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Abstract

Once strain localization occurs in softening solids, inelastic loading behavior is restricted within a narrow band

while the bulk unloads elastically. Accordingly, localized failure in solids can be approached by embedding/smearing

a traction-based inelastic discontinuity (band) within an (equivalent) elastic matrix along a specific orientation. In this

context, the conformity of the strong/regularized and embedded/smeared discontinuity approaches are investigated,

regarding the strategies dealing with the kinematics and statics. On one hand, the traction continuity condition imposed

in weak form results in the strong and regularized discontinuity approaches, with respect to the approximation of

displacement/strain discontinuities. In addition to the elastic bulk, consistent plastic-damage cohesive models for

the discontinuities are established. The conformity between the strong discontinuity approach and its regularized

counterpart is shown through the fracture energy analysis. On the other hand, the traction continuity condition can

also be enforced point-wisely in strong form so that the standard principle of virtual work applies. In this case,

the static constraint resulting from traction continuity can be used to eliminate the kinematic variable associated

with the discontinuity (band) at the material level. This strategy leads to embedded/smeared discontinuity models

for the overall weakened solid which can also be cast into the elastoplastic degradation framework with a different

kinematic decomposition. Being equivalent to the kinematic constraint guaranteeing stress continuity upon strain

localization, Mohr’s maximization postulate is adopted for the determination of the discontinuity orientation. Closed-

form results are presented in plane stress conditions, with the classical Rankine, Mohr-Coulomb, von Mises and

Drucker-Prager criteria as illustrative examples. The orientation of the discontinuity (band) and the stress-based

failure criteria consistent with the traction-based counterparts are given. Finally, a generic failure criterion of either

elliptic, parabolic or hyperbolic type, appropriate for the modeling of mixed-mode failure, is analyzed in a unified

manner. Furthermore, a novel method is proposed to calibrate the involved mesoscopic parameters from available

macroscopic test data, which is then validated against Willam’s numerical test.
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1. Introduction

Deformation in solids with an overall softening response is characterized with strain localization leading to their

final failure. Being a manifestation of concentration of micro-structural defects, typical examples include cracks in

concrete, joints in rocks, shear bands in soils, dislocations and slip lines in metals, etc. Structural collapse is often

the consequence of such localized failure, prognosticated by the formation of localization bands of small width or

even fracture surfaces of negligible width compared to the length scale of the structure considered. Therefore, it is

of utmost significance to evaluate (residual) structural safety once strain localization occurs, and to prevent potential

catastrophic structural collapse caused by localized failure.

The onset of strain localization inevitably induces strain/displacement discontinuities and the standard kinematics

of a continuum medium no longer applies (Thomas, 1961). Furthermore, once strain localization occurs in softening

solids, the dissipative mechanisms and the induced nonlinear behavior are completely restricted within the localization

band while the bulk outside it unloads elastically (Oliver et al, 1999; Cervera et al., 2012). For the unloading behavior,

the bulk can be regarded as an equivalent elastic medium described by classical (tensorial) constitutive relations

in terms of stresses versus strains (Chen, 1994; Krajcinovic, 2003), in which inelastic responses proceeding strain

localization can be incorporated as well. Being its orientation known or determined, the discontinuity (band) can be

sufficiently described by a (vectorial) cohesive model with a traction-based failure criterion and appropriate evolution

laws. The traction continuity condition applies between the discontinuity (band) and the bulk, leading to an overall

response of intrinsic anisotropy. In this context, localized failure in softening solids can be approached by a traction-

based inelastic discontinuity (band) localized within an (equivalent) elastic matrix along a specific orientation (Wu

and Cervera, 2014b).

Within the above methodology, different approaches have been proposed for the modeling of localized failure in

solids (Ngo and Scordelis, 1967; Rashid, 1968). These approaches differ mainly in the approximation of the kine-

matics (displacement and strain fields) and statics (stress field and traction continuity) in the discontinuity (band).

Displacement or strong discontinuities are regarded as zero-width interfaces which are characterized by a cohesive

model in terms of tractions versus displacement jumps (Barenblatt, 1959, 1962; Dugdale, 1960; Hillerborg et al.,

1976). Alternatively, strain or weak discontinuities limiting the localized band with a finite width can be represented

by a regularized cohesive model in terms of tractions versus inelastic deformations (i.e., apparent displacement jumps

normalized with respect to the bandwidth) (Cervera, 2008a,b). Depending on the recoverable/irreversible properties of

the discontinuities upon unloading, cohesive models of either plastic (Stankowski et al., 1993; Cervenka, 1994; Carol

et al., 1997; Weihe et al., 1997), damage (Armero, 1999; Armero and Oller, 1998; Jirásek and Zimmermann, 2001)

or combined plastic-damage (Wu and Xu, 2011; Wu, 2011) type can be established. Similarly to the tensorial consti-

tutive laws, irreversible thermodynamics with internal variables (Coleman and Gurtin, 1967) is usually employed to
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guarantee the consistency of the cohesive model.

The discontinuity (band) is localized in the bulk through the in-between traction continuity condition. This static

condition on the discontinuity can be imposed in either weak or strong form. In an integral sense, the weak form

explicitly accounts for the displacement/strain discontinuities in such a way that the kinematic variables associated

with the discontinuity (band) are retained. The resulting boundary value problem is no longer standard in the sense

that the internal virtual work consists of contributions from both the bulk and the discontinuity (band) (Malvern,

1969; Wu, 2011). Accordingly, constitutive relations for both the bulk and the discontinuity (band) have to be pro-

vided. Contrariwise, if the traction continuity condition is enforced point-wisely in strong form, it is possible to

eliminate the kinematic variables on the material level (Rots, 1985, 1988; Armero and Oller, 1998). In this case,

the displacement/strain discontinuities are implicitly accounted for and the standard principle of virtual work applies.

Accordingly, a single inelastic constitutive model for the overall weakened solid suffices for this strategy.

As mentioned before, a traction-based failure criterion with appropriate softening laws is adopted to characterize

the inelastic discontinuity (band). The Rankine criterion is generally employed in the modeling of mode-I failure. For

mixed mode failure, it is difficult to quantify the interaction between normal and tangential responses on the disconti-

nuity surface. This fact brings about two problems, i.e., (i) the linear Mohr-Coulomb criterion is in general insufficient

and more complex models have to be considered, and (ii) even if the failure criterion is postulated, usually in an ad hoc

manner, it is hard to calibrate the involved parameters. For instance, either elliptical (Camacho and Ortiz, 1996; Pan-

dolfi et al., 1999; Jirásek and Zimmermann, 2001; Wu and Xu, 2011), parabolic (Ohlsson and Olofsson, 1997; Mosler,

2005) or hyperbolic (Carol et al., 1997; Cervenka, 1994; Weihe et al., 1997; Most and Bucher, 2007) functions have

been postulated to describe mixed-mode failure in quasi-brittle materials. However, the involved parameters are es-

sentially mesoscopical entities hard to determine from rather limited experimental data. This shortcoming restrains

heavily the predictive capability of traction-based approaches. The scenario is quite different for stress-based material

failure criteria which prescribe an admissible domain of stress states. Extensive experimental data make it possible

to postulate appropriate stress-based failure criteria and calibrate the model parameters, especially for concrete-like

quasi-brittle materials (Chen, 1994).

In traction-based approaches for the modeling of localized failure in solids, an indispensable step is to determine

the orientation of the discontinuity (band). It is assumed a priori that the discontinuity (band) forms, and the question

is whether the expected strain localization can occur and, if it can, what is the orientation. The above tasks cannot

be easily resolved, especially for a new or propagating discontinuity whose orientation is not pre-defined or known a

priori. To this end, ad hoc strategies have to be introduced, usually in an heuristic manner. For instance, the Rankine

criterion based on the bulk stresses is often adopted for mode-I failure in quasi-brittle solids. Mohr’s maximiza-

tion postulate has been employed occasionally in the literature (Ottosen and Runesson, 1991b; Weihe et al., 1997)

to determine the discontinuity orientation for general traction-based mixed-mode failure criterion, but its rationality

has not been fully justified. For an inelastic bulk, the singularity condition of the acoustic tensor, necessary for dis-

continuous bifurcation, has been widely adopted to determine the orientation of shear bands observed in elastoplatic
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materials; see (Rudnicki and Rice, 1975; Rice and Rudnicki, 1980; Ottosen and Runesson, 1991a; Runesson et al.,

1991; Steinmann and Willam, 1991) and the references therein. The discontinuous bifurcation condition with perfect

(null) softening/hardening modulus was also suggested by Simó et al. (1993) and Oliver (1996) to determine the ori-

entation of a strong discontinuity in softening solids. Despite its generality at the cost of a considerable computational

overhead, it is worth noting that, for the above discontinuous bifurcation analysis, (i) the underlying assumption of a

linear comparison solid (inelastic loading state both inside and outside the localization band) (Hill, 1958, 1962) is not

consistent with the stress states upon strain localization in softening solids; (ii) being only a necessary one, the said

condition guarantees neither the occurrence of a strong discontinuity in general cases (Oliver et al., 1998; Oliver et al,

1999) nor its eventual evolution into a fully softened discontinuity; (iii) it cannot be used for the elastic bulk since the

acoustic tensor is always regular and, for the inelastic bulk characterized by a stress-based model, the traction-based

counterpart for the discontinuity (band) in general cannot be given explicitly. The above arguments make the classical

strain localization analysis questionable as a general tool for softening solids.

It follows from distributional analysis (Simó et al., 1993; Oliver, 1996, 2000) that, due to the singular strain field

around a strong discontinuity, traction continuity alone is not sufficient to guarantee physically meaningful results,

but rather, stress boundedness also has to be invoked (Simó et al., 1993; Oliver, 1996; Oliver et al., 1998; Oliver et

al, 1999; Oliver, 2000). Noticing this fact, Cervera et al. (2012) used the kinematic compatibility condition resulting

from stress boundedness to determine the discontinuity orientation, so that the stress locking-free property can be

guaranteed for a fully softened discontinuity. More recently, the authors (Wu and Cervera, 2013, 2014a,b) show that

upon strain localization the stress field not only is bounded, but also is continuous, provided only the discontinuity

modes caused by relative rigid body motions (translations and rotations) are considered (Wu, 2011; Wu et al., 2015).

