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Abstract – Finite element macro-modelling approaches are widely used for the anal-

ysis of large-scale masonry structures. Despite their efficiency, they still face two im-

portant challenges: the realistic representation of damage and a reasonable independen-

cy of the numerical results to the used discretization. In this work, the classical smeared 

crack approach is enhanced with a crack-tracking algorithm, originating from the analy-

sis of localized cracking in quasi-brittle materials. The proposed algorithm is for the 

first time applied to a large-scale wall exhibiting multiple shear and flexural cracking. 

Discussion covers structural aspects, as the response of the structure under different as-

sumptions regarding the floor rigidity, but also numerical issues, commonly overlooked 

in the simulation of large structures, such the mesh-dependency of the numerical results.  

 

Keywords: Continuum Modelling, Finite element analysis, Façades, Macro-

modelling, Masonry, Mesh independency, Pushover Analysis, Shear/Flexural cracks, 

Strain Localization, Tracking algorithm. 
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1.  Introduction 

The important advances of the last decades in the field of computational solid me-

chanics, as well as the increasing capabilities of modern computers have resulted to an 

ample inventory of numerical methods used for the analysis of masonry structures. 

Nevertheless, there is no unified approach adhering all the aspects relative to the realis-

tic simulation of masonry, namely damage localization, geometry representation, mate-

rial description, and computational efficiency. The choice of the numerical approach 

depends on the purpose of the structural analysis (e.g. capacity, ductility, damage 

origin/propagation, collapse mechanism), the complexity and scale of the structure (e.g. 

single structural member or whole building) and the available resources (e.g. computa-

tional cost, knowledge of geometry and material properties).  

A common categorization of the various approaches is performed in terms of the de-

tail of the material description within the numerical strategy. Under this scope, we can 

recognize direct numerical simulations that consider the geometry and the properties of 

the composite masonry material and simplified approaches that consider masonry as a 

homogenous material with average properties.  

Direct numerical simulations of masonry originate in the pioneering work of Page 

(1978, 1979). Micro-modelling (Lourenco and Rots 1997, Gambarotta and Lagomarsino 

1997a, Macorini  and Izzudin 2011) and discrete element methods (Papastamatiou and 

Psycharis 1993, Lemos 1997, McInerney and DeJong 2015) are today among the most 

used approaches accounting for the geometry of the composite material at the scale of 

its constituents, i.e. mortar joints and units (brick or blocks). Corollary of this detailed 

modelling are realistic numerical simulations that are in very good agreement with ex-
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perimental results. Nevertheless, important challenges of direct numerical simulations 

are the acquisition of a large number of material properties, the calibration of the nu-

merical properties (Sarhosis and Sheng 2014) and, most importantly, the high computa-

tional cost (Roca et al. 2010). Due to these reasons, micro-modelling and discrete ele-

ment approaches are up-to-date restricted to the analysis of small-scale structural ele-

ments or structures. 

Numerical simulations of large masonry structures are based on a different philoso-

phy. For large-scale computations, the direct simulation of the masonry components be-

comes unaffordable both in terms of model preparation and computation times. The al-

ternative is to idealize the masonry as a homogenous material with averaged properties 

depending on its components. This is the assumption of a wide and diverse family of 

computational approaches, including equivalent frame methods (Magenes and Calvi 

1996, Molins and Roca 1998, Parisi and Augenti 2013, Lagomarsino et al. 2013, Adde-

si, Liberatore and Masiani 2015), numerical limit analysis (Block and Lachauer 2013, 

Milani 2013) and continuum mechanics (or macro-modelling) finite element methods 

(FEM) (Carvalho et al. 2014, Pelà et al. 2014a, Castellazzi et al. 2017). 

The macro-modelling approach has been widely used for the analysis of large ma-

sonry structures during the last decades (Lourenço 2002, Roca et al. 2010, Theo-

dossopoulos 2013). Their popularity bases mostly on the facility to simulate large and 

complex geometries at a reasonable computational cost. FEM macro-modelling ap-

proaches can capture the structural response during the whole loading history, providing 

important information on the damage evolution and the subsequent collapse mechanism.  
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Notwithstanding the aforementioned advantages, macro-models have two important 

limitations. The first one concerns the representation of damage. Failure of masonry un-

der tension, bending or shear, is characterized by localized discrete cracks. Contrary to 

that, the representation of damage in macro-modelling approaches is often smeared over 

large areas or volumes of the structure. This inconsistency with the real behaviour ham-

pers the association of existing damage with the simulated one and may result to an in-

accurate interpretation of the emerging collapse mechanism. Apart from this, the 

smeared crack approach in the standard irreducible formulation of the finite element 

method results to the erroneous damage localization that depends on the alignment of 

the used mesh. The problem of mesh-bias independent crack localization is an open top-

ic within the research field of computational failure mechanics (see Cervera, Chiumenti, 

and Codina 2010,  Rabczuk 2012), with, however, limited contributions to the issues re-

lated to the analysis of large masonry structures. 

To overcome the above limitations of the macro-modelling approach the authors 

have proposed the enhancement of the classical smeared crack approach with a local 

crack-tracking algorithm. This approach was introduced in (Cervera et al. 2010) with 

the aim of simulating localized cracks under tension or bending stress-states in quasi-

brittle materials. The algorithm has been validated through comparison with experi-

mental and analytical results on concrete and masonry structural elements (Cervera et 

al. 2010, Saloustros, Pelà, and Cervera 2015). Aiming to account for the linear and non-

linear properties of orthotropic materials, Pelà et al. (2014) coupled the algorithm with 

an orthotropic damage model resulting to the realistic simulation of damage experienced 

by timber and masonry elements. Large-scale applications include the analysis of repre-



- 6 - 

 

 

sentative bays of the Mallorca cathedral (Roca et al. 2013, Pelà et al. 2014b) and the 

Poblet monastery (Petromichelakis, Saloustros, and Pelá 2014).  

