
ni

n n
n

t
t
+

+
D

Dg = Dg
D

1
1  

2.2 Compute IMPL-EX stresses { }n+1s  expression (A.30) 

2.3 Compute algorithmic tangent 
operator 

{ }alg
n+1

 expression (A.33) 

  
Box A.3 Rankine model IMPL-EX integration scheme. 

A.4.  Alternatives for implementation 

In this Section two alternatives to the one developed in Section A.2 are men-
tioned. These alternatives have not been used in this work, and thus, they are just 
mentioned as possible lines to explore. 

A.4.1 Previous step flow 

In the preceding development of the IMPL-EX algorithm, was performed a li-
nearization of the flow tensor followed by a truncation up to the linear term (see 
(A.17)). 

As a second alternative, expression (A.17) may be truncated in the first term, 
being this equivalent of using the flow tensor of the previous time step, 

i i
n n+ =m m1 . (A.34) 

This option provides less accuracy, implying a significant increase of time 
steps to achieve reasonable final results. On the other hand, implementation be-
comes easier since no eigenvectors derivatives appear on the IMPL-EX stresses 
expression: 

:
n

trial el i i
n n n n

i
+ + +

=
= - Då m1 1 1

1

s s g  . (A.35) 

Moreover the consistent algorithmic tangent operator turns out to be equal to 
the elastic tensor, 

alg n el
n

n

+
+

+

¶
= =

¶
1

1
1

s
e
  . (A.36) 
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A.4.2 Original flow 

A second alternative procedure considers the original flow (without lineariza-
tion): 

:
n

trial el i i
n n n n

i
+ + + +

=
= - Då m1 1 1 1

1

s s g   ,   (A.37) 

recall ( ) ( )i i trial
n n n n+ + + +=m m1 1 1 1s s  . 

Differentiating in order to the strains, the tangent algorithmic operator reads  

: :
i

alg n n nel el i
nn

n n ni

+ + +
++
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¶ ¶ ¶
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1 1 1
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and reorganizing terms: 

: :
i

alg nel i el
nn
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-
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++
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æ ö¶ ÷ç ÷ç= + D ÷ç ÷¶ ÷çè ø
å m

σ

13
1

11
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g
 
�   . (A.39) 

As said previously, the tangent algorithmic operator is not constant during the 

time step since i
n+m 1

 do not depend linearly on the stresses n+1s . The conse-

quence is that the IMPL-EX integration will not give a step liner algorithm. Nev-
ertheless the tangent operator preserves an important “IMPL-EX property”, its 
semi-positive definiteness, which guarantees the robustness of the quadratic itera-
tive procedure, i.e., difficulties to get convergence are expected. 
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Appendix B                               
Stress locking in finite 
elements with embedded 
discontinuities 

In this work a weak\strong discontinuity mode was proposed to be injected in-
to quadrilateral elements. The main objective of this injection is to improve loca-
lization capabilities of the finite elements such that no spurious stress transfer 
occurs between the open discontinuity surfaces. The strong discontinuity was 

introduced via a three field  ˆ ˆ, ,u ue   42

 mixed formulation and, as it was com-

mented in Remark 5.1.4.3, this fact translates in a element-wise-constant regular 
strain field that can be integrated with only one quadrature point whereas in stan-

dard discontinuities approaches  ˆ,u u  43 four quadrature points are required. 
a) b) 

 

                                                        
42 In the  ˆ ˆ, ,u ue    formulation its is used standard bilinear interpolations for the regular 

displacement field and element-wise-constant discontinuous interpolations for the regu-
lar strains and displacement jumps 

43 In the  ˆ,u u 
 case it is used standard bilinear interpolations for the regular displace-

ment field and element-wise-constant interpolations just for the displacement jumps. 

k
Reduced integration

quadrature point
Quadrature

point in 



k
Quadrature

point in



Standard quadrature
points


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Figure B.1 Quadrature rules a)  ˆ ˆ, ,u ue   formulation b)  ˆ,u u   formulation. 