This condition is more demanding than the classical bifurcation condition that implies singularity of the acoustic tensor

and the corresponding loss of material ellipticity (Rudnicki and Rice, 1975; Rice and Rudnicki, 1980; Runesson et al.,

1991). Based on the more stringent stress continuity condition, a novel strain localization analysis has recently been

proposed (Wu and Cervera, 2014b). Not only the discontinuity orientation but also the traction-based failure criterion

are determined consistently from a stress-based inelastic material model. Accordingly, localized failure in solids can

be approached from an alternative methodology, i.e., stress continuity based strain localization of an inelastic solid.

Results obtained with this methodology do not necessarily coincide with those of classical localization analysis. For

instance, the discontinuity orientation does not depend on the value of an elastic property such as Poisson’s ratio.

Furthermore, the bi-directional connections between traction- and stress-based approaches are established.

Trying to make further contributions to the above topics, the objectives of this work are fourfold: (a) to classify the

existing traction-based approaches and to clarify their in-between connections, (b) to exploit the use of the conformity

between traction- and stress-based approaches for the determination of the discontinuity orientation and the calibration

of the model parameters, (c) to present closed-form results of several classical models in plane stress conditions,

and (d) to advocate a generic traction-based criterion appropriate for the modeling of mixed-mode failure. These

connections are not at all evident in general cases.
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The scope of the paper is restricted to the continuum setting. The interrelation with possible finite element approx-

imations in the discrete setting is not covered in this work. Strong discontinuities, with discontinuous displacement

fields, may be approximated using the XFEM method (Moës et al., 1999; Wells and Sluys, 2001) or the “continuum

strong discontinuity approach” (Simó et al., 1993; Oliver, 1996; Jirásek and Zimmermann, 2001). These numerical

methods to approximate discontinuities differ mainly in the enhanced discrete approximation of the (regularized or

not) displacement jumps at the discontinuity; see Wu (2011); Wu et al. (2015) for more discussion.

This paper is organized as follows. After this introduction, in Section 2 the strong and regularized discontinuity

approaches are discussed, focusing on the kinematics, governing equations, consistent constitutive laws and fracture

energy, respectively. Section 3 addresses the embedded and smeared discontinuity approaches, in which elastoplastic

damage models for the overall weakened solid are established within two alternative frameworks. Section 4 is devoted

to the determination of the discontinuity orientation in general 3D cases, together with the closed-form results and

several prototype examples in plane stress conditions. As an application, in Section 5 a generic traction-based failure

criterion, appropriate for the modeling of mixed-mode failure in solids, is analyzed. Furthermore, a new method

to calibrate the involved parameters is presented and then validated against Willam’s numerical test. The relevant

conclusions drawn in Section 6 close the paper.

Notation. Compact tensor notation is used in this paper as much as possible. As a general rule, scalars are denoted

by italic light-face Greek or Latin letters (e.g. a or �); vectors and second-order tensors are signified by italic boldface

minuscule and majuscule letters like a and A, respectively. Fourth-order tensors are identified by blackboard-bold

majuscule characters (e.g. A). Symbols I and I represent the second-order and fourth-order symmetric identity

tensors, respectively. Superscripts ‘T’ and ‘sym’ indicate the transposition and symmetrization operations, respectively.

The inner products with single and double contractions are denoted by ‘�’ and ‘:’, respectively. The dyadic product

‘�’ and symmetrized Kronecker product � are defined as�
A ˝B

�
ijkl
D AijBkl ;

�
A �B

�
ijkl
D
1

2

�
AikBjl C AilBjk

�
for two arbitrary second-order tensors A and B.

2. Strong/regularized discontinuity approaches

As shown in Fig. 1, the domain ˝ � Rndim .ndim D 1; 2; 3/ occupied by a solid with reference position vector

x 2 Rndim is considered. The boundary of the domain ˝ is denoted by � � Rndim�1, with an external unit normal

vector n�. Deformations of the solid are characterized by the displacement field u W ˝ ! Rndim and the infinitesimal

strain field � D rsymu W ˝ ! Rndim�ndim , with r.�/ being the spatial gradient operator.

Upon satisfaction of a specified criterion, an internal surface S is introduced, with the orientation characterized by

a unit normal vector n, fixed along time (i.e., Pn D 0) and pointing from ˝� to ˝C. The interface S splits the solid

˝ into two sub-domains ˝C and ˝�, i.e., ˝ D ˝C [˝� [ S. Consequently, the displacement and strain fields no

longer remain continuous and may be discontinuous or even singular at the interface S.
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2.1. Governing equations

The solid is subjected to the body forces (per unit volume) b� W ˝ ! Rndim distributed in the domain ˝ and

surface tractions t� W �t ! Rndim applied on a portion of the boundary �t � � . The prescribed displacements

imposed on the complementary boundary �u � � are denoted by u� W �u ! Rndim . Note that the boundaries �u and

�t are disjointed, i.e., �u \ �t D ; and �u [ �t D � , so that the resulting boundary value problem is well-posed.

Restricting the discussion to quasi-static loading, the governing equations are expressed as

Balance of linear momentum: r � � C b� D 0 in ˝nS
Traction continuity condition: �C

S
� n D ��

S
� n D t in S

(2.1)

supplemented by the following boundary conditions

Traction boundary condition: � � n� D t� in �t

Displacement boundary condition: u D u� in �u
(2.2)

where the second-order tensor � W ˝nS ! Rndim�ndim denotes the stress field in the bulk ˝nS D ˝C [ ˝�, with

�C
S
WD � .x 2 ˝C \ S/ and ��

S
WD � .x 2 ˝� \ S/ being the bulk stresses “ahead of” and “behind” the interface S,

respectively; the vector t W S ! Rndim denotes the cohesive traction transferred across the discontinuity S.

2.2. Kinematics and weak forms

With respect to the strategy dealing with the discontinuity or singularity exhibited in the kinematics, either the

strong discontinuity approach or the regularized one can be developed for the above boundary value problem.

2.2.1. Strong discontinuity approach

To describe the displacement jump w W S ! Rdim, the Heaviside function HS .x/ is introduced as HS .x/ D 1 if

x 2 ˝C and HS .x/ D 0 otherwise. Accordingly, the displacement field u.x/ can be expressed as

u.x/ D Nu.x/CHS .x/ Ou.x/ (2.3a)

and the resulting strain field �.x/ is given by

�.x/ D rsym
Nu.x/C

�
w� n

�sym
ıS .x/ (2.3b)

where ıS .x/ is the Dirac-delta defined at the interface S; Nu.x/ denotes the continuous displacement field in the solid;

the relative displacement field Ou.x/ W ˝ ! Rndim , satisfying the property Ou.x 2 S/ D w, describes how the sub-

domain ˝C moves as a rigid body (e.g., translations and rotations) with respect to the other sub-domain ˝�; see

Wu (2011). If only rigid body translations are considered, the relative displacement field Ou.x/ is constant along the

interface S and its magnitude coincides with the displacement jump w. Note that, though the relative displacement

field Ou.x/ is not necessarily constant, its contribution to the strain field vanishes, i.e., rsym Ou.x/ D 0.
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As can be seen, the strong discontinuity S induces a discontinuous (or C�1-continuous) displacement field u.x/

and a singular (unbounded) strain field �.x/; see Fig. 2. With the singular kinematics (2.3), the governing equation

(2.1) and the traction boundary condition (2.2)1 can be cast into the following weak form for the strong discontinuity

approach (Malvern, 1969)Z
˝

r
symıu W � d˝ D

Z
˝nS
r

symı Nu W � d˝ C
Z
S
ıw � t dS D

Z
˝

ıu � b� d˝ C
Z
�t

ıu � t� d� (2.4)

where the trial function u 2 U and its variation ıu 2 V are chosen within the spaces

U W D
n
u
ˇ̌
u D NuCHS OuI u D u

� in �uI
o

(2.5a)

V W D
n
ıu
ˇ̌
ıu D ı NuCHS ı OuI ıu D 0 in �u

o
(2.5b)

for the variations ı Nu and ı Ou of sufficient regularity. Note that the displacement boundary conditions (2.2)2 are usually

enforced in strong form.

2.2.2. Regularized discontinuity approach

Alternatively, the interface S may be approximated by a regularized discontinuity (or discontinuity band) B,

delimited by two surfaces SC and S� parallel to S, i.e., ˝C [ ˝� [ B D ˝; see Fig. 3(a). In this case, the

discontinuous displacement field (2.3a) can be approximated by

u.x/ D Nu.x/CHB.x/ Ou.x/ (2.6a)

where the ramp function HB.x/ is defined as HB.x/ D 0 if x 2 ˝�, HB.x/ D 1 if x 2 ˝C and HB.x/ D

1
b

�
x � x�

�
� n if x 2 B, with x� being the spatial coordinates of point x projected along the direction �n to the

surface S�. Note that the regularization parameter b, not necessarily a physical length, can be made as small as

desired. Accordingly, the singular strain field (2.3b) is regularized as

�.x/ D rsym
Nu.x/C

�
e � n

�sym
�B.x/ (2.6b)

where �B.x/ denotes the collocation function within the discontinuity band B, i.e., �B.x/ D 1 if x 2 B and

�B.x/ D 0 otherwise; e WD w=b represents the deformation vector, with w WD u.x 2 ˝C \ B/ � u.x 2 ˝� \ B/
now being the apparent displacement jump across the discontinuity band B.

As shown in Fig. 3(b), the kinematic of a regularized discontinuity is characterized by a continuous displacement

field u.x/ and a regular (bounded) strain field �.x/. Consistent with the above kinematics, the following weak form

is obtained for the regularized discontinuity approachZ
˝

r
symıu W � d˝ D

Z
˝nB
r

symı Nu W � d˝ C
Z
B
ıe � t dB D

Z
˝

ıu � b� d˝ C
Z
�t

ıu � t� d� (2.7)

where the trial function u 2 U and its variation ıu 2 V are chose within the spaces

U W D
n
u
ˇ̌
u D NuCHB OuI u D u

� in �uI
o

(2.8a)

V W D
n
ıu
ˇ̌
ıu D ı NuCHB ı OuI ıu D 0 in �u

o
(2.8b)
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Note that for the regularized discontinuity with a vanishing band width b ! 0, the weak form (2.4) of the strong

discontinuity approach is recovered.

Remark 2.1 As our main intention focuses on the nonlinear behavior lumped in the discontinuity, only linear elastic

bulk materials are considered in this work; see Wu and Cervera (2014b) for the strategy dealing with nonlinear bulks.