Despite the differences of the materials and the scale of the simulated structures, the 

above applications bear a common characteristic; the structural collapse is defined by 

cracks starting from the boundaries of the structure (e.g. wall sides, door/window open-

ings) and propagating along one direction. Apart from these, another common failure 

mechanism of masonry piers and spandrels is due to diagonal shear cracking emerging 

from the interior and propagating along two opposite directions. Existing tracking algo-

rithms, however, have been developed for the simulation of cracks with a single propa-

gation direction and starting only from the boundary of the structure or predefined mate-

rial perturbations. This important simplification inhibits the use of these localization ap-

proaches to the analysis of large-scale problems with diverse cracking. Aiming to ex-

tend the application field of tracking algorithms, the authors have recently proposed a 

novel tracking algorithm with capacity to simulate both shear and flexural cracks 

(Saloustros et al. 2016a, Saloustros et al. 2016b). The algorithm has been validated 

through comparison with an experimental result on a full-scale masonry frame. 

This work investigates the applicability of the macro-model presented in (Saloustros 

et al. 2016a, Saloustros et al. 2016b) to the analysis of large masonry structures with 

failure mechanism defined by a large number of diverse cracks. To this aim, the seismic 

capacity of a large masonry wall is investigated by using the equivalent non-linear static 

analysis. To the best of the authors’ knowledge, the presented analyses are the first ap-

plication of tracking algorithms to the simulation of large-scale structures with multiple 

internal and boundary cracks. Discussion includes both the structural response of the 

wall under different assumptions regarding the floors’ rigidity and the numerical per-
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formance of classical smeared crack approach with and without the proposed crack-

tracking algorithm. Special focus is given on the effect of the size and alignment of the 

mesh used in the numerical simulations, a topic that is rarely addressed in the existing 

studies about the analysis of large structures exhibiting multiple cracking.  

The paper is structured as follows. Section 2 outlines the underlying continuum dam-

age model. The enhancement of the classical smeared crack approach with the tracking 

algorithm is presented in Section 3. Section 4 constitutes the core of this paper, i.e. the 

application of the proposed approach to the case study of a large masonry wall of an ex-

isting building. The same section covers the important issue of the mesh-dependency of 

the numerical simulations. The paper closes with some concluding remarks in Section 5. 

2.  Continuum damage macro-model 

Damage models are appealing for large-scale computations because they do not re-

quire the costly return-mapping algorithms of plasticity models. Additionally, the use of 

complex failure surfaces or the combination of more than one is straightforward, as 

sharp changes do not affect the robustness of the computation. For these reasons, dam-

age models have been widely used for the non-linear analysis of masonry structures 

(Papa 1996, Gambarotta and Lagomarsino 1997b, Pelá, Cervera and Roca 2011).  

The material degradation is simulated in this work with the use of the continuum 

damage macro-model proposed by Cervera et al. (1995). The particular constitutive 

model considers the material as isotropic up to the triggering of the damage. In the non-

linear range, there is a damaged induced orthotropy in the principal stress directions.  

This model has been chosen due to its good balance between computational cost and ef-

ficiency, as shown from the analysis of complex masonry structures such as the Mallor-
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ca cathedral (Roca et al. 2013) and the church of the Poblet monastery (Saloustros et al. 

2014). More sophisticated models that consider the anisotropy of masonry (Trovalusci 

and Masiani 2003, Pelá et al. 2011, Petracca et al. 2017) can be potentially used, at the 

price of a higher computational cost, in cases where the anisotropic properties of the 

composite material are available. 

 In the following, the main components of the constitutive model are outlined using 

compact notation. Lowercase bold letters in italics stand for second order tensors (e.g. 

𝝈𝝈), uppercase bold letters in italics for fourth order tensors (e.g. 𝑪𝑪𝟎𝟎) and lowercase bold 

letters for vectors (e.g. 𝐩𝐩𝐣𝐣). For the detailed formulation the reader is referred to (Cer-

vera 2003). 

2.1 Constitutive equation 

In a continuum damage model, the actual stresses of a damaged material are associ-

ated to the equivalent stresses of the intact material (i.e. the effective stresses (Chaboche 

1988)) with the use of a scalar variable representing the magnitude of the damage expe-

rienced by the material. In this work, the Cauchy stress tensor 𝝈𝝈 is a function of the pos-

itive and negative effective stress tensors, 𝝈𝝈�+ and 𝝈𝝈�−respectively, through the following 

constitutive equation  

𝝈𝝈 = (1 −  𝑑𝑑+)𝝈𝝈�+ +  (1 −  𝑑𝑑−)𝝈𝝈�− (1) 

This is a model with damage induced rotating orthotropic behaviour. The scalar 

damage indices 𝑑𝑑+ and 𝑑𝑑− represent the damage of the material due to tensile and com-

pressive stress states. Their value varies from 0 for intact material to 1 for a completely 

damaged material. The positive and negative parts of the effective stress tensor are ob-

tained through the following expressions (Faria, Oliver and Cervera1998) 
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𝝈𝝈�+ =  �〈𝜎𝜎�𝑗𝑗〉
3

𝑗𝑗=1

𝐩𝐩𝐣𝐣 ⊗ 𝐩𝐩𝐣𝐣 
(2) 

𝝈𝝈�− = 𝝈𝝈� −  𝝈𝝈�+ (3) 

𝝈𝝈� =  𝑪𝑪𝟎𝟎: 𝜺𝜺 (4) 

In the above equations, 𝜎𝜎�𝑗𝑗 is the effective principal stress corresponding to the nor-

malized eigenvector  𝐩𝐩𝐣𝐣, 𝑪𝑪𝟎𝟎 is the classical elastic constitutive tensor and 𝜺𝜺 the strain 

tensor. Symbols ⊗ and 〈∙〉 stand for the tensor product and the Macaulay brackets 

(〈𝑥𝑥〉 = 𝑥𝑥, if 𝑥𝑥 ≥ 0, 〈𝑥𝑥〉 = 0, if 𝑥𝑥 < 0) respectively.  

