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Abstract 

 

This paper discusses the finite element modeling of cracking in quasi-brittle materials. The 

problem is addressed via a mixed strain/displacement finite element formulation and an isotropic 

damage constitutive model. The proposed mixed formulation is fully general and is applied in 2D 

and 3D. Also, it is independent of the specific finite element discretization considered; it can be 

equally used with triangles/tetrahedra, quadrilaterals/hexahedra and prisms.  

The feasibility and accuracy of the method is assessed through extensive comparison with 

experimental evidence. The correlation with the experimental tests shows the capacity of the 

mixed formulation to reproduce the experimental crack path and the force-displacement curves 

with remarkable accuracy. Both 2D and 3D examples produce results consistent with the 

documented data.  

Aspects related to the discrete solution, such as convergence regarding mesh resolution and mesh 

bias, as well as other related to the physical model, like structural size effect and the influence of 

Poisson’s ratio, are also investigated. 

The enhanced accuracy of the computed strain field leads to accurate results in terms of crack 

paths, failure mechanisms and force displacement curves. Spurious mesh dependency suffered by 

both continuous and discontinuous irreducible formulations is avoided by the mixed FE, without 

the need of auxiliary tracking techniques or other computational schemes that alter the continuum 

mechanical problem.  
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1 Introduction 

 

Modeling of cracking in quasi-brittle materials has been the object of intensive study in 

computational solid mechanics over the last five decades. In most of the studies carried 

out with standard irreducible elements, the attempts to predict the crack path fail because 

the obtained solution suffers from spurious bias mesh dependency. Several strategies have 

been developed for dealing with this obstacle.  

Cracking problems have traditionally been tackled in two ways: through continuous and 

discontinuous approaches. In the continuous one, the failure process is modelled by the 

degradation of the material, at constitutive level. For this so-called smeared crack 

approach, classical methods were developed by [1-5]. More recently, nonlocal 

constitutive models [6], gradient enhanced [7, 8] and phase field techniques [8-12] have 

also been considered within the continuous approach. 

In the discontinuous approach, an explicit crack representation is accounted for in the 

computed geometry and handled as a geometrical discontinuity [13, 14]. The kinematics 

of the finite element is enriched to capture the behavior near the propagating crack. 

Models developed with this approach include, but are not limited to, cohesive interface 

elements with or without remeshing [15-22], elements with embedded strong 

discontinuities [23-28], extended finite elements methods [29-34], and meshless and 

particle methods [35-39]. 

All these formulations have been proposed with the objective of solving the problems 

concerning lack of convergence when the mesh is refined and spurious mesh-dependency 

of the computed solution with standard irreducible elements. Despite all the proposed 

formulations, and their diverse level of success, these aspects still remained an issue. 

The traditional smeared crack/deformation concept has the advantage of simplicity and is 

best suited for large-scale analyses. Most efficient from the computational point of view, 

it is the one favored by commercial FE codes and practitioners. Mesh-size dependency 

can be solved introducing the fracture energy concept and regularizing with respect the 

resolution of the FE mesh as proposed by [2]. 

The continuous approaches that use nonlocal, gradient enhanced or phase field schemes, 

alter the strong form of the governing equations embedding a length scale related to the 

width of the localization zone.  A clear physical interpretation and direct link between the 

length parameter in the model and the characteristic length of the material is arguable 

[40]. An alternative geometrical interpretation has been proposed by [12]. 

Discontinuous approaches are often regarded as an improvement over the continuous 

ones, as it is considered that true separation can only be captured with discontinuous 

techniques. Discontinuous approaches almost invariably require the use of local or global 

crack tracking auxiliary techniques [41-44]. Those auxiliary techniques do not handle 

successfully cases that involve complex crack patterns such as multiple branching or 

intersecting cracks. Besides, they are usually applied only in one type of finite element 

and lack practical generality, as they require different implementations for each type of 

finite element.  
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In meshless and particle methods [35-39], these drawbacks are avoided through the 

definition of domains of influence rather than finite elements and the use of appropriate 

test and trial functions. Local and global remeshing techniques [15-18] also have been 

used in conjunction with both the continuous and discontinuous approaches. 

A comprehensive coverage of all fracture strategies is far beyond the scope of this study 

that focuses on the application of a mixed FE formulation to the modeling of cracking in 

quasi-brittle materials. For more details, the reviews in references [45-47] are suggested. 

Recently, mixed finite elements have been reexamined by [48-51] to deal with strain 

localization problems. Mixed finite element formulations have proved to be a remedy for 

spurious bias mesh dependency, allowing for the computation of strains and stresses with 

enhanced accuracy both in linear and nonlinear scenarios.  

When using the standard finite element formulation, local convergence of the solution in 

terms of strains cannot be guaranteed in the quasi-singular stress or strain states that occur 

in the vicinity of the tip of propagating cracks. Even in linear elasticity, local convergence 

is not guaranteed in quasi-singular points. This lack of local convergence in the strain and 

stress leads to the spurious mesh bias dependence observed in problems of quasi-brittle 

crack propagation solved with the standard formulation, yielding incorrect solutions in 

many cases.  

Mixed FE formulations for nonlinear solid mechanics problems guarantee an 

improvement over standard finite element formulations in terms of stress and strain 

accuracy. In mixed formulations, the strain is approximated independently from the 

displacement field, instead of being obtained from local discrete differentiation at element 

level. In this way, more accurate stress and strain fields are computed, resulting in a more 

precise computation of the solids nonlinear behavior, particularly for low order FE.  

The more accurate stress and strain fields computed with the mixed formulation results 

in a significant betterment over the standard formulation, particularly in the prediction of 

the crack formation and propagation, where mesh-dependence issues are averted. This 

guarantees convergent results when computing crack trajectories, failure mechanisms and 

ultimate loads, producing practically mesh-independent solutions using both plasticity 

and damage constitutive laws. 

The leverage of the mixed approach derives from the following strong points: 

- It is fully variationally consistent [49, 50] 

- It can be formulated for small or finite displacements or/and kinematics [52, 53] 

- It applies equally to 2D and 3D problems [51] 

- It is not restricted to a particular FE interpolation, it can be used with 

triangles/tetrahedra, quadrilaterals/hexahedra or prisms of any order [49-51] 

- It is not dependent on the choice of the constitutive equation, it can be applied both 

for plasticity and/or damage models of any kind [51, 54] 

- It can consider isotropic or directional inelastic behavior [55] 

- It can address quasi-incompressible situations, including the incompressible           

limit [51, 56] 

- It can accommodate rate-dependent viscid effects, linear or non-linear 
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- It can be extended to include inertial forces in dynamics, or multi-physics phenomena 

in coupled problems [53]  

Also, and regarding cracking problems: 

- It follows the classical local constitutive mechanics framework [50] 

- It can model Mode I (extension), Mode II (shear) and Mode III (tearing) and mixed-

mode fracture [51, 55] 

- It can model structural size effect in quasi-brittle failure [54] 

- It can accommodate orthotropic damage models with unilateral, crack-closing   

effects 

- It does not require auxiliary crack tracking techniques [49-51] 

With reference to the above mentioned alternatives for the computational modeling of 

quasi-brittle cracks, the mixed finite element formulation here presented fits into the 

continuous approach, as the crack is represented at constitutive level using a local stress 

vs. strain relationship. Therefore, the separation between the two opposite sides of the 

crack is modelled through continuous (linear) displacement and strain fields. No specific 

degrees of freedom are necessary to model the existing or evolving cracks. Instead, the 

kinematic enhancement provided by the independent interpolation of displacement and 

strains proves to be crucial in the numerical solution of strain localization problems.  

Discontinuous resolution of the displacement jump across the crack and in conjunction 

with a traction vs. separation constitutive law, either via extended degrees of freedom or 

embedment, can be included in the mixed FE formulation as they are in the standard 

displacement-based one, but such developments are not addressed in the present paper.  