Upon the above methodology, the singular strain field (2.3b) and the regularized one (2.6b) can be expressed as

�.x/ D �e.x/C �in.x/ (2.9)

where �e.x/ D rsym Nu.x/ represents the elastic strain field; the inelastic strain field �in.x/ is given by

�in.x/ D
�
w� n

�sym
ıS .x/ or �in.x/ D

�
e � n

�sym
�B.x/ (2.10)

Note that, though the total strain field may be discontinuous or even singular, the elastic one is continuous. �

2.3. Cohesive model for strong and regularized discontinuities

In the strong/regularized discontinuity approaches, the traction continuity condition (2.1)2 is enforced in weak

form such that the kinematic variable w (or e WD w=b) associated to the discontinuity (band) is retained. In order to

solve the boundary value problem (2.4) or (2.7), besides the elastic constitutive relation for the bulk, it is necessary to

provide appropriate constitutive laws to determine the cohesive traction vector t.

For the strong/regularized discontinuities, thermodynamically consistent cohesive models are developed in Wu and

Cervera (2014b). Here, only the necessary formulas are summarized in Table 1 and all the derivations are omitted.

In the kinematic decompositions (2.11) and (2.12), the displacement jump w (or the inelastic deformation vector

e) is split into a recoverable damage part wd (or ed) and an unrecoverable plastic one wp (or ep). Accordingly, both

stiffness degradation and irreversible deformations induced by the discontinuity (band) can be accounted for in the

constitutive relations (2.13) and (2.14), where the second-order tensors zE
d

and zC
d

(or,E d andC d) denote the variable

stiffness and compliance tensors of the discontinuity (band), respectively. In the rate forms (2.15) and (2.16), Pwdis and

Pedis represent the dissipative displacement jump rate and dissipative deformation rate, respectively, both meaningful

only in rate sense; see Figs. 4 and 5. A material parameter � 2 Œ0; 1� is introduced to discriminate between damage

and plastic contributions. Namely, the cases � D 0 and � D 1 correspond to cohesive models of pure plastic and pure

damage types, respectively, while the intermediate value � 2 .0; 1/ results in plastic-damage cohesive models.

Accordingly, the associated evolution laws (2.17) and (2.18) are characterized by the dissipative flow vector  WD

@f=@t and softening function h WD �@f=@q, where a traction-based failure criterion f .t; q/ � 0, is introduced in the

Kuhn-Tucker loading/unloading conditions (2.19) and (2.20). Without loss of generality, let us consider the following

homogeneous failure function f .t; q/ of degree M � 1

f .t; q/ D
1

M

�
@tf � t C @qf � q

�
D

1

M

�
 � t � h � q

�
� 0 (2.27)

where q.�/ denotes the cohesive strength of the discontinuity (band), dependent on a displacement-like internal vari-

able Q� (or a strain-like one �). When the discontinuity (band) is inactive, i.e., f .t; q/ < 0, it follows that Q� D 0
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Table 1: Cohesive models for the discontinuity (band)

Cohesive model for the strong discontinuity Cohesive model for the regularized discontinuity

Kinematic decomposition

w D wd
Cwp; �in

D �d
C �p (2.11)

Kinematic decomposition

e D ed
C ep; �in

D �d
C �p (2.12)

Constitutive relations

t D zE
d
�wd
D zE

d
�
�
w �wp� (2.13a)

wd
D w �wp

D zC
d
� t (2.13b)

Constitutive relations

t D E d
� ed
D E d

�
�
e � ep� (2.14a)

ed
D e � ep

D C d
� t (2.14b)

Rate form

Pt D zE
d
�
�
Pw � Pwdis�; Pw D zC

d
� Pt C Pwdis (2.15)

Rate form

Pt D E d
�
�
Pe � Pedis�; Pe D C d

� Pt C Pedis (2.16)

Evolution laws

Pwdis
D
PzC d
� t C Pwp

D Q�; PQ� D Q�h (2.17a)

Pwp
D
�
1 � �

�
Pwdis
D
�
1 � �

�
Q� (2.17b)

PzC d
D � Q�

 � 
 � t

(2.17c)

Evolution laws

Pedis
D PC

d
� t C Pep

D �; P� D �h (2.18a)

Pep
D
�
1 � �

�
Pedis
D
�
1 � �

�
� (2.18b)

PC
d
D � �

 � 
 � t

(2.18c)

Kuhn-Tucker loading/unloading rules

Q� � 0; f � 0; Q�f � 0 (2.19)

Kuhn-Tucker loading/unloading rules

� � 0; f � 0; �f � 0 (2.20)

Consistency parameter

Q� D
 � zE

d
� Pw

 � zE
d
�  C h � zH � h

D
 � Pt

h � zH � h
(2.21)

Consistency parameter

� D
 �E d

� Pe

 �E d
�  C h �H � h

D
 � Pt

h �H � h
(2.22)

Rate constitutive relations

Pt D zE
d
tan � Pw; Pw D zC

d
tan � Pt (2.23)

Rate constitutive relations

Pt D E d
tan � Pe; Pe D C d

tan � Pt (2.24a)

Discontinuity tangents

zE
d
tan D

zE
d
�

zE
d
�
�
 � 

�
� zE

d

 � zE
d
�  C h � zH � h

(2.25a)

zC
d
tan D

zC
d
C

 � 
h � zH � h

(2.25b)

Discontinuity tangents

E d
tan D E

d
�

E d
�
�
 � 

�
�E d

 �E d
�  C h �H � h

(2.26a)

C d
tan D C

d
C

 � 
h �H � h

(2.26b)

or � D 0. For an evolving discontinuity (band), i.e., Q� > 0 or � > 0, it follows that f .t; q/ D 0. In this case,

the consistency condition Pf .t; q/ D 0 yields the result (2.21) or (2.22), where the softening moduli are given by

zH WD @q=@ Q� < 0 and H WD @q=@� < 0, with Q� and � being the displacement-like and strain-like internal variables,

respectively. Owing to the associated evolution laws, the discontinuity tangents (2.25) and (2.26) are all symmetric.

2.4. Fracture energy and the equivalence conditions

For a strong discontinuity, the fracture energy Gf, usually regarded as a material property and defined as energy

dissipation W per unit of discontinuity area AS , can be evaluated as (Wu and Cervera, 2014b)

Gf WD
W

AS

D

�
1 �

1

2
�
� Z 1

0

Q� dT D
�
1 �

1

2
�
� Z 1

0

q. Q�/ d Q� (2.28)

9



where the evolution laws (2.17) and the relation y � t D yh � q for an active discontinuity (band) has been considered.

Accordingly, the parameters involved in the softening law q. Q�/ can be determined for the given fracture energy Gf.

Similarly, for a regularized discontinuity it follows that

Gf WD
W

AS

D
W

VB=b
D b

�
1 �

1

2
�
� Z 1

0

� dT D b
�
1 �

1

2
�
� Z 1

0

q.�/ d� (2.29)

for the volume VB D bAS of the discontinuity band. It can be concluded that for the given fracture energy Gf, the

softening function q.�/ also depends on the band width b.

The fracture energy (2.29) allows introducing the so-called specific fracture energy gf, i.e., the dissipation per unit

volume of the discontinuity band VB , in a straightforward manner

gf WD
W

VB

D
1

b
Gf (2.30)

This is exactly the relation between the crack band theory (Bažant and Oh, 1983) and the fictitious crack model

(Hillerborg et al., 1976).

For the case of a vanishing band width b ! 0, the relation gf D Gf ıS holds. It then follows that

W D

Z
B
gf dB D

Z
B
Gf ıS dB D

Z
S
Gf dS (2.31)

which recovers the classical definition of fracture energy.

For the same traction-based failure criterion yf .t; q/ � 0 and equivalent softening laws q.�/ D q. Q�/, the results

(2.28) and (2.29) imply that identical fracture energies Gf can be obtained for both models, provided that

� D
1

b
Q�; P� D

1

b
PQ� ” � D

1

b
Q�;

1

H
D
1

b

1

zH
(2.32)

That is, the strong discontinuity transforms into an equivalent regularized counterpart with a finite band width b ¹ 0.

Contrariwise, for the regularized discontinuity with a vanishing band width b ! 0, the conditions (2.32) become

� D Q�ıS ; P� D PQ�ıS ” � D Q�ıS ;
1

H
D

1

zH
ıS (2.33)

In this case, the regularized discontinuity localizes into an equivalent strong discontinuity.

The above results clearly show that the strong and regularized discontinuity approaches are consistently related.

3. Embedded/smeared discontinuity approaches

In the above strong and regularized discontinuity approaches, the traction continuity condition (2.1)2 is enforced

in weak form. Alternatively, it can also be enforced point-wisely in strong form. This scheme allows elimination of

the displacement jump w associated with the strong discontinuity S (or the inelastic deformation vector e with the

regularized discontinuity B) at the material local level. That is, the inelastic behavior caused by the strong/regularized

discontinuities can be accounted for through appropriate material constitutive models, resulting in the following em-

bedded/smeared discontinuity approaches.

10



3.1. Governing equations in weak form

As mentioned before, the inelastic strains �in are localized completely within the discontinuity (band) and con-

sequently, the elastic strain field �e is continuous in the entire solid. It follows that, though the strain field may be

discontinuous or even singular, the resulting stress field is continuous across the discontinuity (band), i.e.,

�C
S
D ��

S
D � S (3.1)

for the stress � S WD � .x 2 S/ at the discontinuity (band). This conclusion, applicable for both strong and regularized

discontinuities, is exactly the stress continuity condition upon strain localization in softening solids; see Wu and

Cervera (2014a,b) for the details.

In this case, the traction continuity condition (2.1)2, which describes the relation between the stresses �C
S
D ��

S

in the bulk and the cohesive traction t transferred by the discontinuity (band), coincides with the classical static

constraint at the material level, i.e.,

t D � S � n; Pt D P� S � n (3.2)

where the material character of the discontinuity Pn D 0 has been considered. The above static constraint is employed

in the embedded/smeared crack models (Rots, 1988; Armero and Oller, 1998) and traction-based elastoplastic damage

models (Wu and Xu, 2011) discussed later.