2.2 Damage criteria 

The failure surfaces that determine the triggering of the 𝑑𝑑+ and 𝑑𝑑− indices are de-

fined through two scalar functions respectively 𝜏𝜏± termed as the equivalent stresses 

𝜏𝜏+ = 𝐻𝐻[𝜎𝜎�𝑚𝑚𝑚𝑚𝑚𝑚]
1

1 − 𝑎𝑎
��3𝐽𝐽2̅ + 𝑎𝑎𝐼𝐼1̅ + 𝛽𝛽〈𝜎𝜎�𝑚𝑚𝑚𝑚𝑚𝑚〉�

𝑓𝑓+

𝑓𝑓−
 (5) 

𝜏𝜏− = 𝐻𝐻[−𝜎𝜎�𝑚𝑚𝑚𝑚𝑚𝑚]
1

1 − 𝑎𝑎
��3𝐽𝐽2̅ + 𝑎𝑎𝐼𝐼1̅ + 𝜅𝜅1𝛽𝛽〈𝜎𝜎�𝑚𝑚𝑚𝑚𝑚𝑚〉� (6) 

𝑎𝑎 = �𝑓𝑓𝑏𝑏
− 𝑓𝑓−⁄ �−1

2�𝑓𝑓𝑏𝑏
− 𝑓𝑓−⁄ �−1

  (7) 

𝛽𝛽 = (1 − 𝛼𝛼)
𝑓𝑓−

𝑓𝑓+
− (1 + 𝛼𝛼) (8) 

The above definitions show the dependence of the failure surfaces on the uniaxial 

tensile 𝑓𝑓+ and compressive 𝑓𝑓− strengths, as well as on the biaxial 𝑓𝑓𝑏𝑏− compressive 

strength. 𝐼𝐼1̅ denotes the first invariant of the effective stress tensor and 𝐽𝐽2̅ the second in-

variant of the effective deviatoric stress tensor and 𝜎𝜎�𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜎𝜎�𝑚𝑚𝑚𝑚𝑚𝑚 stand for the maxi-

mum and minimum effective principal stresses respectively. The 𝜅𝜅1 variable in Equa-
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tion (6) has been introduced in (Petracca et al. 2015) to control the shape of the com-

pressive failure surface in the shear quadrants. Its value ranges from 0 (leading to the 

Drucker-Prager criterion) to 1 (leading to the criterion proposed by Lubliner et al. 

(1989), see Fig. 1. Finally, 𝐻𝐻[∙] is the Heaviside step function (𝐻𝐻[𝑥𝑥] =  1, 𝑖𝑖𝑖𝑖 𝑥𝑥 ≥

0 𝑎𝑎𝑎𝑎𝑎𝑎 𝐻𝐻[𝑥𝑥] =  0, 𝑖𝑖𝑓𝑓 𝑥𝑥 < 0). 

The damage criteria for tensile 𝛷𝛷+ and compressive damage 𝛷𝛷− are simply 

𝛷𝛷±(𝑟𝑟±, 𝜏𝜏±) = 𝜏𝜏± −  𝑟𝑟±  ≤ 0 (9) 

 

The scalars 𝑟𝑟± represent the loading history of the material and are necessary to dis-

tinguish between loading and unloading conditions. Their initial values are equal to the 

tensile and compressive strength (𝑟𝑟0+ = 𝑓𝑓+, 𝑟𝑟0− = 𝑓𝑓−) of the material and then vary ac-

cording to 

𝑟𝑟± = max [𝑟𝑟0
±, max

𝑖𝑖∈(0,𝑛𝑛)
�𝜏𝜏𝑖𝑖

±�] (10) 

 

with n representing the number of the current (load/displacement) increment. 

Finally, an exponential softening law is selected for the evolution of the damage var-

iables 

𝑑𝑑± = 1 −  
𝑟𝑟0

±

𝑟𝑟± 𝑒𝑒𝑒𝑒𝑒𝑒 �2𝐻𝐻𝑑𝑑
± �

𝑟𝑟0
± − 𝑟𝑟±

𝑟𝑟0
± �� 

(11) 

where 𝐻𝐻𝑑𝑑 ≥ 0 is the discrete softening parameter taking into account the compres-

sive and tensile fracture energy of the material 𝐺𝐺𝑓𝑓
± and the characteristic finite element 

width 𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑, ensuring mesh-size objective results according to the crack-band theory (Ba-

zant and Oh 1983). Its value is defined with the following equations 
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𝐻𝐻𝑑𝑑
± =

𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑
𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

± − 𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑
 

(12) 

𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚
± = 2𝐸𝐸𝐺𝐺𝑓𝑓

± 𝑓𝑓±⁄  (13) 

The value of the characteristic element width is considered as 𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑 =  �2𝐴𝐴𝑒𝑒, where 

𝐴𝐴𝑒𝑒 is the surface of the triangular element.  

3.  The local crack-tracking algorithm 

The crack-tracking algorithm serves as an enhancement of the classical smeared 

crack approach. Its aim is to the ensure mesh-bias independency of the numerical results 

and the realistic representation of propagating cracks in the numerical simulation of 

fracture in quasi-brittle materials. The presented approach has been implemented in the 

finite element software COMET (2016) developed in the International Centre of Nu-

merical Methods in Engineering (CIMNE) at the Technical University of Catalonia, 

Barcelona.  

