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Abstract

The aim of this work is to present a new procedure for modelling industrial process-
es that involve granular material flows, using a numerical model based on the Parti-
cle Finite Element Method (PFEM). The numerical results herein presented show
the potential of this methodology when applied to different branches of industry.
Due to the phenomenological richness exhibited by granular materials, the present
work will exclusively focus on the modelling of cohesionless dense granular flows.

The numerical model is based on a continuum approach in the framework of
large-deformation plasticity theory. For the constitutive model, the yield function is
defined in the stress space by a Drucker-Prager yield surface characterized by two
constitutive parameters, the cohesion and the internal friction coefficient, and
equipped with a non-associative deviatoric flow rule. This plastic flow condition is
considered nearly incompressible, so the proposal is integrated in a U— p mixed
formulation with a stabilization of the pressure term via the Polynomial Pressure
Projection (PPP). In order to characterize the non-linear dependency on the shear
rate when flowing a visco-plastic regularization is proposed.

The numerical integration is developed within the Impl-EX technique, which in-
creases the robustness and reduces the iteration number, compared with a typical
implicit integration scheme. The spatial discretization is addressed within the
framework of the PFEM which allows treating the large deformations and motions
associated to granular flows with minimal distortion of the involved finite element
meshes. Since the Delaunay triangulation and the reconnection process minimize
such distortion but do not ensure its elimination, a dynamic particle discretization of
the domain is proposed, regularizing, in this manner, the smoothness and particle
density of the mesh. Likewise, it is proposed a method that ensures conservation of
material or Lagrangian surfaces by means of a boundary constraint, avoiding in this
way, the geometric definition of the boundary through the classic a-shape method.



For modelling the interaction between the confinement boundaries and granular
material, it is advocated for a method, based on the Contact Domain Method (CDM)
that allows coupling of both domains in terms of an intermediate region connecting
the potential contact surfaces by a domain of the same dimension than the contacting
bodies. The constitutive model for the contact domain is posed similarly to that for
the granular material, defining a correct representation of the wall friction angle.

In order to validate the numerical model, a comparison between experimental
results of the spreading of a granular mass on a horizontal plane tests, and finite
element predictions, is carried out. These sets of examples allow us validating the
model according to the prediction of the different kinematics conditions of granular
materials while spreading — from a stagnant condition, while the material is at rest,
to a transition to a granular flow, and back to a deposit profile.

The potential of the numerical method for the solution and optimization of in-
dustrial granular flows problems is achieved by focusing on two specific industrial
applications in mining industry and pellet manufacturing: the silo discharge and the
calculation of the power draw in tumbling mills. Both examples are representative
when dealing with granular flows due to the presence of variations on the granular
material mechanical response.
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Chapter 1
Modelling of granular materials

1.1. Introduction

Granular materials can be broadly defined as large conglomerations of discrete par-
ticles. They are ubiquitous in nature and handled in a large number of industrial
processes. However, in spite of the wide use of these materials and the apparent
simplicity of their definition, a complete understanding of their mechanical proper-
ties and their behaviour is far from being achieved.

Some of these difficulties arise from the many materials that encompass this
definition as well as the peculiar response of the material itself under external me-
chanical excitations. The physics of granular materials embrace different phenom-
ena, varying from large rock debris flows to the consolidation of the material under
sustained pressures; all of them presenting different responses and difficulties in
their comprehension.

Due to the intrinsic interaction of the particles that comprise granular materials,
these materials present complex behaviours that could be related to different states
of matter. Their mechanical response differs from other standard materials: in static
conditions they could be considered and modelled as solid bulks; under dynamic
conditions the kinematics could be described by the physics of fluids; and subject to
an interstitial fluid, their response could be represented as a gas. These particulari-
ties make granular materials an interesting topic where many proposals have been
developed in order to clarify and understand their behaviour and influence in indus-
trial processes and nature.

It is pretentious the attempt to develop a numerical model able to capture —in a
unified manner— the phenomenological richness exhibited by granular materials.
Rather, the present work will exclusively focus on the modelling of cohesionless



dense granular flows. In specific, this work concerns with the development of a
numerical model suitable for the simulation of granular flows in order to predict
diverse configurations in static and dynamic conditions as well as their non-
equilibrium dynamic transition. The model is based on a rate-dependent constitutive
model in the framework of the Particle Finite Element Method (PFEM). The funda-
mental goal of this work is to contribute to a better understanding of cohesionless
dense granular flows occurring in processes that have important repercussions in
industry and society.

1.2.  Understanding granular materials

When talking about a mathematical model of a certain physical system, it is taking
for granted that the model contains several simplifying assumptions. Granular mate-
rial models are not exception to this fact. Therefore, it is important to have a deep
understanding of the implication derived from these assumptions, as well as the
effect in modifying the main parameters that characterize the behaviour of the mate-
rial.

Since the response of granular materials to external loads —such as shearing or
vibration— is strongly influenced by the particles that conform the material as well as
the bulk itself, it is important to clarify some concepts such as: which materials fall
within the category of granular media, how to characterize and model them, and
which mechanical properties are relevant and which are unessential.

As mentioned above, the scope of this section is not to explore the whole uni-
verse of granular materials but to define and narrow the main mechanical and mate-
rial properties as well as the kinematic conditions that are going to be modelled.
Lastly, some numerical models and formulations that have been developed along
time by different authors are presented.

1.2.1. Granular material definition

Granular materials comprise any conglomeration of a large number of discrete mac-
roscopic particles [48]. As the term macroscopic deals with objects that are at least
visible to the naked eye, many materials are included in this definition. From this
point of view, granular material definition embraces objects of several orders of
magnitude. Some authors, like [29], state that the physical laws that govern the
granular material behaviour cover at least twelve decades of sizes.

The mechanical properties of a granular domain depend on the interaction of the
particles in their surrounding neighbourhood. This interaction is defined through the
contact forces —friction or/and collisions— between the particles as well for the sur-
rounding environment where the particles are located. Since granular media repre-
sents discrete solids that are in contact most of the time, the interstitial fluid or sur-
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rounding media has to allow the particle interaction. This consideration excludes
other materials as suspensions or fluidized beds.

The interaction between particles could be catalogued by two main characteris-
tics: discrete elements dispersed in a continuous phase, referred as the interstitial
fluid; and particles in direct contact where the continuous phase is neglected [18].
The first regime is defined by hydrodynamic interactions and the interaction of the
particles within the liquid molecules defines the material cohesion. The force re-
quired to place into a relative motion two particles is higher as the distance his
reduced; see Figure 1-1(a).

If the influence of the environment is neglected, the granular material is defined
as dry or cohesionless. This assumption is given when the distance between particles
his smaller than the roughness of the particle € which defines as negligible the
existence of an interstitial fluid, see Figure 1-1(b). In a cohesionless material, fric-
tion and gravity forces of the particles dominate the physics of its behaviour and the
shape of the domain is defined by its confining boundary [48]. Even though the dry
granular assumption is considered as a laboratory condition, it is widely used since it
simplifies the resulting system in order to its study. Otherwise, depending on the
surrounding media involved, other assumptions have to be in mind to model the
cohesion between particles [71].
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Figure 1-1. Schematic representation of two different types of direct interaction between solid
particles: (a) lubricated contact; (b) direct contact [18].

In a meso and macro-scale, granular materials are considered athermal. This
condition is due to the order of magnitude between the discrete particles and the
bulk domain [96]. As the internal processes do not involve either heat or a change in
temperature, the kinetic and potential energies play a fundamental role. Every fric-
tion and collision between particles lead to a dissipation of the kinetic energy caus-
ing that the granular material represent a non-ergodic material.

1.2.2. Problems in nature and industry involving granular material flows

Granular materials have a direct impact in our daily lives, since in nature they are
one of the most abundant materials and in the industry the second most manipulated



material, just behind water [84]. Below are described some of the most relevant
problems generated by granular flows in nature and industry.

1.2.2.1. Granular materials in nature

The relevance of granular materials in nature is not because the obviousness of their
presence, but rather by the large and diverse phenomena where they are involved.
Among these are found stratification of rocks and sands in rivers due to segregation
[29]; cliff collapse and landslides [68]; and mechanisms of mass spreading like
avalanches and debris-flows [44]. These actions represent natural hazards that now-
adays constitute a threat to population and infrastructure.

wllic 4o =T
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Figure 1-2. Landslide in the population Las

The definition of landslides, debris flows, and avalanches are quite similar since
they are large volumes of granular material with particles of considerable size flow-
ing. Attempts to classify these phenomena vary depending on the author or engineer-
ing area where the classification is made. A classification according to the material
components (granular or cohesive) is given by [19] as seen in Figure 1-3. The flow
is defined depending on the amount of volume fraction and the particles size that
comprises.

From this classification, muddy debris flows are characterized by containing a
large fraction of fine particles, as well as a large volume of cohesive material like
particle-water mixture. On the other hand, granular debris flows feature particles
with larger size, and small or none cohesive interactions.

According to Coussot [19], due to the proper characteristics of granular debris
flows —dilatancy, segregation, bistability, thixotropy, jamming, among others ef-
fects, the confined rheometrical tests are not suitable to cast realistic data to compre-
hend these phenomena.
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Figure 1-3. Conceptual rheological classification of mass movements as a function of fine
content and solid fraction [19].

1.2.2.2. Granular material in industry

Industry consumes about 10% of all the energy produced on the planet for the han-
dling and processing of these materials [29]. Their presence includes construction,
pharmaceutical, mining, agricultural, among other industries. The processes vary
depending on the sector, all of them carrying different problems intrinsic to the be-
haviour of the material: blockage, segregation, arching, jamming, dilatancy, etc.
Despite the significance of the impact of granular materials in economy, many of
these problems are treated with inchoate solutions.

The problems associated to granular flows vary depending on the industrial pro-
cesses and the material. Granular materials that involve particles of different sizes
or composition are conditioned to the presence of segregation. In processes where
the mixture of these types of particles has to be homogeneous, segregation is a per-
ennial problem.

Many industries which involve the use of granular materials have the require-
ment of the confinement of the material —for storage purposes or industrial process-
es. Processes that implicate silos storage and discharge of granular materials are of
special interest. The pressure patterns could vary abruptly from the storage condition
to the discharge process. Depending on geometrical properties of the silo, including
the outlet placement, the maximum wall pressures would vary largely from the stor-
age condition to its discharge. Other problems as blockage during discharge are
strongly influenced by the grain size as well as the outlet diameter. Chapter 5 is
precisely devoted to numerically assess the influence of flow patterns in silos as well



as the mechanisms of stress propagation found during the discharge. Figure 1-4
shows an experimental silo built in order to develop tests for the understanding of

silos discharge patterns [89].

Figure 1-4. Facilities built for the experimental discharge of a full scale silo [89].

Another industrial branch of special interest when speaking of granular materi-
als is the mining industry. Several processes involve the handling and manipulation
of granular materials since their extraction to their final placement. One of them is
the comminution of the material, more specifically through a tumbling milling pro-

cess, see Figure 1-5.

Figure 1-5. Milling facilities: (a) autogenous mill in Garpenberg, Sweden [97]; (b) an inside
view of mill drum at Gays River, Canada [32].

Comminution of the material consumes 50% of the total mineral processing cost
[17]. The study of the kinematics of the charge during the tumbling process allows
us to understand how energy is consumed and what efforts could be done in order to
improve it. Similarly, Chapter 5 presents a numerical study of a simplified milling

process.
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1.2.3. Characterization of granular materials

The mechanical response of granular materials depends on numerous material pa-
rameters of the bulk', as well as the mechanical properties of the particles them-
selves. Any variation of these properties will produce a significant change in the
response of the material whereby it is essential to characterize the material one
wishes to simulate —for this work, the model is narrowed to cohesionless dense
granular materials defining the main material parameter as the internal friction.

Two geometrical parameters that play a fundamental role in their response are
the size and shape of the particles. Regarding the particle size, their dimensional
range varies from micro particles to large rocks. Depending on the concerned indus-
try, we could find different classifications. A coarse classification is given by [29]
where the departing size is for a powder where the granular medium is formed by
particles smaller than 100 pm in diameter, broken solids constituted by particles
larger than 3 mm, and rocks that could reach their upper limit by a few meters.

Other classifications are found for geotechnical purpose since soils are bodies
composed by granular material. Traditionally, the soil relationships and classifica-
tion is based in a grain-size criterion. Generally, soils are non-homogeneous materi-
als with different sizes and grain shapes but their classification is based on a per-
centage of the material that sieves through certain size. There are different classifi-
cation systems, among them one of the most used is the presented by the Unified
Soil Classification System. A simple classification is given, determining as coarse
grained soils those where 50% of the material is retained in a No. 200 sieve (0.075
mm), and fine grained soils those that pass [104]. Other system classifications, such
as the one given by the American Association of State Highway and Transportation
Officials (AASHTO), have similar considerations.

For the purpose of this work, it is followed the classification given by [75] in
Table 1-1. Even though the material considered for this model follows the classifica-
tion as granular solid or broken solid, bigger size particles could be modelled with
this classification, as long as the bulk they conform is considerably larger compared
with the particle size.

The shape of the grains, characterized by the aspect ratio, angularity, and con-
vexity, has large influence in the mechanical properties of the bulk. It is reported
that this shape effect is reflected mainly in the porosity of the material, but also
some blockage could be present in the flow with particles of large aspect ratio [7].
Similarly to the size of the particles, the shape influence is reduced as the volume of
the granular domain is larger compared to the grain.

' The mechanical properties of granular materials to consider depend directly on the enginery branch of
study. Among them are found the internal friction angle, cohesion, specific weight or weight density,

degree of saturation, the void ratio, the plastic limit, etc.



Particle size range Name of material Name of individual
component
0.1 pm— 1.0 pm Ultra-fine powder Ultra-fine particle
1.0 ym — 10 pm Superfine powder Superfine particle
10 pm — 100 pm Granular powder Granular particle
100 um — 3.0 mm Granular solid Granule
3.0 mm— 10 mm Broken solid Grain

Table 1-1. Granular material size classification [75].

1.2.4. Granular material behaviour

The understanding and modelling of granular materials are difficult tasks since they
do not behave as other familiar states of matter. In static conditions, when the con-
tacts between particles are well established, the material could be considered as a
solid with high strength to compression. In other configurations, where the external
excitation snaps off these contacts, the material behaves as a fluid.

The mechanical response of the granular material is mainly influenced by the in-
teractions between particles —dissipative, inelastic collisions and frictional properties
[48]. Temperature changes do not play a significant role or could be neglected, at
least at a macroscale level. For this reason granular materials are considered ather-
mal.

Regarding the dissipation of kinetic energy due to friction, it can be studied in
terms of the set of laws for frictional bodies, generally attributed to Coulomb. Those
laws state that the force of traction required to set a system in motion is proportional
to the normal force acting between the bodies, and the force of traction is independ-
ent of the surface area of the bodies. Both concepts as well as the distinction be-
tween the static and dynamic friction between particles are completely applicable to
granular materials.

In order to define a correct model, it is necessary to delve into the static and dy-
namic conditions in granular materials. Even though their behaviour is character-
ized in some moments as solid or fluid, they could not be either studied or represent-
ed with similar formulations. The following sections will focus on the static and
dynamic conditions of granular materials.

1.2.4.1. Static properties of a granular medium
Granular material equilibrium is reached when the system of inter-particle forces is
in equilibrium. Due to the forces acting on them (body forces, excitation), the
transmission of the loads are carried via these inter-particle contacts or force chains
[95]. The behaviour of the material is considered elastic as long as the displacement
between particles is slight. These displacements could rearrange the contacts but the
bulk deformation is considered recoverable.

An example of this equilibrium is found in a pile of dry sand. It is impossible to
build a pile with nearly vertical sides. The material tends to equilibrate collapsing
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the pile of material until it is generated a slope with an equilibrium angle, which is
called angle of repose. The equilibrium is attained when frictional forces avoid
rolling and gliding of the particles. In an ideal configuration of homogeneous parti-
cles in size and shape, as a stack of cannon balls, the pattern of the contacts between
them could be considered highly ordered but in reality there exists a large number of
solutions where the contacts are produced with an indeterminate solution [29]. The
sheer number of possible solutions in the contact configuration between particles
complicates the task of setting or defining a unique angle of repose.

The transmission of loads in a confined domain follows the same principle. As
the external load is increased, new clusters of force chains are defined, producing
additional stress paths. Figure 1-6 shows a two dimensional representation of stress
paths presented while a granular material is subject to compressive loads.

Figure 1-6. Stress pattern observed in a two-dimensional granular material under compressive
external loads [29].

By increasing the contact zones, the void ratio is reduced which leads to an in-
crement of the structure stiffness, leading to significant deviations from the linear
response of an elastic regime [29].

The many indeterminacies and hysteresis phenomena affect the packing of
granular materials. Depending on the filling process for any container, the volume
fraction of packed material will vary between 0.55 and 0.64 [48]. The density of the
bulk only is affected by the disturbances in the container induced by an external
source. Studies report that the relaxation of granular media under vibrations is loga-
rithmically slow [58]. An example is a tube filled with granular material that could
present significant compaction before reaching a steady state after 100,000 vibration
cycles.

Materials confined in tall recipient, such as in silos, present peculiar characteris-
tics. As opposed to fluids, pressure does not increase proportionally with height.
Due to the internal friction angle and the static friction with the container, the pres-
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sure distribution reallocates, being able to exert compression forces on the walls of
the order of 80% of the weight [83].