With the traction continuity condition (2.1)2 enforced in strong form, the governing equation (2.1)1 and the traction

boundary condition (2.2)1 can be stated as the standard principle of virtual work: Find u 2 U such thatZ
˝

r
symıu W � d˝ D

Z
˝

ıu � b� d˝ C
Z
�t

ıu � t� d� 8ıu 2 V (3.3)

with the stress � S at the discontinuity (band) determined from an inelastic material model satisfying the static con-

straint (3.2). Here, U is the trial space introduced in Eq. (2.5a) for a strong discontinuity or in Eq. (2.8a) for a

regularized one; the standard test space V is defined as

V WD
˚
ıu of sufficient regularity

ˇ̌
ıu D 0 on �u

	
(3.4)

As can be seen, the traction continuity condition (2.1)2 and the displacement jump w (or the inelastic deformation

vector e) are not explicitly considered in the weak form (3.3). But rather, they are accounted for indirectly at the

material local level, i.e., in appropriate constitutive models fulfilling the classical static constraint (3.2) for the overall

weakened solid.

3.2. Embedded/smeared discontinuity models

Owing to the equivalence shown in Section 2.4, only the smeared discontinuity model employing the regularized

kinematics (2.6) is addressed in the following.
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As the stress field remains continuous after strain localization occurs, the constitutive relations for both the bulk

and the discontinuity (band) can be expressed as

� D E0 W �e
D E0 W

�
� � �in�; �e

D � � �in
D C0

W � (3.5)

or, in rate form,

P� D E0 W P�e
D E0 W

�
P� � P�in�; P�e

D P� � P�in
D C0

W P� (3.6)

where the inelastic strain �in is defined in Eq. (2.10). Once the kinematic variable e WD w=b is eliminated through the

static constraint (3.2), an inelastic material model that characterizes the overall nonlinear behavior of the solid with a

regularized discontinuity is obtained.

Calling for Eqs. (2.16) and (3.6), the static constraint (3.2)2 yields the following inelastic deformation vector rate

Pe in terms of the strain rate P�

Pe D
�
E d

tan C n � E
0
� n
��1
�
�
E0 W P�

�
� n (3.7)

Therefore, the stress rate P� is then given from Eq. (3.6), i.e.,

P� D E0 W
h
P� �

�
Pe � n

�sym
i
D Etan W P� (3.8)

where the fourth-order tangent stiffness tensor Etan is expressed as

Etan D E0 � E0 W
h�
E d

tan C n � E
0
� n
��1 �N

isym
W E0 (3.9)

with a second-order geometric tensor N WD n� n.

Alternatively, substitution of Eq. (2.24a) into the rate of the inelastic strain (2.10)2 yields

P�in
D
�
Pe � n

�sym
D

h�
C d

tan � P� � n
�
� n

isym
D
�
C d

tan �N
�sym
W P� (3.10)

where the static constraint (3.2) has been considered. The strain rate P� is then given from Eq. (2.9) as

P� D P�e
C P�in

D Ctan W P� (3.11)

where the fourth-order tangent compliance tensor Ctan is expressed as

Ctan D C0
C
�
C d

tan �N
�sym (3.12)

Note that the above tangent compliance tensor Ctan can also be directly derived from Eq. (3.9) through the Sherman-

Morrison-Woodburg formula (Golub and van Loan, 1996).

The above constitutive relations correspond exactly to those in the smeared crack model (Rots, 1985, 1988; Rots

and Blaauwendraad, 1989), as an extension of the original form proposed by Rashid (1968).
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3.3. Traction-based elastoplastic degradation model

As shown in Eqs. (2.11)2 and (2.12)2, the strain (2.9) in the discontinuity (band) is decomposed into its elastic,

damage and plastic parts. This kinematic decomposition, depicted in Fig. 6, is exactly the one advocated by Armero

and Oller (1998). The resulting embedded/smeared discontinuity models then fit the framework developed in that

reference. In this section it is shown that they can be cast into an alternative framework with a different kinematic

decomposition.

Calling for the constitutive relation (2.14) and the static constraint (3.2), the damage strain �d can be explicitly

related to the stress tensor �

�d
D

h�
C d
� � � n

�
� n

isym
D Cd

W � (3.13)

where the symmetric fourth-order damage compliance tensor Cd is expressed as

Cd
D
�
C d �N

�sym (3.14)

Accordingly, the strain � in Eq. (2.9) can be decomposed into a recoverable (elastic and damage) part C W � D �eC�d

and an irreversible plastic one �p.

� D �e
C �d

C �p
D C0

W � CCd
W � C �p

D C W � C �p (3.15)

where the fourth-order compliance tensor C is given by

C WD C0
CCd

D C0
C
�
C d �N

�sym (3.16)

This is the kinematic decomposition employed in the so-called elastoplastic degradation framework (Ortiz, 1985;

Meschke et al., 1998; Wu and Xu, 2011); also see Fig. 6.

Inversely, the stress rate � is then evaluated as

� D E W
�
� � �p� (3.17)

where the fourth-order stiffness tensor E D C�1 is obtained from the Sherman-Morrison-Woodburg formula (Golub

and van Loan, 1996), i.e.,

E D E0 � E0 W
h�
E d
C n � E0 � n

��1 �N
isym
W E0 (3.18)

It is important to note that, due to the rank deficiency of the fourth-order damage compliance tensor Cd, Eq. (3.13) in

general can not be inverted to determine the stress � solely from the damage strain �d.

It follows from the evolution laws (2.18) that

P�p
D
�
Pep � n

�sym
D
�
1 � �

�
�� (3.19a)

PC D PCd
D
�
PC

d
�N

�sym
D � �

���
� W �

(3.19b)
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where the following definition of the dissipative flow tensor � has been introduced

� WD
�
 � n

�sym
;  WD

@f

@t
(3.20a)

Owing to the static constraint (3.2), the above dissipative flow tensor � can also be expressed as

� D
@f

@�
DN �  D

�
 � n

�sym (3.20b)

where N D @t=@� is a third-order tensor with components Nijk D 1
2

�
niıjk C nj ıik

�
, for the Cartesian components

ni of the normal vector n and the Kronecker-delta ıjk , respectively.

By time differentiation, the strain rate P� and the stress rate P� are expressed as

P� D C W P� C P�dis; P� D E W
�
P� � P�dis� (3.21)

where the dissipative strain tensor rate P�dis (Wu and Xu, 2013), related to the energy dissipation, is defined as

P�dis
WD PCd

W � C P�p
D
�
Pedis � n

�sym
D �� (3.22)

with PCd W � and P�p being its damage and plastic components, respectively; see Fig. 7 for the 1D illustration. Note

that the so-called degradation strain rate PCd W � (Dougill, 1976; Hueckel and Maier, 1977; Carol et al., 1994) and the

dissipative strain rate P�dis are meaningful only in rate sense.

For the traction-based failure criterion (2.27), the Lagrangian multiplier � > 0 is solved from the consistency

condition Pf D 0 as

� D
� W E W P�

� W E W �C h �H � h
D

� W P�

h �H � h
(3.23)

Note that the above Lagrangian multiplier � is expressed in terms of the strain rate P�, rather than the rate of the

kinematic unknowns Pw (or Pe) as in the cohesive constitutive models for strong/regularized discontinuities; see Eq.

(2.21) or (2.22).

Therefore, the following rate constitutive relations are obtained

P� D E W
�
P� � ��

�
D Etan W P� (3.24a)

P� D C W P� C �� D Ctan W P� (3.24b)

where the symmetric material tangents Etan and Ctan are expressed as

Etan D E �
E W

�
���

�
W E

� W E W �C h �H � h
(3.25a)

Ctan D C C
���
h �H � h

(3.25b)

Using the Sherman-Morrison-Woodburg formula (Golub and van Loan, 1996), it can be proved that the tangent

stiffness tensors Etan obtained in Eqs. (3.9) and (3.25a) are identical; see Appendix A for the details. Calling for the

material compliance (3.16) and the relation (3.20), it can be also concluded that the tangent compliance tensors Ctan

given in Eqs. (3.12) and (3.25b) coincide. Therefore, the traction-based elastoplastic degradation model is equivalent

to the embedded/smeared discontinuity models.
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4. Determination of the discontinuity orientation

In both the strong/regularized discontinuity approaches and their embedded/smeared counterparts, the inelastic

behavior of the discontinuity (band) is characterized by a failure criterion f .t; q/ � 0 in terms of the traction t D � �n.

Accordingly, the orientation n of the discontinuity (band) has to be determined.

4.1. Characteristic angles of the discontinuity

To characterize the discontinuity orientation n, let us consider the spectral decomposition of the stress tensor �

� D

3X
iD1

�ivi � vi (4.1)

where �i denotes the i -th principal value of the stress tensor � , with the corresponding principal vectors vi satisfying

the orthogonal property vi � vj D ıij for i; j D 1; 2; 3.

For general 3D cases, a local orthogonal base .n;m;p/ is introduced, with vectors m and p perpendicular to the

normal vector n and tangent to the discontinuity surface S. In the coordinate system of the principal stresses, the base

vectors .n;m;p/ of the discontinuity can be expressed as

n.�/ D
˚

sin#1 cos �1; sin#1 sin �1; cos#1
	T (4.2a)

m.�/ D
˚

sin#2 cos �2; sin#2 sin �2; cos#2
	T (4.2b)

p.�/ D n.�/ �m.�/ (4.2c)

supplemented with an additional equation resulting from the orthogonality n �m D 0

C.�/ WD n.�/ �m.�/ D sin#1 sin#2 cos
�
�1 � �2

�
C cos#1 cos#2 D 0 (4.2d)

where � WD
˚
�1; �2; #1; #2

	T is a set of characteristic angles, with .�1; �2/ and .#1; #2/ being the spherical azimuth

and polar angles, respectively; the operator “�” denotes the Gibbs’ vector product (the right hand rule is followed).

In this way, the discontinuity orientation n can be characterized by a specific set of discontinuity angles �cr.