All the functions of the crack-tracking algorithm are performed within a set of sub-

routines that are executed before the computation of the stresses at the first iteration of 

each (load or displacement) increment of the numerical analysis. The purpose of the al-

gorithm is to identify the propagation path of all new and existing cracks for the current 

increment. A flag system is used to distinguish between (a) damaged elements, (b) non-

damaged elements within a crack-path and (c) non-damaged elements outside a crack-

path. The stress-strain state of the elements within the aforementioned (a) and (b) 

groups is defined according to the constitutive law presented in Section 2. For the ele-

ments in group (c) a linear-elastic relationship is maintained. The basic elements of the 

tracking algorithm are presented in Fig. 2. 
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The first step of the crack-tracking algorithm consists in identifying new cracks. 

These originate at elements satisfying the damage criterion as defined in Equation 9. 

Since the damage condition can be satisfied for more than one element at the same in-

crement, an “exclusion radius criterion” is used to identify the origin of a crack. This 

defines that the “crack root” element is the one with the highest ratio between the tensile 

effective stress and tensile strength of the material (i.e. 𝜏𝜏+ 𝑓𝑓+⁄ ) within an area defined 

by an “exclusion radius” 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. The latter value represents the minimum distance be-

tween existing and new cracks and is determined by the user. The purpose of the exclu-

sion radius criterion is two-fold. The first one is to avoid the non-realistic spreading of 

damage over large areas, which typically occurs in smeared cracking problems with 

standard finite elements. This is a numerical pathology, not associated with the nature of 

the simulated material, leading in the later steps of the analysis to the erroneous and 

mesh-dependent localization of damage. The problem of the mesh-independent strain 

localization is an ongoing challenging topic in the field of computational failure me-

chanics, with tracking algorithms being one of the current efficient alternatives (Cervera 

and Chiumenti 2006, Jäger, Steinmann and Kuhl 2008, Slobbe, Hendriks and Rots 

2014, Saloustros et al. 2015). The second purpose of the exclusion radius is to account 

of the composite nature of the simulated material in a simplified and implicit way, when 

continuum finite element models are used for the numerical analysis. To illustrate this, 

consider the case of a historical masonry where cracking is mainly localized within the 

more vulnerable mortar joints, either due to the damage of the mortar or the debonding 

between the mortar and the (brick or stone) units. In such cases, the exclusion radius can 

be associated to the size of the units. A value of the exclusion radius less or equal to the 

finite element size recovers the classical smeared crack approach. The effect of this pa-
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rameter on the simulation of masonry structures has been presented in (Cervera et al. 

2010, Roca et al. 2013, Saloustros et al. 2016a, Saloustros et al. 2016b). 

After recognising the new cracks for the current increment, the crack-tracking algo-

rithm proceeds to the identification of the propagation path for each crack. The crack 

propagation direction is defined to be orthogonal to the direction of the maximum prin-

cipal stresses as calculated either at the crack origin for new cracks or at the crack-tip 

element for existing ones. The crack-tip is the last element at the propagation front of a 

consolidated (at a previous increment) crack. For the case of internal crack origins, the 

crack path is sought along the two opposite orientations defined by the crack propaga-

tion vector. For crack origins lying on the boundary of the numerical domain or for 

crack-tips, the crack propagates to the single direction defined by the same vector.  

An important task of the algorithm is the opportune correction of sudden changes in 

the crack propagation direction. This situation occurs for high stress gradients at the 

propagating front of flexural cracks. To alleviate this pathology a maximum curvature 

criterion is used (Cervera et al. 2010) that identifies sudden changes in the crack propa-

gation direction at the crack-tip comparing to the last part of the crack with length 

𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ and corrects it according to a minimum deviation angle (𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚) defined by the us-

er. For further details, the interested reader is referred to (Cervera et al. 2010, Saloustros 

et al. 2016a).  

4.  Numerical Simulation of a large-scale wall 

In this section, the enhanced macro-model with the crack-tracking algorithm is ap-

plied for the first time to the analysis of a large-scale structure with multiple cracking. 

The case study concerns the analysis of a five floor structural wall at the interior of a 
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masonry building situated in Via Martoglio, Catania Italy. The wall has regular open-

ings symmetrically distributed along its central axis. Two irregularities exist in the 

structure. The first one concerns an opening at the right corner of the top floor and the 

second is a large door opening at the middle of the base floor. Clay brick vaults sup-

ported on concrete girders comprise the floor structural system, while the roof is a tim-

ber structure. The masonry is of regular units with dimensions 250 ×  120 ×  55 𝑚𝑚𝑚𝑚3  

(brick UNI5628/65). All the lintels are made of masonry but that of the central door at 

the base, which is made of reinforced concrete. Figure 3a presents the geometry and di-

mensions of the analysed structure. 

The numerical simulation aims to investigate the structural response of the wall 

against seismic actions by means of a non-linear equivalent static analysis. Two stages 

of loading are considered. The first one corresponds to the application of the self-weight 

of the walls and floors and the live load as defined in (Brencich et al. 2000). In the sec-

ond stage, the seismic actions are simulated as horizontal forces applied at the level of 

each floor. The loading pattern is proportional to the height and the vertical loading of 

each floor as suggested by the Italian Code [D.M 14/01/2008]. 

As no information is available regarding the rigidity of the floors, two different mod-

els have been considered. In the first one (denoted hereafter as Model A), the same ma-

terial parameters are used for both the masonry walls and floors assuming the existence 

of a flexible diaphragm (Material A in Table 1). In the second model (denoted hereafter 

as Model B), the floors are simulated as linear elastic with the double stiffness of the 

masonry aiming to consider the effect of a stiff diaphragm (Material B in Table 1). The 

latter material has been used in both models for modelling the lintel above the central 

opening at the ground floor. The material properties have been taken from previous 
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analyses on the same building (Brencich et al. 2000, Milani, Lourenço and Tralli 2006). 

The 𝜅𝜅1 parameter is taken equal to 0.45 which is equivalent to assume a shear strength 

of 0.15 MPa, which is the value used in the previous reference studies (Brencich et al. 