1.2.4.2. Dynamic properties of a granular medium

The flow in granular materials occurs when the displacement between the particles
is large enough that the contact between those is lost, causing the particles to roll
and glide between them. The transition from the static or stagnant condition to flow
is known as a non-equilibrium dynamic transition or jamming transition [96]. An
example is given with any pile of granular material which is at repose,
Figure 1-7 (a). It will tend to flow as long as the base is raised to a certain angle that
breaks its internal friction angle, see Figure 1-7 (b).

(b)

Figure 1-7. (a) A pile of mustard seeds at repose. (b) The same pile after the base is raised
causing sliding of the seeds [48].

The jamming transition is a topic that deserves special attention. It relates the
transition from a stagnant condition to a fluidization of the material. A simplified
model is presented by [15]. The model assumptions neglect the frictional forces
between particles in order to focus on the interaction of the chain forces clusters.
The system will remain in equilibrium as long as the supported loads are compatible
with the chain forces, in this case the longitudinal compressive forces, see
Figure 1-8 (a). The particles in an elastic regime may present finite deformability,
carrying transverse loads Figure 1-8 (b). A disturbance in the granular structure will
occur when the loads are not compatible with the cluster. For real domains of
granular material, it means it is present when the transversal load exceeds the fric-
tional forces in the chain.
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@ (b)

Figure 1-8. (a) Compatible loads for a force chain without friction resistance. (b) Finite
deformation in particles carrying small transverse loads [15].

The transition from static to a dynamic condition for granular materials is ruled
not only by the friction between particles, but also by the collisions among them.
The predominance of friction or collision between particles is directly defined by the
coefficient of elastic restitution of the material, prevailing collision in the material
for larger values of this coefficient. Due to these conditions, it has been stated by
different authors that the representation of a flow in a granular medium could not be
described by the Brownian motion ([48], [29]). An example to discard this represen-
tation is the segregation presented in the medium when it is applied shaking cycles
to the domain.

The classification of granular flows is in terms of the predominant regime of in-
teraction between the particles. Rapid granular flows are characterized by large
velocity gradients, presenting high collisions between particles; in contrast, Slow
flows present particles in contact most of the time [9].

1.2.5. Granular material numerical simulations

Numerical simulations offer the possibility to explore the effect of diverse parame-
ters which are not accessible to experimentation. Simulation of granular flows is not
the exception. There is not a full comprehensive theory to predict their behaviour in
the industrial processes neither in nature phenomena; therefore, the use of numerical
models allows us to compare with experimental as well to explore diverse parame-
ters that are not possible through experimentation.

Due to the inherent behaviour of granular flows, many proposals for their mod-
elling have been defined. Generally, they could be classified in two main groups:
discrete methods and continuum methods, both of them presenting their own ad-
vantages and drawbacks [29].

Discrete methods born from the natural idealization of the particles interaction
controlled by their contact and defining their motion explicitly [21]. These methods
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are generally considered as the more suitable way to describe granular materials
since they are a conglomeration of discrete particles. The application of these meth-
ods in slow and rapid flows arise from the similitude with the material applying
kinetic theory to obtain constitutive relations that govern the interaction between the
particles [85].

In classic discrete methods, the particles are characterized as hard and soft
spheres. In the first case are the so-called event-driven models (ED), which the
collisions between grains are nearly energy conserving; the second are defined for
the molecular dynamics models (MD), taking into account the elastic restitution of
the spheres, allowing to penetrate into each other.

The velocity profiles play a fundamental role for comprehending granular flows.
On discrete methods, the formulation for the velocity prediction is established in
terms of kinematic models. Generally this assumption is considered as a drawback
of these models since the velocity profiles are defined as a function of geometric
parameters instead of a stress-strain relation.

The use of discrete methods for modelling granular flows in industrial processes
has been widely investigated over the last three decades. They have been used wide-
ly for silos discharge simulations ([41],[35],[60]); milling processes in mining indus-
try ([701,[53]); among other processes. Numerical results have been useful to under-
stand the kinematics of granular flows in those industrial processes. However, they
present important drawbacks, such as the large number of particles needed to repre-
sent real processes; the large computational cost to define the contacts between par-
ticles; and the difficult to represent stresses and pressures in the material.

The use of the continuum approach to formulate a model for granular materials
is not recent. This assumption has been traditionally used for soils mechanics, gen-
erally under static and compression conditions, and in recent decades it has been
extended for granular flow problems. In order to relate a discrete system as a granu-
lar domain into a continua, studies such as the one given by Duran [29], demonstrate
that describing the kinematics of the media by differential equations is correct as
long as the number of particles involved is large enough. The concept is merely
intuitive and consists in relate the discrete description into a continuum by defining a
surrounding space over each particle, large enough to overlap neighbouring parti-
cles. Defining a proper function for the surrounding cloud of each particle, the as-
sumption enables to define variables, as density p and macroscopic velocity v,
through a set of macroscopic quantities continuous in space and time.

The Smoothed-Particle Hydrodynamic method (SPH) is a meshfree method that
consists in the representation of a domain by a set of arbitrary distributed particles
with specific mass, momentum and energy where no connectivity is needed. The
internal density and internal forces are given by the conservation equations of con-
tinuum mechanics. The computation of the solution is given through the function
value at each node as a result of a summation of the neighbouring nodes where their
influence are varying with the distance between the nodes and the value of the ker-
nel function [37]. It was originally conceived for astrophysical problems in three-
dimensional space, but its application was extended for dynamic fluid flows [66]. In
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recent years, the capability of this method to model granular material has been also
explored [11].

The finite element method is based on the discretization of the variational prin-
ciples defined for the continuum theory. Extensive studies on variational principles
for granular materials can be found in ([20],[22],[61]). As any other continuum-
based model, the balance equations for mass and momentum are to be complement-
ed by an appropriate constitutive model that represents both the failure and the flow
mechanisms in the material. One of the drawbacks of the continuum approach is
connected with the description of velocity fields equations, since there is no agree-
ment as how to express these equations. One of the solutions to overcome this diffi-
culty arrives from plasticity theory, assuming that stresses and velocity profiles are
correlated by the proper definition of a flow rule ([75],[90]).

Due to the large deformations exhibited by granular flows, the Eulerian descrip-
tion is in principle more suited for models in stationary regime. For industrial pro-
cesses, like silos discharge, we could find diverse works that employ Eulerian mesh
descriptions ([81],[56],[31],[106]); similarly, simulations of debris flows following
this approach can be encountered in [72]. The advantage of the Eulerian approach is
that the description of the granular flow can be carried out with a fixed mesh; like-
wise, the prediction of internal stresses and pressures in the material as well as in the
containers are relatively straightforward to obtain. On the other hand, among the
main disadvantages, it may be mentioned the difficult to determine the free surface,
and the study of transient phenomena.

By contrast, Lagrangian descriptions do allow us to model free surfaces condi-
tions. The first attempts to leverage this were made through the Arbitrary Lagran-
gian-Eulerian (ALE) method, a hybrid technique that captures the advantages of both
descriptions and minimizes their disadvantages [3]. Even though we could find work
exploring ALE in granular flows [103], it has not been so extensive its inclusion.
One of the main drawbacks of the technique is the arbitrary definition of the Euleri-
an and Lagrangian meshes by the user, being susceptible to present abrupt defor-
mations and numerical singularities. This condition constraints the methodology to
model large deformation problems (e.g. milling processes and impact of granular
flows as in debris-flows).

The Particle Finite Element Method (PFEM) arises as an evolution of meshless
methods applied to fluid flows. It is defined in a Lagrangian description, but the
drawbacks inherent due to the large deformation of the mesh are avoided with robust
techniques of discretization and remeshing [46]. In the field of granular materials,
recent works have explored the possibilities of such a technique in the simulation of
bed erosion due to fluid-structure interaction [80]; ground excavations [14]; and dam
structures [64].

The PFEM technique enables us to study large deformation problems such as
granular flows. This advantage, together those inherit to the standard finite element
method —proper description of internal stresses and pressure— allow us to define an
appropriate and robust numerical tool to perform models of granular flows in indus-
trial processes as the milling of granular and the discharge of silos.
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1.2.6. Constitutive models for granular flows

The basis of a continuum description is the relationship between deformation and
stresses given by the constitutive model. Nowadays, there is no a constitutive model
capable to reproduce every singular condition of granular flows, let alone for granu-
lar materials in general. It is of fundamental importance, therefore, to develop theo-
ries able to characterize and predict the complex behaviour of granular materials.

The description of constitutive models for granular materials generally is de-
fined in terms of the Saint-Venant's hypothesis (also known as the coaxiality condi-
tion [40]). This hypothesis states that the principal axes of the stress and strain-rate
tensor should coincide. This assumption leads to material isotropy as well as to the
definition of the rate of strain tensor as a function of the Cauchy stress tensor.

Granular materials present a pressure sensitive behaviour, which means, the
flow properties of the material depend on the first invariant of the stress. Although
this dependence is usually assumed linear, experimental studies [105] reveal that for
large compaction levels the deviation from the linear dependence may become sig-
nificant. Therefore, the adoption of such assumption excludes the possibility of
modelling processes where compaction due to external loads is significant [43].

Mohr-Coulomb and Drucker-Prager models define their failure criterion in this
pressure linear dependency. Both models are defined essentially in terms of two
material parameters, namely, the internal frictional angle 6 and the material cohe-
sioncC.

The Mohr-Coulomb yield surface defines, in terms of principal stresses, the
failure of the material through a critical combination of the shear stress and its vol-
umetric pressure for any plane [3]. This relationship is linear and the failure is
reached when some point is located on the limit of the elastic domain defined by its
yield surface. This linear relation is stated through the following equation:

Oyc =C—otand (1.1)

where 0, is the magnitude of the shear stress and ¢ the normal stress on the plane.
This criterion could be seen as a generalization of Tresca’s criterion” since its maxi-
mum tangential stress strength depends of its stress state [107].

In terms of the principal stresses, the Mohr-Coulomb yield surface can be re-
phrased as

(01—03)+%(Gl+03)sin9—Ccos9:0 (1.2)
Observe that the failure criterion depends on the maximum and minimum prin-
cipal stresses.
The other well-known alternative is the Drucker-Prager yield surface. Similarly
to the previously described criterion, this model establishes a linear dependence
between the material strength and the pressure exerted on the material. The expres-

F(o)=

N |

% Tresca’s and Mohr-Coulomb yield surfaces will coincide setting the internal friction angle to a null

value for the frictional material and defining its cohesion as the maximum shear stress possible.
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sion for the failure criterion, expressed in tensor invariants, is given by the following
expression:

1/2
?_5-0 (1.3)

where |; and J, are the first and second invariants (the apostrophe stands for the
invariant of the deviatoric tensor), and « and 3 the Drucker-Prager internal friction
angle and cohesion respectively. The invariants for the stress tensor are defined as
follows:

F(o)=al;+(J)

I, =3, =0 =Tr (o)
1 1

1
J2:§aija“ 25(626)=§Tr(6-6) (1.4)

J3 = %Uijajk(fki = %TI'(G'O"G)
As may be inferred from the preceding equations, the model is independent of
the third stress invariant, which means that for a certain point that reaches the yield
surface, all the rest of points with the same magnitude of the other two invariants
will yield.
The material parameters, internal friction angle and cohesion, of the Drucker-
Prager and Mohr-Coulomb models are related using the proposal of [51]

o 2sinf

~ V3(3—sin#) (1.52)
5= 6ccosd

_@(3—sin9) (1.5b)

In contrast with the Mohr-Coulomb failure criterion, it represents a cone along
the hydrostatic axe, being the Mohr-Coulomb surface embedded inside the Drucker-
Prager surface, as shown on Figure 1-9.

As opposed to the Mohr-Coulomb criterion, the Drucker-Prager model estab-
lishes the failure condition for all points with the same value of the invariants |; and
J, , since it is independent of the third invariant.

In order to improve the capability of the models, many enhancements have been
developed. Among them it is found the use of multiple surfaces, as in the Cam Clay
model proposed by [88] and its subsequent modifications; multiple parameters cap
models like the one proposed by [91]; formulations based on the bounding surface,
developed by [27], and extended in ([65],[8]); isotropic and anisotropic kinematic
hardening ([74],[5],[82]); and endochronic plasticity theory for cycling loads
([11,[1017). All these enhancements in the models provide more accurate descrip-
tions of granular media, but at the expense of simplicity, forcing to characterize the
material in terms of several parameters [105].
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Figure 1-9. Drucker-Prager / Mohr-Coulomb yield surfaces.

Broadly speaking, the modelling of granular flows has two relevant aspects to
be considered. First, the volume variations present on granular material during de-
formations. Granular flows present dilatation or volume expansion, while in other
cases due to shearing or large compaction forces there is presence of contraction
[40]. In consolidated materials or dense flows, the dilation effect occurs at the initial
stages, decreasing until the effect dissipates [75]. It is important, in plasticity theory,
to ensure a correct flow rule that predicts with sufficient accuracy the deformation
path.

The second consideration in the modelling process is the energy dissipation for
cohesionless materials [40]. The model has to represent the dissipative mechanisms
due to the friction and collisions between particles. Some approaches to overcome
this difficulty is through hardening and softening rules or by the formulation of
plasticity failure using a non-associative flow rule [107].

1.3. Objective and scope

The overall goal of this work is to develop a numerical tool for the simulation of
cohesionless dense granular flows, with emphasis on applications for industrial
processes. Two main objectives are defined in order to achieve this goal:

e To establish a constitutive model capable to reproduce the stress-strain rela-
tions for cohesionless granular slow flows.

e To develop a numerical algorithm capable to perform large deformation tran-
sient problems based on the PFEM.
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The scope for each main objective is summarized as follows. First, the constitu-
tive model is developed in the framework of large deformation visco-elasto-
plasticity. The model has to be able to reproduce the kinematics of cohesionless
granular flows, as well as the jamming transition from the stagnant condition. As
mentioned earlier, the variations in volume are not relevant; for this reason, the
material is treated as nearly incompressible.

In order to circumvent locking problems, it is proposed the decoupling of the
constitutive model via a mixed formulation in terms of displacements and pressures.
The stabilization method for the pressures is defined via the polynomial pressure
projection proposed by [28].

The proposed numerical algorithm is based on the Particle Finite Element
Method (PFEM), a method specially conceived for large deformation problems.
The spatial discretization and remeshing process is enhanced by a robust reconnec-
tion algorithm capable to correct and optimize the mesh as the deformation pro-
ceeds. The granular material-structure interaction is treated using a contact method
derived from the Contact Domain Method proposed by [77]. The assembly of these
algorithms will allow handling large deformation problems with relative coarse
meshes in a robust and efficient manner.

It has been stated before that no model for granular materials is capable to re-
produce all kinematic and static conditions —for any material and geometric parame-
ters. Needless to say, the proposed model is no exception; the following assump-
tions have been taken into account in developing it:

e The domain under study has to be considerable larger than the size of parti-
cles in order to use a continua formulation.

e The material model is suitable for dense granular materials. This means that
during the flow condition, particles tend to remain in contact. Intrinsically,
this assumption leads to slow granular flows, since for rapid flows the kine-
matic condition that prevails is the collapsing of particles instead of the fric-
tional.

e The constitutive model is defined through a Drucker-Prager yield function,
which is based on the coaxiality condition. This assumption is correct for
materials with isotropic behaviour. In order to satisfy this condition, the
granular particles have to be homogeneous in size and shape.

The scope of this work is to fulfil the objectives by modelling dense granular
flows in diverse kinematic conditions. The set of experimental examples conducted
by [62] has been chosen to validate the constitutive model. The robustness and
efficiency of the numerical simulation is studied by comparing the model results
with the experimental study of a silo discharge performed by [89]. A second indus-
trial application is explored; it consists in the study of the motion of a charge in a
tumbling mill; we compare the numerical simulation of our method with experi-
mental results of a rotational cylinder as a scale model of a milling drum conducted
by [94].
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1.4. Document outline

The document layout is as follows. Chapter 2 presents the employed continuum
congtitutive model. The model is based on a Drucker-Prager yield function in the
framework of plasticity theory for large deformation problems. The incompressibil-
ity condition is solved by expressing the formulation in a mixed scheme with a
proper stabilization method for pressures.

The numerical formulation is developed in Chapter 3. A brief summary of the
PFEM is described as well as the implemented remeshing criteria. Thereafter, it is
presented the numerical integration for the congtitutive model. The chapter ends
with the description of the contact method proposed to model the solid-granular
material interaction.

A validation example is presented in Chapter 4. It is based on the experimental
model of a granular material spreading over a plane surface proposed by [62]. The
numerical results are compared with those obtained by the experiment.

In order to assess the capabilities of the proposed model to replicate granular
flows in practical situations, Chapter 5 presents numerical simulations of two indus-
trial applications. Thefirst smulation is based on the experiment conducted by [89],
where a full scale silo discharge was studied in order to determine characteristic
flow patterns. A comparison between experimental results of the silo discharge, and
finite element prediction, is carried out. The second and last example is a simplified
milling process proposed by [94]. Granular material is placed in a cylindrical drum
in order to study the energy system required to keep it in motion.

Chapter 6 presents a summary of the achievements reached as some concluding
remarks.



Chapter 2
Continuum description of dense granular
flows

Granular materials are defined as large conglomerations of discrete particles con-
nected each other by the contact between them. The assumption of modelling a
discrete media as a continuum has been subject of extensive study. It has been
demonstrated that the differential equations used to define the kinematics of their
deformation become correct as the number of particles increases ([29], [38]). The
continuum approach alows us to interpret the particle interaction as a transmission
of energy through the domain by a mathematical formulation. Under some consid-
erations, the microscopic relations of the particles are properly transformed into
macroscopic equivalentsin terms of the material properties.