Without them, the formulation does not require apropos trial or test functions, or the use 

of specific quadrature rules in the modeling of the cracks. Local remeshing is also 

compatible with the mixed FE formulation, but is not considered in this paper. 

In previous works by the authors, the mixed formulation has been derived and assessed 

through theoretical benchmark tests and capability demonstration cases, in order to 

highlight its advantages with regard to the standard form. However, aptness of the 

proposed model to replicate the behavior of engineering materials observed in 

experimental tests, specifically related to the crack behavior and propagation, remained 

open; mixed formulations for computing strain localization has not been adequately 

validated through correlation with experimental tests. 

Therefore, the objectives of this paper are: (1) to present the mixed strain/displacement 

formulation in matrix notation, ready-to-use for implementation in finite element codes, 

(2) to demonstrate the application of this format in 2D and 3D applications, (3) to validate 

the proposed formulation with experimental results. To meet the last two objectives, an 

extensive comparison with experimental data observed from the literature is performed. 

The outline of the paper is as follows. In Section 2, the mixed strain/displacement 

formulation for the solution of nonlinear solid mechanics problems is presented in matrix 

form, to be used in conjunction with an isotropic damage model summarized in Section 

3. Section 4 presents numerical simulations performed in 2D and 3D using the proposed 

model. The computation results are compared to available data from experimental tests 

for validation purposes. Finally, conclusions and extensions for future work are presented. 
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2 Mixed strain/displacement formulation 

 

In the following, the mixed strain-displacement formulation is laid out. Matrix and vector 

notation based on Voigt’s convention for symmetric tensors is adopted, as customarily 

used in FE literature and in codes. 

The formulation of the mixed solid mechanics problem in terms of the stress and 

displacement fields is classical and it has been used many times in the context of linear 

elasticity. Mixed FEM have been so derived from the Hellinger-Reissner Variational 

Principle [57, 58]. However, this is not the most convenient format for the material 

nonlinear problem. Most of the algorithms used for nonlinear constitutive models in solid 

mechanics have been derived for the irreducible formulation. This means that these 

procedures are usually strain driven, and they have a format in which the stress is 

computed in terms of the strain. Consequently, a mixed FE formulation in terms of the 

strains and displacement fields as the one used here can incorporate these procedures 

directly. 

 

2.1 Variational form  

 

In the following, the variational form of the nonlinear solid mechanics problem is cast in 

terms of the displacement 𝒖 and strain 𝜺 fields. Writing the problem in matrix form, 𝒖 

and 𝜺 are expressed in Voigt’s convention as vectors. For 2D analysis, plane stress and 

plane strain problems, 𝒖 = (𝑢, 𝑣)𝑇 has 2 components and 𝜺 = (𝜀𝑥, 𝜀𝑦 , 𝛾𝑥𝑦)
𝑇
 is a 3 

component vector. In 3D analysis, 𝒖 = (𝑢, 𝑣, 𝑤)𝑇 has 3 components and 𝜺 =

(𝜀𝑥, 𝜀𝑦, 𝜀𝑧 , 𝛾𝑥𝑦, 𝛾𝑦𝑧 , 𝛾𝑥𝑧)
𝑇
 has 6 components [59].  

The strain and displacement fields are locally related through the compatibility equation 

𝜺 = 𝓢𝒖 (1) 

where 𝓢 is the differential symmetric gradient operator, defined as 

𝓢𝑇 = [

𝜕𝑥 0 0
0 𝜕𝑦 0

0 0 𝜕𝑧

𝜕𝑦 0 𝜕𝑧
𝜕𝑥 𝜕𝑧 0
0 𝜕𝑦 𝜕𝑥

]    𝑖𝑛 3𝐷 ;   𝓢𝑇 = [
𝜕𝑥
0

0
𝜕𝑦

𝜕𝑦
𝜕𝑥
]    𝑖𝑛 2𝐷 (2) 

where 𝝏 = (𝜕𝑥, 𝜕𝑦, 𝜕𝑧)
𝑇
 is the gradient operator in 3D and 𝝏 = (𝜕𝑥, 𝜕𝑦)

𝑇
 in 2D. 

Correspondingly, the stress 𝝈 is a vector with 3 components in 2D analysis, 

𝝈 = (𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦)
𝑇
, and 6 in 3D analysis, 𝝈 = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧, 𝜏𝑥𝑦, 𝜏𝑦𝑧 , 𝜏𝑥𝑧)

𝑇
, whereas the 

body forces vector 𝐟 has 2 in 2D, 𝐟 = (𝐟𝑥, 𝐟𝑦)
𝑇
, and 3 components in 3D, 𝐟 = (𝐟𝑥, 𝐟𝑦, 𝐟𝑧)

𝑇
. 

Cauchy’s equilibrium equation of a body written in matrix form is  
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𝓢𝑇𝝈 + 𝐟 = 𝟎 (3) 

where 𝓢𝑇 is the differential divergence operator, adjoint to the 𝓢 in (1). 

The stress vector 𝛔 and the strain vector 𝜺 are linked by the constitutive equation: 

𝛔 = 𝐃𝑠𝜺 (4) 

where 𝐃𝑠 is the secant constitutive matrix. For the isotropic damage model laid out in 

Section 3, the constitutive equation is 

𝛔 = (1 − 𝑑)𝐃0𝜺 (5) 

Pre-multiplying equation (1) by the secant constitutive matrix 𝐃𝑠 and introducing 

equation (4) into equation (3) results in 

−𝐃𝑠𝜺 + 𝐃𝑠𝓢𝒖 = 𝟎 (6) 

𝓢𝑇(𝐃𝑠𝜺) + 𝐟 = 𝟎 (7) 

The system of equations (6)-(7) is the strong form of the mixed 𝜺/𝒖 formulation, 

completed with the boundary conditions imposed on the boundary Γ of the body, 

partitioned in Γ𝑢 and Γ𝑡, corresponding to the Dirichlet’s and Newman’s conditions, 

respectively, such that Γ = Γ𝑢 ∪ Γ𝑡 and {∅} = Γ𝑢 ∩ Γ𝑡.  

For the sake of conciseness, the prescribed displacements are assumed to vanish on the 

boundary Γ𝑢  

𝒖 = 𝟎    𝑖𝑛 Γ𝑢 (8) 

The nontrivial case, 𝒖 = 𝒖̅   𝑖𝑛 Γ𝑢, can be accommodated following standard arguments. 

Additionally, the prescribed tractions on the boundary Γ𝑡 are expressed as 

𝒕 = 𝑮̅𝑇𝝈 = 𝒕̅    𝑖𝑛 Γ𝑡 (9) 

Where the projection matrix 𝑮̅ is defined in [59] as  

𝑮̅𝑇 = [

𝑛𝑥 0 0
0 𝑛𝑦 0

0 0 𝑛𝑧

𝑛𝑦 0 𝑛𝑧
𝑛𝑥 𝑛𝑧 0
0 𝑛𝑦 𝑛𝑧

]    𝑖𝑛 3𝐷; 𝑮̅𝑇 = [
𝑛𝑥 0
0 𝑛𝑦

𝑛𝑦
𝑛𝑥
]    𝑖𝑛 2𝐷 (10) 

where 𝒏 = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧)
𝑇
 is the outward normal vector at the boundary Γ𝑡.  
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The variational form of the problem is obtained as follows. 