It is know that when a standard  ˆ,u u  44 constant jump embedded discontinui-

ties are used in combination with quadrilateral elements stress locking is notice-
able, specifically when trying to reproduce non-constant separation modes along 
the element discontinuity. This issue was analysed in [Linder and Armero 2007] 
and [Manzoli and Shing 2006] where the authors propose elements with linear 
interpolation in the displacement jump to circumvent the problem. 

The interesting practical property of using a  ˆ ˆ, ,u ue    constant jump constant 

strain formulation (associated to quadrilateral elements), is that the element (un-

like the  ˆ,u u 
 case) is stress locking free. In next sections an explanation for this 

improved behavior is given.  

B.1. Motivation 

We assume that for an element to be stress locking free its kinematics should 
allow rigid body motions of one part of the element with respect to the other, 
when the discontinuity is fully open (full softening state of the element). 

 

Figure B.2 Quadrilateral element with a discontinuity inducing a rigid body mo-
tion in +W  with respect to -W .

 
In a three dimensional setting this can be accomplished if the displacement 

jump along   is described by six constant degrees of freedom: 3 displacements 
(translation) and 3 rotations. 

Recalling the strong discontinuity kinematics of equation (4.1): 

 ( ) ( ) ( ),= +u x u x u x   (B.1) 

                                                        
44 The constant jump strong discontinuity formulation is usually used with triangular 

finite elements, and for these elements no stress locking is noticeable.  


W-

W-
W+

W+
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where u  stands for the smooth part of the displacement field and  stands for 

the Heaviside (step) function ( ( ) -= " ÎWx x0 and ( ) )+= " ÎWx x1 .  

For the stress-released case we assume =u 0 , thus: 

 
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( )
( ) ( ) ,

( ) ( )

-

+
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ÎW

ì =ïïï= íï =ïïî

x

x

u x
u x u x

u x u x

0
 

 
  (B.2) 

where ( )u x  reduce to a rigid body motion of +W , 

  ,= + u c xq  (B.3) 

being c and q  vectors of degree of freedom associated with translation and rota-
tion respectively. Notice the displacement jump in (B.3) depends linearly with x . 

Writing expression (B.3) in a matrix form: 
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3 2
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1
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g

q
q
q


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 (B.4) 

where c1 , c2  and c3  are degrees of freedom associated to the translation and 1q ,

2q  and 3q  are the degrees of freedom associated to the rotation. 

 ( ) ( ) ( )e =u x G x g . (B.5) 

In a two-dimensional framework, equation (B.5) simplifies as follows: 

 



( ) ( ) .
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e
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x
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x

é ù
ê úé ù-= ê úê úê ú ê úë û ê úë û
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2
1

1 0
0 1

g

q

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 (B.6) 

Considering the additional rotational degrees of freedom of the displacement

 ( ) ( )e e=u Gg , a symmetric Galerkin formulation can be introduced, likewise 

was done Section 5.1.5. 

( )( )
( )

ˆˆ ˆ: ,s h e ext h h
e

e

d
WÎW

W = " Îåò fh S e h   , (B.7) 

( )

( ): ( ) ,
e

s h e h h

e

d
WÎW

W = " Îåò 0h S e h     , (B.8) 

where the spaces ˆ h  and h are defined at Section 5.1.5 being (being now 

 ( ) ( )e e=u Gg ) 
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After some algebraic manipulation of expression (B.8), a symmetric formula-
tion is summarized in Box 5.3. 