The tractions t acting on the surface with normal vector n.�/ are given by

t WD � � n D tnnC tmmC tpp (4.3)

for the following traction components .tn; tm; tp/

tn D �nn D n � t D
�
n� n

�
W � (4.4a)

tm D �nm D m � t D
�
n�m

�sym
W � (4.4b)

tp D �np D p � t D
�
n� p

�sym
W � (4.4c)

That is, the traction components .tn; tm; tp/ can also be related to the characteristic angles � .
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4.2. Morh’s maximization postulate

It is a non-trivial goal to determine the discontinuity orientation for a new or propagating discontinuity. As men-

tioned before, the occurrence of necessary requirements for a certain type of failure (e.g., discontinuous bifurcation)

to be initiated during the deformation process in inelastic solids provides useful information about the discontinuity

orientation; see (Runesson et al., 1991; Ottosen and Runesson, 1991a) and the references therein. Recently, in oder to

guarantee formation of localization band in softening materials and its eventual evolution into a fully softened discon-

tinuity, the authors proposed a novel strain localization analysis based on a more stringent stress continuity condition

(Wu and Cervera, 2014a,b). Particularly, for a softening solid with its inelastic behavior characterized by a given

dissipative flow tensor � D @F=@� , with F.� ; q/ � 0 being a stress-based failure criterion, a kinematic constraint of

identical form (3.20) fulfilling stress continuity (3.1) upon strain localization is derived. It is proved that in the case of

associated evolution laws, the stress continuity based kinematic constraint is equivalent to Mohr’s maximization pos-

tulate (Mohr, 1900), provided the stress-based failure criterion and the traction-based counterpart are conformityously

related. This fact justifies the use of Mohr’s maximization postulate for the determination of discontinuity orientation

in the case of associated evolution laws.

For the case considered here, provided strain localization with a continuous stress field can occur, the traction-

based failure criterion (2.27) can always be obtained by projecting the corresponding stress-based one F.� ; q/ � 0

F.� ; q/ WD f .t; q/ D
1

M

�
 � t � h � q

�
D

1

M

�
� W � � h � q

�
� 0 (4.5)

onto the discontinuity orientation, where the following identity has been considered

� WD
�
 � n

�sym
H) � W � D  � t (4.6)

for the dissipative flow tensor defined in Eq. (3.20). Accordingly, for the discontinuity (band) to form along the

orientation n.�cr/, the traction-based failure criterion f .t; q/ D 0 is activated. Meanwhile, no discontinuity (band)

forms at any other orientation n.�/ ¤ n.�cr/. Calling for the static constraint (3.2), the above facts exactly transform

into Mohr’s maximum postulate

f
�
� � n.�/; q

�
� f

�
� � n.�cr/; q

�
D 0 (4.7)

That is, the inelastic behavior characterized by the stress-based failure criterion (4.5) is completely restricted into a

discontinuity described by the traction-based counterpart (2.27) along the orientation n.�cr/ determined from Mohr’s

maximization postulate, i.e.,

�cr
D arg maxf

�
t.�/; q

�
D arg maxf

�
� � n.�/; q

�
(4.8)

The corresponding stationarity condition reads

@f

@�

ˇ̌̌̌
�cr
D

�
 �

@t

@�

�
�cr
D

�
n
@tn

@�
C m

@tm

@�
C p

@tp

@�

�
�cr
D 0 (4.9)
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together with a negative definite Hessian matrix

�� �
@2f

@�2

ˇ̌̌̌
�cr
� �� < 0 8�� (4.10)

where the dissipative flow vector  WD @f=@t is expressed as

 D nnC mmC pp (4.11)

for the following local Cartesian components

n D  � n D
@f

@tn
; m D  �m D

@f

@tm
; p D  � p D

@f

@tp
(4.12)

Recalling the traction components (4.4), the stationarity condition (4.9) results in a set of nonlinear equations from

which generally two values of the discontinuity angles �cr can be solved. Note that, provided the solution exists, it

depends only on the given traction-based failure criterion and the stress state.

Remark 4.1 In the determination of the discontinuity angles �cr under general 3D cases, the constraint (4.2d) can be

readily handled by the Lagrangian multiplier method. �

4.3. Closed-form results in plane stress conditions

In this section the general 3D results presented in previous sections are particularized to the plane stress conditions

(�3 D 0). The plane strain results are discussed in Wu and Cervera (2014b).

Let us consider the 2D plane stress solid ˝ � R2 shown in Fig. 8. The unit normal vector n and tangential

vector m of the discontinuity S are on the plane of interest. Let � 2 Œ��=2; �=2� denote the angle (anti-clockwise)

between the normal vector n and major principal vector v1 of the stress � . Accordingly, in the characteristic angles

� WD
˚
�1; �2; #1; #2

	T the azimuth angles are �1 D � and �2 D � � �=2, and the polar angles are #1 D #2 D �=2.

It follows that n D
˚

cos �; sin �; 0
	T,m D

˚
sin �;� cos �; 0

	T and the other tangential vector p D
˚
0; 0;�1

	T.

The in-plane stress components .�nn; �mm; �nm/ are given from Eqs. (4.4)

�nn D �1 cos2 � C �2 sin2 � D
�1 C �2

2
C
�1 � �2

2
cos.2�/ (4.13a)

�mm D �1 sin2 � C �2 cos2 � D
�1 C �2

2
�
�1 � �2

2
cos.2�/ (4.13b)

�nm D
�
�1 � �2

�
sin � cos � D

�1 � �2

2
sin.2�/ (4.13c)

with �1 and �2 being the in-plane principal stresses, ordered as �1 � �2.

As the dissipative flow tensor� is coaxial to the stress � (Itskov, 2007), its in-plane components .�nn; �mm; �nm/

is similarly given by

�nn D �1 cos2 � C�2 sin2 � D
�1 C�2

2
C
�1 ��2

2
cos.2�/ (4.14a)

�mm D �1 sin2 � C�2 cos2 � D
�1 C�2

2
�
�1 ��2

2
cos.2�/ (4.14b)

�nm D
�
�1 ��2

�
cos � sin � D

�1 ��2

2
sin.2�/ (4.14c)
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for the in-plane principal values �1 and �2. The relation �1 � �2 is assumed so that the identity sign.�nm/ D

sign.�nm/ holds, with sign.�/ being the sign function.

Note that in the plane stress condition all the out-of-plane components of tensors � and � vanish, i.e., �pp D

�np D �mp D 0 and �pp D �np D �mp D 0.

4.3.1. Discontinuity angle

For a given plane stress traction-based failure criterion f .t; q/ WD f .tn; tmI q/ � 0, the stationarity condition

(4.9) simplifies as

@f

@�

ˇ̌̌̌
�cr
D

�
n
@tn

@�
C m

@tm

@�

�
�cr
D �

�
�1 � �2

�h
n sin.2� cr/ � m cos.2� cr/

i
D 0 (4.15)

The discontinuity angle � cr is then determined implicitly from

tan.2� cr/ D
sin.2� cr/

cos.2� cr/
D
m

n
(4.16)

which should also satisfy the following maximum condition

@2f

@�2

ˇ̌̌̌
�cr
< 0 (4.17)

Dependent on the specific stress state, two values of the discontinuity angle � cr can be obtained from Eqs. (4.16) and

(4.17).

Alternatively, the discontinuity angle � cr can be expressed in terms of the dissipative flow tensor �. It follows

from the definition (3.20) that

�nn D n; �nm D
1

2
m (4.18)

Substitution of the relations (4.14) and (4.18) into the stationarity condition (4.15) yields

@f

@�

ˇ̌̌̌
�cr
D �

�
�1 � �2

� ��1 C�2
2

�
�1 ��2

2
cos.2� cr/

�
sin.2� cr/ D 0 (4.19)

Furthermore, the maximization condition (4.17) requires

@2f

@�2

ˇ̌̌̌
�cr
D �

�
�1 � �2

� ��
�1 C�2

�
cos.2� cr/ �

�
�1 ��2

�
cos.4� cr/

�
< 0 (4.20)

Therefore, the discontinuity angle � cr is identified from

cos.2� cr/ D
�1 C�2

�1 ��2
; sin.2� cr/ D 2sign.�nm/

p
��1�2

�1 ��2
(4.21a)

or, equivalently,

cos2 � cr
D

�1

�1 ��2
; sin2 � cr

D �
�2

�1 ��2
(4.21b)
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if the conditions �1 � 0 and �2 � 0 are satisfied. For the cases �2 > 0 or �1 < 0, the following results apply

sin.2� cr/ D 0 H)

8̂<̂
:�

cr D 0 �1 � �2 > 0

� cr D �=2 �2 � �1 < 0

(4.22)

In such cases, the traction-based failure function f .t; q/ becomes

f .t; q/ D

8̂̂<̂
:̂
1

M

h�
n
ˇ̌
�2D0

�
tn � h � q

i
�1 > �2 > 0

1

M

h�
n
ˇ̌
�1D0

�
tn � h � q

i
�2 < �2 < 0

(4.23)

That is, the tangential traction tm is removed from the traction-based failure criterion.

Remark 4.2 For the discontinuity angle � cr determined from Eq. (4.21) or (4.22), it follows that �mm.� cr/ D 0.

The above result is exactly the kinematic constraint guaranteeing stress continuity upon strain localization in plane

stress conditions. �

Remark 4.3 In the plane stress condition with associated evolution laws, the results obtained from the conditions

for the loss of material ellipticity, Mohr’s maximization postulate and the novel stress boundedness/continuity based

localization analysis, all coincide. However, this conclusion cannot be extended to other cases such as plane strain

condition or non-associated evolution laws. Furthermore, only the stress boundedness/continuity based localization

analysis provides a systematical approach to derive conformityent traction- and stress-based failure criteria in general

cases; see Wu and Cervera (2014b) for the details.

4.3.2. Stress-based failure criterion

For the discontinuity angle � cr determined from Eq. (4.21), the normal and tangential dissipative flow components

.n; m/ are given by

n D �nn.�
cr/ D �1 C�2; m D 2�nm.�

cr/ D 2sign.tm/
p
��1�2 (4.24)

Similarly, the normal and tangential tractions .tn; tm/ are expressed as

tn D �nn D
�1�1 ��2�2

�1 ��2
(4.25a)

tm D �nm D sign.tm/
�
�1 � �2

� p��1�2
�1 ��2

(4.25b)

Accordingly, the identity (4.5) is recovered, i.e.,

 � t D ntn C mtm D �1�1 C�2�2 D � W � (4.26)

so that the stress-based failure criterion F.� ; q/ � 0 is given from Eq. (4.5)

F.� ; q/ D
1

M

h�
�1�1 C�2�2

�
� h � q

i
� 0 (4.27)
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Note that for the cases �2 > 0 or �1 < 0, the stress-based failure function F.� ; q/ corresponding to the traction-

based counterpart (4.23) becomes

F.� ; q/ D

8̂̂<̂
:̂
1

M

h�
�1
ˇ̌
�2D0

�
�1 � h � q

i
�1 > �2 > 0

1

M

h�
�2
ˇ̌
�1D0

�
�2 � h � q

i
�2 < �1 < 0

(4.28)

This is equivalent to introducing tension- and compression-extensions into the stress-based failure criterion (4.27).