Firstly, equation (6) is premultiplied by an arbitrary virtual strain vector 𝛿𝜺 and integrated 

over the spatial domain to obtain the weak form of the constitutive and compatibility 

relationships: 

−∫ 𝛿𝜺𝑇𝐃𝑠𝜺 𝑑Ω
Ω

+∫ 𝛿𝜺𝑇𝐃𝑠𝒮𝒖 𝑑Ω
Ω

= 0   ∀𝛿𝜺 (11) 

Secondly, equation (7) is premultiplied by an arbitrary virtual displacement vector 𝛿𝒖 

and integrated over the spatial domain 

∫ 𝛿𝒖𝑇[𝓢𝑇(𝐃𝑠𝜺)] 𝑑Ω
Ω

+∫ 𝛿𝒖𝑇𝐟 dΩ
Ω

= 0   ∀𝛿𝒖 (12) 

The virtual displacement 𝛿𝒖 complains with the boundary conditions, so that 𝛿𝒖 =

𝟎    𝑖𝑛 Γ𝑢. Then, the Divergence Theorem is applied to the first term of equation (12): 

∫ 𝛿𝒖𝑇[𝓢𝑇(𝐃𝑠𝜺)] 𝑑Ω
Ω

= −∫ (𝓢𝛿𝒖)𝑇(𝐃𝑠𝜺)𝑑Ω
Ω

+∫ 𝛿𝒖𝑇(𝑮̅𝑇𝐃𝑠𝜺) 𝑑Γ
Γ

= −∫ (𝓢𝛿𝒖)𝑇(𝐃𝑠𝜺)𝑑Ω
Ω

+∫ 𝛿𝒖𝑇(𝑮̅𝑇𝐃𝑠𝜺) 𝑑Γ
Γ𝑢⏟            

=0

+∫ 𝛿𝒖𝑇 (𝑮̅𝑇𝐃𝑠𝜺)⏟    
=𝒕̅

 𝑑Γ
Γ𝑡

 
(13) 

In equation (13), the integral on the boundary is split in the boundaries Γ𝑢 and Γ𝑡. The part 

corresponding to Γ𝑢 is zero because the virtual displacement vanishes on that boundary. 

In Γ𝑡, equations (4) and (9) are used.  

Therefore, 

∫ (𝓢𝛿𝒖)𝑇(𝐃𝑠𝜺)𝑑Ω
Ω

= ∫ 𝛿𝒖𝑇𝐟 dΩ
Ω

+∫ 𝛿𝒖𝑇 𝒕̅ 𝑑Γ
Γ𝑡

   ∀𝛿𝒖 (14) 

which is the expression of the Virtual Work Principle, as the right hand side term 

𝑊(𝛿𝒖) = ∫ 𝛿𝒖𝑇𝐟 dΩ
Ω

+ ∫ 𝛿𝒖𝑇𝒕̅ 𝑑Γ
Γ𝑡

 represents the virtual work done by the tractions 𝒕̅ 

and body forces 𝐟.  

The resulting variational form of the mixed formulation is: 

−∫ 𝛿𝜺𝑇𝑫𝑠𝜺 𝑑𝛺
𝛺

+∫ 𝛿𝜺𝑇𝑫𝑠𝒮𝒖 𝑑𝛺
𝛺

= 0   ∀𝛿𝜺 (15) 

∫ (𝓢𝛿𝒖)𝑇(𝐃𝑠𝜺)𝑑Ω
Ω

= ∫ 𝛿𝒖𝑇𝐟 dΩ
Ω

+∫ 𝛿𝒖𝑇 𝒕̅ 𝑑Γ
Γ𝑡

   ∀𝛿𝒖 (16) 

The mixed problem to be solved is to find the unknowns 𝒖 and 𝜺 that verify the system 

of equations composed by (15) and (16) and that verify the boundary condition 𝒖 = 𝟎 on 

Γ𝑢 given the arbitrary virtual displacement 𝛿𝒖, which vanishes on Γ𝑢 and arbitrary virtual 

strain 𝛿𝜺. Note that this variational problem is symmetric if 𝑫𝑠 is symmetric. 
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2.2 FE approximation 

 

At this point, the FE discrete form of the problem is obtained by discretizing the domain 

in FE, so that Ω =∪ Ω𝑒, and substituting the displacement 𝒖 and the strain 𝜺 with the FE 

discrete approximations 𝒖̂ and 𝜺̂ defined element-wise as 

𝒖 ≅ 𝒖̂ = 𝑵𝑢𝑼 (17) 

𝜺 ≅ 𝜺̂ = 𝑵𝜀𝑬 (18) 

where 𝑼 and 𝐄 are vectors containing the values of the displacements and the strains at 

the nodes of the finite element mesh. 𝑵𝑢 and 𝑵𝜀 are the matrices containing the 

interpolation functions adopted in the FE approximation. 

In the Galerkin method, the same approximation is considered for the discrete virtual 

displacements and virtual strains so that  

𝛿𝒖 ≅ 𝛿𝒖̂ = 𝑵𝑢𝛿𝑼 (19) 

𝛿𝜺 ≅ 𝛿𝜺̂ = 𝑵𝜀𝛿𝑬 (20) 

The submatrices of 𝑵𝑢 and 𝑵𝜀 are diagonal matrices and the corresponding components 

are 𝑁𝑢
(𝑖)

 and 𝑁𝜀
(𝑖)

 interpolation functions, (𝑖) being the node counter. 

Introducing these approximations, equations (15) and (16) now become: 

−∫ 𝜹𝑬𝑇𝑵𝜀
𝑇𝐃𝑠𝑵𝜀𝑬 𝑑Ω

Ω

+∫ 𝜹𝑬𝑇𝑵𝜀
𝑇𝐃𝑠 𝓢𝑵𝑢⏟

=𝑩𝑢

𝑼 𝑑Ω
Ω

= 0   ∀𝛿𝑬 (21) 

∫ (𝓢𝑵𝑢𝛿𝑼)
𝑇⏟      

=𝛿𝑼𝑇(𝓢𝑵𝑢)
𝑇=𝛿𝑼𝑇𝑩𝑢

𝑇

(𝑫𝑠𝑵𝜀𝑬) 𝑑𝛺
𝛺

= 𝑊̂(𝛿𝑼)   ∀𝛿𝑼 (22) 

where 𝑩𝑢 is the discrete strain-displacement matrix defined as 

𝑩𝑢 = 𝓢𝑵𝑢 (23) 

The submatrices of 𝑩𝑢 have the structure corresponding to the 𝓢 operator in equation (2), 

and their components are the Cartesian derivatives of the 𝑁𝑢
(𝑖)

 and 𝑁𝜀
(𝑖)

 interpolation 

functions (
𝜕𝑁(𝑖)

𝜕𝑥
;
𝜕𝑁(𝑖)

𝜕𝑦
;
𝜕𝑁(𝑖)

𝜕𝑧
), (𝑖) being the node counter. 

In (22), 𝑊̂(𝛿𝑼) is the work done by the tractions 𝒕̅ and body forces 𝐟 defined as 
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𝑊̂(𝛿𝑼) = ∫ 𝛿𝑼𝑇𝑵𝑢
𝑇𝐟 𝑑𝛺

𝛺

+∫ 𝛿𝑼𝑇𝑵𝑢
𝑇 𝒕̅ 𝑑𝛤

𝛤𝑡

 (24) 

In (21) and (22) and henceforth, integrals over the domain are understood as the sum of 

the integrals over the elements in the FE mesh 

∫ (·) 𝑑Ω
Ω

=∑∫ (·) 𝑑Ω𝑒
Ω𝑒𝑒

 

Also, with some abuse of notation, 𝑼 and 𝑬 (and 𝛿𝑼 are 𝜹𝑬) are to be interpreted as the 

nodal values over the whole FE mesh. This implies the corresponding assembling 

operations for elemental matrices and vectors into global entities. 

Note again that, if matrix 𝑫𝑠 is symmetric, the discrete system (21)-(22) is symmetric but 

indefinite.  