The definition of a unique model capable of representing any physical condition
for any materia is difficult to establish, if not impossible. Granular materials mod-
€ls are not an exception, even more when it has been stated in the previous chapter
the diverse behaviours that these materials present under different kinematic condi-
tions. This chapter presents a constitutive model in a continuum formulation pro-
posed to simulate dry dense granular slow flows, able to differentiate stagnant and
flow zones aswell as the jamming transition between these conditions.

The congtitutive model is based on the concepts of plasticity at large strains.
The yield surface is defined in terms of a Drucker-Prager yield function character-
ized by two congtitutive parameters, the cohesion and the internal friction coeffi-
cient, and provided with a solely deviatoric plastic flow. The material flow condi-
tion is considered nearly incompressible so the proposal is integrated ina u—p
mixed formulation with a pressure stabilization proposed by [28]; and the elastic
part is defined by a hypoelastic model.
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The present chapter comprises the development of the model from the kinematic
equations necessary to state the constitutive model, through its formulation via a
visco-elasto-plastic formulation and the statement of the weak form of the balance
equations.

2.1. Phenomenological description of dense granular flows

The model is derived within the framework of continuum, large deformations; as
mentioned in the previous chapter, the domain under study has to be large enough to
be described properly by this approach. Figure 2-1 shows the continuum idealiza-
tion of a control volume in a granular domain.

Figure 2-1. Continuum representation of a granular mediain a container.

The representation defines an open and bounded domain(, delimited by its
boundary I" , and subject to external stressest.. , generally due to the interaction with
acontainer. The flow problems to be presented here are strongly influenced by the
container where the phenomena take place. The kinematic response of the material is
affected by the interaction between the granular material and its confinement. The
numerical model has to be suitable to represent two limit cases, as shown in
Figure 2-2: one in which the material interacts with a frictionless surface, and anoth-
er in which the surface exhibits a high degree of roughness. Likewise, the contact
methodology has to be robust enough to support the presence of large deformations
and to be capable of interacting with non-regular geometries.
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(a) (b)

Figure 2-2. Limit cases for a solid-granular material interaction: (a) frictionless surface,
(b) high roughness on the surface.

It isimportant to define the flow conditions and granular materials that the mod-
el intents to represent. The model is proposed for dry dense granular materials, with
the aim to characterize the static condition of the materials at rest as well as for slow
granular flows, including its jamming transition. The statement of dense granular
flows implies small velocities in the material as well as the assumption for the gran-
ular particles to remain in contact while the material spreads or flows. The term dry
refers for granular materials with a negligible interstitial fluid between the particles,
defining a non-cohesive or nearly cohesionless state for the particles interaction.

The mechanical properties of dense granular materials are governed by the fric-
tional interaction between the particles, which means that the deformations that the
material experiences while flowing do not present significant volumetric variations;
this fact allows us to assume that the material is nearly incompressible. In this
sense, the model is not suitable for industrial processes where granular materials are
subject to compaction or to dispersion.

The materia properties are considered for non-cohesive granular media. In or-
der to represent africtional response between the particles, the presence of any other
material between the grains is ignored. The isotropy assumption of the model is
conserved maintaining a high homogeneity in size and shape of the granular parti-
cles. Even so, this assumption is achieved when the particle size is considerable
small compared to the size of the domain under consideration.

The model herein described is defined in atwo dimensional space for numerical
aspects that will be described in the following chapters; nevertheless, the model is
suitable to handle afull three dimensional description. The numerical simplification
has impact in the examples to be chosen. These examples are industrial processes
that could be described in an axisymmetric and plain strain description as shown in
Figure 2-3.
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(b)

Figure 2-3. Two-dimensional modelling of volumetric examples. (a) Axisymmetric represen-
tation of acylindrical container. (b) Plain strain model of arotational drum.

2.2. Kinematic of plastic large deformations

The mathematical description of continuum mechanics is defined through the mo-
tion of continuous finite particles in a body. The flow of granular media naturally
entails large variations in their geometry; therefore, the kinematic description of the
body isto be established within the frame of alarge deformation formulation.

The domain to represent is denoted by 2 € R? | and it is assumed to be formed
by a continuous set of particles enclosed by a boundary ' . The notion of particles
here corresponds to infinitesimal material points of the domain and not to the granu-
lar particles of the medium. The mechanical response of the body is given by the
deformation of the body under its loading condition in a certain time interval
t=[0,T].

The analysis is defined through a reference configuration, generally stated at
t =0; the subindex (), stands for all variables established in the reference config-
uration. The body motion is expressed as the mapping of a material point between a
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reference configuration and the current one, defined by the subindex (.)t' The
mapping states a unique correspondence between configurations, expressed by

x=p(Xt) =@ (X) (21)

for al Xe{) and t>0; andyis a smooth mapping function defined by
@0: Q) — O CR2. A two-dimensional representation for the motion of a continu-
um body is expressed in Figure 2-4.

F

m

Figure 2-4. Configuration and motion of a continuum body — two-dimensional representation.

The displacement is a vector field relating the position of a particle between the
current and the reference configuration. 1ts expression in a Lagrangian or material
description is given by

U(X,t)=p(Xt)-X (2.2)

and let denote by u (x,t)the spatial counterpart of U . The velocity and acceleration

fields are defined by the first and second time derivatives of the motion ¢, respec-

tively; the material description of the velocity field and the acceleration field reads,
Op(X,t)

IV (X,t)  9*p(Xt)
ot ot

denoting v(x,t) and a(x,t) the spatial counterpartsof V and A , respectively.
An important tensor in the description of the deformation in nonlinear continu-

um mechanics is the deformation gradient F. It represents the Jacobian matrix of
the motion of the body; its expression in Cartesian coordinates reads:

A(X 1) = (2.3b)
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de(X,t) 9IU(Xt)
F= = 1 24
X X @4
wherel is the second order symmetric unit tensor with components 1y, =d4,. The
determinant of the deformation gradient is known as the Jacobian determinant, and it
isascalar variable useful to relate the integrals in the current and reference configu-
rations.

J =detF (2.5)

Asit is customary in the literature of large plasticity theory, it is adopted the as-
sumption of the local multiplicative decomposition of the deformation gradient into
aplastic and an elastic part:

F = F¢.FP (2.6)

where FP represents a pure plastic deformation from(),to a certain stress-free in-
termediate configuration [93], and F® a pure elastic loading from such an intermedi-
ate configuration to the current configuration €3 .

On the other hand, the rate of deformation tensord is defined by the symmetric
part of the spatial velocity gradient | = Vv.

d:%@+ﬂ) (2.7)

For the particular case of granular materia flows, it is also assumed that the
elastic deformations of the body are small compared with the total ones. In this
sense, it is assumed a kinematic description that considers arbitrarily large plastic
deformations and small elastic strains. A valuable implication of this assumption is
that the Euler-Almansi strain tensor, defined as

e:%@—FJFA) (2.8)

inherits the additive structure of classical small strain formulations [57]
e=¢e+ef (2.9)

where ¢ and eP :%(1—FF’7TFFrl are the elastic and plastic parts of the rate of
deformation tensor, respectively. This property holds aso for the rate of defor-
mation tensor:

d=d®+dP (2.10)

where d®and dP are the elastic and plastic parts of the rate of deformation tensor,
respectively. This decomposition allows usto afford a remarkable aspect of ssimplic-
ity in deriving the ensuing constitutive equations.
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2.3.  Constitutive model for dense granular flows

The proper definition of a model entails a balance between its capacity to represent a
phenomena and the simplicity of the model. Granular materials exhibit mechanical
properties corresponding to solids and fluids depending on its kinematic condition;
in order to represent this phenomenon, the model proposed has to be enriched
enough to differentiate both behaviours as well to remain as simple as it gets to be
efficient in the numerical analysis.

The constitutive model is developed within the framework of large plastic-small
elastic deformations through a hypoelastic model. The condition of plastic yielding
is based on a Drucker-Prager yield function that relates linearly the norm of the
deviatoric stresses with the hydrostatic pressure exerted on the material. The me-
chanical condition to define a stagnant and fluid zone in the materia is given by the
elasto-plastic formulation. The plastic condition allows the materia to yield when
the stress state reaches the strength capacity of the material, while the elastic condi-
tion permits the material to reach a stagnant configuration. The flow regime requires
the inclusion of viscous behaviour; here it is proposed a visco-plastic regularization
viaa Duvaut-Lions type model.

2.3.1. Elastic response

For the elastic responsg, it is proposed a class of model of phenomenological, rate
independent, plasticity obtained by an ad-hoc extension of the infinitesimal theory,
which relies on a hypoelastic characterization of the elastic behaviour. In this sense,
the relation strain-stress is defined in terms of the rate of deformation tensor, given
by:

(e}

t=c:[d—d"] (2.11)

where 1 is the Kirchhoff stress tensor, ¢ is an isotropic elastic module, constant in
the spatial reference configuration, and () denotes any objective stress rate. The
model is posed for large plastic — small elastic deformations.

The objective derivative for equation (2.11) is defined by the Lie derivative of
the Kirchhoff stresstensor. Therefore

Lr=c:[d—dP| (2.12)
and the spatial elasticity tensor c¢ isdefined as:

1
c=2ulé—=1®1
=

+Klel (2.13)

Where 1 isthe Lamé's second parameter or shear modulus, K the bulk modulus,
and ¢ the fourth symmetric unit tensor, with components ¢y :%[@Ccﬁw + a0 | -
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This fourth order tensor is characterized by possessing both major and minor sym-
metries.

Cabcd = Cedab = Chacd = Cabdc

2.3.2. Yield condition

As previously mentioned, the yield condition used in this work is derived, essential-
ly, from the Drucker-Prager type criterion. It defines a linear relation between the
hydrostatic pressure and the deviatoric part of the stress tensor; thisidealization have
been studied and applied for different granular models. The Drucker-Prager yield
surface is widely used instead of the Mohr-Coulomb model, since the first is inde-
pendent of the third invariant — embedding the Mohr-Coulomb model by a conical
surface.

The equation for the yield surface, described previously in equation (1.3), can be
rephrased, after some manipulation, as

6() = |dev]+b tre—b, (2.14)

where t is the Kirchhoff stress tensor; parameter b represents the slope of the
Drucker-Prager line, being referred as the parameter of the internal friction; and b,
is customarily referred to as the material cohesion, and it can be interpreted as the
shear strength under zero hydrostatic stress — defined by the intersection of the
Drucker-Prager yield surface with the g-axis®. Equation (2.14) is rewritten, in terms
of the Kirchhoff stressinvariants, by the following equation:

6(t)=a+3bp-b, (219)

The relation of b, and b, with the Mohr-Coulomb’s materia internal friction
angle and cohesion is deduced comparing equation (2.14) with (1.3) and using the
correlation of those parameters given in equations (1.5a) and (1.5b):

6 sing

b = —=a :2%—(3_%9) (2.162)
2 ccosd

b, = ﬁﬁ = Qng (2.16Db)

Thereby, b could be seen as an equivalent interna friction angle, while b, as
an equivaent material cohesion in the Drucker-Prager model. A two-dimensional

® From now on, the yield condition is formulated in terms of the Kirchhoff stress invariants
p=1/31, =1/3trtand q=+/2J, =~ devt:devtas the mean stress and the norm of the
deviatoric stress, respectively
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representation of the Drucker-Prager yield surface is given in Figure 2-5; it is ob-
served the full dependency on these two parameters to describe the model.

an

Figure 2-5. Two-dimensiona Drucker-Prager model.

The relation between Drucker-Prager material parameter b and the internal fric-
tion angle of the Mohr-Coulomb’s model @ is plotted in Figure 2-6. It is observed
that the maximum value is reached when the Mohr-Coulomb internal friction angle
isequal tor/2 .
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Figure 2-6. Drucker-Prager and Mohr-Coulomb internal friction angle relationship.

Constitutive models for granular materials with alinear dependency between the
hydrostatic pressures and their resistance to shear — as the Mohr-Coulomb or Druck-
er-Prager — are defined until certain value corresponding to the vertex of the surface,
in this case p, , see Figure 2-5. In order to define a valid stress state for loading
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conditions with pressures greater than the vertex, it is necessary to introduce a prop-
er regularization.

In this work we propose to regularize the function at the vertex by a von Mises
yield criterion, as displayed in the circled area in Figure 2-5. As it is observed, the
regularization takes place after a certain pressure level p* < p, and defines a well-
posed load state for pressures greater than this pressure reference. The yield surface
for the von Mises regularization is defined similarly than equation (2.14)

¢ (1) = |deve| - (217)
where g =b, —h p* isthe norm of the deviatoric stress tensor correspondingto p’ .
This implementation is considered as a regularization for the Drucker-Prager yield
surface and not a two-surface model since the examples here treated represent dense
granular domains mainly on compressive regimes, and as it will show in Chapter 4
and Chapter 5, it is few the amount of material with pressures above the vertex (ten-
sileregime).

2.3.3. Flow rule and plastic potential

For large deformation problems, the rate of deformation tensor is decoupled as
shown in equation (2.10). The plastic rate of deformation tensor dP is computed
using the concept of flow rule:

d®? = \m (2.18)

where \ is a positive definite scalar factor referred to as consistency parameter or
plastic multiplier, and m a plastic flow vector associated to the yield surface. The
plastic multiplier must obey the standard Karush-Kuhn-Tucker loading/unloading
conditions plus the consistency condition [93]. In the context of rate-independent
plasticity the former conditions read as:

A>0
¢(t)<0 (2.19)
Ap(T)=0
and the consistency condition is given by
Ao(T)=0 (2.20)

Furthermore, each plastic flow vector m is presumed to be aligned with the gra-
dient of acertain plastic potential functiony ,i.e. m = dp/dt .

The plastic potential states the mechanical behaviour of the deformation once
the loading state reaches the yield condition. For slow and dense granular flows the
mechanical behaviour of the materia is governed by frictional forces rather than
collision of the particles. In this case the material is considered nearly incompressi-
ble [9]; for this reason, it is proposed a non-associative plastic potential with a solely
deviatoric component for the model.
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1
p(t) =]l deve[ (2.21)
Therefore, the plastic rate of deformation tensor can be written as
dP =X ag(:) = Adevt (2.22)

Since dPis proportional to the deviatoric tensor, the flow rule asserts plastic in-
compressibility. While dilation in dense flows do occur, it is typically on the order
of only a few percent and quickly reaches a steady value over large deformations
[90]; hence, the plastic incompressibility approximation should have negligible
effect on the velocity field of a dense granular flow.

The solution of the elasto-plastic part of the proposed model for dense granular
flows are defined by equations (2.12), (2.15), and (2.22), plus the loading/unloading
and consistency conditions given by equations (2.19) and (2.20).

Even though the concavity of the overlapped yield surface, due to the deviatoric
non-associative plastic potential, all the returning maps are well posed in a single
value. The admissibility of the proposal is reviewed by the energy dissipation of the
system or thermodynamic consistency that should satisfy the following inequality

D=1:d" >0 (2.23)

which could be seen as the Drucker’s inequality for large deformation problems.
Substituting equation (2.22) into equation (2.23)

D= \(devt:devt)>0 (2.24)

and considering the definition of the dlip rate, it is ensured that the plastic dissipation
as the double contraction product of the deviatoric stress tensor is a non negative
scalar value.

2.3.4. Visco-plastic regularization

As pointed out in the previous chapter, congtitutive equations for granular material
flows are still a matter of debate. One difficulty is that granular material can behave
like a solid (e.g. in a powder heap), a liquid (granular flows), or a gas (existence of
interstitial fluid). For the solid-like state, the elasto-plastic constitutive model de-
scribed in Section 2.3.3 characterizes this condition; however, the jamming transi-
tion and the flow regime require the inclusion of a viscous behaviour.

The fundamental features of granular flows in this regime are: ayield condition
that defines a shear stress limit below which the grain does not move; and a general
non-linear dependence on shear rate when flowing. In this sense, granular behaviour
shares similarities with classical visco-plastic models that were developed to ensure
that dynamic problems remain hyperbolic since the existence of well-defined yield
stresses are difficult to achieve [67].



30

The regularization is defined via a Duvaut-Lions type model. The new flow rule
reduces to

mpzéc*:h—rw} (2.25)

where 7, refers to the relaxation time, and t® corresponds to the solution of the
elasto-plastic part of the model described in previous section.

Now, the strain-stress relationship defined by the hypoelastic model given in
equation (2.12) is modified by decoupling the rate of deformation tensor in an elastic
and a visco-plastic part.

Lr=c:[d—d"| (2.26)

which is rewritten replacing the visco-plastic definition of the rate of deformation
tensor given in equation (2.25).

. 1
Lvr:c.d—&—E(‘r—rep) (2.27)

Box 2.1 summarizes the constitutive model proposed in this work to describe
the behaviour of a dense granular flow.

Elastic response
Lr=c:[d—d"]

Yield function and elastic domain in stress space
1
¢(t)=|devr|+sbtrr—b

E: ={le(1)<0}

Flow rule

daw =ic’1 :{r—‘re”]
Tr

where % is solution of the following sub-problem

Lr=c:[d—d"]
d° = \devt
A>0 P(7)<0 Ap(t)=0

Box 2.1. Visco-elasto-plastic model for dense granular flows.
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2.4. Initial boundary value problem

The local equations of motion, in the Eulerian description, take the form:
Dv
. b—o—=0 2.2
V-e+pb—po (2.28)

where ¢ is the Cauchy stress tensor, p the density, b the body force, and v the
spatial velocity field. The term D(e) /Dt denotes the material time derivative of
the spatial velocity field.

