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1 Centre Internacional de Metodes Numerics a l’Enginyeria - CIMNE
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Abstract

The Discrete Element Method (DEM) has been used for modeling continua,
like concrete or rocks. However, it requires a big calibration effort, even
to capture just the linear elastic behavior of a continuum modelled via the
classical force-displacement relationships at the contact interfaces between
particles. In this work we propose a new way for computing the contact
forces between discrete particles. The newly proposed forces take into ac-
count the surroundings of the contact, not just the contact itself. This brings
in the missing terms that provide an accurate approximation to an elastic
continuum, and avoids calibration of the DEM parameters for the purely
linear elastic range.
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1. Introduction

The Discrete Element Method (DEM) has proven to be a very useful
tool for the numerical computation of granular flows [1, 2, 3] (the hereafter
termed non-cohesive DEM) with or without coupling with fluids [4, 5] or
structures [6]. These computations can include cohesive forces between par-
ticles [7] to model moisture, glue or other added features to the standard
non-cohesive DEM. Other research lines have focused on the DEM as a
method to compute the mechanics of strongly cohesive materials, like rocks,
concrete or cement [8, 9, 18], and it has been combined with the Finite Ele-
ment Method in order to save computation time [19]. The approach in these
cases is usually termed under the name of ’bonded’ or cohesive DEM. Here
the DEM can be understood as a discretization method for the continuum.
The ability of the DEM to reproduce multi-cracking phenomena in those co-
hesive materials is probably one of the main reasons why the DEM is chosen.
However, a moderately deep analysis of the works published usually reveals
a lack of accuracy of the DEM results in the elastic regime, together with
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a strong need for calibrating the DEM parameters. In particular, the Pois-
son’s ratio and the shear modulus are seldom validated and it is commonly
accepted [10] that the Poisson’s ratio has a strong dependency on the mesh
arrangement and on the ratio kt/kn [11], where kn and kt are the normal and
tangential spring stiffness, respectively, in the spring dash-pot model that
yields the forces at the contact interface between two spheres. The difficulty
of the ’bonded’ DEM to get accurate results when trying to capture simul-
taneously the Young’s modulus (E), the Poisson’s ratio (ν) and the shear
modulus (G) derives from the fact that the bonded DEM works as a system
of trusses instead of a massive continuum. Usually, a good calibration of the
micro parameters (kn and kt) leads to a decent capture of one or two of the
elastic macro parameters (E, G and ν) for a given mesh arrangement and
usually for a certain, limited, range of values [11]. Due to these limitations,
the spring dash-pot model has proven not to be good enough to capture the
elastic behavior of a continuum. In this work we propose a way to enrich
the spring dash-pot model in such a way that the elastic properties of a
continuum can be accurately captured with the DEM.

2. Objectives

The objectives of this work are:

1. Modify the way the forces between pairs of spheres are computed in
the DEM so an elastic continuum can be modelled accurately.

2. Provide the necessary equations so that the calibration of the micro
parameters for the DEM is not needed for accurately reproducing the
elastic behavior of a continuum.

3. Ensure that the DEM solution is independent from the size of the
spheres, the granulometry of the material, the coordination number
(the average number of particle neighbors) or the type of particle ar-
rangement (cartesian, dense packing, random, etc.).

3. Computation of the elastic forces between particles

3.1. Normal forces

Since the main goal is to reproduce the elasticity of a continuum, the
initial step to deduce the inter-particle forces is to analyze in detail the
strain-stress constitutive equations:

εi =
σi
E
− ν

E
(σj + σk) (1)

γij =
τij
G

(2)
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Figure 1: Schematic definition of local axes at a contact point i between two spheres. a)
Stress-free position. b) Deformed position

where E,G and ν are the Young’s modulus, the shear modulus and the
Poisson’s ratio, respectively, and i, j, k are the cyclic permutation of the
Cartesian coordinates x, y, z.