The virtual displacement 𝛿𝑼 and virtual strain 𝛿𝑬 nodal vectors that appear in equations 

(21)-(22) are arbitrary. Therefore, the system of equations for the mixed Galerkin method 

becomes 

  − (∫ 𝑵𝜀
𝑇𝐃𝑠𝑵𝜀𝑑Ω

Ω

)𝑬 + (∫ 𝑵𝜀
𝑇𝐃𝑠𝑩𝑢 𝑑Ω

Ω

)𝑼 = 0 (25) 

     (∫ 𝑩𝑢
𝑇𝑫𝑠𝑵𝜀 𝑑𝛺

𝛺

)𝑬                                              = ∫ 𝑵𝑢
𝑇𝒇 𝑑𝛺

𝛺

+∫ 𝑵𝑢
𝑇 𝒕̅ 𝑑𝛤

𝛤𝑡

 (26) 

And the algebraic system of equations (25)-(26) can be written in matrix form as 

[
−𝑴 𝑮
𝑮𝑇 𝟎

] [
𝑬
𝑼
] = [

𝟎
𝑭
] (27) 

where [𝑬 𝑼]𝑇 is the array of nodal values of strains and displacements and 

𝑴 = ∫ 𝑵𝜀
𝑇𝐃𝑠𝑵𝜀𝑑Ω

Ω

 (28) 

𝑮 = ∫ 𝑵𝜀
𝑇𝐃𝑠𝑩𝑢 𝑑Ω

Ω

 (29) 

𝑭 = ∫ 𝑵𝑢
𝑇𝒇 𝑑𝛺

𝛺

+∫ 𝑵𝑢
𝑇 𝒕̅ 𝑑𝛤

𝛤𝑡

 (30) 

𝑴 is a mass like projection matrix, 𝑮 is the discrete gradient matrix and 𝑭 is the vector of 

external nodal forces. 

In the system (27), the nodal values 𝑬 can be formally eliminated to write the solution in 

terms of the nodal displacements 𝑼 only, as follows. From the first equation in (27), the 

nodal values for the strains 𝑬 can be obtained as  
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𝑬 = 𝑴−𝟏𝑮𝑼 (31) 

which can be substituted into the second equation to yield 

𝑼 = (𝑮𝑇𝑴−𝟏𝑮)−𝟏𝑭 (32) 

where (𝑮𝑇𝑴−𝟏𝑮)−𝟏 is the Schur complement of –𝑴 in the system (27). 

 

2.3 VMS stabilization 

 

To ensure solvability (i.e. uniqueness) and stability of the solution in the algebraic system 

of equations (27), the interpolation functions in (17)-(18) must satisfy the Inf-Sup 

condition [60-62]. This condition is not verified if equal interpolations are used for strains 

and displacements. In that case, the solution is unstable, and uncontrollably spurious 

oscillations may appear in the computed displacement field. To be able to circumvent the 

strictness of the Inf-Sup condition and to use linear approximations in both interpolation 

functions, a stabilization procedure is necessary to provide the necessary stability to the 

mixed discrete formulation. The stabilization procedure consists in the modification of 

the discrete variational form using the Orthogonal Subscales Method, introduced in [63] 

within the framework of the Variational Multiscale Stabilization methods [64, 65], and 

adopted herein. 

The basic idea of the stabilization procedure is to substitute the approximation of the 

discrete strain in equation (18) by the following stabilized discrete field 

𝜺 ≅ 𝜺̂ = 𝑵𝜀𝑬 + 𝜏𝜀(𝑩𝑢𝑼 −𝑵𝜀𝑬) = (1 − 𝜏𝜀)𝑵𝜀𝑬 + 𝜏𝜀𝑩𝑢𝑼 (33) 

where 𝜏𝜀 is a stabilization parameter with value 0 ≤ 𝜏𝜀 ≤ 1. Note that for 𝜏𝜀 = 1, the 

strain interpolation of the standard irreducible formulation is recovered: 

𝜺 ≅ 𝜺̂ = 𝑩𝑢𝑼 (34) 

Making the corresponding substitution in equations (15) and (16), the final stabilized set 

of mixed FE equations is: 

−(1 − 𝜏𝜀)∫ 𝜹𝑬𝑇𝑵𝜀
𝑇𝐃𝑠𝑵𝜀𝑬 𝑑Ω

Ω

+ (1 − 𝜏𝜀)∫ 𝜹𝑬𝑇𝑵𝜀
𝑇𝐃𝑠𝑩𝑢𝑼 𝑑Ω

Ω

= 0   ∀𝛿𝑬 (35) 

(1 − 𝜏𝜀)∫ 𝛿𝑼𝑇𝑩𝑢
𝑇(𝑫𝑠𝑵𝜀𝑬) 𝑑𝛺

𝛺

+ 𝜏𝜀∫ 𝛿𝑼𝑇𝑩𝑢
𝑇𝑫𝑠𝑩𝑢𝑼 𝑑𝛺

𝛺

      = 𝑊̂(𝛿𝑼) 

;   ∀𝛿𝑼      

(36) 
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The stabilization used is variationally consistent: converging values of the unknowns 𝜺 

and 𝒖 which satisfy the Galerkin system (21)-(22) also satisfy the stabilized form (35)-

(36). This is because residual-based stabilization procedures do not introduce any 

additional approximation nor any consistency error. For a converged solution, when the 

size of the element ℎ tends to zero, ℎ → 0, 𝜺 → 𝑵𝜀𝑬 = 𝑩𝑢𝑼 and the stabilization term 

vanishes. For non-converged situation, the added terms 𝜏𝜀(𝑩𝑢𝑼 −𝑵𝜀𝑬) are small, as 

they depend on the difference between two approximations of different order to the same 

quantity. 

Therefore, for a given FE mesh, using different values of the stabilization procedure 

yields slightly different results. However, the consistency of the residual-based 

stabilization guarantees convergence to the unique solution. Using different stabilization 

parameters on the same mesh is akin to use different FE interpolations of the same order 

of convergence with the same nodal arrangement.  

Moreover, note that optimal convergence rate in linear problems is obtained reducing the 

stabilization on mesh refinement [49], such that 

𝜏𝜀 = 𝑐𝜀
ℎ

𝐿0
 (37) 

where 𝑐𝜀 is an arbitrary positive numbers, ℎ is the finite element size and 𝐿0 is the 

characteristic size of the problem. In nonlinear problems involving damage, the 

stabilization parameter is affected by the reduction of stiffness in the damaged elements, 

so that 

𝜏𝜀 = (1 − 𝑑)𝑐𝜀
ℎ

𝐿0
 (38) 

When quasi-incompressible situations need to be modelled, additional consistent 

stabilization terms, equally based on residual considerations at discrete level, need to be 

added [51].  

The stabilized system of equations is  

[
−𝑴𝝉 𝑮𝝉
𝑮𝝉
𝑇 𝑲𝝉

] [
𝑬
𝑼
] = [

𝟎
𝑭
] (39) 

with 𝑴𝝉 = (1 − 𝜏𝜀)𝑴, 𝑮𝝉 = (1 − 𝜏𝜀)𝑮 and 𝑲𝝉 = 𝜏𝜀𝑲 with  

𝑲 = ∫ 𝑩𝑢
𝑇𝑫𝑠𝑩𝑢 𝑑𝛺

𝛺

 (40) 

In the stabilized system (37), the nodal values 𝑼 can be formally computed as  

𝑼 = (𝑮𝝉
𝑇𝑴𝝉

−𝟏𝑮𝝉 +𝑲𝝉)
−𝟏𝑭 (41) 
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where, now, the stabilization ensures definitiveness, uniqueness and stability of the 

solution if 𝑲 is positive definite. Note again that for 𝜏𝜀 = 1, the stable solution of the 

standard form 𝑼 = 𝑲−𝟏𝑭 is recovered. 

The discrete approximation in equation (33) is not to be interpreted point-wise, as in the 

VMS method only the variational effect of the stabilization is sought for. This means that 

the internal variables and secant matrix of the constitutive equations can be computed 

according to either of the alternative, discrete strain approximation (20) or (33). 