In order to state the problem properly it has to be completed with appropriate
boundary conditions; towards this end, the boundary of the domain is assumed to be
split as

r=r,urly, (2.29)
and
r,nr,=0 (2.30)

where T, stands for the portion of T in which Dirichlet boundary conditions are
imposed — displacement fields; whereas T, corresponds to the portion into the Neu-
mann conditions are prescribed, tractions [42]. These boundary conditions are given
by the following relations (the overline (®)stand for prescribed boundary func-
tions)

u=u on I (2.31)

and

-]

6-n= on T} (2.32)

where uis the displacement field in its spatial description, and n a unit vector nor-
mal to an infinitesimal surface section.

The loading conditions in the system for granular flows are strongly related to
the body forces (gravity forces) and for industrial processes by the interaction with
their confinement. In the case of the interaction of the material with its confinement,
the contact forces have to be well posed by a contact methodology.

The dynamic analysis for the model requires initial conditions for the displace-
ment and velocity fields which in turn have to achieve compatibility with the bound-
ary conditions. The formulation, in the strong form, of the initial boundary value
problemisgivenin Box 2.2.



32

Balance equation
Dv
. b—p—=0
V-o+pb—0p Dt
Boundary conditions
u=u on [y=¢(0%)

cn=t on T;=(0%)
Initial conditions
u(x,ty) = uo(x)
u(x,t,)=vo(x)
Compatibility restriction

u(x,ty) =uy(x)

l;l(xato): Vo(X)

Box 2.2. Strong form of the initial boundary value problem for agiven time t

2.5. Incompressibility problem

In section 2.3.2 the plastic flow rule proposed for the model was described. This
plastic flow rule is a (non-associative) deviatoric flow rule, which aims at describing
the incompressible behaviour of the material while flowing. Indeed, the materia is
allowed to deform only by shear stresses, without volumetric changes in the plastic
regime; in its elastic range the volumetric variations are considered small. Due to
these characteristics, the so-called locking phenomena may emerge when solving the
weak form of the momentum equation using standard, irreducible formulations. In
order to circumscribe this problem, a mixed formulation is proposed.

The mixed form is expressed in terms of the displacement field u and the pres-
sure 7 (in terms of a Cauchy stress tensor, being defined below) as variables to
solve. The construction of the mixed formulation is defined by the decoupling of the
Cauchy stress tensor into its deviatoric deve and volumetric 71 parts. The balance
of momentum, eguation (2.28), can be expressed as:

D

V~d(—:\/6+V-7r1+pb—pF¥=0 (2.33)
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The pressure 7 is provided from a hyperelastic deduction of the pressure for a
nearly incompressible material, given in Ref. [6], by the following expression:

L (2.34)
J
Equation (2.34) could be expressed as a dimensionless equality as follows
InJ 1
———71=0 2.35
7 Rk (2.35)

Equations (2.33) and (2.35) are the basis to formulate the finite element meth-
od equations to solve our problem.

2.6. Weak forms

As usual, the weak form of the momentum equation is obtained by taking the dot
product of equation (2.33) by atest function éw and then, integrating over the cur-
rent configuration:;

fQ[6W-(V-de\/6+V-7r1+pb—p\")th=0 (2.36)

where the displacement field u(x,t) and test functions should satisfy respectively
the following conditions.

u(xt)ev, = {u(x,t) (o () —R?, u=uforxeTl, } (2.37)
sw(x)eV, ={ow(x):p (%) —R* sw=0forxel,} (238
Using the divergence theorem, equation (2.36) we get
fS}V(éw):[de\/c—&-wI]dQ—fgéw(pb)dﬂ

_ ' (2.39)
—frréw-tdl“—&-fgléw-(pv)d@( =0
The weak form of equation (2.35) reads
InJ 1 )1
fﬂ §q[T—Ew]3th -0 (2.40)

where q is a square-integrable function over ¢ ().

Both equation (2.39) and (2.40) are the variational form of the balance equations
for a mixed formulation, expressed in a given time t, in terms of the Cauchy stress
tensor. Box 2.3 summarizes the weak form of the problem.



Find (u,) such that
thV(éw):ch{ —fﬂtéw(pb)dﬂl —frtéw-TanLfQ[éw'(pV)th -0

InJ 1 )31
Joal 5 e e <o

and the corresponding initial and boundary conditions

Box 2.3. Weak form of balance equations




Chapter 3
Numerical formulation

Due to the large displacements and deformations during granular flows, the model-
ling of these phenomena must be suitable to represent these characteristics in an
efficient and robust manner. In this chapter, the numerical formulation of the consti-
tutive model given in the previous chapter is presented. It is developed in the
framework of the Particle Finite Element Method (PFEM) and the numerical inte-
gration is developed within the Impl-Ex technique. Finaly, the modelling of the
solid/granular material interaction is addressed with the proposal of a new method
based on the Contact Domain Method (CDM) proposed in Ref. [77].

3.1. The Particle Finite Element Method (PFEM)

Over recent years, the PFEM has demonstrated to be a powerful numerical algo-
rithm for the solution of large deformation problems. It is a numerical method for-
mulated in an updated Lagrangian description capable to capture the transient and
stationary motion of a deformable body. This work is based on the PFEM; in this
section the basic concepts of the method are described, as well as the numerical
enhancement, introduced in this work, in order to improve the numerical response of
the method.

3.1.1. PFEM background

The PFEM arose as a proper evolution of the particle methods used to simulate
incompressible fluid flows, on a Lagrangian formulation. This methodology was
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first proposed by [46] in the context of a meshless finite element method with the
aim to solve large deformation problems in the field of incompressible fluid flows.
One of the advantages that the authors present, among others, is the capability to
easily define the fluid-solid interaction.

Even though the method was first proposed for incompressible fluid flows, asin
([47],[98],[69]), its extension to other mechanic fields have been also adressed.
Among them are found the exploration in the field of a multibody interaction, as bed
erosion in free surface flows [80], or the fluid-structure response ([45],[79]). In the
field of solid mechanics different applications have been studied as plasticity prob-
lems [76] or soils excavations [14].

Nowadays, some studies are found for granular materials as the response of
rockfill dams on overtopping conditions [64]; or industrial explorations for powder
materials ([12],[36]), where it is demonstrated the capability of the method.

The methodology is based on the macroscopic representation of a continuum
domain through a finite number of particles of infinitesimal dimension. These parti-
cles are view as material points that describe the kinematic and mechanical behav-
iour of a given domain. The system of equations describing the kinematics of these
particles is proposed to be solved in terms of an updated Lagrangian formulation —
explained in more detail in following section.

The PFEM could be described as a set of numerical strategies combined for the
solution of large deformation problems. The standard agorithm of the PFEM for
the solution of solid mechanics problems, in a given incremental step, is schemati-
cally represented in Figure 3-1, and summarized as follows®:

e Definition of the domain(s) (2, in the last converged configuration, t =t,,
keeping existing spatial discretization {2n.

o Transference of variables by a Smoothing process — from Gauss points to
nodes.

o Discretization of the given domain(s) in a set of particles of infinitesimal size
— elimination of existing connectivitiesn.

e Reconstruction of the mesh through a triangulation of the domain’s convex-
hull and the definition of the boundary applying the o.-shape method [30], de-
fining anew spatial discretization (n

e A contact method to recognize the multibody interaction.

o Transference of information, interpolating nodal variables into the Gauss
points.

e Solution of the system of equationsfor t, ., =t, + At.

“ In Section 3.2 and Section 3.3 are described the temporal and spatial discretization of the variational
problem presented in previous chapter. The description of the PFEM algorithm is given using the dis-
cretization notation.
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(b)

Figure 3-1. Schematic representation of PFEM algorithm for an incrementa step: (a) Con-
verged time step &t t,, ; (b) Transference of internal variables information from Gauss points
to nodes (smoothing process) (c) Mesh algorithm (reconnecting procedure and boundary
definition); (d) Definition of a contact interface to define a multi-body interaction; (€) Nodal
interpolation of internal variablesto Gauss points; and (f) Solution of the system for ¢, , ,
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The inherent reconnection procedure of the method reduces significantly the
mesh distortion presented on large deformation problems. Even so, the implementa-
tion of the classic agorithm for solving granular flow problems presented some
limitations to be solved in order to perform a more robust analysis and to define a
smoother response of the solution. Among the problems found using the above men-
tioned algorithm is the loss of a well-defined mesh, presenting zones with a large
conglomeration of particles, while other regions with a dispersion of them; and nu-
merical instabilities due to the a-shape algorithm used for the boundary definition.
Next are discussed some improvements on the algorithm that are required to solve
these conditions.

3.1.2. PFEM enhancement

The numerical agorithm of the classic PFEM is enhanced in order to improve its
response in three main areas. the dynamic process for the discretization of the do-
main into particles, varying the number of them depending on the deformation of the
body; the boundary recognition, eliminating the geometric criterion of the a-shape
method; and the transference of the internal variables, from a nodal smoothing
through avariable projection.

3.1.2.1. Mesh quality — Dynamic process for particle discretization

The quality of the numerical solution depends directly of the correct discretization of
the domain in study, including the quality of the elements of the mesh [34]. In large
deformation problems the original mesh is strongly deformed presenting large dis-
tortions. The PFEM reduces significantly this problem by reconnecting the existing
particles on each time step, even though the problem is not fully resolved. In order
to circumvent this condition, the discretization of the domain into particles is pro-
posed to be modified varying the number and position of the particles along time.

The remeshing process in this work is enhanced by the definition of geometrical
metrics to identify potential regions of the mesh, where these problems could be
found, in order to modify them (see Appendix A). This process is given in three
main areas. the insertion, the removal or collapsing, and the repositioning of parti-
cles.

The insertion of particlesis given on those elements presenting a greater dimen-
sion than areference tolerance. Generally, the insertion of the new particlesis given
at the barycentre of the elements. An essential condition, for triangular elements, is
that no angle has to be close to 180° [2]. If the vertex angle of theinterna nodein a
boundary element is wider than a tolerance angle, it is inserted the new particle in
the boundary length of the element.

The removal or collapsing procedure is defined to control the particle density of
the mesh and possible singularities during the solving process. In contrast with the
insertion process, which is controlled at an element level, the removal of particles
depends on a nodal metric. The element sizes of the connecting elements in a node
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are averaged, and the particle is removed if the averaged value is smaller than a
defined tolerance value.

Once the domain is redefined in anew set of particles, the quality of the mesh is
inspected in order to avoid remaining distortion of the new elements. This control is
given by the algebraic quality metric given by [59]. The metric is defined in an
elemental level and by the connectivities for each node will be identified those parti-
cles to reposition. The new coordinates for those particles are defined by a local
L aplacian smoothing.

In Appendix A, the dynamic discretization process is explained in more detail.
The whole remeshing algorithm has been shown sufficient in order to define a prop-
er spatial discretization, robust enough, to solve granular flow problems as it will be
shown in the following chapters. The remeshing process is summarized in Box 3-1.

Given a converged mesh On in that
1. Insertion of particlesif needed

2. Removal of particlesif needed
3. Delaunay triangulation

4. Local smoothing to relocate particlesif needed

Box 3-1. Remeshing process for a dynamic particle discretization.

3.1.2.2. Boundary treatment

In the classical version of the PFEM, the boundary treatment is given in terms of the
a-shape method proposed in [30]. The advantages of the a.-shape method for defin-
ing a mesh boundary are summarized as: an efficient time in the boundary construc-
tion, by applying an O(nlogn)agorithm in time (Delaunay triangulation) and
O(n)in space, where nis the number of particles. In terms of robustness, the meth-
od reduces the overlapping of boundaries while presence of large deformations
(wave effect). The main drawbacks of the method are the inconsistency of the mass
conservation, while some elements are eliminated or augmented, and numerical
instabilities produced on the residual due to the sudden remotion of the elements at
the boundary. The latter presenting a major repercussion in amixed u— p formula
tion. These instabilities are present both the momentum and incompressibility equa-
tions, shown schematically in Figure 3-2.
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(@ (b)

o discontinuous t°***
o discontinuous u,p

Figure 3-2. Pressure discontinuity caused by o-method boundary recognition: (a) Boundary
element recognized exceeding reference size, (b) Elimination of boundary element.

It is observed, that for a given point g, the nodal internal forces should satisfy
the equilibrium condition

|F5=|=o. Fg® = ZG:F&&;’e (3.1)

where the sudden removal of an element will generate the instability. It has to be
recalled that the a-shape criterion is given in the whole boundary, which in case for
alarge variation on the definition of the previous and new boundary will generate a
lack of convergence.

Due to the computational capacity nowadays, we consider the advantage of time
efficiency has a minor repercussion against the drawbacks mentioned above. It is
proposed a constraint boundary in order to circumvent these problems.

The constraint of the boundary, in large deformation problems, is susceptible to
present material overlapping. The problem that arises from this overlapping lies on
the reconnecting process and the transference of information between meshes. In
this sense, the construction of a convex-hull of the domain by the Delaunay triangu-
lation and the definition of the boundary through the o.-shape method overcomes this
problem; for a constraint boundary algorithm, they are sorted using two treatments.

The first case is given when regions apart of the same domain tend to overlap,
see Figure 3-3(a); in this case, the problem is circumventing with a proper auto con-
tact algorithm. At the end of this chapter, in section 3.4, it is discussed our proposal
for a contact methodology that allows the auto contact condition.

The second case is presented when two adjacent boundary lengths tend to col-
lapse, see Figure 3-3(b). The collapsing of two adjacent boundary sections is a geo-
metrical aspect present when the concave angle of both sections tends to diminish.
The treatment is similar as the one discussed in last section; its geometrical treat-
ment is presented in the Appendix A.
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Figure 3-3. Singularitiesin a constraint boundary in large deformation problems: (a) Materi-
a overlapping, and (b) Collapsing of adjacent lengths.

3.1.2.3. Gauss points variables transference

In solid mechanics the computation of the stress state in a body, at a given time,
requires the history of its deformation. For this reason, it is necessary to save this
information. Since the PFEM remeshing process modifies the nodal connectivities,
in the implementation of the PFEM for solid mechanics, the transference of internal
variables was established through a nodal scheme ([76],[36]). It is performed by a
smoothing process of all internal variables, of a patch, in its corresponding nodal
connectivity; some techniques are reported by ([109],[23],[54]), among others.
These algorithms have been proved correct for a variable transference, even though
for the purpose of this work it is proposed a variable transference among a projec-
tion operator from one mesh to another using former and new integration points.

The modification of the transference of information criterion arrives due to the
large variation of number and position of particles during the discretization of the
domain. In the processes of insertion and removal of particles, the standard smooth-
ing process could be executed, see Figure 3-4.

The problem arises after the repositioning of particles; once the particle islocat-
ed at a new position, a local search has to be done in order to interpolate the nodal
information. Since this process has to be accomplished, besides the smoothing pro-
cess, the transference of Gauss point variables between meshes is set directly
through a mesh projection. The variables projection is done after the remeshing
processes, as shown in Figure 3-5 for a patch test.
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@ (b) ()

7

o reposiioned particles

5

Figure 3-4. Internal variable transference via nodal smoothing. (a) Nodal smoothing process;
(b) remeshing process, anew particle isinserted and thereafter both internal particles are
repositioned (the nodal information of the repositioned particles has to be updated by an
interpolation); and (c) Transference to Gauss points from nodal interpolation.

In thiswork the projection is carried out by a direct search of the position of the
new integration points on the former mesh. More sophisticated algorithms could be
implemented as the projection of internal variables by applying Lie groups[73].

@ (b) ©

I © Gauss points int, mesh
© Gauss points int,, mesh

Figure 3-5. Internal variable transference via a mesh projection. (a) Converged mesh; (b)
remeshing process, a new particle isinserted and thereafter both internal particles are reposi-
tioned; (c) Variable projection.

\/
A
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3.2. Integration of the constitutive model

In this section, the integration of the numerical model is described. The numerical
solution is computed, following the basis of the PFEM, via an incremental algorithm
within the framework of an updated Lagrangian formulation. The temporal and
spatial discretizations of the weak form of the balance equations, mentioned in pre-
vious chapter, are presented, as well as the corresponding numerical formulation.
For the constitutive model, the implicit/explicit (Impl-EX) integration scheme pro-
posed in [78] is used.

3.2.1. Implicit integration of the constitutive model

Given atime interva [0,T]C R that describes the motion of the body, the numeri-
cal solution is obtained through a temporal discretization of the time interval in
terms of agiventimestep At,,; =t,,; —t,. Inan updated Lagrangian formulation,
the motion is described in terms of the last converged configuration, see Figure 3-6,
and the incremental solution is described assuming the knowledge of the converged
stress tensor T, at the time step t, — the subindex () stands for al variables es-
tablished in the intermediate reference configuration, and (e ), for those variables
in the current configuration.

Po(X,t)
/F> ‘ wﬂ)

Figure 3-6. Mapping of agiven body 2 under different configurations.

For the temporal discretization, the multiplicative decomposition of the defor-
mation gradient, given by equation (2.4), is used



F= Fn+1 -1, (3.2)

As mentioned in section 2.3.1, the strain-stress relationship is defined in terms
of a hypoelastic type model given by equation (2.12). It is essential to calculate the
objective derivative of the constitutive model in order to ensure the definition of the
Kirchhoff stress tensor frame-invariant. The objective derivative of the Kirchhoff
stress tensor is calculated by the algorithmic approximation given by [93]

1 - _
LVTnJm = anﬂx '[fn+11 “Thn fn+T1 *Tn]'fr;l;a (3-3)
n+1

being objectivefor al a =[0,1].