2000, Milani, Lourenço and Tralli 2006). The ratio between biaxial and uniaxial com-

pression is equal to 1.15. As presented in (Saloustros et al. 2016a, Saloustros et al. 

2016b), the exclusion radius can be associated to the size of units of the simulated ma-

sonry. This is because cracking usually localizes in the interface between the units and 

the mortar. For this reason, an exclusion radius of 0.25 m is used in this case, which is 

equal to the bricks length, while the rest of the tracking parameters are 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 45° and 

𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ =  0.5 𝑚𝑚. The last two are minimum values that prevent the overturning of 

cracks. For a detailed discussion of the effect of the tracking parameters, the reader is 

referred to (Saloustros et al. 2016a, Saloustros et al. 2016b). 

The structure is discretized using an unstructured mesh with two-dimensional con-

stant strain triangles under plane stress conditions. The average size of the finite ele-

ments is 0.15 m resulting in a total number of 51052 elements (Fig. 3b). The analysis is 

performed using an arc-length method along with a line-search procedure. Convergence 

is achieved for a ratio between the norm of residual forces against the norm of the total 

external forces less than 0.01. Calculations are performed using the finite element soft-

ware COMET (2016), while pre- and post-processing with GiD, developed also in 

CIMNE, Barcelona (GiD 2016). 

4.1 Model A– Flexible Diaphragm 

The structural response of the Model A with flexible floors is presented in terms of 

base shear against top horizontal displacement in Figure 4. The structure has a maxi-
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mum capacity of 635 kN. The post-peak response is characterized by a softening part 

leading to a residual strength of around 530 kN. 

The first drop in the stiffness occurs for a base shear of around 350 kN. This coin-

cides with the occurrence of shear and flexural cracking at the spandrels of the second 

and third floor as shown in Figure 5a. The increase in the horizontal load results to the 

extension of damage to the great majority of the spandrels, see Figure 5b. Flexural 

cracks initiate from the corner of the openings and propagate vertically within the span-

drels. Contrarily, shear cracks emerge from the interior of the spandrels, at their middle 

height, and continue their propagation diagonally in two directions. Figure 6 presents 

the evolution of this damage pattern for the spandrel at the 4th floor and second column 

of openings (counting from the right side). Cracking due to bending initiates at the two 

ends of the spandrel and propagates towards the interior (Figure 6a). At a later stage, 

shear cracks emerge at the interior (Figure 6b) of the spandrel and evolve diagonally 

towards the two ends of the spandrel (Figure 6c). This cracking is characteristic of a 

strong-pier weak spandrel configuration (Beyer and Dazio 2012, Parisi & Augenti 

2014). The presented tracking algorithm can successfully simulate this common damage 

typology of masonry because it allows cracks to initiate at any location of the mesh and 

to propagate in one or two directions.  

 Figure 5c shows the tensile damage distribution just after the maximum capacity of 

the structure. The vertical piers of the right side start to behave as cantilevers owing to 

the extensive damage of the weak spandrels. The collapse mechanism is determined by 

the rotation of the right corner after the progression of damage at the spandrels of all 

floors of the extreme right side at levels sufficient to allow its detachment from the rest 

of the structure. The rest of the analysis finds the right corner rotating around its base, 
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resulting to important shear cracking at the base wall (Figure 5d). The analysis stops 

when the flexural cracks at the spandrels are entirely opened, resulting to their complete 

partition from their adjacent piers. 

4.2 Model B – Stiff Diaphragm 

The assumption of a stiff and elastic diaphragm has an important effect in the re-

sponse of the structure. The capacity increases around 80%, reaching a horizontal load 

of 1139 kN (Figure 4). The displacement of the structure for the capacity load increases 

in the same order, being of 11 mm instead of 6.6 mm for Model A.  

The initiation of damage is similar to that of Model A, affecting the spandrels of the 

second and third floor at the fourth column of openings (counting from the left side) for 

a base shear of around 425 kN, see Figure 7a. Contrary to Model A, the increase of the 

horizontal force results in a more uniform distribution of damage at the spandrels. This 

can be observed in Figure 7b, showing the tensile damage contour for a base shear of 

around 750 kN. After the spreading of damage at the spandrels, shear cracks start affect-

ing the piers of the base floor. Important cracking seems to affect the pier next to the 

base door, which is probably due to a hammering effect of the rigid lintel above it. The 

tensile damage distribution after reaching the maximum capacity is shown in Figure 7c. 

The stiffer floors have restrained the rotation of the vertical piers despite the severe 

damage at the spandrels and mobilized the shear response of the piers. Flexural cracks 

start appearing at the lower left corner, while shear cracks are now evident in many 

piers of the structure mostly at the right side and the base. The shear failure of these 

piers determines the capacity of the structure, which can be seen as the drop of the base 

shear after the peak in the graph of Figure 4. The shear capacity of the rest piers results 
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to a residual strength of the structure as shown by the horizontal plateau in the post-peak 

response. This is followed by another sudden drop in the residual strength of the struc-

ture due to the shear failure of the rest of the piers at the left part of the structure as 

shown in Figure 7d. The analysis stops when the shear capacity of all the base piers is 

exhausted.  

4.3 Discussion of the diaphragm effect on the structural response 

 The different assumptions regarding the rigidity and strength of the floors lead to 

substantial changes of the structural response. Stiff floors increase the integrity of the 

structure and the collaboration among the vertical piers even after the damage at the 

spandrels.  

The collapse mechanism in Model A is triggered by the flexural cracking at the 

spandrels. This induces the cantilever behaviour of the last three vertical piers of the 

right side, which rotate around their base with almost no interaction among them. Fail-

ure of the structure is eventually determined by the collapse of the right side, as shown 

in Figure 8a. Contrarily, the stiff floor in Model B results in the mobilisation of the 

shear response of the piers, the strength of which determines the global capacity of the 

structure. Collapse in this case is due to the shear failure of the piers at the base of the 

structure Fig 8b. The capacity of the tracking algorithm to model internal cracks with 

two orientations, i.e. shear cracks, is crucial for the realistic simulation of the current 

case study. 

