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Abstract: This paper aims to present and validate a numerical technique for the simulation of the overtopping and onset of failure in rockfill

dams caused by mass sliding. This goal is achieved by coupling a fluid dynamic model for the simulation of the free surface and through-flow

problems together with a numerical technique for the calculation of the rockfill response and deformation. Both the flow within the dam body

and in its surroundings are taken into account. An extensive validation of the resulting computational method is performed by solving several

failure problems on physical models of rockfill dams for which experimental results have been obtained by the authors.DOI: 10.1061/(ASCE)
GM.1943-5622.0000345. © 2014 American Society of Civil Engineers.
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Introduction

Climate change and amplification of extreme weather events in re-
cent years has led to the need for an increased safety level of critical
structures to protect against natural hazards. In this context, a cate-
gory that is likely to be affected by extreme flooding events is rep-
resented by dams and dikes. For this reason, many countries have
already activated a revision of the design criteria, and furthermore,
there is a rising interest in new techniques that can help a predictive
study of the structural response during extreme events.

According to the International Commission on Large Dams
(ICOLD)(1995), exceptionalflooding represents themore crucial cause
of failure of embankment dams. In fact, although an overspill does not
easily affect the integrity of concrete dams, in the case of rockfill dams,
it often leads to the complete failure of the downstream slope.

Unfortunately, the history of dam failures caused by overtopping
is long and dramatic. The failure of the Banquiao Dam caused by

Typhoon Nina in 1975 is a catastrophe that illustrates the magnitude of
these occurrences.This failure triggered the collapse of another 62dams
in the same basin. This resulted in approximately 62,000 deaths caused
by the flood and 145,000 deaths caused by famine and epidemics.
Another example is the failure of the Tous Dam in Valencia in October
1982, causing a tsunami of 20million cubicmeters of water that flowed
in the Comunidad Valenciana. These and many other similar historical
events demonstrate that, when the water exceeds the crest of the dam,
the consequences can be catastrophic. An exceptional flooding seri-
ously compromises the structure and brings, in almost all cases, its
failure. Nevertheless, the breaching formation is a relatively slow pro-
cess and never leads to a sudden explosive failure. Chanson (2009)
reported that, in the case of the Glashütte Dam, the complete failure of
the structure occurred 4 h after the beginning of the overtopping. In the
case of the Teton Dam, the reservoir was drained after approximately
12h.When thewateroverpasses the crest of thedam,overtopping starts,
and a seepage process begins in the downstream slope, leading to its
progressive saturation. Resistance is not instantaneously compromised,
but it is progressively reduced. There are twomain failuremechanisms:
mass sliding and superficial erosion (Toledo 1997, 1998). The first is
a loss of stability in a part of the downstream region caused by the
landslide. This is the predominant failure mechanism when the
downstream slope is very steep. The saturation of the rockfill leads to
a reduction of effective stresses that, together with seepage, induce
the formation of a failure circle along thewholewidth of the dam that
abruptly crumbles. Conversely, superficial erosion is predominant
when the downstream slope is flat (1V :3H for instance). Water
coming out from the toe of the dam drags away the superficial rocks,
leading to the formation of channels in the downstream slope.

The clay core represents an additional barrier before the complete
failure of the structure once the protection given by the rockfill is no
longer present. Its failure can be the consequence of different
mechanisms that are outside the scope of this paper.

The aim of this work is to focus on the seepage effects on the
rockfill and to analyze the formation and evolution of the breach. To
do this, a numerical tool capable of simulating the evolution of the
flux throughout the rockfill and its consequences on the rockfill
response is presented and validated.

The computational model combines traditional finite elements
with more recent particulate analysis techniques for the seepage-free
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surface simulation and the dam structural response, respectively. In
fact, the authors developed an Eulerian computational fluid dynamic
(CFD) code using a level set technique for tracking the evolution of
the free surface and the seepage flow with a unified formulation. A
viscoplasticmodel is proposed for computing the structural response
via a Lagrangian framework using the particle FEM (PFEM)
(Idelsohn et al. 2004; Larese et al. 2008; Oñate et al. 2011b), which
is a particle technique that allows following the large deformation
of the rockfill during failure in a natural way.

An extensive validation of the accuracy and usefulness of the
computational model and the numerical tool is presented using data
from experiments on physical models of rockfill dams.

All the algorithms presented in this paper have been implemented
in the open-source object-oriented multiphysical analysis platform
KRATOSavailable at http://kratos.cimne.upc.edu (Dadvandet al. 2010).

Numerical Approach

Both problems (the seepage and the onset and evolution of failure in
the dam body) are solved using a continuummechanics approach. A
Eulerian fluidmodel is combinedwith a Lagrangian structural one to
minimize the computational effort for the fluid calculation in the
Eulerian framework and to naturally follow the large deformation of
the rockfill material.

Lagrangian algorithms are traditionally used in structural me-
chanics where each node of the computational mesh follows the
associated material particle evolution. This makes it easy to track the
interface between fluid and structure and to consider materials with
history-dependent constitutive relations. Their weakness is the in-
ability to follow large distortions of the domain without the need of
a continuum remeshing, which leads to a difficult parallelization of
the code. Eulerian algorithms, on the other hand, are largely used in
fluid dynamics because of the ease of following largemovements. In
this case, the computational mesh is fixed, and the continuummoves

with respect to the grid; therefore, an interface tracking technique is
required to follow the evolution of the free surface (Donea and
Huerta 2003).

Taking into account these considerations, the model presented in
this paper is composed of three modules:
• Afree-surfaceEulerianfluidmodel able to consider thepresenceof

a porousmediumand tohandle variable discharge conditions. This
kinematic framework is chosen tominimize the computational cost
of the CFD simulation. Moreover, the edge-based parallel algo-
rithm,presented byRossi et al. (2013), is implemented and adapted
to the problem of interest to speed up the solution.

• A Lagrangian structural model to simulate the behavior of
a rockfill slope in presence (or not) of variable hydrodynamic
forces. The chosen technique is PFEM because it has been suc-
cessfully used in several applications that include large domain
deformation and detaching particles. This is useful to model the
separation of solid particles from the bed surface and to follow their
subsequent motion as individual particles with a known density, an
initial acceleration, and velocity subject to gravity forces (Oñate
et al. 2004, 2006).

• A coupling tool to integrate the Eulerian and Lagrangian models to
simulate the transient process during failure of a rockfill slopecaused
by exceptional flooding. For this purpose, a tool to map variables
between nonmatching meshes was developed (Larese 2012).

Fig. 1. Graphical summary of the FSI solution process (Springer and
Computational Mechanics, vol. 50, 2012, pp. 805–819, “A coupled
PFEM-Eulerian approach for the solutionofporousFSI problems,”Larese,
A., Rossi, R., Oñate, E., and Idelsohn, S. © Computational Mechanics,
with kind permission from Springer Science and Business Media)

Fig. 2. Pressure instrumentation: (a) front view of UPM channel with
the pressure sensors tubes; (b) one of the panels for reading pressure
heights (images by authors)

© ASCE 04014060-2 Int. J. Geomech.
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In the following sections, the balance equations for the fluid
and the structural problems are presented, and the numerical ap-
proach is briefly explained. The implementation details can be found
in Larese (2012), Larese et al. (2012), and Rossi et al. (2013).