In this work, the integration is defined in the current configurationt,, ., , with
a = 1. TheLie derivative is expressed as the time variation of the increment of the
Kirchhoff stress tensor.

1
LThy = F[Tn-&-l — For1 - Tn - fan ] (34)
n+l

It is observed, in the second term of the RHS of equation (3.4), the description
in the current configuration of the Kirchhoff stress tensor of the converged configu-
ration t,, carried out by the push-forward operator.

With the aim of obtaining a description of the stress tensor, the flow rule given
in equation (2.22) is approximated as:

-
T Aty

devty, (3.5

where A\, 1 = Ay — Mg

The expression for the Kirchhoff stress tensor in the current configuration is ob-
tained setting equal the discretized equation (2.12) and equation (3.4) and by substi-
tuting the expression of the plastic part of the rate of deformation tensor by the dis-
cretized form of the flow rule given in equation (3.5). Rearranging terms and multi-
plying the expression by At,,, , the following equality is obtained:

T — Jovr - Th 'fr;r+1 =c:[Atydyyy — AN dev T, ] (3.6)
The rate of deformation tensor is described as the push-forward of the covariant
time derivative of the Green-Lagrange strain tensor E [42].
d=F T .E.-F! (3.7
Equation (3.7) is described, after some manipulations, in the current configura-
tion by the Almansi strain tensor. Its numerical approximation is given by:
d,. = 1 e 3.8
1 = e (38)

The expression for the Kirchhoff stress tensor in the current configuration is
completed substituting equation (3.8) into equation (3.6).
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Tni1 = fos1 - Tn 'fnT+1 +c e —AldevTy | (3.9

Equation (3.9) is simplified using the definition of the trial elastic state given by
the freezing of the plastic flow.

Tgifll = fot1Tn ‘fnT+1 +cCien (3.10)
or
A = Tnit +C ey (3.11)

where 1, = Jav1-Tn 'frIH .
The simplified description of the Kirchhoff stress tensor is obtained substituting
equation (3.10) into (3.9).
Thyl = Tgifll —ANpcdevryy, (312

The plastic regime is defined for a loading state where the evaluation of the

yield conditions for the auxiliary state, rﬁ‘f‘l , exceeds the yield surface expressed by

equation (2.14):

o(ThA ) >0 (3.13)
where
: - 1
o(1)"™ = dev e+ 5biposs — by (3.14)
and
Pt = tr T = trend (3.15)

The deviatoric part of the Kirchhoff stress tensor, defined by equation (3.12), is
rewritten in terms of the elastic fourth order tensor c .

devr,,, =devti™® — AN, [2u+ M el]:devT,, (3.16)

The double contraction of the volumetric part of this tensor with the deviatoric
stressis null, reducing the above expression into

devr,,; =devtld —2uAN,, devr,, (3.17)

The expression of the deviatoric stress tensor is given in terms of the trial stress
by solving dev t,,; from equation (3.17)

1 trid
devrn,, = mde\/ Tnil (3.18)

The expression for the dlip rate A\, of the flow rule, is given for that stress
state such that ¢ (T ) =0

ldev T |+ 0oy =, =0 (3.19)
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Substituting eg. (3.18) into (3.19)

1

1+ 2uA M ||dev'r}{£f"1 ||+blpn+1 b =0 (3.20)

and manipulating equation (3.20), the expression for A\, is obtained
|dev i3 |+ by poyy — by
2u(by =0y Py )

The dlip rate A),; is simplified by substituting equation (3.14) into (3.21),
reading as:

Adpyy = | (3.21)

- ¢ ( T >trial
A5, bp) ©22

Finally, the Kirchhoff stress tensor reads as:

Toit = gy AV TR + Po (323
where:
1
ny1 = anpg (Adny ) = [m (3.24)

Model integration of the Von-Mises regularization

The Drucker-Prager yield surface is well-defined for all those stress states with a
hydrostatic pressure smaller or equal than p, — defined by the vertex of the surface,
as shown in Figure 2-5. As mentioned in section 2.3.2, avon Mises regularization is
proposed for those loading states whose hydrostatic pressure is beyond the apex. A
pressure reference P is defined, which is the pressure value where the regulariza-
tion starts.

The elasto-plastic condition, for those pressures on the compression regime

P < P° (3.25)
where p,.; = trt,,, could present two loading states

¢(t)<0 Elasticregime
¢(t)=0 Plasticregime

The numerical integration for the regularization, proposed in section 2.3.2 for
those stress states with pressures greater than P*, is developed similarly as for the
Drucker-Prager model.

The expression for the dip rate A\ is obtained similarly by defining a stress
state on the yield surface of the von Mises regularization, given by equation (2.17),
such that ¢ (7,1 ) =0. Substituting equation (3.18) into equation (2.17)

1
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and solving for the plastic multiplier, the expron reads:

Equation (3.27) is rewritten substituting the numerator with the definition of the
yield surface in terms of the trial stress tensor.

¢* (T )trid
2uq

trid

g (3.27)

AN = (3.28)

I ntegration of the visco-plastic regularization

The integration described in previous section is completed incorporating the visco-
plastic regularization given in section 2.3.4. The integration of the visco-plastic
regularization is obtained, similarly asin previous section, comparing the Lie deriva-
tives defined for the visco-plastic model, expressed by equation (2.27), and the algo-
rithmic approximation given in equation (3.4). Rearranging common terms, the
expression reads:

[1 _E]TTHI = far1 - Tn-fan +Cieng +§rﬁ&1 (3.29)
TR TR
where rﬁpH corresponds to the solution of the elasto-plastic part of the model given
by equation (3.23) and 7, refersto the relaxation time.
Equation (3.29) is rewritten regrouping terms and substituting the definition of
the trial stress tensor r}{'fl in order to obtain an expression for T, interms of the

visco-plastic regularization
1 tnal At/ TR P

T T T Ay, T + T4 Atr, T (3.30)

The following termis defined in order to simplify the expression
S 3.31
T Ay, (331)

The Kirchhoff stress tensor in the visco-plastic formulation is expressed substi-
tuting the above expression into equation (3.30)

o =ntha +(1-n)t, (3.32)

where hereinafter it is taken indistinctly T, band T, .
The agorithm for the implicit integration of the Kirchhoff stress tensor is sum-
marized in Box 3-2.
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leen{(pn<Q) an:Atn-H'un-H :Qan(Q)_)RQ!lihu‘vbl!bZ! pa :bZ/bl ’ p;}’
compute trial stresses
Jorn =1+ Vugy,

1 T e
€ni1 = §<1+fn4;r1 'fn+11)

trial __ T .
Tnil = Jor1 T Jop HClenpy

wid _ L. _tia
Py = Pn1 = gtr‘rnﬂ

Define pressure condition, pp,;
IF Phy1 < Py THEN — Drucker-Prager yield surface

0(%)"™ = dev |+ 35y pos by

IF (7)™ <0THEN (Elastic regime)

n+1
Thyl = Tg'ﬂl
ELSE (Plastic regime)
tria
o 01
20y —bypris )

END
ELSE (von-Mises regularization)

¢ (v)"™ _[deve|-q

AA: * *
2pq 2pq

END
Kirchhoff stress tensor calculation

1 Ttrial
14+ 2puAN nHl
Top = devTy g + poyl
Visco-plastic regularization
_ 1
1+ Aty /s

Thy = 77"%“31 —|—(1—7))‘r,‘ﬁ1

devry,, =

Ui

Box 3-2. Integration algorithm for the visco-plastic formulation of the granular material flow
model.

3.2.2. Integration of the constitutive equation — | mpl-Ex scheme

For non-linear problems, the implicit integration schemes are widely used since they
present a higher stability compared to explicit schemes. Their advantage, compared
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to explicit ones, is the definition of larger time steps on the solving process with a
high degree of accuracy. In our case, near the apex of the Drucker-Prager surface,
the matrix of the system to solve may be ill-conditioned. In order to increase the
robustness of the model, the model is integrated based in an implicit/explicit integra-
tion scheme (Impl-Ex) proposed in Ref. [78]. This strategy combines the implicit
and explicit integration schemes aiming to exploit the benefits and minimize the
drawbacks of both.

The method follows the standard implicit integration scheme of the stresses
Th41 IN the congtitutive model discussed in previous section, with an explicit ex-
trapolation of the diprate A\ .

From the temporal discretization of the flow rule, given in equation (3.5), the
discretization of the consistency parameter or plastic multiplier X is observed.

A — A)‘nﬂ
n+1 Atn+1

(3.33)

The Impl-Ex scheme requires the explicit interpolation of the plastic multiplier,
astheinternal variable of the constitutive model, expressed as

A>\n—¢—1 ~ A)\n \ _ Atn-o—l
Ay, T AL A= Ry A (3.34)
whereAt, =t —t,, Aty =t, —t,_; . Substituting in equation (3.18) the discre-
tized plastic multiplier by equation (3.34), the deviatoric part of the Kirchhoff stress
tensor given in equation (3.23) reads
1 .
devi,, = —————devtld
n+1 1+ 2MA)\n+1 n+1 (335)
and similarly, the expression of the elastic factor «,,,; given in equation (3.24) is
expressed in the Impl-Ex scheme as

1

ST (3.36)

Qni
The Impl-Ex scheme is summarized in Box 3-3. Asit is observed, it is neces-
sary to take into account the computation of the dip rate A\, given in eguation
(3.22), to fulfil the algorithm given in Box 3-3 for the following time step.
Likewise, the calculation of the tensor t,,; givenin Box 3-2 allows us to es-
timate the error that implies the integration of the model via the Impl-Ex scheme so
that if:

”Tn+1 — Ty " > tol (3.37)

the new time step is modified according to Atp$) = SAt,,;, where g < 1.
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Given: {@n (), 0, Aty , Atny Ungy 10 () = R K, A}
compute trial elastic stresses
S =14+ Vu,

1 _ -
€ni1 = 5(1 +.fnvj—l '.fn+11 )

tridl __ T .
Thil = .fn+l *Thtl '.fn+l +c: €n+1

. 1 .
Pt = Pt = StrTo)
Extrapolate plastic multiplier, AXni1
A\

Adns1 = — L AN
n+1 Atn n

Extrapolate plastic multiplier, AXni1

1 .
Foy=———— devtl™® £ p 1
n+1 1 + 2[1,A)\n+1 n+1 n+1

Box 3-3. Explicit agorithm for the Impl-Ex integration scheme.

3.2.3. Algorithmic tangent constitutive tensor

The non-linear problem is solved using a traditional iterative Newton-Raphson pro-
cedure of the linearized system of equations — as it will be described in next section.
Then, the linearization of the constitutive equation requires the algorithmic tangent
congtitutive tensor. This tensor is defined following the standard procedure of com-
puting all derivatives on the materia (intermediate reference) configuration followed
by its expression in the spatial or current configuration by the push-forward opera-
tor.

The elasto-plastic tangent tensor ¢ relates the objective derivative of the stress
tensor T, , with the objective derivative of the strain tensor e, , reading as [13]:

Ly (tnp1)=c® Ly (en;) (3.38)

The elasto-plastic constitutive tensor for equation (3.38), deduced by an implic-
it/explicit (Impl-EXx) integration scheme, is expressed as

2 - - d d
c® =Za tr1,,. 6 —197 +a a’™ (e +c%® )+
Fan [0 =100 +an (o () re® )0 o

K(1®1)+—2py €
where a,,; isgiven by expression (3.36).
Finally, for the numerical formulation with a visco-plastic regularization, the al-
gorithmic tangent tensor is expressed as
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¢ =nc@ 4 (1—p)c® (3.40)
where:
c"d —ctalen) (3.41)

Full development of the algorithmic tangent tensor is given in Appendix B.

3.3. Linearization of the variational problem

Recalling the weak form of the balance equations given in Box 2.3, both equations
are expressed as

o, Vna(6w):on d - [ w-(pb)d -

frw sw-tdl,,, + fnn Sw-(pv)dSh,, =0

f 6q[|n"]ﬂ+l _lﬂ_
2% N K

(3.42)

d€% =0 (3.43)

The expressions for the generalized forces are obtained from equations (3.42)
and (3.43), and taking into account the nodal interpolation of the variables’. The
displacement field is approximated by the standard linear shape functions

u(x) ~ 3 N (x)u, (3.44)
i=1
and the pressures by
p*(x)~ > _Ni(x)p (3.45)

where the subscript (e )® stands for the each subdomain or element with characteris-
ticsize h,n, isthe number of nodes defining the element — in this case three for the
linear triangle used, and N; the standard shape function, such that itsvalueis 1 at the
associated node i and zero for the rest of the element nodes. Similarly, the test func-
tions 6w and 6q areinterpolated by the following expressions

S0P (x) ~ SN, (x)ow (3.46)
i=1

® The subscript (e )n+1 is omitted in this section, unless expressly stated otherwise, in order to simplify
the notation of the spatial discretization.
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Mp
60°(x) ~ > Ni(x)ég (347)
i=1
The residual of internal forces R"Y, obtained from equation (3.42), is expressed
as
[RY|=[F™mx | [Fet | 4[F™] =0 (3.48)
where:
]l = [ V(N )do? (349)
[Fe(t Le - er Nl pebedQe + fFe NI Te dFe (350)
[Fine ]T _ L/;)e N, pevedQe (3.51)

The discrete form of the generalized forces RY from the incompressibility equa-
tion, given by equation (3.43), reads as:

qe InJ® 1
[R ]l _fe N| ?—E NAﬂ'e dg)oe (352)
Finally, the vector of residua forces F'® is obtained using equation (3.48) and
the global assemble of equation (3.52)

Ru,r&s Fint,mix _ Fext + Fine
RA-res RY

res

(3.53)

Now, the stiffness matrix is obtained from the linearization of the vector of re-
sidual forces, which in amixed formulation reads:

6Ru,r%
SROE

OF™ = (3.54)

where 4 (o) stands for the directional derivative of the corresponding tensor.

The Géteaux derivative is defined as the product of the gradient of a scalar field
in the direction of a specific vector. The equivalent representation for the directional
derivative of the scalar field in acertain point, x , is given by

D, @(x):ié()H—sap)

., + (3.55)

e=0

Equation (3.55) characterizes the rate of change of the field ® along the normal
vector ¢ through the pointx . The full development of the linearization of the vec-
tor of residual forces, expressed in equation (3.54), is given in Appendix C. Finally,
the elemental Jacobian or stiffness matrix reads:
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(3.56)

A summary of the definition and implementation of the discretized stiffness ma-
trix isgiven in Box 3-4.

Element stiffness matrix K°®
KUU KUTr
K7ru K7T7r J =

(1,J,A=1:3)

K¢ =
(i,jk=1:2)

where:

[Kuu ]li,Jj - [ ngo]li,.]j +[Kmal ]Ii,Ji

ON,; ON
[ geo]n g ()xkl ax|J Ik Qe|
ON ON
[Kma]mj axkl ik 3X|J| e|

[KUW]nA 8NI NA|Qe|

. ON
K UJ.,Ak—[ 2 G o
[KWL,A:EN' NA|QE|

Vector of residual forces | RY |
[Ru ] _ [Fint,mix]_[Fth]_F[Fine] =0
where:
[Fint,mix ]T _ fQ o®-V(N, )doe

[P f N,pebedQe+f N, tedre
[Flne | :er N|peVedQe

Vector of residual forces [ RY ]

[Rq ]le — j;ze NI [lr}ie_%NAﬂ'eJdQe

|| :erdQe

And

Box 3-4. Element stiffness matrix K€ and vector of residual forces R (integration for a
three nodes linear triangle in the current configuration t,, ;).



3.3.1. Stabilization method for mixed element — Polynomial Pressure
Projection (PPP)

The introduction of a u— pmixed formulation overcomes the incompressibility
problem but for linear triangles P1/ P1 the Babuska-Brezzi stahility conditions are
not assured [10]. For this reason, a stabilization of the pressure field is required.
Several methods have been proposed in this field, and it is not our aim perform a
comparative analysis of the advantages and drawbacks of them. In this work, a
direct pressure stabilization, proposed in Ref. [28], isimplemented.

This Polynomia Pressure Projection is proposed as a stabilized finite element
method for the Stoke problem [28] and extended to solid mechanics problems [87].
The stabilization is defined by modifying the mixed variational equation in terms of
aloca L2 polynomial pressure projection and does not require the use of the mo-
mentum equation residual [28]. This condition poses two advantages in its imple-
mentation: it is not necessary to calculate higher-order derivatives, and its imple-
mentation is given at an element level.

The projection operator 7 of the pressure 7 € L* () is given by

if and only if

l/;ﬁ 6q(m—m)dOg, =0 VéqeP (3.58)

where P’is the space of polynomials of order zero; from equation (3.58), it is ob-
served that the method looks at the difference between the interpolated pressure
(same order as the displacement) and its projection, a one order lower expansion
consistent with that of the stresses [108].