The different nonlinear response between the shear failure and the flexural one can 

be appreciated through a comparison of the base shear versus displacement graphs in 

Figure 4. Flexural failure in Model A and rocking of the vertical piers is characterized 
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by a smooth post-peak response. Differently, in Model B the shear failure of the piers at 

the base results to sudden drops in the load-caring capacity of the structure after the 

peak-strength. 

 A common characteristic of both models is the weakness of the spandrels. The most 

prone of them to fail are those with massive piers at their both sides. This is the case of 

the spandrels at the fourth column (counting from the left side), which are the first to 

experience damage during the loading history (see Figs 5a and 7a) for both models. 

Nevertheless, the damage pattern at the spandrels seems to change from mainly vertical 

flexural cracks to diagonal shear cracking when the floor has an increased stiffness 

compared to that of the masonry walls. 

4.4 Comparison with other approaches 

Figure 9 presents a comparison between the results obtained with the macro-model 

proposed in this work and three alternatives from the literature: a finite element model 

with inserted discontinuities (Brencich et al. 2000), a limit analysis software (Milani, 

Lourenço and Tralli 2006) and an equivalent frame approach (Addessi, Liberatore and 

Masiani 2015).  

The capacity obtained using Model A (635 kN) is very similar to the one calculated 

using the lower bound approach (691 kN) in Milani et al. (2006) considering the case 

with flexible diaphragms. The small difference may be attributed to the different appli-

cation pattern of the masonry’s self-weight, which was concentrated at the floor levels 

in (Milani, Lourenço and Tralli 2006), while here the self-weight of the walls is applied 

at the masonry surfaces. This difference could explain the lower capacity of the present 

model since more load is actually located at higher levels of the structure.  
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Two models are reported from the work of Brencich et al. (2000). In the Model 1 the 

concrete floors were assumed to have the same properties as the masonry (as in Model 

A here), while in Model 2 they were modelled as elastic with an elastic modulus of 5 

GPa (as in Model B here). In these models, damage could localize only along disconti-

nuities distributed within the structure at horizontal layers and separated by quadrilateral 

finite elements. Vertical interfaces were positioned only at the location of the masonry 

lintels at each floor and for a single element height. The different treatment of damage 

and the above restrains in the propagation of vertical cracks resulted in an increased ca-

pacity comparing to the one estimated here for both models. This difference is more im-

portant for the case of Model 1 and Model A, where the analyses show that failure is 

characterized by vertical cracking due to bending at the spandrels.  Nevertheless, the 

damage distribution within the structure is equivalent in both approaches and for both 

models. In Models 1 and A, damage is mainly localized at the spandrels, while in Mod-

els 2 and B significant damage affects the piers of the structure, and especially those of 

the lower floor. 

Finally, the maximum capacity obtained using Model B is very close to the one pre-

dicted in (Addessi, Liberatore and Masiani 2015) for a model with the assumption of 

elastic diaphragms and using an equivalent frame approach with force-based beam finite 

elements. The differences existing in the linear response are due to the use of a different 

value of elastic modulus for the walls of the structure.  

The obtained results using the proposed approach are in overall agreement with those 

existing in the literature. The enhanced capacity of the crack-tracking algorithm to 

simulate the propagation of damage within the structure results to a more detailed repre-

sentation of the post-peak response, as shown especially for the case of Model B. The 
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presented approach can be an efficient alternative for the analysis of large structures, 

especially when the analyst necessitates information regarding the behaviour of the dif-

ferent structural members and the local collapse mechanisms occurring within the struc-

ture.  

4.5 Mesh dependency 

This section investigates the dependency of the proposed approach to the discretiza-

tion size and structure of the mesh. The performed analyses consider the properties of 

Model A using two additional meshes, and the obtained results are compared with the 

reference mesh of Figure 3b. 

4.5.1 Mesh-size dependency 

The mesh-size dependency is investigated using a refined unstructured mesh with 

average element size equal to 75 mm. This increased refinement results in a total num-

ber of 204729 elements, i.e. 4 times more than in the reference model. The difference of 

the refinement level is illustrated in Figure 10.  

Figure 11 shows the global response of the structure for the two unstructured meshes 

with the different element sizes. The two graphs almost coincide providing identical ca-

pacity for both cases and a very similar post-peak response. As illustrated in Figure 12a, 

the damage pattern is comparable for both cases. The same occurs for the obtained col-

lapse mechanism, shown with the contour of the maximum principal strains in Figure 

12b. The proposed enhanced macro-model gives results that are mesh-size independent. 

This is due to both the correct localization of the damage and the regularization of the 

constitutive law according to the finite element’s characteristic length as shown from 

Equations (11)-(13). 
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4.5.2 Mesh-bias dependency 

The mesh-bias dependency is investigated by comparing the results obtained with the 

mesh of Figure 3b, with a structured mesh presented in Figure 13. The sides of the or-

thogonal triangles make angles of 0º, 45º, 90º and 135º with the horizontal direction and 

have a mean length of 150 mm (44852 elements). Analyses with this mesh are carried-

out with both the classical smeared crack approach and the crack-tracking algorithm.  

The damage distribution as well as the localized strains for a horizontal displacement 

of approximately 21 mm using the two different meshes and the enhanced macro-model 

are presented in Figure 14. The obtained results are in good agreement. The damage ty-

pology at the spandrels is similar in both cases, with flexural cracks being present at the 

two corners of the openings and shear cracks at the middle of the spandrels. Good 

agreement is found also for the localized cracks and the occurring collapse mechanism, 

determined by the overturning of the right corner as shown in Figure 14b and Figure 

14d.  