Sub-indices i, j, k denote generally the Cartesian axes. Without lack
of generality it can be assumed that Eqs.(1) and (2) also hold if we choose
i = z′, j = x′ and k = y′, where the primes denote the local axes at a contact
point between two particles (Figure 1a). For simplicity we will assume in
this work that the DEM particles are spherical. However, the method can
be easily generalized to any particle shape.

In order to get the normal force between two spheres contacting at a
point i, we can isolate σz′ from Eq.(1) to get:

σz′i = Eεz′i + ν(σx′i + σy′i) (3)

where subindex i refers to the ith contact point.
The next step is to substitute σz′i and εz′i in Eq.(3) in terms of the

interface forces and elongations. Namely,

Fz′i
Ai

= E
δz′i
L0i

+ ν(σx′i + σy′i) (4)

where Fz′i is the force between the two particles in the normal direction z′

(defined by the vector that joins the particle centers), Ai is the contact area
at the ith contact interface between the two particles, L0i is the distance
between the centers of the particles at the stress-free position and δz′i is the
overlap between the particles, which can be computed as δz′i = R1+R2−Li,
whereR1 andR2 are the radii of both particles and Li is the distance between
their centers (Figure 1b). The overlap in Eq. (4) can also be referred to a
stress-free relative position with an initial overlap between spheres, or with
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an initial gap (negative overlap), but this is a subject out of the scope of
the present paper.

From Eq.(4) we can deduce

Fz′i = AiE
δz′i
L0i

+Aiν(σx′i + σy′i) (5)

Eq.(5) yields a new expression for the normal contact force which in-
cludes an extra second term that brings in the usually missing, but necessary,
effect of the particle confinement. Eq.(5) can be rewritten as

Fz′i = kniδz′i +Aiν(σx′i + σy′i) (6)

where kni is a normal stiffness parameter associated to each pair of particles
given by

kni =
AiE

L0i
(7)

In Eq.(5) σx′i and σy′i are the axial stresses at the contact point in the
two orthogonal directions to the normal one. They can be obtained by
projecting the stress tensor into those two directions with the associated
unit vectors êx′ and êy′ as

σx′i = (σêx′i)
T êx′i (8)

σy′i =
(
σêy′i

)T
êy′i (9)

where σ is the stress tensor at the contact point. This tensor can be obtained
as the average of the stress tensors for the two interacting particles at the
ith contact: σi =

σsphere,0+σsphere,i

2 , where σsphere,k is the stress tensor
averaged around the kth sphere and 0 denotes “central sphere”. This tensor
is typically computed for post-processing the DEM results [12, 13] as

σsphere =
1

V

nc∑
i=1

li ⊗ Fi (10)

where nc is the number of contacts of the central particle, li is the vector
connecting the center of the particle to the ith contact point, Fi is the force
vector at the ith contact point and V is the volume used to average the
stresses. One option is to take V = Vsphere, where Vsphere is the volume of
the sphere. A better estimation can be obtained using all the contact areas
of the particle with the neighbors as

V =

nc∑
i=1

1

3
Ai‖li‖ (11)

where A1, A2, . . . , An are the areas of the contact interfaces.
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The stress tensor σ can be used in an explicit dynamc solution scheme for
the DEM by recovering its expression computed at previous time step. For
implicit DEM schemes σ has to be computed iteratively within the current
time step to get an updated value.

The computation of the contact interface areas Ai is described in Section
3.3.

Remark. Eq.(6) is similar to the typical equation for the normal spring
force, adding a new term (Aiν(σx′i + σy′i)) that accounts for the con-
tribution of the Poisson’s effect.

3.2. Tangential forces

From Eq.(2) we can isolate the tangential stresses τij as

τij = Gγij (12)

or

τij = G

(
∂ui
∂xj

+
∂uj
∂xi

)
(13)

where ui is the displacement along the ith direction.
Again we can assume that directions i and j are not necessarily oriented

with the Cartesian axes. Using the local axes at the contact point (Figure
1a) we obtain:

τz′x′ = G

(
∂ux′

∂xz’
+
∂uz′

∂xx′

)
τz′y′ = G

(
∂uy′

∂xz’
+
∂uz′

∂xy′

) (14)

In Eqs.(14) the terms
∂ux′
∂xz’

and
∂uy′
∂xz’

can be approximated by
δx′i
Li

and
δy′i
Li

, respectively, where δx′i and δy′i are the accumulated relative displace-
ments of the contact point between two particles in the x′ and y′ directions,
respectively, and Li is the distance between the centers of the spheres (dif-
ferent from L0i, see Figure 1b). Note that δx′i and δy′i are the lengths of
the curves described by the relative tangential displacements over time (see
Figure 1b).