Fluid Problem

The CFD module has been conceived as a tool to treat free surface
flows with a transient incoming condition, and it has been modified
to be able to take into account the presence of a porous medium
within the same formulation. The only boundary condition imposed
strongly is the inlet of water; no boundary conditions are needed at
the outflow (i.e., a zero boundary pressure is implicitly imposed) or
at the entrance of the porous material. The spatial distribution of
porosity n (n5 1 outside the rockfill and n� 1 inside) is the only
needed information to be set in preprocess.

Traditionally, depth-integrated models are extensively used for
analyzing the flux in porous media application (Hansen and
Roshanfekr 2012); nevertheless, these approaches are often limited
to the stationary case, or they need the downstream point at which
water emerges to be known a priori (Hansen 1992). An interesting
approach to treat the seepage flow caused by unsteady boundary
conditions can be found in Fu and Jin (2009). In this case, the
authors focus only on the porous media flow and consider the
saturation level and thewater head as variables of the problem. This
leads to the need of coupling the equations of the unsaturated
domain with those of the saturated one. Conversely, several
authors simulate the free surface flows using the Stokes equation
and the seepage flow using Darcy’s law (Urquiza et al. 2008;
Discacciati et al. 2002; Chen et al. 2011). All these approaches
require careful treatment of the interface conditions between the
porous media and the free surface flows.

In the present work, water is treated as a Newtonian in-
compressible viscous fluid, and the equations governing water flow
in a porous medium are a modified form of the traditional Navier-
Stokes equations. The details of the derivation of both the balance
of linear momentum and the balance of mass equations can be found
inLarese (2012). A similar formulation was used by Nithiarasu et al.
(1997) for the treatment of the convective flux in a cavity with
variable porosity, and it was chosen for the present work because it
allows the simulation of the free surface and seepage flows with
a unique formulation once the porosity distribution in space has been
defined.

Fig. 3. Advance of failure; characterization and measurement setup:
(a) schematic view; (b) measurement of the advance of failure (image
by authors)

Fig. 4. Advance of failure; digital model of the deformed slope to
evaluate the evolution of the advance of failure B: (a) advance of failure
in the digital model; (b) digital layout

© ASCE 04014060-3 Int. J. Geomech.
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The governing equations of the fluid are

rf ∂tuþ rf u ×=uþ n=p2 2= ×m=su2 rf nbþ nD ¼ 0

in V, t 2 ð0, TÞ
= × u ¼ 0 in V, t 2 ð0, TÞ

(1)

In the previous equations, the degrees of freedom (DOFs) of
the problem are the Darcy velocity u and the fluid pressure p.
The Darcy velocity is the fluid velocity averaged over the total
control volume V (often called macroscopic velocity or unit
discharge being the discharge per unit volume), whereas the fluid
velocity u is averaged over the empty part of V (calledVE). Their
relation is stated by the Dupuit-Forchheimer equation (Nield and
Bejan 1992)

u ¼ nu (2)

The velocity of the convective front is the fluid velocity u. The
latter is not considered explicitly a DOF of the problem because it
can be derived by the Darcy velocity according to Eq. (2). Other
parameters are the porosity n, which is considered constant within
the fluid step (the variability in time is taken into account in the
coupled code as explained later), the fluid density rf , the fluid
dynamic viscosity m, and the body force b. The D term in Eq. (1)
represents the resistance law, i.e., the dissipative effect on the
seepage flow caused by the presence of the rockfill. Several different
resistance laws are available in the literature for calculating the
seepage in rockfill materials (Li 1995). In the present work,

a nonlinear form of Darcy’s law is taken into account, and Ergun’s
coefficients are chosen for its definition (Larese 2012). In fact,
because the objective of the CFD model is to simulate the free
surface flow through the rockfill and outside of the same, an essential
requirement for the resistance law is that it should automatically go
to zero when n5 1

D ¼ m

k
uþ 1:75ffiffiffiffiffiffiffiffi

150
p rfffiffiffi

k
p

n3=2
u2 (3)

where k5 permeability that can be calculated as a function of n and
D50, which is the diameter of the sieve at which the 50% of the
material passes

k ¼ n3D2
50

150ð12 nÞ2 (4)

The following boundary and initial conditions complete the
definition of the fluid problem:

uðx, 0Þ ¼ u0ðxÞ in V

uðx, tÞ ¼ gðx, tÞ on ∂VD, t 2 ð0, TÞ
n ×sðx, tÞ ¼ tðx, tÞ on ∂VN , t 2 ð0, TÞ

(5)

where ∂VD and ∂VN 5 fluid Dirichlet and Neumann boundaries,
respectively.

The weak form of these equations is obtained using a Galerkin
discretization. Eq. (1) is solved using a fractional step approach
(Codina 2001). Pressure-splitting approaches of the fractional-step
type are very convenient because of their high computational ef-
ficiency for flows at high R, and they have enjoyed widespread
popularity since the original works of Chorin (1967) and Témam
(1969). The fundamental idea is to solve the momentum equation by
keeping the pressure fixed and later correcting the pressure to
guarantee the satisfaction of the divergence constraint.

Traditionally, fractional step algorithms are presented in an im-
plicit context for the time integration of the momentum equation.
Nevertheless, in dealing with free surface problems with large dis-
tortion of themoving boundaries, the restriction of the time stepmay
be as strict as in the case of an explicit algorithm. For this reason, the
authors decided to implement a semiexplicit integration scheme

Table 1. Properties of Rockfill Material

Name Symbol Value

Porosity n 0.41
Diameter (mm) D50 35.04
Dry density (kg=m3) rs 1,490
Saturated density (kg=m3) rsat 1,910
Apparent specific weight (kg=m3) W 2,500
Pore index Pi 0.68
Internal friction angle range (degrees) f9 37:0e42:5

Fig. 5. Granulometric curve of rockfill material according to UNE-EN 933-1 [Spanish Association for Standardization and Certification (AENOR) 2012]

© ASCE 04014060-4 Int. J. Geomech.
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using a fourth-order Runge-Kutta. Among the Runge-Kutta family
method, the fourth order has been proven to be the optimal com-
promise between the number of intermediate steps and the permis-
sible time step size (Donea and Huerta 2003). Velocity is therefore
treated explicitly, whereas pressure remains implicit. The authors
assume a linear variation of the pressure within a time step, ensuring
the divergence free condition at the end of the step (Larese et al.
2012).

Being a fixed mesh approach, a level set technique is used for
tracking the evolution of the free surface. The level set method was
conceived as a methodology to following moving interfaces. The
moving boundaries (in this case the free surface or seepage line) are
composed of the zero-valued isosurface of a given smooth function,
which is convected at each time step according to the fluid velocity

field and providing the volume conservation properties (Osher and
Fedkiw 2003).

A parallel edge–based solution approach has been implemented
to improve the efficiency of the CFD code.