 

2.4 Implementation and computational aspects 

 

Nonlinear constitutive behavior such as the one considered in this work (see Section 3) 

requires an iterative procedure for solving the resulting nonlinear system of equations. In 

the present work, an iterative Picard’s secant algorithm has been used. The problem is 

solved incrementally in a (pseudo) time step-by-step manner, solving the nonlinear 

system of equations at each step. Convergence at each time step is achieved when the 

ratio between the norm of residual forces and the norm of total external forces is lower 

than a certain imposed tolerance. Some of the analysis were performed under CMOD 

(crack mouth opening displacement) control in order to capture the complete post-peak 

behavior. 

 

3 Isotropic damage model 

 

For the evaluation of the stresses from the strains and the evaluation of the secant 

constitutive matrix 𝑫𝑠, in equations (4) and (5), an isotropic damage model is used. The 

model adopted here, suitable for concrete, defines the effective equivalent stress through 

the Rankine and the Drucker-Prager criterions. 

From equations (4) and (5)  

𝑫𝑠 = (1 − 𝑑)𝑫0 (42) 

where 𝑑 is the internal damage index and 𝑫0 is the elastic constitutive matrix. The damage 

index 𝑑 is an internal variable that measures the loss of stiffness of the material and it 

ranges 0 ≤ 𝑑 ≤ 1. 

For the computation of the evolution of the internal damage index, the effective stress 𝝈̅ 

is defined as 𝝈̅ = 𝑫0𝜺. The corresponding equivalent effective stress 𝜎𝑒𝑞 is defined 

through the damage criterion, 𝜎𝑒𝑞 = 𝐹(𝝈̅). Tensile damage is modelled according to 

Rankine’s criterion, so that 

𝜎𝑒𝑞 = 𝐹(𝝈̅) = 〈𝜎1〉 (43) 
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where 𝜎1 is the major principal effective stress and 〈·〉 are the Macaulay brackets, such 

that 〈𝑥〉 = 𝑥    𝑖𝑓  𝑥 ≥ 0,     0    𝑖𝑓  𝑥 < 0. For mixed loading, a Drucker-Prager criterion 

is used, so that 

𝜎𝑒𝑞 = 𝐹(𝝈̅) =
3

3 + tan𝜙
(√3𝐽2 + tan𝜙

𝐼1
3
) (44) 

When 𝐼1 and 𝐽2 are the first and second effective stress invariants and 𝜙 is the internal 

friction angle of the material; this can be related to the uniaxial tensile and compressive 

strengths, 𝑓𝑡 and 𝑓𝑐, as 

tan𝜙 = 3
𝑓𝑐 − 𝑓𝑡
𝑓𝑐 + 𝑓𝑡

 (45) 

The damage criterion, 𝔽, is defined as  

𝔽 = 𝜎𝑒𝑞 − 𝑟(𝝈̅) ≤ 0 (46) 

where 𝑟 is the current stress-like damage threshold. Its initial value is the tensile strength 

of the material, 𝑟0 = 𝑓𝑡. The current value of the damage threshold is explicitly updated 

as 

𝑟 = max  (𝑟0,max 𝜎𝑒𝑞(𝑡̂))     𝑡̂ ∈ [0, 𝑡] (47) 

This follows from the Kuhn-Tucker optimality and consistency conditions. It guarantees 

the irreversibility of damage and the positiveness of the dissipation. 

The evolution of the internal damage variable is defined by  

𝑑 = 𝑑(𝑟) = 1 −
𝑟0
𝑟
exp (−2𝐻𝑆 (

〈𝑟 − 𝑟0〉

𝑟0
)) (48) 

where 𝐻𝑆 is the positive softening parameter, which controls the rate of material 

degradation. 

In FE simulations of quasi-brittle failure, the softening parameter is linked to the material 

fracture energy 𝐺𝑓, which is a property of the material, in the following way: 

𝐻𝑆 =
𝐻̅𝑆𝑏

1 − 𝐻̅𝑆𝑏
 (49) 

where 𝑏 is the bandwidth of the smeared crack and 𝐻̅𝑆 is  

𝐻̅𝑆 =
(𝑓𝑡)

2

2𝐸𝐺𝑓
 (50) 

𝑓𝑡 being the tensile strength and 𝐸 the Young’s modulus. In this work  
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𝑏 = (1 − 𝜏𝜀)2ℎ + 𝜏𝜀ℎ = (2 − 𝜏𝜀)ℎ (51) 

where ℎ is the finite element size. This is coherent with the approximation adopted for 

the discrete strain field in equation (33). 

 

4 Numerical simulations 

 

In this section, six numerical simulations are performed using the mixed 

strain/displacement FE formulation laid out in the aforesaid. The numerical solutions are 

compared with the results of experimental tests reported in the literature. The simulations 

are: 

1. An L-shaped panel subjected to a vertical load  

2. A wedge-splitting test 

3. Two mixed mode bending beam tests  

4. Three notched beams with holes  

5. Four-point bending test on a doubly-notched beam 

6. Non-planar crack on a three-point bending test on skew notched beam 

The examples have been solved using both 2D and 3D finite elements, using triangles or 

quadrilaterals for 2D and tetrahedra, hexahedra or prisms for the 3D simulations. All the 

problems are studied by means of a smeared crack approach. No tracking technique is 

used in any of the cases. 

For this, calculations are performed with an enhanced version of the finite element 

program COMET [66]. Pre- and post-processing are done with GiD [67], developed at 

CIMNE (International Center for Numerical Methods in Engineering).  

 

 

4.1 L-shaped panel 

 

The numerical analysis of a concrete L-shaped panel subjected to vertical load is 

considered; corresponding experiments are reported in [68]. Other numerical solutions 

are reported in [41] and [42]. Reference [41] used embedded crack methods and crack 

tracking auxiliary techniques while reference [42] used extended finite elements for 

making their computations.  

The geometry and loading is shown in Figure 1 and the material parameters are given in 

Table 1. The thickness of the panel is 0.1 m. 

The load F is applied via increments of vertical displacement at the top left corner of the 

panel. 
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Table 1. Material parameters of the L-shaped panel 

Young’s Modulus 25.85·109 Pa 

Poisson’s Ratio 0.18 

Tensile Strength 2.7·106 Pa 

Fracture Energy 160 J/m2 

 

This example is solved with the mixed FEM using 2D quadrilateral and 3D hexahedral 

elements. The computational domain is discretized with fully structured meshes with 

elements of 8.33 mm, resulting in a mesh of 11,041 nodes for the 2D analysis and 44,164 

nodes for the 3D analysis, shown in Figure 2. The 3D mesh is obtained by the out-of-

plane extrusion of the 2D mesh. For the 2D analysis, plane stress conditions are assumed. 

Figure 3 shows the computed tensile damage contour fills for an imposed vertical 

displacement of 1 mm obtained in the 2D and 3D analyses. Both results are identical, as 

the same mesh configuration is used in the XY plane of the panel in the 2D and 3D cases.  

In the present FE formulation, the separation between the two opposite sides of the crack 

is modelled through continuous (linear) displacement and strain fields and the crack is 

accordingly smeared. The crack surface in the 3D analysis can be depicted as in Figure 

4, plotted as an iso-level surface of the norm of displacements. It corresponds exactly 

with the crack path obtained in the 2D analysis.   

These results are within the experimental range obtained by [68], as can be observed in 

Figure 5. In the FE-simulation, the crack propagates as expected from the experimental 

tests; no spurious mesh bias is observed, although no auxiliary local or global crack 

tracking techniques is used, nor any initial notch or flaw is imposed in the geometry of 

the panel to assure the correct crack path at the early stages of the crack formation, 

contrary to [41] and [42].  