 

Given * : NG uu  , * : NG t s   and : NWb  find h hÎu � such that for 

all h hÎh    

( )( )
( )

ˆˆ ˆ: ,s h e ext h h
e

e

d
ÎW

W= " Î
Wåò fh S e h    (B.9) 

( ) ( )( ) ( )
( )( ) \

( ) ( ) ,e eT h T e e
ee d d e

W
⋅ ⋅ W= ⋅ ⋅ W " ÎWò òG G nS e S ej   

 
 (B.10) 

where: 

 ( )  ( )( ) ( )( ) ( )S Se ee S h h e

k
=  -  Ä + Äu u n ue

m
j   

  ( ) ( )e e=u Gg

 

Box B.1 Mixed  û u,  symmetric formulation considering rotation degrees of free-

dom (linear displacement along  ).  

B.2. Specification for 2D elements 

The linear jump formulation summarized in Box 5.3 should be stress locking 
free for any finite element (triangles, quadrilaterals, higher order elements, etc.) 
since rigid body modes are allowed for the full soften state. Following specific 
elements are analyzed, and conclusions about stress locking of piece-wise con-
stant jump formulations are derived. 

B.2.1 Linear triangles, (  û u,  ) formulation 

For linear triangular elements, equations in Box 5.3 can be integrated with two 

sampling points: one45 associated to ( )( ) \e
WW x  and a second associated to

( )( )e x . 

                                                        
45 Notice that for the triangle finite elements the integrals in equations (B.9) and 

(B.10) are constant or linear and thus, they can be exactly integrated with a single quadra-
ture point. 
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Figure B.3 Linear triangle.
 
Taking W ºx x , as it is usually done in the ambit of the embedded disconti-

nuity approach, and taking the local coordinate system of axes in Wx , such that

W = =x x 0  , the third column of the operator ( )G x  is null and expression 

(B.6) reads: 

 ( ) ( ) ,e
c c
c c
é ù é ù
ê ú ê úé ù= =ê ú ê úê úê ú ê ú ê úë û ê ú ê úë û ë û

u x
1 1

2 2
1 0 0
0 1 0

0q
 (B.11) 

where the degree of freedom q  associated to the rotation “does not appear in the 
formulation”, this allow us to conclude, that the element is stress locking free by 
considering uniquely 2 displacement degrees of freedom (constant jump in  ), as 
it is usually done when linear triangles associated with finite element formulation 
with embedded discontinuities are used.  

 ( ) ( ) .e c
c
é ù= ê úê úë û

u x 1

2
  (B.12) 

B.2.2 Bilinear quadrilateral elements, (  û u,  ) formulation 
(fully integrated quads) 

For bilinear quadrilateral elements, integration of equations in Box 5.3 re-
quires, due the quadratic character of the integrals in (B.9) and (B.10), a ´2 2  qua-

drature rule in ( ) \eW  and two quadrature points in ( )( )e x . 
 

Figure B.4 Quadrilateral element associated to a  ˆ,u u  formulation. 
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For an element to be considered stress locking free, the kinematics of equation 
(B.6) should be fulfilled for all sampling points. Notice that, for this element 
(unlike for the triangle element of Section B.2.1), the degree of freedom asso-
ciated to the rotation, q , explicitly appears in the formulation (the third column of 
the operator ( )G x  is different from zero in almost all gauss points).  

Therefore, finite element formulations that do not consider the rotation degree 

of freedom (as it happens in the  ˆ,u u   constant jump formulation ) can potential-

ly suffer from stress locking, since it is not guaranteed that the rigid body modes 
can develop for general deformation cases.  

B.2.3 Bilinear quadrilateral elements, (  ˆ ˆ, ,u ue   ) formulation 
(reduced integration) 

 
In this work, a embedded discontinuity finite element formulation based in a 

mixed  ˆ ˆ, ,u ue    formulation was proposed. The main practical consequence is that 

strains ( )ee  are constant inside the quadrilateral element and the kernels of the 
integrals appearing in expressions (B.9) and (B.10) become constant, being there-
fore exactly integrated with just one gauss point for both domains (one associated 

to ( ) \eW   and other ) as it happens for the triangular element of Section 

B.2.1.  
 