All the implementation details can be found elsewhere (Rossi
et al. 2013; Larese et al. 2012; Larese 2012) and are not reported here
because this exceeds the scope of the paper.

Dam Structural Response

The structural stability of rockfill slopes is heavily influenced by its
interaction with water. Traditionally, the coupled problem of soils or
rock and water is tackled by treating the mixture of soil, water, and
air as a multiphase material whose behavior is governed by the
coupling between the different phases: soil, water, and air. The first
mathematical models describing the coupling between the solid
linear elastic material and the fluid phase were developed by Biot
(1941, 1955). The extension of this work to nonlinear problemswith
large deformations was carried out by Zienkiewicz and Shiomi
(1984). More recently, important steps forward have been made by
Lewis and Schrefler (1998), Coussy (1995), and de Boer (2000). An
interesting application of the Biot theory using a mesh-free method
was recently proposed by Khoshghalb and Khaliki (2010).

Unfortunately, these classical and well-established approaches
may not be considered as an alternative in the present work. The
main reason for this is the quasi-static nature of such approaches that
does not represent the rapidly varying dynamic behavior of seepage

Table 2. Case Studies

Failure status
Case A: homogeneous

dam (L=s) Case B: core dam (L=s)

Without failure A1 Q5 25:46 B1a Q5 5:93
B1b Q5 4:00
B1c Q5 16:70

With failure A2.1 Q5 51:75 B2a.1 Q5 19:36
A2.2 Q5 69:07 B2a.2 Q5 30:45
A2.3 Q5 90:68 B2a.3 Q5 39:56

Fig. 6. Case A: geometry of the experimental setup and map of the sensor distribution

Fig. 7. Case A1: qualitative model geometry and boundary conditions

© ASCE 04014060-5 Int. J. Geomech.
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Fig. 8. Case A1: evolution of the seepage line in a dam with porosity n5 0:41, D50 5 35:04 mm, and Q5 25.46 L=s: (a) 0.25 s; (b) 10 s; (c) 20 s;
(d) 30 s; (e) 40 s; (f) 100 s

© ASCE 04014060-6 Int. J. Geomech.
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and rockfill failure, which may happen in overtopping scenarios.
Furthermore, for rockfill dams, the problem can always be consid-
ered as fully drained as the pores are interconnected, and the effect of
the pore pressure is not as dominant as in the classical cases. This in
turn allows us to neglect the computation of the saturation level and
the interaction between air and water in the matrix.

It is important to remark that these considerations are valid for the
rockfill layers of a dam. A different problem is the simulation of the
structural response of the clay core. This problem is out of the scope
of the present paper. In fact, as explained in the introduction, the aim
of the paper is to simulate the onset and evolution of the breaches by
considering the clay core intact.

Several depth-integrated models have recently been developed
for simulating dam breach formation (Wang and Bowles 2006; Faeh
2007; Froehlich 2008). These algorithms evaluate the erosion effect
on embankments using sediment transport algorithms more than
studying the failure mechanism. In some cases, seepage is not even
considered, and just the breaching caused by superficial dragging is
calculated.

Given that the time scale of the exceptional flooding can be of the
order of minutes to hours, the dam material can be considered as
rigid (avoiding any elastic response in the unyielded region), and its
compressibility can be neglected. In fact, the volume of the porous
matrix is not significantly modified during an exceptional flooding,
and the compressibility of a single grain is negligible in comparison
with the large deformations to which it may be subjected.

Finally, the tracking of the material yield surface is not crucial
because the elastic recoverable strains induced by the transient
phenomena are negligible.

The adoption of a continuous approach for the dam body leads to
an additional requirement: the choice of a suitable constitutive law
(Varadarajan et al. 2006). Many plastic or rigid-plastic constitutive
models are commonly used in geomechanics to describe the
structural response of an incoherent noncohesive material, but in
most cases, the long-term behavior is analyzed (Dolezalova and
Hladik 2011).

It is usually accepted that a rockfill slope has the capability to
support a certain amount of shear stress with almost no elastic strains
before starting to suffer large deformations. When the yield stress is
reached, the material starts to flow until a new stable configuration is
achieved. Under such conditions, the behavior of the yielded ma-
terial is more similar to the flowing of a fluid than to the deformation
of a solid. Taking this consideration into account, a variable-
viscosity model seems adequate for this type of material behavior.
This model is simpler to implement than classical plastic models
but is still able to capture the essence of the complex material

deformation phenomena. A wide category of fluids exhibit a rigid
behavior until reaching a yield threshold. They are part of the family
of the so-called non-Newtonian fluids. In the present work, a non-
Newtonian constitutive law for simulating the rockfill material is
used. This implies that the rockfill stiffness is controlled by very high
values of the so-called apparent viscosity ~ms, which is, by definition,
the ratio between the shear stress and the shear rate. Only when the
yield threshold is exceeded does the apparent viscosity decrease and
the material start flowing. When the material stops its motion, ~ms
recovers its initial value for which the stress level does not exceed
the yield limit.

The model chosen in this work has its origin in the traditional
modeling of Bingham plastics using the regularization proposed by
Papanastasiou (1987). However, to include aMohr-Coulomb failure
criteria (with no cohesion), the possibility of considering a variable
yield level is introduced (Larese 2012). The yield stress is calculated
as t05 ps9tgðf9Þ, where ps9 is the effective pressure, and f9 is the
internal friction angle that depends on the effective pressure (this
means that the pore pressure is subtracted by the results of the triaxial
test performed).

Considering all the previous assumptions, the Bingham regu-
larized relation is

ts ¼ 2

"
ms þ

ps9tg
�
f9

�
_g

�
12 e2m _g

�#
ɛsðusÞ (6)

where ms 5 fluidized viscosity; m 5 regularization parameter that
controls the approximation to the bilinearmodel; and _g5 equivalent
strain rate defined as the second invariant of the rate of strain tensor
ðɛsÞ _g5 ½ð1=2Þɛs:ɛs�1=2.

The apparent viscosity ~ms is defined as

~msð _gÞ ¼ ms þ
ps9 tg

�
f9

�
_g

�
12 e2m _g

�
(7)

The governing equations for the structural problem are written as
(Larese et al. 2012)

Fig. 9. Case A1: bottom pressure distribution at stationary regime for Q5 25.46 L=s, porosity n5 0:41, and D50 5 35:04 mm: numerical and
experimental comparison

Table 3. Case A1: Mesh Sizes Used in the Mesh Sensitivity Study

Parameter Mesh A Mesh B Mesh C Mesh D

Dimension (m) 0.01 0.10 0.15 0.20
Number of elements 43,500 550 310 220
Number of nodes 86,100 970 510 340

© ASCE 04014060-7 Int. J. Geomech.
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Fig. 10. Case A1: influence of the mesh

Fig. 11. Case A1: pressure head distribution for porosity n5 0:3, 0:35, 0:4, and 0:45

Fig. 12. Case A1: zoom of the pressure head distribution for porosity n5 0:37, 0:38, and 0:39

Fig. 13. Case A1: influence of the diameter of the material

© ASCE 04014060-8 Int. J. Geomech.
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rs∂tus þ rsus ×=
sus þ =ps92 2= × ~ms=us2 rsbs

þ ð12 nÞ=p2D ¼ 0 in Vs, t 2 ð0, TÞ
= × us ¼ 0 in Vs, t 2 ð0, TÞ

(8)

where theDOFs of the problemare the effective pressure ðps9Þ and the
solid velocity (us); rs 5 rockfill density; bs 5 vector of body forces;
and p and D 5 fluid pressure and resistance law terms defined in
Eqs. (1) and (3), respectively. The resistance law term D and the
gradient of fluid pressure [ð12 nÞ=p] act as external forces in the
structural problem. This is correct under the assumption that during
the deformation process, the fluid velocity can be considered larger
than the structural one, and therefore,D can be expressed in terms of
the fluid velocity only. Note that in the more general form, it should
be function of the relative velocity between fluid and rockfill (Larese
et al. 2012).