Figure 6 shows the computed load-imposed vertical displacement curve obtained in the 

2D and 3D simulations, compared to the results from the tests in [68]. As shown, the 

numerical curves are almost overlapping, demonstrating the closeness of plane stress 

assumption in 2D. The results are inside the experimental range observed in the tests. It 

can be seen that the peak is accurately reproduced, as well as the general behavior of the 

curve. 

 

Figure 1. Geometry of the L-shaped panel (m) and vertical axis considered for line graphs 
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Figure 2. 2D and 3D meshes used for the analysis of the L-shaped panel 

 

 

Figure 3. Tensile damage contour fills for the L-shaped panel, (a) 2D and (b) 3D solution 

 

 

Figure 4. Crack Surface of the L-shaped panel 
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Figure 5. Crack path in the L-shaped panel compared to the experimental range reported in [68] 

 

 

Figure 6. Force-displacement results for 2D and 3D analyses of the L-shaped panel 

 

Independence of results with FE size 

 

Thanks to the regularization procedure introduced in equation (49), the computed 

structural response is independent from the resolution of the FE mesh. This is shown in 

Figure 7, where the Force-Displacement curve obtained from grids of different sizes (h = 

4, 8, 12 mm) are compared. The results obtained in the 3D analysis (h = 8 mm) are also 

shown. All the results are practically overlapping, demonstrating mesh-size 

independence. 
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Figure 7. Force-displacement results for several mesh sizes 

 

Convergence of displacement and strain fields 

 

In order to illustrate the convergence of the displacement and strain fields provided by 

the smeared crack approach with mixed FE formulations, a vertical cut, shown in Figure 

1, is considered. Along this line, the profiles of vertical displacements and major principal 

strains are shown in Figure 8 for several load steps and in Figure 9 for different mesh 

sizes.  

Figure 8, left column, shows how the displacement jump across the crack (CMOD) 

evolves as the load increases; it can be observed that, in all the meshes, the displacement 

jump is smeared across one element, an optimal representation of a strong discontinuity 

for the given mesh resolution. Figure 9, left, shows that the results practically overlap, 

demonstrating mesh size independence. 

Figure 8, right column, shows the corresponding evolution of the strains as the load 

increases and the crack is formed. Note that: (a) the strain field is continuous, (b) the 

effective width of the strain localization band is 2h, (c) the value of the peak strain is 

inversely proportional to the mesh resolution, (d) the numerical solution approximates the 

Dirac’s delta derivative of a discontinuous displacement field, as can be seen in Figure 9, 

right. 
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Figure 8. Vertical displacement and major principal strains along a vertical line for different load 

steps 

 

 

Figure 9. Vertical displacement and major principal strains along a vertical line for diferent sized 

meshes 
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4.2 Wedge-Splitting test 

 

In this second example, a wedge-splitting test of a concrete specimen is considered. The 

test was experimentally carried out by [69]. Reference [28] found similar results using 

embedded crack methods, as did reference [34] using XFEM. Reference [43] used 

embedded crack methods and crack tracking to compute a specimen with the same shape 

but in a reduced size.  

The geometry is depicted in Figure 10 and the material properties are given in Table 2. 

The detail of the load application is shown in Figure 10. The thickness of the specimen is 

0.4 m. 

This problem is solved using 2D triangular and 3D prism elements. The 2D computational 

domain is discretized with an unstructured mesh with elements of 40 mm of size, resulting 

in 7,488 nodes for 2D. The numerical analysis is carried out under the hypothesis of plane 

stress. The 3D mesh is obtained by the out-of-plane extrusion of the 2D mesh resulting in 

a semi-structured mesh of 29,952 nodes. 

Table 2. Material parameters of the wedge-splitting test 

Young’s Modulus 28.3·109 Pa 

Poisson’s Ratio 0.2 

Tensile Strength 2.27·106 Pa 

Fracture Energy 420 J/m2 

 

This problem is solved using an arc-length algorithm controlling the crack mouth opening 

displacement (CMOD) at the points of load application. 

Figure 11 shows the tensile damage distribution in the specimen for an imposed horizontal 

displacement of 5 mm obtained in the 2D and 3D analyses. Both results are identical 

because the same mesh configuration is used in the XY plane for the 2D and the 3D cases. 

These results agree with the experimental tests carried out by [69]. The crack path is 

vertical, as expected because of the symmetry of the geometry and the loading conditions. 

The crack surface obtained in the 3D analysis is shown in Figure 12, displayed as the 

level set surface of X-displacements. No auxiliary crack tracking technique has been used. 

No spurious mesh bias is observed.  

Figure 13 shows the load vs. crack mouth opening displacement curve in the 2D and 3D 

cases, which are also compared to the results from the tests in [69]. Again, 2D and 3D 

results are almost overlapping. As can be seen, the results are very close to the 

experimental tests. They are also very close to the computational results of references 

[34], [28] and [43]. 
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Figure 10. Geometry of the wedge-splitting test and detail of load application 

 

Figure 11. Tensile damage contour fills of the wedge-splitting test, (a) 2D and (b) 3D solution 

 

Figure 12. Crack surface of the modelled wedge-splitting test 
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Figure 13. Force-CMOD results for 2D and 3D analysis. 

 

4.3 Three-point and four-point bending tests 

 

In this section, beams subjected to three-point and four-point bending tests are considered. 

The experimental tests were carried out by [70]. Other numerical results are reported in 

[71] and [34], where crack tracking auxiliary techniques are used. In Figure 14 the 

geometry of the tested beams is shown. Two cases are considered. In the first one, the 

stiffness at the upper left support is assumed equal to zero (K=0), as in a three-point 

bending test, while in the second one it is considered infinite (K=∞), as in a four-point 

bending test. The thickness of the specimen is 0.05 m. The properties of the material are 

given in Table 3. For the 2D analysis, plane stress conditions are assumed.  

Table 3. Material properties of the beams 

Young’s Modulus 38.0·109 Pa 

Poisson’s Ratio 0.2 

Tensile Strength 3.0·106 Pa 

Fracture Energy 69 J/m2 

 

The problem is solved using an arc-length algorithm controlling the crack mouth opening 

displacement (CMOD) at the notch. 

For this example, 2D triangular and 3D tetrahedral elements are used. In the 2D analysis, 

the computational domain is discretized with a fully unstructured mesh with 2.5 mm 

elements, resulting in 18,738 nodes. For the 3D analysis, a fully unstructured tetrahedral 

mesh of 50,389 nodes and 2.5 mm element-size has been considered. Both meshes are 

shown in Figure 15. 

Figures 16 and 17 show plots of the computed tensile damage index in the cases 

considered. It can be observed that the crack path changes significantly depending on the 

boundary conditions applied to the beam. The 2D and 3D results for each case are almost 
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overlapping. In Figure 18 the crack surfaces in the 3D analyses are shown, plotted as an 

iso-level surface of the X-displacements. There can be seen the fully unstructured mesh 

used for the computation of the beams, which is fine enough to model the crack surface 

with precision. As can be seen in Figure 19, the numerical results agree with the 

experimental tests. References [71] reported very similar crack paths using a global 

tracking algorithm. Also, [34] found very similar results using XFEM and the same global 

tracking algorithm.  