The effectiveness of the crack-tracking technique to address the mesh-bias depend-

ency is better demonstrated when compared with the numerical simulations carried-out 

without using the algorithm. To this aim, both meshes of Figure 3b and Figure 13 are 

analysed using the classical smeared crack approach. Figure 15a presents the contours 

of tensile damage using the unstructured mesh of Figure 3b, for a horizontal displace-

ment at the top of the structure equal to 15.4 mm. Severe damage affects the spandrel 

walls resulting to their separation from the adjacent piers and the rotation of the vertical 

walls at the right side of the structure. Note the direction of the cracks that have opened 

during the loading history, but also the open cracks after reaching the capacity of the 

structure (Figure 15b); they are mostly diagonal, referring to a prevailing shear failure at 
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the spandrels. Consider now the results of the numerical analysis using the structured 

mesh of Figure 13. Figure 15c presents the contour of the tensile damage for a dis-

placement of 15.5 mm at the top of the structure. Cracking once again prevails at the 

spandrels, but this time the crack orientation is vertical in the great majority of the exist-

ing cracks. This is better observed with the contour of the maximum principal strains 

showing the localized cracks in Figure 15d.  

It is obvious that the numerical solution is mesh-bias dependent for both the used 

discretizations when the proposed enhanced macro-model is not used. This numerical 

pathology inhibits the assessment of the actual local collapse mechanisms. On the con-

trary, the proposed algorithm shows to be robust, even for the structured mesh with ori-

entations that facilitate the opening of vertical cracks, as the case of the classical 

smeared crack approach has demonstrated. 

The different response of the structure for the two meshes is clear in the base shear 

against horizontal displacement graphs of Figure 16. The capacity of the structure with-

out the use of the crack-tracking algorithm is lower by around 14% when the structured 

mesh is used, compared to the result with the structured one. This is due to the mesh-

biased cracking at the spandrels, being vertical at the case of the structured mesh and di-

agonal for the unstructured one. Quite different response is also observed in the post-

peak range with a sharper decrease of the residual capacity. Contrarily, the results using 

the crack-tracking algorithm are in good agreement among them for both used meshes 

(Figure 16). The capacity is lower by around 2% for the case with the structured mesh. 

Despite this, the structural response is clearly similar for both cases, even in the post-

peak response. A comparison between the graphs obtained with and without the track-
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ing algorithm reveals the impact of the erroneous localization of damage with the 

smeared crack approach. 

5.  Conclusions 

In this work, an enhanced continuum finite element model has been applied to the 

analysis of a large masonry structure. The model bases in the use of standard finite ele-

ments, a crack-tracking algorithm and a continuum damage model.  

The proposed enhanced continuum finite element model has been used for the non-

linear analysis of a real case study consisting of a large masonry façade of an existing 

building, for the combined gravitational loads and (earthquake equivalent) monotonical-

ly increasing horizontal forces. The use of the proposed algorithm has given an im-

portant insight on the alteration of the structural response of the simulated wall for the 

two different assumptions regarding the rigidity of the floor system. A flexible dia-

phragm results to a reduced capacity and to a collapse mechanism characterized by the 

cantilever response of the vertical continuous piers after flexural and shear damage in 

the weak spandrels. The horizontal loading finally evokes the complete separation of the 

right side of the structure. On contrary, a floor system with increased stiffness and 

strength (compared to the vertical walls) preserves the integrity of the structure after the 

shear damage of the spandrels. Failure in this case is characterized by shear cracking at 

the piers of the base floor. 

Numerical analyses carried out using various discretizations with different sizes and 

orientations demonstrate the mesh-size and mesh-bias independency of the proposed 

approach. For the mesh-bias dependency study, the enhanced model with the tracking 

method has been compared with the traditional smeared crack approach. The obtained 
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crack pattern using the classical smeared crack approach has shown to depend notably 

on the orientation of the mesh, affecting considerably the structural response and the 

predicted capacity of the analysed wall. On the contrary, the results obtained with the 

crack-tracking algorithm have been very consistent for both meshes. The proposed ap-

proach has shown to be robust and suitable for the realistic simulation of multiple crack-

ing in large structures.  
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6.  Figure Captions 

Figure 1. The damage surface as proposed in (Lubliner et al. 1989) 

Figure 2. The basic elements of the crack-tracking algorithm 

Figure 3. (a) Geometry of the analysed wall (in mm) and (b) the used unstructured 

mesh. 

Figure 4. Base shear versus horizontal displacement at the top right corner of the struc-

ture for the flexible diaphragm case (Model A) and for the stiff diaphragm case (Model 

B). 

Figure 5. Tensile damage contour of Model A for a horizontal displacement at the right 

top of: (a) 2 mm (point A1 in Figure 4), (b) 3.5 mm (point B1 in Figure 4), (c) 6.9 mm 

(point C1 in Figure 4) and (d) 37 mm (point D1 in Figure 4). 

Figure 6. Flexural and shear cracking evolution at the spandrel of the 4th floor, second 

column of openings (counting from the right side) for a displacement at the top of: (a) u 

= 2.9 mm (b) u = 4.0 mm (c) u = 11.9 mm. 

Figure 7. Tensile damage contour of Model B for a horizontal displacement at the right 

top of: (a) 2.2 mm (point A2 in Figure 4), (b) 4.8 mm (point B2 in Figure 4), (c) 11.4 

mm (point C2 in Figure 4) and (d) 25.1 mm (point D2 in Figure 4). 

Figure 8. Contour of the maximum principal strains on a deformed (×30) mesh for (a) 

Model A and (b) Model B. 

Figure 9. Comparison of the global response of the Via Martoglio masonry wall as 

obtained by different numerical approaches.   