The problem is fully defined with the following boundary and
initial condition:

usðx, 0Þ ¼ us0ðxÞ in Vs

usðx, tÞ ¼ gsðx, tÞ on ∂Vs D, t 2 ð0, TÞ
n ×ssðx, tÞ ¼ tsðx, tÞ on ∂Vs N , t 2 ð0, TÞ

(9)

where ∂VsD and ∂VsN 5 structural Dirichlet and Neumann bound-
aries, respectively.

The PFEM is the numerical technique used for solving the
equations simulating the dam failure process (Larese et al. 2008). In
the PFEM, the domain is modeled via an updated Lagrangian
formulation. All the variables are assumed to be known at the current
configuration at time t, and they are brought to the next (or updated)
configuration at time t1 dt. The FEM is used to solve the continuum
mechanics equations in a mesh built up from the underlying nodes.
This is useful tomodel the separation of solid particles from the solid
surfaces interacting with the fluid and to follow their subsequent
motion as individual particles with a known density, an initial ac-
celeration, and a velocity subjected to gravity forces (Oñate et al.
2004; Idelsohn et al. 2004).

It is important to remark that in PFEM, each particle is treated as
a material point characterized by the density of the solid domain to
which it belongs, and the global mass is obtained by integrating the
density at the different material points over the domain. The quality
of the numerical solution depends on the discretization chosen as in
the standard FEM, and adaptive mesh refinement techniques can be
used to improve the solution in zones where large gradients of the
fluid or the structure variables occur.

Early applications of PFEM focused on the simulation of free
surface flows and breaking waves (Idelsohn et al. 2004). Since
those days, PFEM has been successfully used in a wide range of
fields such as fluid-structure interaction (FSI) and coupled
problems (Oñate et al. 2011a, b; Ryzhakov et al. 2010), multifluid
problems (Mier et al. 2011), contact problems and geotechnical
simulations (Carbonell et al. 2010; Oñate et al. 2008), and fire
engineering (Butler et al. 2007; Marti et al. 2012). The PFEM has
also been successfully used in the implementation of Bingham
plastics model for the simulation of landslides (Salazar et al. 2012;
Cremonesi et al. 2011).

The basic ingredients of PFEM for solving a FSI problem can be
summarized as follows:
• An updated Lagrangian kinematic description of motion of the

points in the fluid and solid domains;
• A boundary recognition method (a-shape);
• A fast remeshing algorithm; and
• Use of the FEM for the solution of the governing equations.

In the present work, an implicit algorithm has been implemented
for the FEM solution, using a monolithic strategy to solve the
governing equations and a Bossak time integration scheme (Larese
2012).

Coupling Strategy

The use of a staggered explicit scheme is highly favored when using
different kinematic frameworks for the fluid and dam problems.
Moreover, this is a natural choice to take advantage of the implicit
structural solver that allows bigger time steps than the explicit CFD
(the ratio is typically 10 fluid steps per structural step).

The variables of the structural Lagrangian model are projected
onto the Eulerian fixed mesh where, at the beginning of the simu-
lation, the only available information is the incoming discharge of
water and the control domain. The idea is that the fluid analysis step
is evaluated once the distribution of porosity is projected from the
structural domain. Once the fluid problem is solved, the relevant
variables are, in turn, projected onto the Lagrangian structural mesh.

Table 4. Activated Sensors Lines in Case A

Line Y-coordinate (m)

1 0.04
4 1.23
7 2.42

Fig. 14. Case A1 (3D): bottom pressure distribution at stationary regime along the three sensors lines (Y 5 0:04, 1:23, and 2:42 m, respectively) for
Q5 25:46 L=s, porosity n5 0:41, and D50 5 35:04 mm: numerical and experimental comparisons

© ASCE 04014060-9 Int. J. Geomech.
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These variables include the fluid pressure and the Darcy forces
to evaluate correctly the external force term of the structural
momentum[Eq. (8)]. Once this is done, the structural response of the
dam can be calculated. The rockfill material and consequently the
Lagrangian mesh deforms according to the velocity and pressure
fields obtained in the structural analysis step. To avoid inverted

elements, the mesh is regenerated at the end of the step. The de-
formed rockfill domain is then projected onto the Eulerian mesh to
solve for the subsequent time step, and so on.

The key steps of the FSI analysis process are shown in Fig. 1.
The flowchart of the algorithm is schematically subsequently
summarized.

Fig. 15.Case A1: bottom pressure distribution in 2D and 3Dmodels at different instances of the transitory regime (Q5 25:46 L=s, porosity n5 0:41,
and D50 5 35:04 mm): (a) 10 s; (b) 25 s; (c) 50 s; (d) 75 s

© ASCE 04014060-10 Int. J. Geomech.
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Assuming the solution of the coupled problem to be known at
time step tn. The solution at tn11 5 tn 1 dts (dts is the time increment
of the implicit structural solver and dtf is the fluid one) is obtained
by providing the following steps:
1. Project the configuration of the rockfill material in terms of the

porosity distribution on the Eulerian fluid domain;
2. While tn11

f # tn11 (where tn11
f 5 tn 1 dtf ), solve the water

free-surface flow problem calculating the velocity and pres-
sure field in an Eulerian fixed mesh;

3. Project the fluid velocity and pressure fields on the Lagrangian
structural mesh;

4. Project the nonlinear Darcy term on the Lagrangian structural
mesh;

5. Calculate the structural response of the rockfill material in the
Lagrangian mesh using PFEM; and

6. Go back to Step 1.

Model Validation: Numerical versus
Experimental Results

As a first step in the validation of the fluid flow and coupled FSI
codes, the authors numerically reproduced a set of experiments
performed at the Technical University of Madrid (UPM) [XPRES
project“Development of aMethod for Studying the Failure Process
of Rockfill Embankment Dams Combining Finite Element and

Particle Techniques” (National Plan R1D of the Spanish Ministry
of Science and Innovation I1D, BIA2007-68120-CO3-01); and
E-DAMS project “Numerical and Experimental Techniques for
Safety Assessment and Protection of Embankment Dams in Over-
topping Scenarios” (National Plan R1D of the Spanish Ministry of
Science and Innovation I1D, BIA2010-21350-C03-00)]. The main
objective of the experiments was the analysis of the influence of
a series of parameters and of their combination on the failure
mechanism of the dam. Each experiment studied a physical model of
a dam under a series of incremental steps of discharge. After each
increment, the incoming discharge was kept constant until the steady
state was reached.