Figure B.5 Quadrilateral element associated to  ˆ ˆ, ,u ue   formulation. 

 
Thus, taking W ºx x , as it is usually done in the ambit of finite elements 

with embedded discontinuities, and placing the local coordinate system of axes in 

Wx (without loss of generality), such that W = =x x 0 , the third column of the 

operator ( )G x (in equation (B.6)), when evaluated at this point, is null. 
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Therefore, the rotation degree of freedom does not appear in the formulation, 
this meaning that the element it is stress locking free without considering rotation 

degrees of freedom, as it was the case of the mixed  ˆ ˆ, ,u ue    formulation proposed 

in this work. 

B.3. Numerical example 

In this section, we consider a simple numerical example to illustrate how qua-
drilaterals elements with constant jump embedded discontinuities are affected by 
stress locking. 

We consider here the one element bending test (see Figure B.6) already used in 
[Linder and Armero 2007] and [Manzoli and Shing 2006] for analyze the same 
stress locking issue. The test consists of a square block with imposed displace-
ment at the top topd  and bottom botd , with botd  increasing twice as fast as the top 

displacement in the loading pseudo-time t(s). 
 

a) b) c) 

Figure B.6 Bending one element test: a) geometrical data, b)theoretical deformed 
shape, c)loading data. 

 
This bending test will strongly challenge the constant displacement jump 

strong discontinuity formulations, since the theoretical solution of the problem 
involves both, a rigid body translation and a rigid body rotation.  

Figure B.7 compares results obtained with the standard  ˆ,u u   and the pro-

posed  ˆ ˆ, ,u ue  
 strong discontinuity formulations, with the analytical solution46 in 

terms of reaction vs. displacement curves. We remark that both formulations 
consider uniquely constant (translation) displacement jumps. 

                                                        
46 The analytical solution is taken from [Linder and Armero 2007]. 
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Figure B.7 Reaction force vs. imposed displacement at the top comparing the 

analytical solution with solutions computed with the standard  ˆ,u u 
 strong dis-

continuity formulation that is integrated with 4 gauss points (SDA 4GP) and with 

the proposed  ˆ ˆ, ,u ue    formulation integrated with just 1 gauss point (SDA 1GP). 

 

From Figure B.7 it can be concluded that the proposed  ˆ ˆ, ,u ue    (1 GP) is 

stress locking free in the sense that no spurious stress is transferred by the 
discontinuity after fully soften state. In the other hand the standard quadrila-

teral element  ˆ,u u   (4 GP) is affected by stress locking47 that prevents the relax-

ation of the resisting forces this corresponding to the undesirable behavior already 
reported by other authors in [Manzoli and Shing 2006; Linder and Armero 2007]. 

Notice that the result obtained with the  ˆ ˆ, ,u ue    formulation does not exactly 

match the analytical solution since the theoretical solution exhibits a linear 
displacement jump through the discontinuity, whereas the proposed formula-
tion considers element-wise constant jumps. Therefore, in order to better ap-
proximate the analytical solution more finite elements would be required 

 
Remark B.3.1: In references [Manzoli and Shing 2006; Linder and Armero 

2007] to avoid stress locking problems associated to constant jump embedded 
formulations (for quads), the authors propose a linear description of jump along 
the discontinuity by using 4 displacement (translation) degrees of freedom (in 
2D). This additional degrees of freedom can become excessive (in front of the 3 
exactly required by (B.6)) and that, can lead in some cases, to singular equations 
that need specific stabilization treatment. 

                                                        
47 Notwithstanding the severe stress locking found for this simple problem, it is ex-

pected with mesh refinement, the stress locking effects to be alleviated, since the rigid 

body motion of +W  with respect to -W  is then approximated by more element-wise 
discontinuous displacement jumps. 
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In our proposal, a constant element displacement jump is considered, no addi-
tional degrees of freedom are need and therefore, the computational cost and the 
complexity of the formulation remain low. 
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Appendix C                              
Weak/strong discontinuity 
injection: Element matrices  

Independently of the chosen formulation, the element-wise constant degrees 
of freedom  ( )eu  have elemental support, and thus, they can be solved, at the 

element level, by a standard condensation procedure that is summarized here (this 
procedure is restricted to those elements belonging to the injection domain). 