Figure 10. Part of the mesh used with average element size of (a) ℎ𝑒𝑒 = 150 𝑚𝑚𝑚𝑚, (b) 

ℎ𝑒𝑒 = 75 𝑚𝑚𝑚𝑚. 
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Figure 11. Base shear versus horizontal displacement at the top right corner of the struc-

ture using a mesh with different element size. 

Figure 12. Contours of (a) tensile damage, (b) maximum principal strains on a deformed 

(×40) mesh for a displacement at the top right corner of 37 mm. Top row:  unstructured 

mesh with average element size of 150 mm, Bottom row: unstructured mesh with aver-

age element size of 75 mm. 

Figure 13. Structured mesh used in the mesh-bias sensitivity analysis. 

Figure 14. Simulation of Model A using the proposed crack-tracking algorithm. (a) Ten-

sile damage and (b) maximum principal strains using the unstructured mesh for a hori-

zontal displacement of 20.9 mm (Point 1 in Figure 11). (c) Tensile damage and (d) max-

imum principal strains using the structured mesh for a horizontal displacement of 21.2 

mm (Point 2 in Figure 11). 

Figure 15. Simulation of Model A using the classical smeared crack approach. (a) Ten-

sile damage and (b) maximum principal strains using the unstructured mesh for a hori-

zontal displacement of 15.4 mm (Point 3 in Figure 11). (c) Tensile damage and (d) max-

imum principal strains using the structured mesh for a horizontal displacement of 15.5 

mm (Point 4 in Figure 11). 

Figure 16. Base shear versus horizontal displacement at the top right corner of the struc-

ture using two different meshes (structured and unstructured), with and without the pro-

posed crack-tracking algorithm. 
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7.  Tables 

 

Material 
𝛾𝛾  

(𝑘𝑘𝑘𝑘 𝑚𝑚3)⁄  

𝛦𝛦  

(𝑀𝑀𝑀𝑀𝑀𝑀) 

𝑣𝑣  

( − ) 

𝑓𝑓+  

(𝑀𝑀𝑀𝑀𝑀𝑀) 

𝑓𝑓−  

(𝑀𝑀𝑀𝑀𝑀𝑀) 

𝐺𝐺𝑓𝑓+ 

( 𝐽𝐽 𝑚𝑚2⁄ ) 

𝐺𝐺𝑓𝑓− 

( 𝐽𝐽 𝑚𝑚2⁄ ) 

Model A Model B 

A 1700 2500 0.2 3.00 0.1 100 50000 
Wall & 

Floors 
Walls 

B 1700 5000 0.2 - - - - Lintel 
Lintel & 

Floors 

Table 1 Material parameters adopted in the numerical simulations 
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8.  Figures 

 

Figure 1. The damage surface as proposed in (Lubliner et al. 1989) 

  



- 30 - 

 

 

 

Figure 2. The basic elements of the crack-tracking algorithm 
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Figure 3. (a) Geometry of the analysed wall (in mm) and (b) the used unstructured 

mesh. 
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Figure 4. Base shear versus horizontal displacement at the top right corner of the 

structure for the flexible diaphragm case (Model A) and for the stiff diaphragm case 

(Model B). 
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Figure 5. Tensile damage contour of Model A for a horizontal displacement at the 

right top of: (a) 2 mm (point A1 in Figure 4), (b) 3.5 mm (point B1 in Figure 4), (c) 6.9 

mm (point C1 in Figure 4) and (d) 37 mm (point D1 in Figure 4). 
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Figure 6. Flexural and shear cracking evolution at the spandrel of the 4th floor, sec-

ond column of openings (counting from the right side) for a displacement at the top of: 

(a) u = 2.9 mm (b) u = 4.0 mm (c) u = 11.9 mm. 
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Figure 7. Tensile damage contour of Model B for a horizontal displacement at the 

right top of: (a) 2.2 mm (point A2 in Figure 4), (b) 4.8 mm (point B2 in Figure 4), (c) 

11.4 mm (point C2 in Figure 4) and (d) 25.1 mm (point D2 in Figure 4). 
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Figure 8. Contour of the maximum principal strains on a deformed (×30) mesh for 

(a) Model A and (b) Model B. 
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Figure 9. Comparison of the global response of the Via Martoglio masonry wall as 

obtained by different numerical approaches.   
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Figure 10. Part of the mesh used with average element size of (a) ℎ𝑒𝑒 = 150 𝑚𝑚𝑚𝑚, (b) 

ℎ𝑒𝑒 = 75 𝑚𝑚𝑚𝑚. 
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Figure 11. Base shear versus horizontal displacement at the top right corner of the 

structure using a mesh with different element size. 
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Figure 12. Contours of (a) tensile damage, (b) maximum principal strains on a de-

formed (×40) mesh for a displacement at the top right corner of 37 mm. Top row:  un-

structured mesh with average element size of 150 mm, Bottom row: unstructured mesh 

with average element size of 75 mm. 
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Figure 13. Structured mesh used in the mesh-bias sensitivity analysis. 
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Figure 14. Simulation of Model A using the proposed crack-tracking algorithm. (a) 

Tensile damage and (b) maximum principal strains using the unstructured mesh for a 

horizontal displacement of 20.9 mm (Point 1 in Figure 11). (c) Tensile damage and (d) 

maximum principal strains using the structured mesh for a horizontal displacement of 

21.2 mm (Point 2 in Figure 11). 
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Figure 15. Simulation of Model A using the classical smeared crack approach. (a) 

Tensile damage and (b) maximum principal strains using the unstructured mesh for a 

horizontal displacement of 15.4 mm (Point 3 in Figure 11). (c) Tensile damage and (d) 

maximum principal strains using the structured mesh for a horizontal displacement of 

15.5 mm (Point 4 in Figure 11). 
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Figure 16. Base shear versus horizontal displacement at the top right corner of the 

structure using two different meshes (structured and unstructured), with and without the 

proposed crack-tracking algorithm. 
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