Pressure heads were registered, and the advance of failure was
measured at each analysis step. Pressure at the bottom of the flumes
was evaluated by a network of sensors [Fig. 2(a)], and its value was
read on millimetric panels [Fig. 2(b)].

The dam deformationwas analyzed through the evolution of the so-
called advance of failure (termed as B in the following). This is, by
definition, the horizontal projection of the distance between the initial
undeformed downstream toe and the higher point of the failed area
(Toledo et al. 2004). Usually colored horizontal strikeswere painted on
the slope. This helps the measurement of B [Fig. 3(b)]. In some of the
experiments, a more detailed measurement of the evolution of failure
was performed using a close object photogrammetry technique. This
consists of taking a series of pictureswith a very short time interval until

Fig. 16. Case A2: coupled model; fluid and dam geometry and boundary conditions (Springer and Computational Mechanics, vol. 50, 2012, pp.
805–819, “A coupled PFEM-Eulerian approach for the solution of porous FSI problems,” Larese, A., Rossi, R., Oñate, E., and Idelsohn, S.
© Computational Mechanics, with kind permission from Springer Science and Business Media)

Fig. 17. Case A2: 2D mesh of the dam model; 3,400 linear triangular elements

© ASCE 04014060-11 Int. J. Geomech.

 Int. J. Geomech., 2015, 15(4): 04014060 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

v 
Po

lit
ec

 C
at

al
un

ya
 o

n 
04

/2
5/

19
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



the end of the simulation. Through the processing of these data, a digital
model of the deformed dam was created and the dynamic evolution of
the breachwas followedwith higher precision (Fig. 4). The experiment
ended when failure reached the crest of the dam.

The collapse settlement of the rockfill caused by wetting at the
first saturation was not considered because such a phenomenon
manifests after the drawdown of the water level inside the shoulder,
which is when the failure has already occurred.

The analysis of the experimental campaign is not the objective of
thepresentworkandhasbeenpreviouslydescribed (Larese et al. 2010;
Lechuga et al. 2010; Campos et al. 2010; Morán and Toledo 2011).

The evolution of seepage and beginning of failure in two dif-
ferent types of dams were simulated: a homogeneous dam, without
any sort of impermeabilization, and a core dam.

The objective was to prove the reliability of the code when
simulating rockfill in the overtopping condition, and for this pur-
pose, flow-through structures and not real dams were used for the
study of seepage. This allow concentration on a single phenomenon,
which is essential for the validation of the code, and easy repetition
of the experiment to prove the accuracy of the results.

Fig. 18. Advances of failure for different inflow discharges: comparison between experimental and numerical results; contour fill of numerical
displacement . 3 cm and digital model of the deformed slope in the experiments (plant view of the downstream shoulder): (a) Q2 5 51:75 L=s;
(b) Q3 5 69:07 L=s; (c) Q4 5 90:68 L=s (Springer and Computational Mechanics, vol. 50, 2012, pp. 805–819, “A coupled PFEM-Eulerian approach
for the solution of porous FSI problems,” Larese, A., Rossi, R., Oñate, E., and Idelsohn, S. © Computational Mechanics, with kind permission from
Springer Science and Business Media)

Table 5. Case A2: Comparison between Experimental (Bexp) and
Numerical (Bnum) Advance of Failure

Case Q ðL=sÞ Bexp Bnum Error (%)

A2.1 51.75 0.71 0.68 4.2
A2.2 69.07 1.08 1.04 3.7
A2.3 90.68 1.56 1.58 1.3

© ASCE 04014060-12 Int. J. Geomech.
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Conversely, the numerical models always reproduce the
experiments at the same scale; this implies that no similarity criterion
was needed.

All the dams considered have the same downstream slope:
1:5H:1V , which is a common ratio in real dams. This geometrical
aspect strongly determines the deformation of the rockfill. Ex-
perimental evidence shows that mass sliding is predominant in
this kind of slopes. The coupled code has been conceived for
representing the predominance of this failure mode. For flat
slopes (i.e., 3H:1V), less frequent in practice, the inclusion of an
algorithm to simulate dragging of surface particles is required.

Only one material was analyzed, and its characteristics were
obtained by an external laboratory according to Spanish norms.
These are summarized in Table 1. The rock chosen is limestone, and
the rockfill used is quarry stone. The granulometric distribution,
according to UNE-EN 933-1 [Spanish Association for Standardi-
zation and Certification (AENOR) 2012], is the one shown in Fig. 5.
The diameter for which the 50% of the material passes the sieves
(D50) is 35.04 mm, and porosity is 0.41 (lower than the pore index,
which is the ratio between the empty and the solid volume). The
material used is not well grained but quite uniform, which negates
the influence of that parameter. Uniform materials are more porous,
and this helps to reproduceR similar to those that can be obtained in
larger prototypes with well-grained higher material.

Different steps of discharge were simulated for each experiment.
In all cases with the lower discharge considered, no movements in
the downstream slope were experimentally observed. This implies
that, to speed up the calculations, the fluid uncoupled code can be
used for the simulation. The coupled FSI model is used for the
higher discharges.

Case Study

Results for two different dams are presented in this work. Before the
presentation of the numerical tests, the nomenclature used to classify
the case studies is summarized: Case A, a homogeneous dam
without impervious elements; Case B, a dam with an internal core.
Only the downstream slope is simulated.

For each case i (i5A or B), two substep analyses were carried
out:
• Case i1: Analysis of the nonlinear seepage given an incoming/

overtopping discharge. Experimentally, no deformation is ob-
served in the dam body. This analysis is carried out just with the
fluid uncoupled code.

• Case i2: Analysis of the evolution of failure given an incoming/
overtopping discharge. Several increasing values of discharges

Fig. 19. Bottom pressure distribution at stationary regime for different discharges (porosity n5 0:41,D50 5 35:04 mm): numerical and experimental
comparison

Fig. 20. Imposed incoming discharge in function of time

Fig. 21.Bottompressuredistributionconsidering thehydrographpresented
in Fig. 20 (porosity n5 0:41, D50 5 35:04 mm): numerical and experi-
mental comparison: (a) sensors position; (b) pressure evolutionon the sensors

© ASCE 04014060-13 Int. J. Geomech.
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are considered for each case according to experiments. In this
case, the coupled FSI code is used.
Finally, inTable 2, the discharge (Q in liters per second) for every

studied case is detailed.
The position of the pressure sensors and the experimental data for

each case are not reported here but can be found in Larese et al.
(2011b). This benchmark was selected as part of the XI Benchmark
workshop of ICOLD on Numerical Analysis of Dams held in
Valencia, Spain, in October 2011. The solution to this benchmark
can be found in Larese et al. (2011a).