 

Figure 14. Geometry of the three-point and four-point beam (m) 

              

Figure 15. Meshes used for the (a) 2D and (b) 3D analyses of the three-point and the four-point 

bending tests 

 

  

Figure 16. Tensile damage contour fills of the three-point bending test, (a) 2D solution, (b) 3D 

solution 
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Figure 17. Tensile damage contour fill of the four-point bending test, (a) 2D solution, (b) 3D 

solution 

 

 

 

Figure 18. Modelled crack surfaces for the (a) three-point and (b) four-point bending cases 
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Figure 19. Computed crack paths compared to experimental results for (a) three-point and (b) 

four-point bending cases 

 

Figure 20 shows the load-CMOD curves for both the 3 and 4 point bending tests. The 

results are similar to the ones obtained in references [71] and [34]. The three-point 

bending test shows very good agreement with the experimental results obtained by [70] 

both in the 2D and 3D analyses, even if at the last stages of the simulation the strength is 

slightly underestimated. The peak force is slightly lower in the 3D analysis. The four-

point test has its peak slightly outside the experimental range of results. This occurs also 

in the numerical references [71] and [34].  
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Figure 20. Load-CMOD curves for (a) the three-point and (b) four-point bending tests 

 

Structural size effect 

 

Structural size effect addresses the question of how the load capacity of geometrically 

similar structures varies when scaling up or down their relative sizes. Experimental 

evidence shows that, for a given structural problem, ductile behavior corresponds to the 

small scale limit (appropriate for small laboratory specimens), while brittle fracture 

occurs in the large scale limit (apt for structures of very large dimensions). Thus, it is of 

practical interest to develop analytical and numerical tools suitable to bridge the gap 

between perfectly ductile and perfectly brittle behavior, i.e. suitable for the range of quasi-

brittle failure [54].  

In quasi-brittle fracture, size effect does not only affect the load capacity (peak load), it 

also reflects on the post-peak behavior (ductility) of the structure. The capability of a 
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quasi-brittle structure to absorb energy decreases, in relative terms, as the structure size 

increases [54]. 

In reference [70], structural size effect was investigated when testing the beams. For this, 

smaller specimens with half the original size, i.e. a height of D=75 mm, and double size, 

i.e. D=300 mm of height, where also experimentally tested. These cases have also been 

simulated computationally for the three-point beam and are reported in the following. 

In Figure 21, the Force-CMOD curves of the three considered cases, small (D=75 mm), 

medium (D=150 mm) and large (D=300 mm), are shown. The computed results show 

very good agreement with the experimental ones of reference [70], even if the dissipated 

energy is slightly underestimated. In Figure 22, the computed crack paths also show very 

good agreement with the experimental results for the small and large specimens. 

  

Figure 21. Force-CMOD curves for different beam sizes 
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Figure 22. Crack path in (a) the small specimen and (b) the large specimen 

 

Plane Strain vs Plane Stress 

 

The plane stress hypothesis adopted in the 2D computation may be verified by comparing 

the results obtained against those obtained under plane strain assumptions. Figure 23 

shows the force-CMOD results for both considerations. The 3D analysis is also included. 

All three cases are almost overlapping and equally close to the experiments. This indicates 

that the standard engineering practice of neglecting Poisson’s effect in beam theory can 

be extended into the non-linear range. 
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Figure 23. Comparison of 2D plane strain, 2D plane stress and 3D hypothesis 

 

4.4 Notched beams with holes 

 

A more involved example is considered in this section to explore the performance of the 

proposed finite element formulation. Here, a notched beam with holes, experimentally 

tested and numerically computed by [72], is considered. Other numerical solutions are 

reported in [41], [72] and [73]. Reference [41] modelled this example using crack tracking 

and embedded methods and [73] used fracture mechanics. Instead [72] used a 

probabilistic approach, where geometric and material uncertainties are considered when 

computing the crack path and load-displacement curves. 

The tested beam is made of plexiglass; the properties used for the simulation are given in 

Table 4.  

For comparison purposes, three different geometries regarding the position of the notch 

and the holes, shown in Figure 24, are studied. In the original experiment inches were 

used as units of length.  

In the first case, the beam is notched but has no holes; the notch is 6’’ from the center and 

1’’ long. In the second case, the beam has three holes of diameter 0.5’’ at 4’’ from the 

center and a notch identical to the previous case. In the third case, the hole layout is the 

same as in the second case and the notch is 4.5’’ from the center and is 1.5’’ long. The 

thickness of the beam is 0.5’’. For the 2D analysis, plane stress conditions are assumed. 
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Figure 24. Geometry for the three notched beams (m)  

 

Table 4. Material properties of the three holed notched beams 

Young’s Modulus 3.102·109 Pa 

Poisson’s Ratio 0.35 

Tensile Strength 7.0·106 Pa 

Fracture Energy 500 J/m2 
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Figure 25. Experimental and computed crack paths for the three notched beams. Experimental 

results taken from [72] 

In all cases, 2D triangular elements are used. The domain is discretized with unstructured 

meshes of 1 mm elements in the central part, where the crack forms, and of 2.54 mm in 

the rest of the beams, resulting in 44,956, 52,884 and 52,600 nodes, respectively. 

The simulation is done using an arc-length algorithm controlling the crack mouth opening 

displacement (CMOD).  
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Figure 25 shows the computed crack paths next to the experimental results reported in 

[72]. It can be observed that the crack paths are different depending on the notch position 

and the presence of the holes. The crack path for the case without holes is almost identical 

to the experimental result. In the other two cases, the numerical results also show good 

agreement with tests. The present results are comparable to those obtained in [41], [72] 

and [73].  

Figure 26 shows the load-CMOD curve for the case without holes, the only one reported 

in [72]. The computed results show good agreement with the ones obtained 

experimentally. In Figure 27 the force vs displacement curve at the point of load 

application is presented. The numerical results are stiffer than the experimental ones. This 

was also observed in the numerical results reported by [72]. Note that the local response 

at the point of load application is very dependent on the actual details of the experimental 

set-up. Nevertheless, the overall resemblance of the results is remarkable, in terms of peak 

values, snap-back response and dissipated energy. 

 

Figure 26. Force-CMOD curve for the notched beam without holes 

 

Figure 27. Force-displacement curve for the notched beam without holes 
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Figure 28. Crack propagation and evolution of major principal stresses in the notched beam 

without holes 

 

Figure 28 shows the crack propagation and evolution of major principal stresses in the 

notched beam without holes. In the elastic range, stresses concentrate in the vicinity of 

the tip of the notch. This causes the crack to start and propagate through the height of the 

beam and towards the point of application of the load as also shown in Figure 25(a). The 

strain/displacement FE formulation is able to represent this progressive failure of the 

beam with noteworthy accuracy. 

 

4.5 Four-point bending test on a doubly-notched beam 

 

The numerical analysis of a four-point bending test on a doubly notched beam is 

considered next. The corresponding experiments are reported in [74]. Other numerical 

solutions are reported in [37, 75, 76]. In [37] an adaptive particle meshless method was 

used, while in [75] the boundary element method was employed. Reference [76] considers 

a localization limiter introduced to regularize the problem. All these simulations are in 

2D. 

The beam geometry and loading is shown in Figure 29 and the material parameters are 

given in Table 5. The thickness of the beam is 0.1 m. The structural problem presents 

polar-symmetry about the geometrical center. Thus, two symmetric cracks are expected 

to appear, starting from the top of the notches and propagating towards the opposite top 

and bottom faces of the beam. The cracks open and propagate under mixed Modes I and 

II (opening and shearing) loading. The ratio between the uniaxial compressive and tensile 

strengths is 15 [74].  
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In this section, the problem is analyzed in 2D, assuming plane stress conditions, and in 

3D. The objective is to assess the performance of the proposed formulation when more 

than one crack appears.  

 

Figure 29. Geometry of the four-point bending test on a doubly-notched beam 

 

Table 5. Material parameters of the four-point bending test on a doubly-notched beam 

Young’s Modulus 27·109 Pa 

Poisson’s Ratio 0.18 

Tensile Strength 2.0·106 Pa 

Fracture Energy 100 J/m2 

Compressive Strength 3.0·107 Pa 
 

 

 

Figure 30. Tensile damage contour fills of the four-point bending test on a doubly notched beam for 

(a) the 2D and (b) the 3D computations 
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The simulation is performed using an arc-length algorithm controlling the crack mouth 

opening displacement (CMOD) at the upper notch. 