4.4. Prototype examples

In this section several traction-based failure criteria corresponding to the classical Rankine, Mohr-Coulomb, von

Mises and Drucker-Prager models are exemplified.

4.4.1. Rankine criterion

Let us first consider the following traction-based failure criterion for a pure mode-I discontinuity

f .t; q/ D htni � q DH .tn/ tn � q � 0 (4.29)

where the Macaulay brackets h�i and Heaviside function H .�/ are defined as: hxi D x, H .x/ D 1 if x > 0, and

hxi D 0, H .x/ D 0 otherwise, respectively.

The stationarity condition (4.15) gives

sin
�
2� cr�

D 0 H) � cr
D 0 (4.30)

Note that in this case a unique value is obtained for � cr. With the above discontinuity angle, it follows from Eq. (4.13)

that

tn D �1; tm D 0 (4.31)

Accordingly, the traction-based failure criterion (4.29) is rewritten as the classical Rankine model

F.� ; q/ D h�1i � q � 0 (4.32)

for the major principal stress �1 D v1 � � � v1 > 0.

4.4.2. Mohr-Coulomb criterion

The traction-based Mohr-Coulomb criterion is expressed as

f .t; q/ D tan' � tn C
ˇ̌
tm
ˇ̌
� q � 0 (4.33)

for the internal friction tan' of the material.
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Accordingly, the following discontinuity angle is obtained from the stationarity condition (4.15)

tan.2� cr/ D
sign.tm/

tan'
H) � cr

D ˙

��
4
�
'

2

�
(4.34)

Note that two values are obtained for � cr. Substitution of the normal and tangential tractions .tn; tm/ given from Eq.

(4.13) into the traction-based failure criterion (4.33) yields

F.� ; q/ D
1

2 cos'

h�
�1 C �2

�
sin' C

�
�1 � �2

�i
� q � 0 (4.35)

This is the stress-based Mohr-Coulomb criterion in the regime �1 � �3 � �2.

Remark 4.4 The Tresca criterion is recovered for the friction angle ' D 0. In the regime �1 � �3 � �2, it follows

that � cr D ˙�=4. The corresponding traction- and stress-based failure criteria are expressed as

f .t; q/ D
ˇ̌
tm
ˇ̌
� q � 0; F.� ; q/ D

�1 � �2

2
� q � 0 (4.36)

which are the expected results. �

4.4.3. Von Mises (J2) criterion

Let us consider the following traction-based failure criterion

f .t; q/ D

r
3
�1
4
t2n C t

2
m

�
� q � 0 (4.37)

which is an ellipse on the tn � tm plane as shown in Fig. 9(a).

Recalling the relations (4.13), it follows from the stationarity condition (4.15) that�
�1 C �2

2
�
3
�
�1 � �2

�
2

cos.2� cr/

�
sin
�
2� cr�

D 0 (4.38)

Accordingly, if the conditions 2�1 � �2 � 0 and 2�2 � �1 � 0 are satisfied, the discontinuity angle � cr is determined

from

cos
�
2� cr�

D
�1 C �2

3
�
�1 � �2

� D s1 C s2

s1 � s2
(4.39)

With the above discontinuity angle � cr, substitution of the normal and tangential tractions .tn; tm/ evaluated from Eq.

(4.13) into Eq. (4.37) yields the classical von Mises criterion, i.e.,

F.� ; q/ D
p
3J2 � q � 0 (4.40)

for the second invariant J2 D 1
3

�
�21 C �

2
2 � �1�2

�
of the deviatoric stress tensor s.

For the cases 2�1 � �2 < 0 or 2�2 � �1 > 0, the discontinuity angle � cr is determined from Eq. (4.38) as

sin.2� cr/ D 0 H)

8̂<̂
:�

cr D 0 0 < �2 < �1 < 2�2

� cr D �=2 2�1 < �2 < �1 < 0

(4.41)
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which yields the following stress-based failure criterion

F.� ; q/ D

8̂̂<̂
:̂
p
3

2

ˇ̌
�1
ˇ̌
� q � 0 0 < �2 < �1 < 2�2

p
3

2

ˇ̌
�2
ˇ̌
� q � 0 2�1 < �2 < �1 < 0

(4.42)

The discontinuity angles � cr for different stress ratios �1=�2 are summarized in Table A.2, and the resulting

stress-based failure criterion are depicted in Fig. 9(b). As shown in this figure, Eq. (4.42) introduces tension- and

compression-extensions into the classical von Mises criterion (4.40). Note that this modification is indispensable

not only for strain localization to occur in an inelastic solids characterized by the von Mises model (4.40) while

guaranteeing the stress continuity condition (3.1), but also for the equivalence between traction- and stress-based

approaches; see Wu and Cervera (2014b) for more discussion.

4.4.4. Drucker-Prager criterion

Finally, let us consider the following homogeneous traction-based failure criterion of degree M D 2

f .t; q/ D t2m �
4˛2 � 1

4
�
1 � ˛2

� t2n C ˛

1 � ˛
qtn �

1C ˛

3
�
1 � ˛

�q2 � 0 (4.43)

where the parameter ˛ D .� � 1/=.� C 1/ 2 Œ0; 1/ is determined in terms of the ratio � WD fc=ft � 1 between the

uniaxial compressive strength fc and the tensile one ft . Dependent on the value of the parameter ˛, the following

three cases can be identified:

� 0 � ˛ < 1=2 or 1 � � < 3: The failure criterion (4.43) defines an ellipse on the tn � tm plane. The von Mises

criterion (4.37) is recovered for ˛ D 0.

� ˛ D 1=2 or � D 3: The failure criterion (4.43) becomes a parabola on the tn � tm plane.

� ˛ > 1=2 or � > 3: The failure criterion (4.43) defines a hyperbola on the tn � tm plane, with the left branch of

interest expressed as

tan' � tn C
q
t2m C !

2q2 � c � 0 (4.44)

where the parameters tan'; ! and c are expressed as

tan' D

s
4˛2 � 1

4
�
1 � ˛2

� ; ! D
1C ˛q
3
�
4˛2 � 1

� ; c D
˛
�
1C ˛

�q�
4˛2 � 1

��
1 � ˛2

�q (4.45)

Note that the variables tan' and c represent the internal frictional angle and cohesion of the asymptotic Mohr-

Coulomb criterion, respectively.

For the failure criterion (4.43), it follows from the stationarity condition (4.15) that

cos.2� cr/ D
�
�
4˛2 � 1

��
�1 C �2

�
C 4˛

�
1C ˛

�
q

3
�
�1 � �2

� (4.46)
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Substituting the above result into Eqs. (4.13) and introducing the obtained normal and tangential tractions .tn; tm/

into Eq. (4.43), one yields the following stress-based failure criterion

F.� ; q/ D J2 �
1

3

h
˛I1 �

�
1C ˛

�
q
i2
� 0 (4.47)

with the left branch of interest expressed as

1

1C ˛

�
˛I1 C

p
3J2

�
� q � 0 (4.48)

where the first invariant I1 and the second invariant J2 in the case of plane stress are given by

I1 D �1 C �2; J2 D
1

3

�
�21 C �

2
2 � �1�2

�
(4.49)

This is exactly the classical Drucker-Prager criterion.

When the discontinuity (band) is initiated, the failure criterion F.� ; q/ D 0 is activated, i.e.,r
2

3

s D 2

3

h�
1C ˛

�
q � ˛I1

i
� 0 (4.50)

for the norm
s WD ps W s D p2J2 of the deviatoric stress tensor s. Accordingly, the discontinuity angle (4.46)

can be alternatively determined from

cos.2� cr/ D
2
p
2=3 ˛

sC s1 C s2
s1 � s2

(4.51)

if the conditions �1 � z̨1�2 and �1 � �2=z̨2 are satisfied, with z̨1 and z̨2 expressed as z̨1;2 WD 1
2

h
1˙˛

q
3=
�
1 � ˛2

�i
.

The above discontinuity angle � cr, dependent on the stress ratio �1=�2 and model parameter ˛, is summarized in Table

A.3 and depicted in Fig. 10.

Remark 4.5 For the parameter ˛ 2 Œ1=2; 1/, the left branch of Drucker-Prager failure criterion (4.43) or (4.48)

defines an open surface in the principal �1 � �2 space. Accordingly, there exists a limit value for the discontinuity

angle � cr. Regarding the parabolic failure criterion (i.e., ˛ D 1=2) that opens to the left (i.e., �1 < 0), it follows that

lim
�2!�1<0

sin2 � cr
D lim
�2!�1<0

�

�
2�2 � �1

�
C

q
�21 C �

2
2 � �1�2

3
�
�1 � �2

� D
1

2
(4.52)

Namely, the limit discontinuity angle is lim�2!�1<0 �
cr D 45ı. For the hyperbolic one with ˛ 2 .1=2; 1/, the

admissible stress ratio �1=�2 in the compression-compression quadrant (i.e., �1 < 0 and �2 < 0) is constrained by

the value of parameter ˛, and so is the discontinuity angle � cr, i.e.,

sin � cr
�

s�
1C 2˛2

�
�1=�2 � 2

�
1 � ˛2

�
3
�
�1=�2 � 1

� with
�1

�2
�

1C 2˛2 �
q
3
�
4˛2 � 1

�
2
�
1 � ˛2

� (4.53)

For instance, it follows that 0ı � � cr � 33:74ı for the parameter � D 4:0 or equivalently, ˛ D 0:6. �
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5. Application to a generic failure criterion

In this section a generic traction-based failure criterion is considered in the conditions of plane stress. Depending

on the involved material parameters, the failure surface defines either an ellipse, a parabola, a hyperbola or the product

of two straight lines. The classical von Mises, Drucker-Prager and Mohr-Coulomb criteria are also recovered as

particular examples.