The tangential forces at the contact point i, Fx′i and Fy′i , can be expressed
as:

Fx′i = AiG

(
δx′i
Li

+
∂uz′

∂xx′

)
= ktiδx′i +AiG

∂uz′

∂xx′

Fy′i = AiG

(
δy′i
Li

+
∂uz′

∂xy′

)
= ktiδy′i +AiG

∂uz′

∂xy′

(15)

with kti being a tangential stiffness parameter associated to the ith contact
point between each pair of particles, whose value is

kti =
AiG

Li
(16)
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The terms
∂uz′
∂xx′

and
∂uz′
∂xy′

in Eqs.(14) cannot be obtained with the infor-

mation provided by the pair of particles in contact. They can be deduced,
however, from the information contained in the stress tensor, which is fed by
information from all the surrounding particles. Using Eq.(13), and choosing
the local axes at the contact point, we can write:(

∂uz′

∂xx′

)
i,step

=

(
τz′x′,i
G
− δx′i

Li

)
step(

∂uz′

∂xy′

)
i,step

=

(
τz′y′,i
G
−
δy′i
Li

)
step

(17)

Sub-index step in Eqs.(17) denotes the time step at which the different
terms are approximated. For explicit dynamic solution schemes, step refers
to the previous step. For implicit schemes, step refers to the current time
step and the term is updated iteratively.

The tangential forces can be finally written as

Fx′i = ktiδx′i +AiG

(
τz′x′,i
G
− δx′i

Li

)
step

Fy′i = ktiδy′i +AiG

(
τz′y′,i
G
−
δy′i
Li

)
step

(18)

where τz′x′,i and τz′y′,i are the tangential components of the stress tensor
in local coordinates, σ′i. This tensor is computed by rotating the standard
stress tensor σi (in global coordinates) as:

σ′i = RT
i σiRi (19)

where Ri is the rotation matrix between the Cartesian and the local axes of
contact i.

Remark. Note that Eq.(19) is an extension of the usual expression for the
tangential forces in the DEM by adding an extra term that accounts
for the surroundings of the bond.

3.3. The contact area between two spheres

In Sections 3.1 and 3.2, the contact interface area A is an important value
that affects the contact force and, hence, the global response of the modeled
material in terms of apparent (macro) Young’s modulus and Poisson’s ratio
values. Some authors [8, 11] have provided estimations of Ai for linear elastic
contact laws taking into account the radii of the contacting spheres. Some
typical options are:

• A is taken as the area associated to the minimum radius between two
particles: 2Rmin in 2D or πR2

min in 3D.
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Figure 2: Scheme of overlapping contact areas (left) and gaps between contact areas (right)

• A is taken as the area associated to an average radius between two
particles: 2Rav in 2D or πR2

av in 3D (with Rav = R1+R2
R1R2

, for example).

Most of these estimations do not take into account that too big values of
Ai introduce an overlap between contacts, or that too small values of A
represent gaps between contacts. Figure 2 shows a scheme of both cases.

In this work we propose a way to calculate the contact areas Ai which is
based on the concept of Weighted Voronöı Diagram (WVD) (Power Diagram
type [14]). In a WVD the faces of each polyhedron are the contact areas.
These areas have no overlaps, do not present gaps and can be used for
the DEM in order to simulate a continuum. However, building the WVD
is computationally expensive, and this goes against the necessary need of
performance for the DEM. In this section we give a useful alternative for
the approximate computation of the contact area.