The residual equilibrium forces ( )eR , and that of the additional equation ( )er  
(e.g. traction continuity) can be expressed in the following form: 

 

    

{ }

 

( )( ) ( )( )

( ) ( )( ) ( )
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ee ee
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uu u u

u u u u

K K uR

r K K u
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 (C.14) 

where { }( )eu  stands for the elemental vector { } { }( ) , , ,
Te T T T T=u u u u u1 2 3 4      composed 

by the { },
T

i x y i
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 are the elemental stiffness matrixes.  

Solving the second equation of (C.14) for  ( )eu : 

    ( )   { }( )( ) ( )( ) ( )( ) ,e ee eer
-

= -u u u uu K K u
1

   (C.15) 

by substituting  ( )eu in the first equation of (C.14) and reorganizing terms: 

    ( )     ( )( ){ }( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )

,

ˆ ˆ

ee e e ee e e e

e e

- -
- = -uuu u u u u u u uR K K r K K K u u

R K

1 1   
 

 
(C.16) 
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where ( )ˆ eK and ( )ˆ eR


 are the elemental condensed stiffness matrix and residual 
vector respectively. Once the condensed element matrices are computed, the 

global entities K̂  and R̂

 can be assembled and then { }u  can be solved at the 

global level in a standard manner: 

{ }

( ) ( )( ) ( )

ˆ ˆ ,

where :

ˆ ˆ ˆ ˆ, ,
inj inj

e e

e eÎW ÎW

=

= =

R K u

K K R R

  

   A A
 (C.17) 

where { }u  stands for the global vector composed by the iu  degrees of freedom 

{ } { }, , ...,
T

nnodes=u u u u1 2    , being nnodes the total number of nodes of the finite 

element mesh). 

Once equation (C.17) is solved for { }u ,  ( )eu  can be computed at the ele-

ment level, by using expression (C.15). 
For the proposed formulations, expressions for the entities in equation (C.14) 

are following summarized. 
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C.1. Symmetric strong discontinuity formulation 
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(C.19)

Box C.1 Symmetric strong discontinuity formulation. 
 
Notice that for strong discontinuity case of Box C.1, when k  0 , the strain 

field is unbounded, whereas the stress field remains bounded. For this to be poss-
ible, as previously mentioned, the continuum softening modulus is reinterpreted 
in a distributional sense, i.e.: 

, .H kH
H H

= =
1 1

d  (C.20) 

Thus for k  0 , H  0  and by equation (2.21) and (2.64) also { }  0 , 

meaning this that the terms where { }  appear, vanish, except the one divided 

by k, since k also tends to zero. For k  0  the formulation is symmetric since 

( )( ) ( ) Te e=uu uuK K ,    ( )( ) ( ) Te e=u u u uK K  and      ( )( ) ( ) Te e=u u u uK K . If the regularizing 

parameter k, is not tending to zero (for example to make the transition described 
in Remark 5.1.6.1), the terms indicated in equation (C.19) as tending to zero, will 
tend to break the symmetry of the formulation. 
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C.2. Un-symmetric strong discontinuity formula-
tion. 
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(C.22) 

Box C.2 Un-symmetric strong discontinuity formulation.
 
The non-symmetric character of this formulation is clearly observed since, 

   ( )( ) ( ) Te e¹u u u uK K  and      ( )( ) ( ) Te e¹u u u uK K . Note that for k  0  the formulation 

become symmetric for the special case where: 
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C.3. Weak discontinuity formulation. 
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Box C.3 Weak discontinuity formulation. 
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