The stabilization term is augmented (subtracted) of the incompressibility equa-
tion given by equation (3.43)

Ir]‘]nJrl 1 e
fggéq[——ﬁw e —

I
5 = e __
(60— sa)(n—7)dos =0
where ais a dimensionless stabilization parameter, and ;. the Lamé's second pa-
rameter.
The second term of the LFH of equation (3.59), defined from now on as g, , is
extended

(3.59)

(07

wsp:g

o (m°80° — w6q° — 76q° + 7°60° )OS (3.60)

The discretization of equation (3.60) is obtained by the standard approximation
of the variables. The nodal approximations of 7 and 6q have been given by equa-
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tions (3.45) and (3.47), respectively. The discretization of the projection operator 7
and test function 6q in athree-node linear triangle are given by:

ﬁ::é(ﬂ—l +7T2 +7TS) (361)
and
1
69 =5 (60 + 8 +80;) (362)

The discretization of equation (3.60) leads to an equation formed by four mass
matrices that read as

Ug =(00°) | M- M° - M® M (369
where:
M°® = ff?oe Ny N;dO5 (3.69)

Vs

me = %l e NG, [ NI, [ Ny (3.65)
P2
[ Nudog

e = [N [ 12, 1 1] (366)
| Nsa0s

1
iz
AV I & (367
Y
In aplane strain problem, equations (3.65)-(3.67) are reduced to
111 }
Me:%Ae 11 1|=M°=M° (3.68)
111

ZW
o
Il

where A° = ||Qoe|| . Finally, the implementation of the stabilization term given in
equation (3.60) is given, using equations (3.64) and (3.68), as
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Yo =—5—-1 2 -1 (3.69)

3.3.2. Time integration algorithm

The time integration algorithm implemented for this work is the generalized-a.
method, given in Ref. [26]. The method seeks the step-by-step time integration
assuring the conservation of linear momentum, and similar to those of the Newmark
family, it has a one step, three stages structure.

Equation (3.48) isrewritten as

[ Nl ] = [Fﬂl } - [Fr?—o(-tl ] +[Miip,, | (3.70

where M isthe mass matrix from the discretization of the vector of inertial forces.
The problem consists of finding a displacement function that satisfies equation
(3.70) and the corresponding initial conditions; the set of equations for the general-
ized-a. method defines the displacement and velocity fields as a weighing of the
acceleration field in t,, and t,,,; , which for the displacement fields reads:

. 1 .. ..
U, = u, + Atu, +At2[[§ﬂ]un + Biip, (3.71)

and velocity
Uy = U+ AL[(1— )iy + il ] (372

where gand ~ are purely agorithmic parameters which control the numerical
dissipation and numerical dispersion of the method [26]. The description of both
parameters could be described, among other forms, in terms of the so-called spectral
radius p, :

1
B= o 11F (3.739)
3— Po
LTy (3.730)

The spectral radius allows relating these parameters with the dissipation needed
for high-frequency modes. The spectral radius is defined asp,, =[0,1] where O
states atotal dissipation and 1 for no dissipation.

Asiit could be observed from eguations (3.71) and (3.72), the algorithm is one
step depending solely of the solution history at time t = t, and three stages since the
solution isafunction of u,,, u,, and ii,.
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Since the variable to solve is the displacement field, an expression for the veloc-
ity and acceleration fields are easily deduced. After manipulating eguation (3.71) ,
the expression for the accelerations reads:

1 Lo (L)
un+l—w(un+l_un)_@un+ ~23 up (3.74)

and the expression for the velocity is defined by substituting equation (3.74) into
(3.72).

Uy :ﬁ(unﬂ—un)—&—[l—%]ﬁn—i—&[l—%]ﬁn (3.75)

The vector of residual forces, expressed in equation (3.70), for the generalized-a.
method reads:

[RH+1 } =

where o and «,, are parametric values also defined in terms of the spectral radius
Poo -

int
Fn“rl*(’kf

- [Fneflfaf ] + [Mﬁr‘H—l—om } (376)

 2py —1

Qs = o 1 (3773.)
_ P

A = o+l (3.77b)

The computation for the displacement and velocity fields, as well as for the in-
ternal and external forcesis given in terms of the weighing of their description in the
current and reference configuration; for al these expressions with the subindex

(.)nH*a’f , isgiven by
(Jnia-ay = (1mar ) (o +ar (o), (378)

Similarly, acceleration vector is described in term of the «,, parameter. Same

for those with the subindex (e), 1o, IS definition is given by

(®)ni1oa, =(1—am)(®)y,; +am(e), (3.79)

The third term of the RHS of equation (3.76), by substituting the description of
i1, given by equation (3.79) and after some manipulation, is rewritten as

Miin—o—l—a'm = Mun+l - Mll* (“nvﬂnvﬁn ) (380)

BAL?
where:

«  |1—anp 1—apy . 1-28—ap ..
YT e At T

(3.81)
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Substituting eguation (3.80) into (3.76), the vector of residual of forcesis given
by:

[Rn+1] FTIITI g } [Fl'?itlfcvf +
~ (3.82)
—%[Muw]ﬂm*(un,un,ﬁn)]

The implementation of the time integration is summarized in Box 3-5

Given: {un :ﬁnaﬁnvAtn+1aun+1 :@D(Q)HRQ’[)OOI’Y iﬁvaf yOm,
compute ii,,; and a,

! 1 -
—W(“nﬂ—“) 5Atun+[ 25]

Upig

ﬁnﬂ:ﬁ(un-&-l_un)"‘[l g]unJrAt[ —%] i,

Calculate vector of residual forces

RU _ Flt h ext h
[ “+1} TN+l afL T T n+l—ap ,Jr
l—«
- ﬁAtQm[MunH] +[M“ (“ny“nyun)L
where;

('>n+17af = (1_af >('>n+1 +ai (o),
(®)nt1a, =(L—am)(®),, +am(e),

|1-an 1—ap . 1-260—ap ..
T T aar g

Box 3-5. Dynamic integration scheme — generalized-o. method

3.4. Contact method proposal

The rheologica behaviour of granular flows is a function not only of the direct in-
teraction of the granular particles themselves but also has complete dependency on
the boundary conditions. In order to fulfil this requirement, it is necessary to define
aproper solid-granular material interaction.
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The contact method proposed in this work emerges in a natural manner from the
PFEM. The contact method has been proved robust for performing large defor-
mation problems.

3.4.1. Background of the contact method

Several techniques have been proposed to solve coupled problems representing
accurately the interaction of the multi-body system; among them, there is found the
penalty method, the Lagrange multiplier method, and the augmented Lagrange
method. Despite their precise response to determine the resulting contact forces, the
implementation of these methods for large deformation problems is limited since
they are not robust enough — an example of complex geometries and geometric non-
linearities are given in the tumbling mill problem, where the interaction with the
lifters and the large deformation of the granular domain require a more robust treat-
ment.

Due to the reconnecting algorithm of the PFEM, the method has shown suitable
to simulate the multi-body interaction. Thisinteraction is defined through a geomet-
rical discretization via the a-shape method between the contact bodies. This tech-
nigue shows robustness for large deformation problems as shown in ([46],[80]) but
in some cases due the boundary definition given by the a-shape method it presents
lack of accuracy as well as someinstabilities in the pressure field.

A contact method with high performance in large deformation problemsis given
by the contact domain method reported by [77]. It is based in the definition of an
interface domain between the potential contact bodies and it have been used in a
variety of large deformation problems ([39],[102],[55]). The method present ad-
vantages due the generation of the contact interface, of the same dimension as the
contact bodies, that alows the formulation in dimensionless, strain-like measures,
both for norma and tangential gaps. Despite the robustness in many non-linear
problems, in the modelling of granular-solid interaction shows a reduced conver-
gence when the strength of the materials differs some order of magnitudes as well
as the discretization that defines the contact bodies present a small number of ele-
ments.

The contact herein proposed is based in the contact domain method in terms of
the definition of the interface domain. In general, contact methods define the con-
tact constraints in terms of a subdomain one dimension lower than the contact bod-
ies, see Figure 3-7(a). In contrast, contact domain methods construct an interface
domain of the same dimension as the potential contact bodies, Figure 3-7(b).
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(a) (b)

L'(_)nlilL'l line/surface Contact domain

Figure 3-7. Imposition of contact constraints: (a) Classical methods, and (b) Contact domain
methods [77].

The difference of our proposal with the so-called CDM lies on the definition of
the interface. Regarding the latter, the interface is considered as fictitious and it is
solved in terms of Lagrange multiplier; in our proposal, the interface has size h and
the contact conditions, normal and friction forces, are supplied via a congtitutive
model similar than the given for the granular material.

3.4.2. Algorithm description

The construction of the contact interface (%4 is given in terms of a constrained
Delaunay triangulation between the potential contact boundaries of the bodies. In
order to avoid the definition of the active elements in terms of the a-shape method,
asin the classic PFEM agorithm, it is determined if an element is active if it fulfils
the geometrical impenetrability and normal contact traction conditions. In Figure
3-8(a), a sketch of the active elements of the contact domain is given.

As mentioned in previous section, the definition of this interface domain differs
from the CDM to ours. For the first case, it is defined as afictitious interface of gap
gn = 0while in the present method it is given a tolerance, reading as gy = h(P),
where h(P) isthe height of the element from the base to point p, see Figure 3-8(b).

The modelling of the contact forces, contact and friction, is established via the
congtitutive model for the interface domain. Taking into account the frictional and
incompressible response of the congtitutive model for the granular material given in
equation (3.23), for our method it is proposed providing the same constitutive model
for the whole contact interface.
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(b)

Figure 3-8. Contact interface domain: (a) Active elements between contact bodies; (b) Linear
triangle contact patch.

With the gap definition for the interface and the constitutive model to satisfy the
contact forces, the stick-dlip conditions are established in the form of the classical
Karush-Kuhn-Tucker conditions. First, the geometrical impenetrability condition is
stated using the gap definition, reading as:

gy (x) = h(P) >0 vxe QP (3.83)

The second condition refers to the normal contact traction ty , where the only
admissible stateis for compression:

ty(x)=1,-n(x)<0 Verédp) (3.84)

Finally, the definition for an active element is summarized using the classical
form of the Karush-Kuhn-Tucker conditions, using equations (3.83) and (3.84).

)‘N S 0, gN Z 0, )‘NgN = 0 in D,I1 (385)

3.4.3. Calibration of the Drucker-Prager internal friction angle and Coulomb
friction parameter

The following example is proposed as a simple path to characterize the Coulomb
friction parameter of a system in terms of the internal friction angle by of the yield
surface defined in equation (2.14). The example consists in the slide of arigid body
of mass mthrough an inclined plane of angle ¢ as shown in Figure 3-9.
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Figure 3-9. Slide of arigid body in an inclined plane. Validation example for characteriza-
tion of the wall friction angle in terms of the Coulomb friction parameter.

The dlide of the rigid body could be described by an analytical equation which
deduction is obtained by defining the free body equations

mgsin(f)—f =ma (3.86)
and
mgcos(6)= N (3.87)

where f isthe friction force, g the gravity, a the system acceleration, and N the
normal force. The static condition of the system is given whenever

f <uN=pmgcos(0) . p=tan(0) (3.88)

For the dliding condition, x <tan(6), it could be deduced, by manipulating
equation (3.86), the definition of the acceleration of the system in terms of the Cou-
lomb friction parameter and the slope of the plane.

a=gcos[tan(6)— u] (3.89)

The integration along time of equation (3.89) allows to define the position of the
body in certain period of time in terms of the Coulomb friction parameter and the
inclination angle, given by

2
x(t):xo+vot+gcose(tan0—u)% (3.90)

where x, the origina position, and v, the original velocity. In order to character-
ize the value of the wall friction in terms of the internal friction angle, a set of dif-
ferent internal angles for the material were conducted. The comparison of the re-
sponse of the displacement of the model and the one deduced analytically by equa-
tion (3.90), permits to calibrate both frictional parameters.

The validation of equation (3.90) as a calibration method of the wall friction an-
gleis given comparing the analytical solution using africtionless plane, = 0, with



Numerical formulation 63

The validation of equation (3.90) as a calibration method of the wall friction an-
gleis given comparing the analytical solution using africtionless plane, = 0, with
the numerical results using the corresponding internal friction angle b, = 0. The
comparison is aso extended to a numerical model of the dlide of the rigid body
without a contact definition, only restraining the displacements of the body in the
direction normal to the plane. Figure 3-10 shows the comparison of the analytical
solution with respect both numerical responses.

014 — contactiess

—— b1=0.00
—— analytic (mu=0.00)

0 1 1 1 1 1 1 1 1 J
0 0.02 0.04 0.06 0.08 0.12 0.14 0.16 0.18 0.2

0.1
time (sec)

Figure 3-10. Validation of analytic solution for africtionless surface.

The displacement response given by the three curves is identical for each of
them, which validates the usage of the analytic equation for the calibration. The
internal friction angle of the material was varied in arange b, =[0,1.00]in order to
observe the behaviour of the sliding of the rigid body and thereafter compared to the
analytic response. Figure 3-11 shows the variation in the displacement reached de-
pending of the internal friction angle used in the contact domain.

014 —p1=000
—b1=020
—b1=040
012 —b1=060
—b1=080
——b1=1.00

0 T 1 1 1 1 1 1 1 )
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 02
time (sec)

Figure 3-11. Displacement varying wall friction angle.



Varying the Coulomb friction parameter, the analytic displacement is compared,
defining a corresponding value of the parameter for each interna friction angle in
the numerical model. Figure 3-12 displays the comparison between the numerical
response of the interna friction angle and its corresponding analytical description
varying this coefficient.
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002
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001
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01
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Figure 3-12. Analytical comparison of displacement

Relating the internal friction angle of the Drucker-Prager yield model of the
contact elements and its corresponding vaue of the Coulomb friction coefficient
obtained analytically it could be observed a linear response between them as ob-
served in Figure 3-13.
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Figure 3-13. Coulomb friction coefficient and internal friction angle comparison

The example allows defining, in a proper manner, the wall friction angle be-
tween the material and its container.



66




Chapter 4
Numerical ssimulation of the spreading of
agranular mediaon a horizontal plane

This chapter addresses the validation of the constitutive model proposed for the
simulation of dense granular flows. Any numerical simulation has to be validated
through a proper comparison with analytical or experimental models. Dense granu-
lar flows, as explained in previous chapters, present a complex behaviour that an
analytical description is not suitable to capture — effects of bistability, thixotropy,
jamming, among others; for this reason the natural manner of the validation is via
experimental modelling. The complexity of choosing reliable experimental models
for granular materialsis given by two main features: the reproducibility of the exper-
iment and the kinematic phenomenon to represent — in this case dense granular
flows.

The first concept, reproducibility, is an inherent limitation of granular materials;
their mechanical response is constrained by the material properties such as the de-
gree of voids, the particle shape and size, and homogeneity of the material that could
vary for a same granular media. This feature forces us to use experimental tests
conducted for a large number of samples, where the reported average data defines
properly the material response. The second condition refers to the kinematic re-
sponse that is modelled on the experimental tests; it is essentia to identify those
experimental models suitable to represent granular flows where there are recogniza-
ble stagnant and flow regions as well as their jamming transition.

The model is validated through a comparison with the experimental results of
the spreading of a granular mass on a horizontal plane reported in Ref. [62]; the
experimental tests capture the kinematics of the media on different stages. the mate-



68

rial at repose on its container, the spreading of it when it is released, and its decel-
eration until its stagnation.

In the next sections, a brief description of the experimental tests used for the
validation is presented, followed by the corresponding numerical simulations. First,
atest for calibrating material and numerical properties is selected; then the predic-
tive ability of the model is validated in both stationary and transient scenarios. The
numerical simulations herein presented follow the next assumption:

« Thenumerical simulations are simplified in a two-dimensional axisymmetric
model. This assumption is given straightforward from the experimental tests
since the authors described a full axisymmetric response on the materia
spreading [62]. The axisymmetric description for a mixed formulation is giv-
enin Appendix D.

4.1. Scope and setup of the experimental tests

The experiments carried out by Lajeunesse, et al. [62] — which are the ones em-
ployed in the present work for validation purposes — have the aim of characterizing
the dumping and spreading of the granular material from an initial configuration of
confinement, being the gravitational forces the only perturbation exerted on the
material. One of their objectives was to determine the influence of the material and
several parameters like the massM , the initial aspect ratio a of the granular volume,
the substrate roughness, and the bead size on the spreading of a granular mass as
well asinitsfinal disposition.

The experimental setup consists of a cylinder of inner radius R resting on a hor-
izontal plane wide enough to contain the spread of the granular material. The tube
was filled with a mass M of glass beads of uniform size and shape
(d =350+ 50um) and an averaged density p = 2500 kg/m3 . The filling proce-
dure was standardized in order to ensure reproducible initial conditions; they poured
the glass beads onto a sieve defining a homogeneous downfall of the material. The
height of the columnh is defined according to the amount of material, which in
turn, defines its initial aspect ratioa= H;/R . The scheme of the experimental
setup isshown in Figure 4-1.

The experimental procedure consists in releasing the cylinder pile by the quick
removal of the container via a pulley system®. Once the material is released, it
spreads on the horizontal surface due to gravitational forces until it comes to rest
forming a final deposit. Lajeunesse, et al. [62] define the time necessary to set the

® In afollowing paper, Lajeunesse, et al. [63] E. Lajeunesse, J. B. Monnier, and G. M. Homsy, "Granular
slumping on a horizontal surface," Physics of Fluids, vol. 17, pp. -, 2005. detail the used methodology of
the cylinder removal. They placed constant weights on the lifting system in order to maintain reproduci-
bility on the experimental tests.
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granular mass in motion as T,, = +/2H;/g. The time of removal for the cylinder
T, has to be fast enough in order to reduce its influence on the flow pattern of the
material; in order to achieve a proper procedure where the removal of the cylinder
does not influence on the spreading T, hasto be small compared to T,

The slumping and spreading of the granular pile was captured using a digital
camera acquiring 500 images per second. The camera was connected to a computer
to capture and digitalize images at short intervals of time being capable to define the
shapes of the bulk asit spreads. Lajeunesse, et al. [62] reported that, as the granular
mass spreads axisymmetric, the profiles reached by the materia provide enough
information to fully characterize its three-dimensional shape.