Given a set of areas A1, A2, . . . , An for the contacting neighbors of a par-
ticle, and assuming that these areas take into account the different element
sizes, the sum of

∑n
i=1Ai = Atotal should be equal to the sum of the faces

areas of the polyhedron given by the WVD (Atotal,exact). This polyhedron is
unknown (unless the WVD is generated) but an approximation to its total
surface can be roughly estimated by assuming that it is a polyhedron cir-
cumscribed to the sphere. So, Aestimationtotal,exact must be bigger that the sphere’s
surface, i.e.

Aestimationtotal,exact ≥ 4πR2 = Asphere (20)

Using the critical case Aestimationtotal,exact = 4πR2 the contact interface areas can
be corrected as:

A∗i = Ai
4πR2

Atotal
(21)

These corrected areas are typically too small and the response of the
material is usually softer than wanted. A better estimation for the surface
of the polyhedron can be obtained by the following expression:

Apolyhedron = αAsphere (22)
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number of faces α

4 3.30797

6 1.90986

8 1.65399

12 1.32503

20 1.20657

Table 1: Value of α =
Apolyhedron

Asphere
for regular polyhedra tangent to a sphere for different

numbers of faces

Figure 3: 2D scheme of overlapping (left) and separated (right) particles

where α depends on the number of faces of the polyhedron (number of
neighbors of the sphere) and the dispersion in areas of those faces. For
regular polyhedra, α is known and the values can be seen in Table 1.

If the number of faces does not allow the formation of a regular polyhe-
dron, α is interpolated from Table 1.

Finally,

A∗i = α4πR2 Ai
Atotal

(23)

The new contact area A∗i replaces Ai in the corresponding equations of
Sections 3.1 and 3.2.

In Eq.(23) the possible irregularity of the polyhedron, even in the cases
with 4,6,8,12 or 20 faces is not taken into account. Extra adjustments can
be introduced by using more correction coefficients.

Further corrections for the contact areas

Eq.(23) yields accurate results as long as the spheres are tangent. How-
ever, it is very common to work with packings of spheres where the spheres
are not perfectly tangent and they can present gaps or overlaps, but they
can be still considered neighbours (Figure 3).
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In these cases the virtual polyhedron would not be tangent to the sphere,
and the radius used for calculating Asphere should no longer be the actual
radius of the sphere, R. Instead, it can be replaced by

R∗ =

∑nc
i=1

(
R− γi

2

)
nc

(24)

with γi being the overlap of the sphere with neighbor i (a negative value
means a gap between spheres). The value of R∗ replaces R in Eq.(23).

4. Results

4.1. Methodology validation

Several numerical tests have been carried out in order to validate this
theoretical framework. These simulations were addressed to find out the
ability of the method for capturing the elastic behavior of a given specimen
using the explicit version of the DEM. The sample studied is a cubic volume
of side 0.5 m. The specimen was tested for a Young’s modulus of E = 1.0e9
Pa and two different Poisson’s ratio values of ν = 0.2 and ν = 0.35. All
computations with the DEM using ν ≥ 0.5 were instable and the sample
exploded.

The elastic response of the sample was obtained via a UCS test by im-
posing constant and confronting velocities in the Z axis to the spheres at
the top and bottom of the specimen, while allowing the free movement in
the XY plane.

Three packing typologies were tested: cartesian packing, staggered pack-
ing and random packing. The average coordination number of the cartesian
mesh was 6, while for the staggered and the random was 13 and 11 respec-
tively. The porosity of the random mesh was 0.25. Details on the studied
geometries are given next:

1. The cartesian packing had 132651 spheres of 1 cm of diameter (Figure
4). For this configuration, all contacts are either vertical (aligned with
Z) or horizontal (aligned with X or Y ).

2. The staggered packing had 33201 spheres of 2 cm of diameter (Fig-
ure 5). This configuration, also called ’body centered cube’ presents a
bigger density of contacts, and still can be considered ’structured’, as
the same cell is replicated in the X,Y and Z directions.

3. A random packing was generated with 11511 spheres of an average
diameter of 2 cm (Figure 6).
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Figure 4: Cartesian packing of 132651 spheres.