This example is solved using 2D quadrilateral elements and 3D hexahedra. In 2D the 

computational domain is discretized with a fully structured mesh of 1 mm size, resulting 

in a 54,021 node mesh. In 3D, the computational domain is partitioned using hexahedra 

elements of 1.5 mm size, ensuing a structured mesh of 53,998 nodes.  

Figure 30 shows the tensile damage contour fills obtained in the 2D and 3D simulations. 

Due to the polar symmetry of the beam geometry and loading, two polar-symmetric 

cracks appear and propagate. These results are concordant with the ones observed in the 

experiments by [74]; the cracks propagate as expected. The computed 2D and 3D paths 

of both cracks are almost overlapping and are inside the experimental ranges obtained in 

the tests, as can be observed in Figure 31.  

 

Figure 31. Crack path of the four-point bending test on a doubly notched beam 

Also because of the polar symmetry of the problem, the central part of the beam rotates, 

with respect to the central point, as can be seen in Figure 32, where contour fills of the 

displacements are shown. The displacement “jump” across the cracks can also be 

observed neatly. 

 

Figure 32. Displacements of the four-point bending test on a doubly notched beam 

The crack surfaces in the 3D analysis are depicted in Figure 33, plotted as iso-level 

surfaces of the norm of displacements. In this way, the performed simulation allows to 

observe a 3D representation of the piece formed during the experiment. This case 
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illustrates the performance of the proposed method to deal with several cracks 

propagating at the same time in 2D and 3D. As no auxiliary tracking technique is required, 

the present formulation can handle this situation, which does not represent an extra 

hindrance to the formulation.  

 

Figure 33. Central piece of (a) the modelled crack surfaces for the four-point bending test on a 

doubly notched beam and (b) a similar experiment [74] 

 

 

Figure 34. Force-displacement curve of the 2D and 3D simulations of the four-point bending test on 

a doubly notched beam  
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In Figure 34, the Force-displacement curve at the point of load application is shown for 

the 2D and 3D computations. The computed results show very good agreement with the 

experimental ones of reference [74], and also with the numerical results in [37, 76]. 

Figure 35 shows the crack propagation and evolution of major principal stresses in the 

doubly-notched beam. Again it can be seen how in the elastic range stresses concentrate 

at the vicinity of the crack, causing its propagation through the height of the beam and 

towards the points of application of the loads, as seen in Figures 30, 31 and 34a. Note that 

the stress field is polar symmetric in the linear and in the nonlinear behavior.  

 

Figure 35. Crack propagation and evolution of major principal stresses in the four-point bending 

test on a doubly notched beam 

 

 

4.6 Three-point bending test on a skew notched beam 

 

In this section, a skew notched beam subjected to three-point bending is considered. The 

experimental tests were carried out by [77] using Plexiglass, to better reveal the evolution 

of the crack. Other numerical results are reported in [78], where a dual boundary element 

method (DBEM) was implemented and in [79], where the extended finite element method 

(XFEM) was used.  

In Figure 36 the geometry of the tested beam is shown. The notch has a deviation of 45º 

with respect to the lateral faces of the beam. The thickness of the specimen is 0.01 m. The 

properties of the material are given in Table 6. The structural problem is skew-symmetric 

with respect to the vertical longitudinal and transversal mid-planes of the beam. 

Therefore, a non-planar crack is foreseen to materialize at the tip of the skew notch under 

mixed Mode I and Mode III loading and to propagate upwards while twisting around the 

vertical central axis until it is oriented normal to the longitudinal axis.  
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Figure 36. Geometry of the three-point bending test on a skew notched beam (m) 

 

Table 6. Material properties of the three-point bending test on a skew notched beam 

Young’s Modulus 28·109 Pa 

Poisson’s Ratio 0.38 

Tensile Strength 40.0·106 Pa 

Fracture Energy 500 J/m2 

 

 

Figure 37. Meshes used for the (a) structured and (b) unstructured analyses of the three-point 

bending test on skew notched beam 

Due to the deviation of the notch, this example can only be solved in 3D. The load is 

applied imposing increments of displacement at the center of the top of the beam. 3D 

tetrahedral elements are used in a fully structured mesh of 21,516 nodes and 1.5 mm 
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element size in the central area of interest. The elements of the structured mesh are laid 

out in a crisscross pattern. Another mesh, fully unstructured, of 14,709 nodes and 1 mm 

element size is also considered. Both meshes are shown in Figure 37. 

 

Figure 38. Crack surfaces of the three-point bending test on skew notched beam for (a) structured 

and (b) unstructured 3D tetrahedra mesh 

In Figure 38 the crack surfaces are shown, plotted as an iso-level surface of the horizontal 

displacements along the axis of the beam. Both the structured and unstructured meshes 

used for the computation of the beam are fine enough to model the crack surface with 

precision. As can be seen in Figure 39, the numerical results agree well with the 

experimental results.  

 

Figure 39. Crack paths of the three-point bending test on skew notched beam 
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Figure 40. (a) Experimental [77] and computed crack surfaces with (b) structured and (c) 

unstructured meshes 

 

 

Figure 41. Evolution of the crack surface in (a) the experiment [77] and in (b) the present 

simulation 

In Figure 40, the crack surface computed in the simulations is compared to the one 

observed in the tests. The results are optimal within the spatial resolution of the 

considered meshes. Figure 38 to Figure 40 show that results with the structured and 

unstructured meshes are in good agreement with experiments as well as with the skew-

symmetry conditions of the problem. Evolution of the crack surface is shown in Figure 

41.  

Detail of the evolution of the twist angle of the crack front with the height over the initial 

notch is shown in Figure 42. A distinct anti-symmetric crack trace along the straight crack 

front can be noticed. This is because of the combination of Mode I and the antisymmetric 
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Mode III loading conditions along the initial notch. The initial crack plane is inclined 45º 

and ends at 90º and only Mode I along the final crack fronts.  

 

 

Figure 42. Computed evolution of the twist angle of the crack front with the height over the notch 

         

Figure 43. Crack propagation and evolution of major principal stresses in the three-point bending 

test on skew notched beam 

Figure 43 shows the crack propagation and evolution of major principal stresses in the 

skew notched beam. Once more, in the elastic range, stresses concentrate in the vicinity 

of the tip of the notch. This causes the crack to start and propagate through the height of 

the beam and towards the point of application of the load.  
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5 Conclusions 

 

In this work, the FE modeling of quasi-brittle cracks in 2D and 3D with enhanced strain 

accuracy is performed. To this end, a mixed strain/displacement formulation is presented, 

in a matrix and vector notation, based on Voigt’s convention, in a ready-to-use format for 

its implementation in finite element codes. Then, experimental validation is performed 

by means of several simulations which are compared to experimental tests reported in the 

literature.  

The proposed formulation is used in conjunction with an isotropic damage model suitable 

for the prediction of cracking in 2D and 3D applications. Finite element simulations using 

triangles, quadrilaterals, tetrahedra, hexahedra and prisms in structured, semi-structured 

and unstructured meshes are performed. 

An extensive comparison with experimental data observed from the literature is carried 

out, to assess the capacity of the proposed formulation to model the behavior observed in 

the experimental tests. Several numerical simulations have been exhibited to illustrate the 

capacity of the formulation to solve strain localization problems in accordance to 

experimental results. 

Problems involving propagation of single and multiple, straight and curved cracks in 2D 

and 3D, as well as non-planar cracks in 3D are addressed. Aspects related to the discrete 

solution, such as convergence regarding mesh resolution and mesh bias, as well as other 

related to the physical model, like structural size effect and the influence of Poisson’s 

ratio, are also investigated. 

The enhanced accuracy of the computed strain field leads to accurate results in terms of 

crack paths, failure mechanisms and force displacement curves. Spurious mesh 

dependency suffered by both continuous and discontinuous irreducible formulations is 

avoided by the mixed FE, without the need of auxiliary tracking techniques or other 

computational schemes that alter the continuum mechanical problem.  
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