Case A: Homogeneous Dam

The first example reproduces an experiment carried out at UPM for
a dam without any internal core or impervious upstream face. This
case is obviously not representative of a real rockfill dam, which
cannot be conceived without any impervious element. Nevertheless,
it is important to remark that the objective of this study is to provide
a numerical technique able to simulate the rockfill failure, and it is
important to get a deeper knowledge of the seepage evolution inside
an homogeneous medium both for the physical and numerical point
of view as a preliminary step to face the complete failure of a real
dam.

Case A: Experimental Setup and Geometry
The geometry of the dam model is presented in Fig. 6, where the dis-
tribution of all the bottom pressure sensors is shown. Not all the
sensors were activated during the experiment but only those under the
downstream shoulder of the dam as explained in Larese et al. (2011b).

Case A1: Two-Dimensional Numerical Model and Results
The numerical model is built following the geometry of the experi-
ment (Larese et al. 2011b). The control volume of the Eulerian fluid
model has to be large enough to not influence the solution.Concerning
the boundary conditions, these are shown in Fig. 7: an inlet with fixed
velocity is set in the left side of the control volume (the arrows in the
image are indicating the entrance of water). A slip boundary condition
is imposed on the bottom and left wall (continuous line in the image),
whereas an outlet condition (zero pressure) is imposed on the upper
and right side of the domain as shown (dotted line in the image).

The fluid code simulates the filling of the upstream reservoir in
the unsteady regime [Figs. 8(a–f ) show consecutive time instances
of the transient regime] even if experimental data only refer to the
steady state. Fig. 9 shows the comparison between the numerical and
experimental head of pressure. The agreement is good even if the
numerical code slightly underestimates the experimental values.
This aspect is more evident in the following examples.

Fig. 22. Case A2.2 (3D): numerical and experimental advance of failure

Fig. 23. Case A2.2 (3D): bottom pressure distribution at stationary regime for Q5 69:07 L=s, porosity n5 0:41, D50 5 35:04 mm: 2D and 3D
numerical results compared with experimental data points

© ASCE 04014060-14 Int. J. Geomech.
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Assuming that the geometry of the experiment and the inflow
discharge are correct, the parameters that might influence the results
of the model are (1) the quality of the mesh, (2) the value of the
porosity n, and (3) the D50 value of the rockfill particles.

To understand how an error in the determination of each of these
parameters can influence the solution, a deeper analysis is carried out
in the following sections.

Case A1: Mesh Influence
Case A1 is run with different meshes to understand how the mesh
influences the results. The inlet area has been constantly refined
(with href 5 0:01m, where h is the average mesh dimension and
href is the refined area at the inlet) to ensure a constant incoming
discharge before entering the porous medium. The characteristics
of the meshes are summarized in Table 3.

Fig. 10 shows that the mesh does not have a strong influence on
the quality of the results, at least inside the dam if no impervious
structures are present. The main difference can be observed at the
downstream toe of the dam, where water comes out of the granular
material. For coarser meshes, an important loss of volume can be
observed outside the rockfill. The presence of the porous medium
with its dissipative effect is helpful for enforcing the volume con-
servation properties for very coarse meshes (i.e., Mesh D). This is
no longer true outside the granular material.

Case A1: Influence of Porosity
The porosity of the material used in the experiments was evaluated
by an external laboratory according to Spanish norm UNE-EN 1936
(AENOR 2007). The porosity value is n5 0:41.

Keeping all the parameters of the models and the calculation
mesh fixed, porosity is changed in the range of 0:30e0:45 to see the
influence of this parameter on the results. Fig. 11 shows that uniform
variation in the porosity induces a uniform increment in the pressure
head distribution.

The numerical results obtained for n5 0:41 yield a lower pressure
head, whereas for n5 0:35, they overestimate the experimental data.
The same problem was analyzed in more detail considering a smaller

Fig. 24. Core dam; experimental setup: (a) upper view; (b) side view
(images by authors)

Fig. 25. Case B: geometry of the experimental setup and map of the sensors distribution
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porosity increment.The results forn5 0:37, 0:38, and 0:39 are shown
in Fig. 12. The experimental data agree with the results for n5 0:38.

Case A1: Influence of the Diameter of the Material
The last analysis concerns the influence of theD50 value. This number
is changed with an increment of 1 cm from 1 to 8 cm. Fig. 13 shows
that the pressure head is not linear withD50. Thus, forD50. 5 cm, its
influence on the pressure distribution is negligible. Conversely, the
smaller D50 is, the larger its influence on the pressure distribution.

Case A1: Three-Dimensional Numerical Model and Results
The three-dimensional (3D) model of Case A was studied using the
geometry shown in Fig. 7. The control volume is meshed with
1,264,015 four-noded tetrahedra.

Three lines of pressure sensors were activated during the
experiments (Lines 1, 4, and 7 of the plane view of Fig. 6). They are
located along the central line and at 4 cm from each side of the
channel. By identifying Y with the coordinate in the transversal
direction (as shown in Fig. 6), the exact position of the sensor lines
for Case A is shown in Table 4.

For the test case proposed, both the two-dimensional (2D) and 3D
simulations obviously deliver an equivalent result given the applied
boundary conditions, Even if this fact is obvious on a physical basis, it
is less so for the numerical method used, particularly considering that
the 3Dmesh is unstructured and not identical for the 2D and 3D cases.
The reason for introducing the benchmarking result is thus to verify
that the proposed method yield the desired result.

Fig. 14 shows the comparison between experimental values
measured at differentY-values and the correspondent numerical results.
The 3D results for Case A1 confirm that the model slightly under-
estimates the experimental results for the pressure distribution. The
overall numerical-experimental agreement is, however, noticeable.

A comparison between the 2D and 3D models was also per-
formed for the unsteady regime at different times. The bottom
pressure distribution is plotted in Figs. 15(a–d) for different time
instances.

Case A2: 2D Coupled Model and Results
The coupled FSI model aims to simulating the seepage line and the
free surface flow together with the evolution of the breach in the dam
material. A typical FSI analysis is composed of two parts:

Fig. 26.CaseB1: qualitativemodel geometry and boundary conditions

Fig. 27. Case B1a: bottom pressure distribution at stationary regime for Q5 5:93 L=s, porosity n5 0:41, D50 5 35:04 mm: numerical and ex-
perimental comparison

Fig. 28.CaseB1b: bottompressure distribution at stationary regime forQ5 4 L=s andQ5 16:7 L=s, porosityn5 0:41,D50 5 35:04 mm: numerical,
experimental, and theoretical comparison
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• The fluid Eulerian model: Its construction is analogous to Case
A1, and the mesh properties are the same. The main difference is
the absence of any porous material. This information is passed
by the PFEM model results during the calculation.