Figure 5: Staggered packing of 33201 spheres. Global view (left) and detail (right)
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Figure 6: Random packing of 11511 spheres

4.2. Measurement of the macro values of E and ν for the samples

The macro Young’s modulus (Emacro) was computed as the quotient
between the stress at the moving boundaries (top layer and bottom layer)
over the total vertical strain of the specimen. The stress at the boundaries
was calculated as the sum of the reaction forces over the spheres of the top
layer divided by the section area of the specimen

Emacro =
σcomputed

εz
=

∑ns
i=1 Freact,i
εz

(25)

where ns is the number of spheres of the top layer, Freact,i is the reaction
force on the ith sphere and εz is the vertical strain of the specimen (enforced
in the form of imposed displacements).

The macro Poisson’s ratio νmacro for the sample was computed as the
quotient of the horizontal strain over the vertical strain. Both strains were
measured on the longest diagonal in the cube, or the straight line connecting
the centers of the two most distant spheres in the sample. An alternative to
this measurement is to compute the average of ν for all the bonds connecting
the centers of every pair of spheres in contact within the specimen. In any
case, the expression used to compute the macro Poisson’s ratio between any
two centers of spheres C1 and C2 in the sample is

νmacro = −εxy
εz

= −
1− dxy,in

dxy,fin

1− dz,in
dz,fin

(26)

where εxy is the horizontal strain of the measured line, dxy is the horizontal
projection of the line length, dz is the vertical projection of that length and
subindices initial and final denote if the measure is taken before or after
the deformation, respectively.
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Figure 7: Deformed sample for a cartesian packing. Displacement amplified by a factor
of 3.0e4.

4.3. Analysis and comparison of the results

The results shown in this section did not require any calibration effort
and were obtained in a single run with the specified input parameters.

Cartesian packing

A very good result was obtained for the Young’s modulus value, with
an error of -0.6%. On the other hand, the errors in computing the macro
Poisson’s ratios corresponding to prescribed values of ν = 0.2 and ν = 0.35
were 1.45% and -0.22%, respectively. For this particular case the Poisson’s
ratio averaged over all the contacts makes no sense as the bonds between
spheres experiment no rotation, so no measure of the macro Poisson’s ratio
is possible. Figure 7 shows the deformation of the cartesian mesh with a
scaling factor of 3.0e4.

Staggered packing

A very good result was obtained for the Young’s modulus, with an error
of 0.7%. Very good values were also obtained for the macro Poisson’s ratios,
with 0.4% and -2.9% errors for the prescribed values of ν = 0.2 and ν =
0.35, respectively. It is worth noting that in this case we are referring to
the average value for ν (Figure 8), which is very well fitted and a good
representation of the whole specimen, since all the bonds in the sample
present the same angle with respect to the XY plane. A small expansion
can be observed at the top and bottom of the specimen that can be explained
as a result of a lower stiffness of the spheres at the outer layers. Figure 8
shows the deformed configuration of the sample using a scaling factor of
3.0e4. Finally, Figure 9 shows the Poisson’s ratio field. It can be clearly
observed that the field in the interior of the sample is very uniform with
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Figure 8: Deformed sample for a staggered packing. Displacement amplified by a factor
of 3.0e4

an average value of around ν = 0.2, this being the exact Poisson’s ratio
specified for this case.

Random packing

Again, a very good value of the Young’s modulus is obtained (only a
1.2% smaller than the theoretical value). The results obtained in measuring
the macro Poisson’s ratio for ν = 0.2 and ν = 0.35 were -3% and -5.1%,
respectively. Figure 10 shows the deformed mesh using an enlargement
factor of 3e4. Note that the random packing introduces a high heterogeneity
in the behavior of the sample, but still the results for the elastic contact are
very satisfactory.