“lfting” system

spreading surface
X

glass beads

-] ; HI 2

tast camera

Figure 4-1. Scheme of the experimental setup [62].

The experimental tests comprised several geometries and initial aspect ratios to
characterize the mechanisms of spreading for the granular material. A first set of
examples were conducted to verify the axisymmetric spreading of the material; it
was confirmed by placing the camera vertically above the cylinder and the measur-
ing of theradial spreading.

Lajeunesse, et al. [62] concluded that the most relevant parameter that charac-
terizes the spreading and final deposit of the material is the initial aspect ratioa.
They identified that, depending on the initial aspect ratio, the spreading of the granu-
lar material has two distinct dynamical regimes leading to three different deposit
morphologies. The first regime is observed for smaller initial aspect ratios, with a
limita < 3; the spreading is characterized by a flow front that develops at the foot
of the pile, and that propagates radially outward, see Figure 4-2(a) and Figure
4-2(b). The image sequences show how the sides of the initial column of granular
material crumble through an avalanche.

The final configuration varies depending on the initial aspect ratio; for small
values, the material does not spread completely, leaving a central undisturbed region
and creating a truncated cone deposit, Figure 4-2(8). For values close to a = 0.74
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the spreading of the material reaches the centre of the bul k, defining a cone shape of
the deposit, Figure 4-2(b).

The second dynamical regime is shown in Figure 4-2(c). It can be appreciated
that the spreading of the material develops aflow front at the bottom of the cylinder
pilein asmall region, shown in the first three snapshots; by contrast, the upper part
of the column keeps its shape while descending — considered as a free falling rigid
body. At the end of the process, the shape of the deposit resembles, in words of
Laeunesse, et al. [62], aMexican hat.

t=0s

t=0.062s I

I.

t=0.076s t=0.080s

t=0.188s t=0.180s t=0.182s

a || 4AB

t=0.408s t=0.296s t=0.282s

|

t=0.648s

e el
t=0.512s

- :
(a) (b) (c)
Figure 4-2. Three sequences of images corresponding to different initial aspect ratios: (a)
regimel, a=0.56; (b) regime1, a= 0.8; and (c) regime2, a= 5.4 "[62].

Lajeunesse, et al. [62] contrasted different geometries while keeping the same
initial aspect ratio and concluded that the kinematic behaviour and final profile are
independent of the mass of the material, being only a function of the initial aspect

" The initial aspect ratio given by the authors for Figure4-2(c), a = 5.4 , does not correspond to the initial
aspect ratio of the sequences shown in the figure, a = 8.94 . The reported series of successive profiles
correspond to the lower value (a = 5.4 ), which are used for the model validation given in section 4.4.
The sequence of images of Figure 4-2(c) is used to validate the transient response of the model, using the
higher value of theinitial aspect ratio (a = 8.94).
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ratio. Figure 4-3 shows the comparison of different geometries for three different
initial aspect ratios — one for each of the deposit morphologies.

The normalized deposit profiles, shown in Figure 4-3, are used for the validation
of the numerical model in the following sections. These results clearly corroborate
the influence of the initial aspect ratio in the final profile, being independent of the
mass. Figure 4-3(a) stands for the normalized comparison of the final profiles for
cylinder piles with the smallest initial aspect ratioa = 0.41. It shows the truncated
cone for the deposit profile, defining aflow front by the lateral sides.

. @

0.4
= o3
£

02|

0.1

00

(b)

Figure 4-3. Deposit profiles normalized to the tube radius for three different initial aspect
ratios, varying geometries: (@) a = 0.41.Plainline M = 135 g, R = 40 mm. Dotted
linee M =509, R =28 mm. Plainlinewithcirdess M = 509, R =28 mm. (b)
a=1.95.Planline M = 600g, R =40 mm. Dotted line: M = 200g, R =28
mm. Plainlinewithcircless M = 509, R =40 mm. (¢) a= 6.20. Plainline:

M =675g, R =28 mm. Dotted line: M = 759, R =13 mm. Plainlinewith circles:
M =80g, R =13mm[62].

The second set of geometries, corresponding to an initial aspect ratioa =1.95,
shows the same normalized deposit profiles for different amounts of mass, see
Figure 4-3(b). It is observed the correspondence with the second profile morpholo-
gy, which describes a cone. The last pattern is shown in Figure 4-3(c), and corre-
sponds to the second dynamical regime of spreading. The difference of both dynam-
ical regimes, shown in first two figures and the third one respectively, is observed by
contrasting their deposit profiles: for the first case, the deposits show smooth slopes
while for the last regime, the centre of the bulk shows a cone, identified to be from
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the upper region of the cylinder, while the materia at the bottom shows a different
slope on its profile.

4.2. Modéling of material settlement

In order to dissipate initial oscillations due to the gravitational loads, all the simula-
tions shown follow the assumption of allowing the material, within the container, to
settle down. Once the material reaches a state of negligible kinetic energy, the cor-
responding kinematic conditions are applied (in this case, the remova of the con-
tainer).

The geometry given in Figure 4-2(a) is taken as reference example for the cali-
bration of material and numerical parameters. It consists of the axisymmetric mod-
eling of acylinder pile of radius R, = 70.5 mm and a height H; = 39.48 mm with
a corresponding initial aspect ratio of a = 0.56 . This particular choice of the initial
aspect ratio aims at reducing the effects of abrupt changes in potential energy on the
numerical response. This numerical response is expected to follow the first dynam-
ical regime for the material spreading and to define the observed profile morphology
of atruncated cone.

Figure 4-4(a) shows the evolution, during material settlement, of the computed
volumetric pressures measured at the bottom centre of the material — in the axisym-
metric model at the bottom of this axis. The graph displays a barely perceptible
dissipation on the oscillations along time, a fact that is contrary to expectations,
since the coefficient of elastic restitution in granular materials is practically null
[48]. As may beinferred, these physically unrealistic pressure oscillations are due to
oscillations in the normal stress in the vertical direction, see Figure 4-4(b).

The above observations clearly indicate that the model proposed in previous
chapter has to be equipped with some additional means to dissipate the spurious
oscillations. To this end, a visco-elastic regularization based on a Kelvin-Voigt
model is proposed.

This type of visco-elastic models is based on a rheological representation of a
purely viscous damper and an elastic spring. In this case the additional term will be
described as afunction of the rate of deformation tensor. Since the numerical model
is based on a mixed formulation, the pressure variable defined by equation (2.34) is
rewritten using the new term corresponding to the viscoelastic regularization — ex-
pressed in the current configuration.

INJnis

Ty =R +ntrdayy (4.1

n+1
where 7 is a coefficient that defines the degree of dissipation required to character-
ize the coefficient of elastic restitution of the material.
Details on the deduction and numerical implementation of this visco-elastic
regularization are given in Appendix E.
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Figure 4-4. Dynamic oscillations presented in (&) pressure, and (b) vertical stresses after

settlement of the material at the bottom centre of the cylinder pile.

Figure 4-5(a) shows the comparison of the volumetric pressures at the bottom
centre of the material for different values of the dissipation coefficient 77 (expressed
as the product of a dimensionless constant and the bulk modulus). Comparing the
corresponding values of a null value of the coefficient (green line) and 17 = 107*K
(blue line), it could be defined the last as a numerical zero, nullifying any dissipa-
tion. It can be readily appreciated how the amplitude of the oscillations diminishes
when increasing values of the dissipative coefficient. For = 102K (black line),
the oscillations are completely eliminated.

In Figure 4-5(b), the influence of the dissipative coefficient on the evolution of
the vertical stress component ( 0y ) is examined. As expected, the introduced regu-
larization proves effective in mitigating also oscillations in this variable. It is worth
noting that, in contrast to the situation observed in the pressure variable, the magni-
tude of the mean value of oy remains approximately constant for all valuesof 7.
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Figure 4-5. Variation on the dynamic oscillations presented in (&) pressure and (b) vertical

stresses, after settlement of the material at the bottom centre of the cylinder pile using the

viscoel astic regularization.

4.3. Modd calibration —deposit profile

As mentioned in the previous section, the calibration of the parameters of the model
is carried out using the experimental test corresponding to the configuration shown
in Figure 4-2(a). This test corresponds to an axisymmetric model of a cylinder with
initial aspect ratio of a = 0.56 ; a sketch of the initial geometry is displayed in Fig-
ure 4-6.
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Figure 4-6. Axisymmetric model for reference example with initia aspect ratio a=0.56.

The congtitutive model herein proposed for dense granular flows is character-
ized by four parameters, namely: the internal friction angle, the cohesion, and the
visco-plastic and visco-elastic parameters. The cohesion coefficient is set to a very
small positive constant, b, = 1072 Pa, to reflect the fact that the grains employed
in the experiments are assumed cohesionless. Regarding to the visco-plastic coeffi-
cientTr, preliminary numerical tests show that transient behaviour is accurately
replicated with a vanishing negligible coefficient (that is, the visco-plastic regulari-
zation in this test does not play a significant role). As for the visco-elastic part, the
dissipation constant isset to 7 = 102K (the value obtained in the previous section
to eliminate oscillations in the volumetric pressures).

In al the examples, calibration and validation models, calculations have been
run with a time-step length At =1x10~* sec; the number of elements for each
model are a function of the geometry of the model, remaining constant the element
size h® = 1.5mm. The modelling of the granular material / surface interaction was
in terms of defining the same value for the internal friction angle and the wall fric-
tion angle; for the interaction with the cylinder’s wall it was defined frictionless in
Ref. [62].

The calibration of the remaining parameter, the internal friction parameterh , is
carried out by comparing the final deposit profile, obtained for varying values of this
parameter, with the corresponding experimental result. Figure 4-7 shows this com-
parison in terms of the normalized deposit profile for values of b ranging from 0.4
to 1.20.

Observe that the material tends to fluidize for lower values of k. For
b = 0.40, the “truncated cone” shape observed experimentally is not present; one
has to increase the interna friction parameter over 0.65 to reproduce this typical
shape. For the maximum vaue used, b =1.20, the deposit profile shows, as ex-
pected, the wider region of materia undisturbed; presenting material crumbling
approximately at half the radius of the cylinder.
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Maximum resemblance between numerical and experimentad profiles is
achieved at b, = 0.75 (the equivalent internal friction angle in a Mohr-Coulomb
model is ¢ =23.474°, avalue that lies between the values reported by L gjeunesse,
et al. [62] for the repose angle and the avalanche angle, 6, ~21° and 6, ~ 29°
respectively).

It should be remarked that the match is almost perfect except at the outer portion
of the deposit. This deviation may be explained by the fact that, at this region, the
grains are too loose to be collectively represented as a continuum medium.
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Figure 4-7. Final (normalized) deposit profile for varying values of the internal friction pa-
rameter. Comparison with the experimental result reported by Liajeunesse, et al. [62].

A striking conclusion of the experimental study conducted by Lajeunesse, et al.
[62] is that the shape of the final deposit is practically independent of the rig-
id/erodible nature of the rough ground; according to Lajeunesse, et al, the final
shape should only depend on the initial aspect ratio (at Ieast for the range of values
studied in their work).

To check whether the numerical modd is consistent with this observation, in
Figure 4-8, the final profiles predicted by the model for varying values of the wall
friction parameter at the interface domain are compared.

It is readily seen that, indeed, the model does capture the experimental behav-
iour in this respect, since variations of the wall friction parameter does not induce
significant changes of the final shape of the deposit — only a slight deviation is de-
tected at b =0.2.
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Figure 4-8. Deposit profiles obtained varying the wall friction angle of the contact interface.

4.4. Model validation —deposit profiles

The validation of the numerical model is carried out using two sets of examples. The
first set corresponds to the remaining two geometries, shown in Figure 4-2(b) and
Figure 4-2(c). The second set has the aim of further corroborating the conclusion
made in Ref. [62] regarding their statement, that indicates that the deposit profile is
only a function of the initial aspect ratio of the granular pile, being negligible the
influence of the mass pile on the morphology — it will compared with the normalized
deposit profiles shown in Figure 4-3.

The geometries of the axisymmetric models of the remaining examples are
shown in Figure 4-9. The first initial aspect ratio a=0.80 corresponds to the first
dynamic regime — a flow front that develops at the bottom of the pile and crumbles
through an avalanche, presenting a cone shape type final deposit morphology. The
second initial aspect ratio a=>5.40 belongs to the second dynamical regime; its final
deposit profile corresponds to the Mexican hat shape type.

The validation process consists in comparing the remaining configurations using
the same internal friction material obtained earlier by the calibration example
b, =0.75 —it is emphasized that all material and numerical parameters are kept the
same as well as the model conditions.
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Figure 4-9. Axisymmetric models used for model validation: (a) Regime 1, a=10.80; (b)
Regime 2, a=>5.40.

In Figure 4-10, the experimental and numerical final profiles corresponding to
the first initial aspect ratio a=0.80 are depicted. To better appreciate the evolution
of the pile, the initial configuration is also displayed. Observe that, except at the
outer part — in which as previously pointed out, the grains becomes too loose as to
be modelled as a continuum medium — the deposit profile predicted by the numerical
model runs above, and approximately parallel, to the one observed experimentally.
On average, discrepancies in height are less than 10%.
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Figure 4-10. Validation of the numerical model for acylinder pile with an initial aspect ratio
a=0.80.
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Figure 4-11 contains the profiles corresponding to the initial aspect ratio
a=>5.40. Remarkably, in this case, the deposit profiles of the experimental and
numerical models exhibit an excellent agreement, even at the concave slopes of the
free surfaces that defines the Mexican hat shape; the only deviations are observed, as
in the previous cases, at the outer region.
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Figure 4-11. Validation of the numerical model for acylinder pile with an initial aspect ratio
a=>540.

Even though the scope in this section is not the study of the transient response of
the granular spreading, for completeness, in Figure 4-12, the evolution during the
spreading process, of the experimentally recorded profiles (left column) along with
the predictions furnished by the numerical model (right column) is compared.
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Figure 4-12. Comparison of the evolution of experimental [62] and numerical profiles corre-
sponding to (a) initial aspect ratio & = 0.56 ; (b) initial aspect ratio a = 0.8 ; and (c)
initial aspect ratio a = 5.4 .

Figure 4-12(a) and (b) correspond to initial aspect ratios of a=0.56 and
a= 0.8, respectively (first dynamica regime of spreading). Computed profiles in
these two cases bear close similarity to those monitored experimentally. In the third
case (the one corresponding to the slender column, see Figure 4-12(c)), the similari-
ty isnot so marked: in the computed results, the upper portion of the column main-
tains its initial shape during most of the process, while in the profiles reported in
Ref. [62] , the column seems to widen as its top surface descends. A glance at the
sequence of images shown previously in Figure 4-2(c) may aid in disclosing the
actual origin of these discrepancies. Indeed, observe that, upon removal of the con-
tainer (t = 0.182 sec), the outer layer of particles detach from the bulk mass due to
some friction presented during the removal of the cylinder. Such detachment is an
inherently discontinuous phenomenon, and therefore, not amenable to continuum
modelling; hence the discrepancies between observed and computed results. Never-
theless, it should be noted that the influence of these discrepancies on the predictions
of the final profileis practically negligible (since it is considered the discrepancy on
the outer layer of particles), for both computed and experimental graphs are practi-
cally coincident, as previously seen in Figure 4-11.

In Ref. [62], Lajeunesse, et al. report that, independently of the mass, a set of
cylinders with the same initial aspect ratios but different dimensions will exhibit
similar normalized deposit profiles. To check whether this behaviour is also cap-
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tured by the numerical model, we launch several analyses with varying initia di-
mensions. Table 4-1 shows the employed initial aspect ratios described in Ref.
[62], one corresponding for each of the deposit morphologies, and the dimension of
itsradius.

Tag a R (mm)
Al 0.41 40
A2 0.41 28
Bl 1.95 40
B2 195 28
C1 6.2 28
C2 6.2 13

Table 4-1. Set of geometries for diverseinitial aspect ratios for analysis of the deposit pro-
files.

In Figure 4-13, numerical results obtained for each pair of initial aspect ratios
(blue and black cross marks for the first and second geometry respectively) are com-
pared with the corresponding experimental normalized deposit profiles (continuous
red line).

In the first two cases, Figures 4-13(a) and (b), the computed profiles are
practically indistinguishable. For both cases, the crumbling of the material spreads
from the outher regin through the centre of the pile; a difference for the second
initial aspect ratio, is that for both the experimental and numerical profiles, a
curvature on the profile is given, instead of a straight slope present for the smaller
value. This morphology, that is more characteristic of the second dynamical regime,
is given since theinitial aspect ratio a =1.95 iscloser to the limit between the first
and second dinamical regime (a < 3) than the limit between the first and second
deposit morphology (a > 0.74).

In the third case, Figure 4-13(c), differences are observed at the peak of the
Mexican hat profile, and at the outer regions®’. However, these deviations are not
very pronounced (less than 7% at the peak). It may be concluded, thus, that
numerical predictions are in accordance with the experimentally observed [62] about
the independence of the scaled profilesto the volume of released material.

8 As pointed out earlier, discrepancies at the outer regions are due the model’s inability to represent the
detachment of grains at the flow front.
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Figure 4-13. Comparison of the deposit profilesfor pairs of initial aspect ratios with different
dimensions: (&) initial aspect ratioa = 0.41, (b) initial aspect ratio a=1.95, and (c) initial
aspect ratio a=6.2..