• The PFEM structural model: The dam model is constructed in
a Lagrangian framework. This implies modeling only the mate-
rial domain (i.e., the dam initial shape and the walls if present).
The definition of a bounding box is required. A bounding box is
the enclosing of the calculation domain. In Lagrangian problems,
especially in CFD simulations, it is mandatory to limit the
calculation domain because the nodes can freely move and
may occupy progressively larger areas. It sets the analysis do-
main. If a node exits, the bounding box is no longer calculated,
and it is deleted.
The advance of failure at every stage of the experiments is

measured by the B parameter, which is by definition the horizontal
projection of the position of the higher particle that moves. This
movement is not quantified. In the present work, it was assumed that
a particle moves if its total displacement is larger than the average
dimension of the granular material (3.0 cm). This choice is arguable
and, as it will be subsequently shown, it often makes our model too
deformable. Nevertheless, this empirical criterion was used in all the
models analyzed in this work to allow a comparative analysis.

In Fig. 16(a), schematic view of the fluid and structure boundary
conditions is shown. Themesh used for thefluidmodel is the same as
in Case A1, whereas for the structural model, the mesh has 3,400
three-noded linear triangular elements (Fig. 17).

The photogrammetric analysis of the A cases was also available
and helped the comparison between experimental and numerical
results. Fig. 18 shows on the lower part the digital model obtained by
the photogrammetric analysis and on the upper part the contourfill of
the displacements computed in our work. Displacements larger than
3 cm aremarkedwith contourfill. The reason for this choice has been
explained previously. Very good agreement is observed between the
experimental and numerical advance of failure in the three cases.
In Table 5, a comparison between the numerical (Bnum) and the
experimental (Bexp) advance of failure is provided.

Looking at the pressure head distribution for the three incoming
discharges (Fig. 19), the experimental bottom pressure head is

Fig. 29.CaseB1a (3D): evolutionof the seepage line in adamwithporosityn5 0:41,D50 5 35:04 mm,andQ5 5:93 L=s; (a) 5 s; (b)10 s; (c) 15 s; (d) 145 s

Table 6. Case B1a: Meshes Used for the Analysis

Parameter Mesh A Mesh B Mesh C Mesh D

Dimension (m) 0.02 0.03 0.04 0.05
Number of elements 1,460,000 517,000 281,000 183,000
Number of nodes 250,000 89,600 49,000 34,000

© ASCE 04014060-17 Int. J. Geomech.
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underestimated by the numerical one. This aspect is more relevant
than in Case A1. This seems to indicate an internal variation of the
material conditions (such as porosity or permeability) that is not
taken into account by the model.

Fig. 19 also shows that in Case A2.3, the pressure head
presents a lower experimental value in the region where water
exits the dam. The contraction of the flux can be induced by the
absence of the rockfill that flowed away during the failure pro-
cess. This leads us to the conclusion that the failed material in the
numerical model is more rigid than in the real case. Its accu-
mulation over the toe of the dam induces a higher value of
pressure than in the experiment.

Case A2: 2D Sequence of Incremental Discharges
The code developed in this work was conceived to analyze the
consequence of transitory incoming discharges, allowing the use of
flood curves as an input. This capability, however, has not been
exploited in the examples presented, because the experimental
results were given for the stationary regime, and no comparison can
be made in the transitory regime.

As a preliminary test, Cases A1–A2.1–A2.2 were run in se-
quence, leaving sufficient time for the intermediate stationary regime
to be reached. The imposed curve representing the inlet discharge in
function of time is reported in Fig. 20.

The pressure head for two pressure sensor locations is registered
as shown inFig. 21. The two points are located at 2.2 and 2.7 m from
the upstream toe of the dam. The dotted line in the graph is the
stationary value of pressure read from the piezometers in Cases A1,
A2.1, and A2.2, respectively. Once more, the numerical results
slightly underestimate the experimental ones, and the error is anal-
ogous to the one presented in the previous section.

Case A2: 3D Coupled Model and Results
Some preliminary 3D results were also obtained. The fluid and
structural models were developed according to what was explained
in the “Case A2: 2D Coupled Model and Results” section for the 2D
validation case.

Nevertheless, the 3D deformation of the dam is not as clear as in
the 2D case. This happens because the deformation is partially
skewed by the remeshing process at each time step. Remeshing is
a key point of PFEM. This method was originally conceived to treat
Newtonian free surface problems where the regeneration of themesh
is required at each time step (Idelsohn et al. 2004). This is not the case
for the present non-Newtonian algorithmwhere, in most of the steps,

Fig. 30. Case B1a (3D): bottom pressure distribution at stationary regime for Q5 5:93 L=s, porosity n5 0:41, D50 5 35:04 mm; numerical, ex-
perimental, and theoretical comparison

Fig. 31. Case B2: fluid and dam qualitative models and boundary
conditions for the coupled analysis

Fig. 32. Case B2: 2D mesh of the dam model; 8,000 three-noded
triangular elements
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all the nodes are in the unyielded region and do not move. For this
reason, the possibility of inserting a conditional remeshing strategy
should be added to have a viable 3D coupled FSI analysis code.

A preliminary tool that allows a conditional remeshing has al-
ready been inserted in the code and yields good results as the one
shown in Fig. 22.

The plots of the pressure drop (Fig. 23) obtained with the 2D
and 3D models (dotted and continuous line, respectively) are in
good agreement with experimental values. This confirms the 3D
results obtained in the “Case A1: Three-Dimensional Numerical
Model and Results” section for Case A1, where only the fluid code
was used.

Case B: Core Dam

The second experiment studied in this work is the seepage inside
a core dam. The core is considered fixed and undeformable. The
experiment is carried out by exclusively building the downstream
slope as displayed in Fig. 24. The water entrance is set in the upper
left part, omitting the simulation of the filling of the reservoir that is
useless in the present analysis.

Case B: Experimental Setup and Geometry
Thegeometryof thedam isdisplayed inFig. 25, where the distribution
of the pressure sensors on the bottom of the channel can be seen.

The model is built to reproduce the real geometry of the exper-
imental setup. Because the case of interest is the simulation of the

overtopped flow, the geometry of the model does not include the
reservoir. The entrance of the water is set at the upper left part as
shown in Fig. 26 (the arrows indicate the entrance of the water).

A slip boundary condition is imposed on the bottom of the
channel and on the core side (bold lines in Fig. 26), whereas the
upper left sides have an output condition (zero pressure).

Case B1a: 2D Numerical Model and Results
The mesh used for the calculation has 14,859 three-noded triangular
elements. This is refined close to the critical zones of the falling of
the water and near the bottom of the channel. The comparison be-
tween experimental and numerical pressure heads can be observed
in Fig. 27.

Case B presents an additional difficulty in the fluid dynamic
problem. It is particularly challenging to correctly simulate the
falling jet of water (especially if the incoming water velocity is very
slow) without suffering serious mass loss. The good agreement
between experimental and numerical pressure heads confirms that
this problem can be accurately modeled with the computational
method developed in this work.