Comparison of the results obtained with the conventional DEM contact law

The previous numerical experiments were run with the terms that add
the Poisson’s effect (Section 3.1) and an extra tangential force (Section 3.2).
In this section we will show that not adding those contributions results in
the Poisson’s effect not getting properly captured and to Young’s modulus
values ranging from 20 to 25% smaller than the theoretical ones. Using the
conventional contact laws for the DEM, the results for the staggered and
random meshes are very similar. For a Poisson’s ratio of ν = 0.2, the error
in the computation of the Young’s modulus for both geometries is about
-21%, while for a Poisson’s ratio equal to ν = 0.35, the error for E in both
meshes is around -24%. The error for capturing a Poisson’s ratio of ν = 0.2
is about -40% for both meshes, while for the ν = 0.35 the response gets
worse and the error increases to -63%. On the other hand, the cartesian
mesh is capable of computing the correct value of the Young’s modulus with
the same accuracy as in the previous tests. The reason is that the new force
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Figure 9: Poisson’s ratio values for an input value of ν = 0.2

Figure 10: Deformed sample for a random packing. Displacement amplified by a factor of
3.0e4
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Input parameters: E = 1.0e9, ν = 0.2

Error in computed values Cartesian packing Staggered packing Random packing

Young’s modulus Standard DEM Improved DEM Standard DEM Improved DEM Standard DEM Improved DEM

Poisson’s ratio E -0.6 % -0.6 % -20.8 % 0.7 % -22.0 % -1.2 %

Poisson’s ratio ν -100.0 % 1.45 % -43.0 % +0.4 % -29.0 % -3.0 %

Table 2: Effect of adding the extra terms in the normal and tangential contact forces

Input parameters: E = 1.0e9, ν = 0.35

Cartesian packing Staggered packing Random packing
Standard DEM Improved DEM Standard DEM Improved DEM Standard DEM Improved DEM

Poisson’s ratio E -0.6 % -0.6 % -23.0 % 0.7 % -24.5 % -1.2 %

Poisson’s ratio ν -100.0 % 0.22 % -64.0 % -2.9 % -63.0 % -5.1 %

Table 3: Effect of adding the extra terms in the normal and tangential contac forces

terms, and in particular the term related to the contribution of the shear
strains parallel to the bonds, do not affect the calculation of E when the
mesh is cartesian, as it can be inferred from the theoretical section. Finally,
deactivating the term that adds the Poisson’s effect yields a computed value
of ν = 0 for both ν = 0.2 and ν = 0.35 targets. This is a logical and
expected result taking into account the non-existence of forces in the XY
plane (the only ones that would cause strains in that direction) in a cartesian
specimen subjected to stresses in the Z axis. Tables 2 and 3 compare the
errors obtained with both methods for the same input values of E and ν,
where ’improved DEM’ stands for the formulation presented in this work for
computing the contact forces, while ’standard DEM’ denotes results without
the extra terms for the force-displacement relationship presented in Sections
3.1 and 3.2.

5. Conclusions

A modification of the contact laws between particles has been proposed
in order to improve the elastic behaviour of a packing of spheres when trying
to model a continuum with the DEM.

The newly added terms in Eqs.(6) and (18) complete the conventional
forces of the cohesive DEM traditionally used to model materials like rocks
or cement. These terms notably improve the elastic response of the modeled
material versus the conventional approach and avoid the need of any cal-
ibration process if the contact areas are calculated using the methodology
explained in Section 3.3.

The modified contact laws here proposed yield the same results regardless
of the type of packing (cartesian, staggered or random) or the coordination
number. Also the error in the computed value of the elastic parameters for
an elastic sample (E and ν) did not show any dependency on the particular
values of E or ν.
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Figure 11: Two layers of a Cartesian packing of particles
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Appendix A. Shortcomings of the classic DEM when trying to
reproduce the Young’s modulus

In order to emphasize the importance of the extra terms proposed in
the constitutive expressions of Sections 3.1 and 3.2, an example is shown to
evidence some shortcomings of the classical DEM for cohesive materials:

Let us enforce a vertical strain of εv = δv
L0v

on two layers of circles, where
δv is the relative vertical displacement between the layers and L0v is the
initial vertical distance between the layers (distance between centers).