5.1. Traction-based failure criterion

Without loss of generality, let us consider the following homogeneous traction-based failure criterion f .t; q/ � 0

of degree M D 2

f .t; q/ D t2m �
1

2 � A0

��
A0 �

1

2

�
t2n � B0qtn C

1

6
B20q

2

�
� C0q

2
� 0 (5.1)

where the non-negative parameters B0 and C0 are related to the parameter A0 < 2 through

B0 D
2 � A0

2

�
� � 1

�
� 0; C0 D

2 � A0

6
� � 0 (5.2)

with � WD fc=ft � 1 being the ratio between the uniaxial compressive and tensile strengths fc and ft . Only for the

parameters satisfying A0 � 1=2C B20=.6C0/ can the failure surface f .t; q/ D 0 intersect the axis tn. It then follows

from the relations (5.2) that the admissible parameter A0 is within the range

A0 �
2.�2 � �C 1/

.�C 1/2
(5.3)

The residual strength q.�/ is normalized so that its initial value is q0 D ft .

For the admissible parameter A0 � 2.�2 � �C 1/=.�C 1/2, the following cases can be identified:

� A0 <
1
2

: As shown in Figure 11(a), the failure criterion (5.1) defines an ellipse on the tn � tm plane

f .t; q/ D t2m C

1
2
� A0

2 � A0

�
tn C

B0

1 � 2A0
q

�2
�

�
B20

3
�
1 � 2A0

� C C0�q2 � 0 (5.4)

with its foci on the axis tn and centered at tn D �B0q=
�
1 � 2A0

�
. An interesting particular case corresponds

to � D 1:0, i.e., B0 D 0 and C0 D .2 � A0/=6. In this case, the failure criterion (5.4) becomes

f .t; q/ D t2m C

1
2
� A0

2 � A0
t2n �

2 � A0

6
q2 � 0 (5.5a)

or, equivalently,q
t2n C ˇ

�2 t2m �
2 � A0q
3
�
1 � 2A0

�q � 0 (5.5b)

for the parameter ˇ WD
q
.1
2
� A0/=.2 � A0/ 2 Œ0; 1�. The failure criterion (5.5b) is exactly the one suggested

by Camacho and Ortiz (1996); Pandolfi et al. (1999), Jirásek and Zimmermann (2001).

24



� A0 D
1
2

: As shown in Figure 11(b), the failure criterion (5.1) is a parabola on the tn � tm plane

f .t; q/ D t2m C ˇ1qtn � ˇ2q
2
� 0 (5.6)

where the parameters ˇ1 and ˇ2 are expressed as

ˇ1 D
2

3
B0 D

1

2

�
� � 1

�
; ˇ2 D

1

9
B20 C C0 D

1

16

�
�C 1

�2 (5.7)

The parabolic traction-based failure criterion has been adopted in the embedded discontinuity models (Ohlsson

and Olofsson, 1997; Mosler, 2005).

�
1
2
< A0 < 2.�

2 � �C 1/=.�C 1/2, or equivalently, B20 > 3.2A0 � 1/C0: As shown in Figure 11(c), the failure

criterion (5.1) defines a hyperbola on the tn � tm plane, with the left branch of interest expressed as

tan' � tn C
q
t2m C !

2q2 � c � 0 (5.8)

where tan' and c denote the friction coefficient and cohesion of the asymptotic Mohr-Coulomb criterion

tan' D

s
A0 � 1=2

2 � A0
; c D

B0qq
2
�
2 � A0

��
2A0 � 1

� (5.9a)

together with the following parameter !

! D

s
B20

3
�
2A0 � 1

� � C0 (5.9b)

Similar hyperbolic failure function has been adopted in the literature to describe the normal and shear coupling

of cohesive cracks (Stankowski et al., 1993; Cervenka, 1994; Carol et al., 1997; Weihe et al., 1997; Most and

Bucher, 2007).

� A0 D 2.�2 � � C 1/=.� C 1/2, or equivalently, B20 D 3.2A0 � 1/C0: As shown in Figure 11(d), the failure

function (5.1) becomes the product of two straight lines on the tn � tm plane. The left branch of interest

correspond to ! D 0 in the hyperbolic criterion (5.8), i.e.,

tan' � tn C jtmj � c � 0 (5.10)

where the internal friction coefficient tan' and the cohesion c are given by

tan' D
1

2

� � 1
p
�
; c D

1

2

p
� q (5.11)

This is exactly the classical Mohr-Coulomb criterion considered in Section 4.4.2.

Remark 5.1 The traction-based failure criterion (4.43), which corresponds to the Drucker-Prager model discussed

in Section 4.4.4, is recovered for the parameters (5.2) satisfying the relation A0 D B20=.6C0/, or equivalently,

A0 D 2˛
2; B0 D 2˛

�
1C ˛

�
; C0 D

1

3

�
1C ˛

�2 (5.12)

where ˛ WD .� � 1/=.� C 1/ 2 Œ0; 1/ is the material constant introduced before. The von Mises model considered in

Section 4.4.3 then corresponds to ˛ D 0. �
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5.2. Discontinuity angle and stress-based failure criterion

For the traction-based failure criterion (5.1), the discontinuity angle � cr is given from Eq. (4.15) by

cos.2� cr/ D
2B0q C

�
1 � 2A0

��
�1 C �2

�
3
�
�1 � �2

� (5.13)

With the above discontinuity, the corresponding stress-based failure criterion is obtained as

F.� ; q/ D J2 �
1

6
A0I

2
1 C

1

3
B0qI1 � C0q

2

D
2 � A0

6

�
�21 C �

2
2

�
�
1C A0

3
�1�2 C

B0

3

�
�1 C �2

�
q � C0q

2
� 0 (5.14)

which verifies the following function types8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

A0 <
1
2

Elliptical function; see Figure 12(a)

A0 D
1
2

Parabolic function; see Figure 12(b)

1
2
< A0 < 2.�

2 � �C 1/=.�C 1/2 Hyperbolic function; see Figure 12(c)

A0 D 2.�
2 � �C 1/=.�C 1/2 Product of two straight lines; see Figure 12(d)

(5.15)

As can be seen, the same function types are obtained as those of the traction-based failure criterion (5.1). Note that

the functions similarly to Eq. (5.14) have been used in the modeling of dominant tensile failure in concrete-like quasi-

brittle materials, both in the context of plasticity (Rosenthal and Glucklich, 1970; Ohtani and Chen, 1988; Kuhl et al.,

2000) and damage mechanics (Comi and Perego, 2001).

When the discontinuity (band) is initiated, the failure criterion F.� ; q/ D 0 is activated so that

F.� ; q/ D 0 H) q D ˛r�1 (5.16)

where the coefficient ˛r � 1 depends on the stress ratio r WD �2=�1

˛r D
B0
�
1C r

�
˙

q
B20
�
1C r

�2
C 6ArC0

6C0
(5.17a)

Ar D
�
2 � A0

�
� 2

�
1C A0

�
r C

�
2 � A0

�
r2 (5.17b)

Accordingly, the discontinuity angle � cr given from Eq. (5.13) finally becomes

cos.2� cr/ D
2B0˛r C

�
1 � 2A0

��
1C r

�
3
�
1 � r

� (5.18)

Clearly, it depends on the stress ratio r WD �2=�1 which remains fixed for a proportional load path.

Remark 5.2 For the model parameters satisfying B20 D 3.2A0 � 1/C0, i.e., A0 D 2.�2 � � C 1/=.� C 1/2, the

failure criterion (5.14) becomes

F.� ; q/ D
��1 � �2 � �q

�C 1
�
�1 � ��2 C �q

�C 1
� 0 (5.19)
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The left branch of interest coincides with the classical Mohr-Coulomb criterion (4.35), i.e.,

��1 � �2 � �q

�C 1
D
1

2

h�
�1 C �2

�
sin' C

�
�1 � �2

�
� q

�
1C sin'

�i
� 0 (5.20)

for the following internal friction angle ' 2 Œ0; �=2�

sin' D
� � 1

�C 1
” � D

1C sin'
1 � sin'

(5.21)

Note that the Mohr-Coulomb criterion (5.20) applies for �1 � 0 and �2 � 0 in the plane stress condition (�3 D 0). �

5.3. Parameter calibration

In the literature (Stankowski et al., 1993; Cervenka, 1994; Carol et al., 1997; Weihe et al., 1997; Most and Bucher,

2007), different forms of hyperbolic traction-based failure criteria have been proposed for the modeling of localized

failure in quasi-brittle materials, owing to the excellent data fitting capabilities and other advantageous features (e.g.,

no slope discontinuity at the tip, asymptotically approaching to Mohr-Coulomb criterion for increasing compression,

and a constant friction angle, etc.). For instance, the following traction-based failure criterion (Carol et al., 1997; Most

and Bucher, 2007) can be considered

tan' � tn C
q
t2m C

�
c � � � tan'

�2
� c � 0 (5.22)

where � denotes the failure strength, not necessarily identical to the macroscopic material tensile strength ft ; tan' and

c represent the friction and cohesion of the asymptotic Mohr-Coulomb criterion. However, the involved parameters are

essentially mesoscopical entities hard to be determined from standard experimental tests. This shortcoming restrains

heavily their application. Here, a rational approach is suggested.

For the model parameter 1
2
< A0 < 2.�

2 � �C 1/=.�C 1/2, the traction-based failure criterion (5.22) coincides

with the one (5.8), with

!q D c � � � tan' ” � D
c � !q

tan'
(5.23)

That is, all the involved parameters can be determined, provided the parameterA0 and the material constant � D fc=ft

are known by fitting the stress-based failure criterion (5.14) with available macroscopic test data.

Let us consider a strength ratio � WD fc=ft D 10, typical for concrete. In order for a discontinuity (band)

characterized by the traction-based failure criterion (5.8) or (5.22) to form in the softening solid described by the

stress-based counterpart (5.14), the model parameter A0 has to be in the range A0 2 .0:5; 1:504/. As shown in Figure

13(a), the biaxial strength envelope corresponding to the following parameters

A0 D 1:45 H) B0 D 2:475; C0 D 0:917 (5.24)

fits the test data of normal concrete in tension-tension and tension-compression rather well. It follows from the

relations (5.9) and (5.23) that

tan' D 1:314; c D 1:712q; � D q (5.25)

The corresponding traction-based failure criterion is shown in Figure 13(b).
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5.4. Example: Willam’s numerical test

To validate the above closed-form results and calibrated parameters associated with the hyperbolic failure crite-

rion (5.8) or (5.22), Willam’s numerical test is considered (Willam et al., 1987). This test is an artificially constructed

benchmark characterized by rotations of the principal strain/stress axes. It has been widely used to assess the perfor-

mance of constitutive models for concrete (Rots, 1988; Weihe et al., 1997; Carol et al., 2001; Wu and Xu, 2011). The

loading scenario of Willam’s numerical test is strain-controlled, consisting of two stages: (i) the material is stretched

uniaxially along axis x, leading to strains with the incremental ratio ��xx W ��yy W ��xy D 1 W ��0 W 0, until the

stress �xx reaches its maximum value (i.e., the tensile strength) ft , with �0 being the material Poisson’s ratio; (ii) a

combination of strains with the incremental ratio ��xx W ��yy W ��xy D 1 W 1:5 W 1 is then applied until the com-

plete failure of the material. In general, a constitutive model is said to pass Willam’s numerical test if the following

two conditions are satisfied (Rots, 1988): (a) the predicted maximum principal stress �1 does not exceed the tensile

strength ft and (b) all computed stress components tend to zero asymptotically.