Cases B1b and B1c: Comparison with Theoretical
Ergun Model
It has been observed that the numerical pressure head has lower
values than the experimental ones. To verify if the problem can be
attributed to the choice of the resistance law, a comparison with the

Fig. 33. Case B2a.1 (Q5 19:36 L=s): 2D comparison between exper-
imental and numerical advance of failure; (a) experimental advance of
failureBexp 5 0:32m; (b) numerical advanceof failureB5Bnum 5 0:76m

Fig. 34. Case B2a.2 (Q5 30:45 L=s): 2D comparison between exper-
imental and numerical advance of failure; (a) experimental advance of
failureBexp 5 0:68m; (b) numerical advanceof failureB5Bnum 5 0:90m

© ASCE 04014060-19 Int. J. Geomech.
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theoretical results was performed following the work of López
(2005). To do that, a slightly different geometry is analyzed. The
dam studied is made of the same material as the one presented in
the previous sections but its height is 0.5 m and the advance of the
downstream slope is 1.5 m. The slope ratio is 3H:1V .

The mesh used was composed of 2,865 nodes and 5,728 three-
noded triangular elements.

The theoretical solution for an incoming discharge of 4 and
16:7 L=s is plotted in the dashed line with closed triangles and cross
shapes in Fig. 28. The numerical approximation is very close to the
Ergun theoretical one, as expected. Both these curves slightly
underestimate the experimental values. This confirms that the Ergun
model might not be the best choice for the resistance law of this kind
of problem. To overcome this drawback, the authors plan to modify
the code in the future to let the user insert a customized quadratic
resistance law.

As a consequence of this observation, a permeameter for the
rockfill was built to study this aspect and eventually derive an ex-
perimental resistance law for the materials.

Case B1a: 3D Numerical Model and Results
Fig. 29 shows a sequence of the transitory regime of the filling of the
core dam using a 3D model. Three different meshes were used to
analyze the sensitivity of the solution to the element dimension.

The characteristics of the four meshes considered are summa-
rized in Table 6. The refinement is performed only in the dam
volume, whereas the dimension of the elements is kept fixed in the
rest of the domain.

Fig. 30 shows the pressure heads for the different mesh sizes. The
convergence is achieved when the mesh is finer than 0.03 m. For
larger meshes, the volume conservation is seriously compromised.
This volume loss takes place when the flux falls down vertically.
Therefore, particular care should be taken in the refinement of the
mesh in this delicate area.

Case B2: Coupled Model and Results
The construction of themodels for the coupled FSI case is analogous
towhat it was already explained in the “Case A2: 2D CoupledModel
and Results” section for Case A2. A schematic representation of the
boundary conditions can be seen in Fig. 31. Fig. 32 shows the
Lagrangian mesh used in the calculation. It has 8,000 three-noded
triangles.

Case B2
Figs. 33–35 show the comparison between experimental and nu-
merical dam deformation at each step of discharge forf95 41�. The
error in the evaluation of B is progressively reduced when the
discharge increases as detailed in Table 7.

An additional consideration can be made by looking at the
pressure head distribution of the three cases shown in Fig. 36. As for
Case A2, the amount of moved rockfill is lower in the simulation
than in the experiments. The higher value of numerical pressure at
the toe of the dam indicates that granular material is present over
the sensor position, i.e., the resistance given by the grains increases the
water level and the pressure head as well. This indicates that the
material settles faster than in the experiment. This may be corrected
with the insertion of an algorithm that take into account the su-
perficial dragging induced by water.

Conclusions and Future Work

In this work, a new approach for the simulation of the failure of
downstream slopes in rockfill dams was presented and validated.
The model allows the simultaneous analysis of the dynamic evo-
lution of seepage and the free surface flow both upstream and
downstream the dam. This is done by an Eulerian code developed in
this work, which uses a unified formulation for the seepage and the
fluid flow in the vicinity of the dam. The structural response of the
rockfill material is evaluated with a viscorigid constitutive model
that makes use of a Mohr-Coulomb failure criterion. The rockfill is
treated as a highly viscous non-Newtonian fluid whose viscosity
drastically decreases when, because of the hydrodynamic forces, the
yield stress is exceeded. When this happens, failure occurs and
granular flow of the rockfill material is generated. Finally the fluid-
structure coupling is performed using a fully staggered scheme and
a mapping algorithm between nonmatching Eulerian and Lagrang-
ian meshes.

The model was validated using the results of an experimental
campaign on small-scale dams, proving that the algorithm accu-
rately reproduces both the fluid and coupled problem. The main
considerations for the fluid module are as follows:

Fig. 35. Case B2a.3 (Q5 39:56 L=s): 2D comparison between exper-
imental and numerical advance of failure; (a) experimental advance of
failureBexp 5 1:00m; (b) numerical advanceof failureB5Bnum 5 1:02m

Table 7. Case B2: Comparison between Experimental (Bexp) and
Numerical (Bnum) Advance of Failure for f95 41�

Case Q ðL=sÞ Bexp Bnum Error (%)

B2a.1 19.36 0.32 0.76 137
B2a.2 30.45 0.68 0.90 32
B2a.3 39.56 1.00 1.02 2

© ASCE 04014060-20 Int. J. Geomech.
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1. There is a good agreement between experimental and numerical
pressure heads for the undeformed cases (A1 andB1) both in 2D
and 3D. Nevertheless, the numerical results always slightly
underestimate the experimental values. Additional numerical
experiments carried out by the authors can confirm that the
pressure line is always lower than the experimental one, espe-
cially when increasing the porosity values. This aspect, to-
gether with the comparison with theoretical Ergun curves
shown in the “Cases B1b and B1c: Comparison with Theo-
retical Ergun Model” section, leads to the conclusion that the
Ergun coefficients slightly underestimate the pressure drop in
the seepage problem. In the future, a general quadratic Darcy
law (au1bu2) will be used, and the choice of the suitable a
and b coefficients will be left to the user.

2. The overestimation of the pressure head at the toe of the
deformed dam (CasesA2 andB2)might be the consequence of
a smaller deformation of the failed material. Whereas the
advance of failure is correctly reproduced, the failed material
settles faster than in the real case and accumulates close to the
original toe. In the experiments, the path run by the failed
rockfill material is much larger. This can be avoided with the
insertion of an erosion algorithm.

3. The code also has good performance in the complex case of
a falling jet of water.

4. Another challenging aspect of Cases A1 and B1 is that the
discharges are very low. This might represent a problem at the
beginning of the simulation when a very thin layer of water
startsfilling the dam.This issue is avoided by refining themesh
close to the bottom.

Considerations for the coupled FSI module are as follows:
1. The FSI code reproduces the incremental failure of the dam

as the overspilling discharge increases. It represents cor-
rectly the crucial cases for which failure achieves the crest of
the dam. On the contrary, for lower discharges, B is over-
estimated. This aspect is also reflected at the experimental
level. In fact, when repeating the same experiment, the onset
of the breaching suffers from a certain data scatter. Con-
versely, the discharge for which the failure reaches the crest
is always the same.

2. As observed in the conclusions regarding the fluidmodule, the
failed material settles faster than in the real case. This can be

a consequence of the chosen viscorigid constitutive model. In
fact, when the shear stress decreases under the yield stress
threshold, the viscosity dramatically increases, causing a sud-
den stop of the nodes motion. The authors plan to develop an
erosion tool that will solve this problem by dragging away the
deposed material.
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