Case 1
In a Cartesian arrangement (Figure 11), a two-layer sample formed by

circles can be taken as a representative cell (Figure 12). Let us impose
a descending displacement δv to the upper layer, while keeping the lower
layer fixed. L0v is then equal to 2R, so the vertical strain has a value of
ε = δv

L0v
= δv

2R .
In the standard DEM, the vertical force between these two circles is

Fv = knδv, where kn is a fixed, calibrated value, or is obtained by kn =
EA
2R =E2R

2R = E. Let us choose the latter, where the contact area A has been
assumed to be 2R for this case, which is a value that ensures that the sum
of all areas between both layers is equal to the whole section, without gaps
or overlaps.
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Figure 12: Representative cell of the Cartesian packing for vertical force analysis

Figure 13: Two layers of a dense, structured packing of particles

Case 2
In a structured dense packing of circles (Figure 13), a sample of one

upper circle and two halves of lower circles can be taken a a representative
cell (Figure 14). In order to impose the same vertical strain, let us impose
a descending displacement δ∗v = δv cos θ and L∗0v = 2R cos θ. With this

configuration, the vertical strain is ε∗ = δ∗v
L∗0v

= δv cos θ
2R cos θ = δv

2R = ε.

In the classical DEM, the vertical force acting on the upper circle is:

F ∗v = 2 (F ∗n cos θ + F ∗t sin θ) (27)

where F ∗n and F ∗t are the normal and tangential forces between the upper
circle and one of the lower ones.

Using the concepts of the classical DEM, these two forces can be written
as a stiffness constant multiplying a relative displacement, i.e.

F ∗v = 2
(
knδ
∗
v,n cos θ + ktδ

∗
v,t sin θ

)
(28)

where δ∗v,n is the relative normal displacement at the contact point and δ∗v,t
is its tangential counterpart. In Eq.(28) kn is a fixed calibrated value, or it
is obtained by kn = EA∗

2R . Also in Eq.(28) kt is usually taken as a fraction

of kn, but it can also be estimated as kt = GA∗

2R . No matter which option

Figure 14: Representative cell of the dense packing for vertical force analysis

17



is chosen, in general kn 6= kt. For further developments we have chosen the
second choice for defining kn. Then, the expression of the total vertical force
on the upper circle is:

F ∗v = 2

(
EA∗

2R
δ∗v cos2 θ +

GA∗

2R
δ∗v sin2 θ

)
(29)

Taking into account that A∗ = A
2

1
cos θ = R

cos θ and δ∗v = δv cos θ we finally
obtain:

F ∗v = Eδv cos2 θ +Gδv sin2 θ (30)

Comparison
In both cases, the total horizontal contact area is 2R (in Case 2, the

two contact areas must be projected to the horizontal direction to recover
this value). Having the same vertical strain in both cases, the vertical stress
should be equal as well, understanding the vertical stress as the vertical
force divided by the total area. Since the area is the same, the vertical
forces must be equal. However, F ∗v 6= Fv in general. They can only be equal
if we assume that G = E. In other words, kt must be equal to kn in order
to recover the same vertical stiffness.

Conclusion
From the above exercise we conclude that the micro parameters used in

the standard DEM (kn and kt) yield different stiffness values for a sample
depending on the position of the particles, or the direction of the bonds.
This means that a random packing of spheres modeled with the standard
DEM is extremely heterogeneous in terms of internal stiffness. It also means
that a calibration obtained for one sample is not necessarily useful for other
samples, as most probably the orientation of the bonds will be different.

Appendix B. Dynamics of the DEM and mass adjustment

When the cohesive DEM is used to model a continuum, any dynamic
response is directly linked to the mass of the particle (a circle in 2D, and
a sphere in 3D). However, the voids between particles are not typically
considered. The computed sample is too porous, less dense than the real
one, and the dynamic waves travel faster than expected.

In order to get a better approximation to the actual mass associated
to each particle, the volume of the voids should be distributed among the
neighbor particles. Instead of doing this, the volume of the particle can be
computed by the ’representative volume’ expressed by of Eq.(11). Multi-
plying this volume by the bulk density of the material yields a mass for the
particle which allows a better capture of any dynamic wave in the modeled
continuum.
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