The traction-based elastoplastic damage model discussed in Section 3.3 is extended to consider multiple cracks;

see Wu and Xu (2011) for the details. Furthermore, the following hyperbolic softening law is adopted

q.�/ D ft

h
1 �

�
1C �=�u

���i (5.26)

for the uniaxial tensile strength ft . The parameter �u is related to the specific fracture energy gf through the crack

band theory (2.29), i.e.,

gf D
Gf

b
D
�
1 �

1

2
�
� Z 1
0

q.�/ d� H) �u D

�
� � 1

�
gf�

1 � 1
2
�
�
ft

(5.27)

where the parameter � > 1 controls the initial slope and shape of the softening curve, as shown in Fig. 14. As the

parameter � increases, the hyperbolic softening function (5.26) converges to the exponential one frequently adopted

in the literature (Wu and Xu, 2011).

In the numerical simulation, the material properties are assumed as follows: Young’s modulusE0 D 3:0�104MPa,

Poisson’s ratio �0 D 0:2, tensile strength ft D 3MPa. Furthermore, a plastic/damage parameter � D 0:5 is taken,

together with the hyperbolic softening function (5.26) with a specific mode-I fracture energy gf D 450N/m2 and a

softening parameter � D 10. The above data correspond to those given in Weihe et al. (1997), except that a plasticity

model was adopted therein. Plane stress state is assumed. Accordingly, the stress-based failure criterion (5.14) with

q0 D ft is used to determine the instant of initiating a discontinuity (band), with its orientation given by the analytical

solution (5.18).

The predicted evolution curves of the principal stresses �1 and �2 with the prescribed normal strain �xx are shown

in Figure 15(a). For comparison, the result under uniaxial tension is also plotted. The evolution curves of stress

components �xx ; �yy and �xy given in Figure 15(b) demonstrate that the aforementioned criterion are satisfied and

the Willam’s numerical test is passed.
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The above results deserve further discussion. In accordance with the solution (5.18) for the failure criterion (5.14),

a primary crack normal to the stress �xx is initiated at the end of the first step, with no shear stress �xy . In the second

step, the normal strain �xx continues increasing, leading to softening accompanied with certain amounts of shear

strains/stresses. Meanwhile, the strains and stresses growing in other directions cause the current major principal

stress progressively to be inclined to the primary crack. The rotation of the principal stress axes initiates a secondary

crack in an inclination of 74.07ı with respect to the primary one. The additional softening mechanism caused by the

secondary crack deactivates the primary one. The interaction of the decreasing stress �xx and the other increasing ones

(i.e. �yy and �xy) leads to an initially decreasing principal stress �1 which sooner or later increases to a second stress

apex. In contrast, due to the initial softening and subsequent unloading mechanism the stress component �xx nearly

always decreases, accompanied with an oscillation regime signifying the primary crack is reactive. Subsequently, both

cracks remain active during the rest loading history, with all stress components progressively vanishing. The above

results are qualitatively similar, but not identical, to those obtained in the literature (Weihe et al., 1997; Carol et al.,

2001; Wu and Xu, 2011), though all of them pass the Willam’s numerical test.

6. Conclusions

In this work, localized failure in solids is approached by embedding or smearing a traction-based inelastic dis-

continuity (band) within an (equivalent) elastic matrix (with or without stiffness damage or plastic strains prior to

strain localization). The conformity of the strong/regularized and embedded/smeared discontinuity approaches are

systematically investigated, regarding the strategies dealing with the kinematics (displacement and strain fields) and

statics (stress field and traction continuity).

In the strong and regularized discontinuity approaches, the traction continuity condition is imposed in weak form.

Accordingly, the (apparent) displacement jumps are retained as independent variables, so that constitutive laws for

both the bulk and the discontinuity (band) have to be provided in oder to solve the corresponding boundary value

problems. Based on the irreversible thermodynamics with internal variables, consistent cohesive model in terms

of tractions vs. jumps and the regularized version in terms of tractions vs. inelastic deformations are established

for the discontinuity (band), in addition to the elastic bulk. Particularly, associated damage and plastic evolution

laws are derived from the postulate of maximum energy dissipation constrained by a given traction-based failure

criterion. The inter-relations between the kinematics, constitutive laws and fracture energy demonstrate that the

strong discontinuity approach and the regularized one are consistently related. That is, the strong discontinuity is the

limit of a regularized one with a vanishing band width; reciprocally, the regularized discontinuity can be regarded as

the convenient regularization of a strong one.

Alternatively, the traction continuity condition can also be enforced point-wisely in strong form, so that the stan-

dard principle of virtual work applies. Though the strain field may be discontinuous or even singular upon strain

localization, as the inelastic strains are localized completely within the discontinuity (band), the elastic strain field
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and the resulting stress field are both continuous in the entire solid. In this case, the traction continuity condition

recovers the classical static constraint through which the kinematic variables associated with the (apparent) displace-

ment jumps can be eliminated at the material level. This strategy leads to the embedded/smeared discontinuity models

for overall inelastic behavior of solids. Furthermore, they can also be cast into the elastoplastic degradation frame-

work with a different kinematic decomposition. The above facts motivates the alternative methodology for modeling

localized failure, i.e., strain localization of a stress-based inelastic softening solid.

As an indispensable ingredient of the above traction-based approaches, the discontinuity orientation is determined

from Mohr’s maximization postulate. This choice is justified by the fact that, in the case of associated evolution laws,

the discontinuity orientation determined from strain localization analysis coincides with that obtained from Mohr’s

maximization postulate. Closed-form results are presented in plane stress conditions, with the classical Rankine,

Mohr-Coulomb, von Mises and Drucker-Prager criteria as illustrative examples.

Finally, a generic failure criterion of either elliptic, parabolic or hyperbolic type, appropriate for the modeling of

mixed-mode failure, is analyzed in a unified manner. The corresponding stress-based failure criterion is determined,

so that the involved mesoscopic parameters can be calibrated from available macroscopic test data. In this way, the

deficiency hindering its practical application is largely removed as shown in the Willam’s numerical test.
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Appendix A. Proof of equivalence between Eqs. (3.9) and (3.25a)

The Sherman-Morrison-Woodbury formula states that a rank k correction to a matrix results in a rank k correction

of the inverse (Golub and van Loan, 1996), i.e.,�
A C abT��1

D A�1 �A�1a
�
1C bTA�1a

��1
bTA�1 (A.1)

where A is a rank k � k matrix; a and b are both k � j matrices; 1 is a rank j � j identity matrix.

To prove the equivalence, on the one hand, let us write the tangent compliance (3.12) as the following matrix form

Ctan D C0
CNC d

tanN T (A.2)

where N is the Voigt matrix representation of the third-order tensor Nijk D 1
2

�
niıjk C nj ıik

�
introduced in Eq.

(3.20b). It follows from the Sherman-Morrison-Woodbury formula (A.1) that

Etan D E0 � E0N
�
E d

tan CN TE0N
��1N TE0 (A.3)
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which is exactly the matrix form of the tangent stiffness (3.9).

On the other hand, the tangent compliance (3.25b) can also be expressed as the following matrix form

Ctan D C C
��T

h �H � h
(A.4)

Accordingly, it follows from the Sherman-Morrison-Woodbury formula (A.1) that

Etan D C�1tan D E �
E��TE

�TE�C h �H � h
(A.5)

which is exactly the matrix expression of the tangent stiffness (3.25a).

Calling for the relation (2.26b) and the dissipative flow tensor� in Eq. (3.20), the equivalence between the tangent

compliance tensors (3.12) and (3.25b) can be established, i.e.,

Ctan D C0
C
�
C d

tan �N
�sym
D C0

C
�
C d �N

�sym
C
���
h �H � h

D C C
���
h �H � h

(A.6)

Therefore, the tangent stiffness tensors (3.9) and (3.25a) are also equivalent.
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Table A.2: Discontinuity angles � cr for the von Mises criterion in the plane stress conditions

Stress ratio �1=�2

-1: -2 -1: -5 0: -1 1: -5 1: -1 1: 0 1: 0.25 1: 0.5

� cr 90:00ı 60:00ı 54:74ı 51:42ı 45:00ı 35:26ı 28:12ı 0:00ı

Table A.3: Discontinuity angles � cr for the Drucker-Prager criterion in plane stress conditions

fc=ft

Stress ratio �1=�2

-1: -1.24 -1: -2 -1: -5 0: -1 1: -5 1: -1 1: -0.5 1: -0.25 1: -0.15 1: 0 1 : 0.19

2.00 90:00ı 51:65ı 44:74ı 41:81ı 39:52ı 33:68ı 29:90ı 26:30ı 24:15ı 19:47ı 0:00ı

3.00 43:48ı 40:55ı 37:35ı 35:26ı 33:32ı 27:37ı 22:82ı 17:90ı 14:51ı 0:00ı 0:00ı

4.00 — 33:66ı 32:69ı 31:09ı 29:33ı 23:07ı 17:62ı 10:53ı 0:00ı 0:00ı 0:00ı
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(w ⊗ n)symδS

(b) Displacement and strain fields

Figure 2: Kinematics of a strong discontinuity

37



S
S−

S+

Ω+

Ω−

xS

n

x∗
S

b

(a) Regularized discontinuity in a solid

x

u
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Figure 12: Stress-based failure surfaces in plane stress
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Figure 13: Stress- and traction-based failure surface typical for concrete in plane stress
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Figure 14: Hyperbolic softening function (q0 D 3:0MPa; gf D 600N/m2 and � D 0)
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Figure 15: Willam’s numerical test: evolution of the principal stresses and the stress components.
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