Lajeunesse, et al. [62] devised an experimental procedure that permits the visu-
dization of the internal structure of the granular materia in its fina state. In this
experiment, a cylinder is filled with the same glass beads, painted accordingly to
differentiate seven alternating layers of red and white particles, see Figure 4-14 (a).
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The cylinder pile has an initial aspect ratio a =1.00 with a radius and height
R=H =70.5 mm. After spreading, the granular deposit is symmetrically split into
two parts by means of a thin glass, Figure 4-14(b); then, one of the halves is re-
moved so as to observe the final distribution of layers, Figure 4-15(a). The dotted
line indicates the boundary of the stagnant zone (i.e. the region inside which flow
has not taken place). Laeunesse, et al. [62] determined that, for this particular ini-
tial aspect ratio (a = 1.00 ), the stagnant zone is approximately a circular cone with
radius equal to the base radius of theinitia cylinder pile.

Figure 4-14. Experimental procedure to explore the internal structure of the deposit. (a) Initial
state: tube filled alternatively with layers of two colour glass beads. (b) Deposit split in two
parts by mean of athin glass plate [62].

In order to assess the ability of the proposed numerical model to replicate
interna flow patterns, a simulation of the spreading of the cylinder pile described
above is carried out. The final configuraiton of the pile is shown in Figure 4-15(b);
to facilitate the comparison with the experiment, the lines defining the experimental-
ly measured stagnant zone (circular cone of radius R= 70.5 mm) are aso plotted
in Figure 4-15(b).

Inspection of Figure 4-15(b) clearly indicates that the spreading of material was
localized at the outer zones, close to the free surface, where particles can move easi-
ly compared to those within the core of the deposit. The region enclosed by the
plotted lines remains practicaly undisturbed; this fact is in qualitative agreement
with experimental observations, see Figure 4-15(a). Another interesting feature that
can be gleaned from Figure 4-15(b) (and that it is also consistent with experimental
observations given in [62]) is that granular motion occurs in such a way that top
layers slide over layers beneath with no apparent intermix between them.
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Figure 4-15. Comparison of internal structure of the deposit: (a) Experimental response [62],
(b) Numerical solution.

45. Transent flow

We focus now on the validation of the model’s performance in the transient regime.
The validation is carried out by comparing the evolution, upon removal of the con-
fining tube, of experimentally recorded and computed pile profiles. Experimental
data has been obtained from the sequence of images displayed previously in
Figure 4-2, from Ref. [62].

Intuitively, it is reasonable to expect that the speed at which the tube is lifted af -
fects, to a greater or lesser extent, the velocity at which the granular pile spreads
afterward. Thus, a proper assessment of the model’ s ability to describe the transient
response requires accurate data of the tube lifting speed. Unfortunately, information
in Ref. [62] concerning this aspect of the experiment is quite vague and somehow
inconsistent. Indeed, Lajeunesse et a. [62] limit themselves to point out that the
lifting speed is “of the order” of v, ~1.6m/s; however, this speed is not con-
sistent with the time label s accompanying the sequence of snapshotsin Figure 4-2.

For instance, in the case of the cylinder with initial aspect ratio a = 0.56 (and
initial radius R = 70.5 mm), the release time corresponding to v, =1.6 m/s s,
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assuming constant speed, T, =aR /v, = 0.024 sec, while in the sequence of imag-
es displayed in Figure 4-2(a), this time can be estimated, by interpolation between
the time labels of the second and third snapshots, at T, ~ 0.179 sec.

To shed light on this apparent inconsistency, we have carried out numerical
simulations of the spreading process for lifting speedsy, ranging from 0.1 to 1 m/s.
In Figure 4-16, we show (for the case of initial aspect ratioa = 0.56) the plot of the
computed position r; (t) of the foot of the spreading pile versus time, together with
the pertinent experimental data (obtained, in turn, from Figure 4-2(a)). The speed
v, =0.220 m/s (green line) corresponds to the speed calculated from the aforemen-
tioned “guessed” releasetime T, = 0.179 sec.

Results displayed in Figure 4-16 conforms to intuitive expectations: the faster
the tube is removed, the greater the rate of spread of the collapsing column front
(and therefore, the sooner the stationary state is achieved). These results also pro-
vide a definite clue to resolve the controversy concerning the actual lifting speed
employed in the experiments by Lajeunesse et al. [62]: the curve corresponding to
the “guessed” lifting speed v, =0.220m/s is the one that bests fits experimental
vaues. By contrast, the graph with v, =1.0 m/s(the one closer to the estimation
suggested by Lajeunesse [62], v, =1.6 m/s) overpredicts the average spread rate in
almost 100%.

130

120 -

O experimental

v, = 1.00000 /s
v, =0.50000 m/s
Ve =0.22065 m/s
v, =0.10000 /s

t(sec)

Figure 4-16. Position r; (t) .of the foot of the spreading granular pile for different V; . Initial
aspect ratioa=0.56.

Pile profiles computed, using the seemingly correct lifting speed v, =0.220 nvs,
are compared with their corresponding experimental imagesin Figure 4-17.
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Figure 4-17. Comparison of sequences of profiles for aninitial aspect ratio a = 0.56: (a)
experimental [62], (b) PFEM.

The analysis under varying lifting speed, described above, is repeated for the
column of initial aspect ratio a=0.8. In Figure 4-18, the position of the foot of the
pile versus time for the casea = 0.8 is plotted. The release speed, v, = 0.258 m/s,
is the speed estimated from the relative location of the tube in the first and second
snapshotsin Figure 4-2(b).
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Similarly to the situation encountered in the previous case, the curve corre-
sponding to this “guessed”’ speed (green line) is the one that best fits experimental
values (notably, the curve passes through four of the five experimentally measured
points). The time to let the mass in motion corresponding to this initial aspect ratio
is T, = 0.107sec, which presents a higher value than the time for the cylinder re-
mova T, > T, 1, doubling the value similar than for the previous example.

160

o experimental
v, =0.40000 m/s
v, =0.25788 mis
——— V. =0.10000 m/s

0 01 02 03 0.4 05
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Figure 4-18. Position r (t) of the foot of the spreading granular pile for differentV; . Initial
aspect ratio a=0.80.

On the other hand, Figure 4-19 provides the comparison of the evolution of
computed and experimentally recorded pile profiles for this tube lifting speed. The
agreement (both quantitative and qualitatively) is also remarkable even with the
assumption of a constant velocity.

Lastly, we show in Figure 4-20 the evolution of the foot of the pile of initial as-
pect ratio a=_8.94 versus time for different tube lifting speeds. Using the same
procedure as before, we get a lifting speed® of v; ~1.29m/s. As in the previous
cases, the curve corresponding to this speed (black line) matches closely the experi-
mental points. It is interesting to note that the influence of the release velocity on
the spreading velocity in this case is comparatively less pronounced than in the pre-
viously shown graphs for the thicker columns (Figure 4-16 and Figure 4-18).

9 Indeed, it can be appreciated in Figure 4-2(c) that in the second snapshot, time 0.062 s, the tube has
travelled approximately 32% of the initial height. Therefore, we have
v, =0.32-a-R /t=0.32(894)(0.028)/0.062~1.29m/ s
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Figure 4-19. Comparison of sequences of profilesfor aninitial aspect ratio a = 0.80:
(a) experimental [62], (b) PFEM.



Numerical simulation of the spreading of a granular media 89

o experimental
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Figure 4-20. Position r; (t) of the foot of the spreading granular pile for differentV; . Initial
aspect ratio. a=28.94.

Figure 4-21 compares the experimental and numerical snapshots for this initial
aspect ratio while spreading. The second dynamic regime is readily perceptible: the
whole upper region of the granular column starts to move instantaneoudly; falling as
arigid body, so to speak.

The kinematics that represents this dynamic regime explains why, for this ge-
ometry or initial aspect ratio, the curves given in Figure 4-20 show a narrow distri-
bution of the position of the foot of the spreading during the process. Since the mate-
rial crumble takes place at the bottom of the pile, the material on the upper levels
tend to fall as arigid body and the confinement that are subject to does not play a
significant role.

The spreading of the material takes place at the foot of the pile developing a
flow front and the transition from this rigid body to a flow regime remains at the
same level. Another worthy that deserves notice from these snapshots is the cloud
of diffuse granular points. As earlier explained, this cloud appear because of the
abrupt release that takes contact with the container; in the third frame it is clearly
identified loosen particles due to the wall friction. As mentioned earlier, the impact
of such cloud of pointsis negligible in the fina configuration of the deposit.
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Figure 4-21. Comparison of sequences of profiles for aninitial aspect ratio a = 8.94 :
(a) experimental [62], (b) PFEM.

4.6. Mechanical behaviour while spreading

In order to gain further insight into the different flow regimes occurring depending
on theinitial aspect ratio of the collapsing column, we examine next the evolution of
contour plots of the plastic multiplier « defined in equatio (3.36) of Chapter 3.
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The usefulness of these plots lies in that they convey at a glance — without the
need to scrutinize velocity fields or other kinematic variables — qualitative infor-
mation regarding the state of motion of the granular material at each time step. In-
deed, recall that this variable indicates the phenomenological events that occur at
each point of the material. Regions undergoing purely elastic deformations (stagnant
zones) are characterized by « = 1.0, whereas zones at which fully plastic flow is
present are associated to values close to o = 0.0. Finally, regions at which the
transition from fully developed flow to static condition takes place (jamming zones)
areidentified by values between these two extremes.

Figure 4-22 depicts the evolution of the plastic multiplier for the three initial as-
pect ratios used to validate the transient regime. Time is normalized with respect the
full time needed to reach their respective final deposit profileT* . Figure 4-22(a) and
Figure 4-22(b) corresponds to piles with initial aspect ratios a=0.56 and a=0.8
, respectively. The key qualitative features reported in the experimental work by
Lajeunesse et a. [62] can be readily observed in these sequences of plots — the mar-
gins of the pile crumble through an avalanche, and the flow front propagates then
outward. In the first case (a= 0.56), Figure 4-22(a), it can be easily discern how the
free upper surface divides into an inner, static region (o =1) and an outer flowing
region (a = 0.0). On the other hand, in the second case, Figure 4-22(b), the distri-
bution of this variable reveals that the entire outer surface starts to flow immediately
(no static, outer regions are observed in the second contour plot). Once the materi-
a stops flowing, al zones tend to the static condition (o =1.0), as can be seen in
the last row of plots.

Lastly, in Figure 4-22(c), the contour plots corresponding to the third aspect ra-
tio are displayed. The portrayal of undeformed and flowing regions provided by
these plots is reasonably in accord with the previously outlined experimental obser-
vations by Lajeunesse et al. [62] (second dynamical regime). Indeed, the distribution
of variable alpha in the second snapshot clearly indicates that the upper part of the
column remains practically unatered (« =1.0in the, approximately, upper half
region) during the initial stages of the collapse, while, ssimultaneoudly, a flow front
develops at the base of the column.
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Figure 4-22. Evolution of the elastic factor or( AX) while spreading a granular pile for three
different initial aspect ratios (where T* stands for the normalized time): (8) a=0.56, (b)
a=0.80,and (c) a=_8.94.



Chapter 5
Industrial applications

Many industrial processes involve the manipulation and transformation of granular
materials. The presence of granular flows during these processes is a strong source
of problems that they are partialy understood and sometimes neglected. For this
reason, it isimportant to explore and analyse via experimental and numerical models
the mechanisms that are developed when granular flows are present. The scope of
this chapter is to validate the capability of our numerical model to reproduce real
industrial processes where dense granular flows are involved.

The examples focus on two industrial problems related to pellet manufacturing
in mining industry: the silo discharge and the tumbling mills. Both examples are
representative when dealing with granular flows due to the presence of variations on
the granular material mechanical response —varying from a stagnant configuration to
aflow condition. A general setback related to granular materials flowsis that there is
no alarge number of reliable and accurate experimental examples, being more diffi-
cult to find for industrial processes. In order to validate our numerical model, it was
necessary to identify experimental models conducted and reported rigorously.

Thesilo discharge is validated using the experimental data collected by Rotter et
al [89] on afull scale flat bottomed cylindrical silo. The simulation was conducted
with the aim to characterize and understand the correlation between flow patterns
and pressures for concentric and eccentric discharges. Numerical and experimental
flow patterns are compared for different levels of discharge. The effect on the flow
patterns due to the variation of the mechanical properties and the outlet diameter is
also analysed.

In the second example, the potential of PFEM as a numerical tool to track the
positions of the particles in the interior of a rotational drum is analysed. The tum-
bling process is compared with the experimental model of a rotational drum con-
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ducted by [94]; the power draw is computed and validated against the experimental
resultsin which the power is plotted in terms of the rotational speed of the drum.

5.1. Silodischarge modelling

This section is devoted to the numerical simulation of asilo discharge. First, a brief
description of the main aspects that characterize the mechanisms presented in the
granular material during its confinement and its discharge is given. Theredfter, it is
described the experimental setup and main results reported by [89] that are expected
to be compared with the numerical simulation. Finaly, it is shown the numerical
comparison of the simulations as well as some studies and conclusions that the mod-
el alows usto identify.

5.1.1. Silosbehaviour during discharge

The granular material behaviour in silos has been atopic of interest since late nine-
teenth century ([86],[49]); this is due to the wide number of problems that are pre-
sent during its storage and discharge. The problems found are not only on the struc-
ture itself, but also on the material. The first type of problems involves instabilities
on the foundations, buckling of silo walls, blockage of the material at the outlet, and
discharge overpressures [83]. The second set of problems refers to the material and
embraces material ageing, crushing of the material due to large compression pres-
sures, segregation, among others [29]. Despite the significance of the impact of
granular materials in economy, many of these problems are treated with inchoate
solutions.

Internal pressures and the pressures exerted on the silo walls are strongly influ-
enced by the flow patterns of the granular material during its discharge [75]. Gener-
aly, the flow mechanisms for a silo discharge can be broadly classified as either
mass flow or funnel flow [50]. Mass flow patterns are smooth and relatively uni-
form; the velocity profiles for a mass flow exhibit the highest values at the centre-
line of the outlet, and decreasing progressively toward the silo walls. This type of
flows presents a depression on the bulk of the material since the dischargeis faster at
the centre than at the outer portions. On the other hand, Brown and Hawksley char-
acterized in 1947 the funnel flows by a stagnant zone toward the silo walls, aregion
of vertical motion at the centre of the outlet, and a transition or jamming zone [75],
see Figure 5-1.

The definition of mass flow or funnel flow is a function of the material proper-
ties, the geometry of the silo, and the interaction between the silo’s wall and the
granular material. It is observed that whenever the mass flow is not achieved, the
patterns given by a funnel flow have significant implications both on the functional
and structural design of the silo [24].
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A - Vertical motion
B - Rapid flow

C - Slow flow

D - Stagnant material

Figure 5-1. Flow zones proposed by Brown and Hawksley [75]

The distribution, size, and shape of the particles have a wide influence on the
material discharge. Blockage of the material at the outlet is related to the size and
shape of the particles as well as the dimension of the opening; with this condition,
the flow may present sporadic or complete obstruction of the material by remarkably
stable arches [29]. About the shape of particles, bulks formed by rounded well
shaped particles are prone to define regular and smooth flows comparing with those
formed by particles of higher degree of angularity and granulometry —which present
periodic formation of rupture zones [75]. The materia in the silo is also affected by
the filling process and hence the flow patterns during its discharge [24]. This affec-
tation is given due to the particle packing of the bulk solid, getting to present density
unevenness, irregular stagnant zones, and wall overpressures.

Other factor that affects the discharge patterns is the geometry of the silos. Ex-
perimental tests show that for large height to breadth ratios the mass flow is more
predominant, while for lower ratios the funnel flow is more frequent [83]. The influ-
ence of the relationship between the wall friction angle and the hopper angle has
been reported for severa authors as ([50],[4]). It is also observed that funnel flows
tend to form for large hopper angles and large wall friction angles; in the other hand,
for smaller values the predominant flow is a mass type, see Figure 5-2. Despite the
strong influence of this relationship, the transition between a mass flow and a funnel
flow depends on the internal friction angle of the material [56].

The pressures during discharge are strongly influenced by the flow regime. Itis
important to understand and define the pressures distribution since they have reper-
cussions on the structure of the silo and its functionality. Problems due to the pres-
sures are found when there is a large gradient of the pressures exerted on the walls,
causing serious implications on the integrity of the structure [25].
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Figure 5-2. Criterion for the transition between core and mass flow [75]

As aresult of the requirement of a well understanding of the pressure distribu-
tion and the functioning of the system, it is essentia to establish models to predict
these conditions. Unfortunately, modelling of the response of granular materials on
silos is not a trivial task — neither on experimental nor numerical models. Experi-
mental models have the setback of the affectation on the response due to the scale
factor; for this reason it is important to determine full scale models which make
expensive to run tests for every condition. Likewise, another difficulty is the in-
strumentation required for data recollection. The flow patterns are difficult to de-
termine since walls are opague and there is no a direct disposal to measure and ob-
serve those patterns.

Analytical models have been proposed in order to predict the load distribution.
One of the most used is the proposed by Janssen in 1895 [49], based on a heuristic
model on the framework of continuum mechanics [29]. The model resides on the
observation that the granular media tends to redirect the vertically applied loads
toward the walls.

Computational techniques allow us to define numerical models to simulate silos
discharge. Traditionally these models are based on discrete methods. The draw-
backs with these methods are the limitation in the number of particles to smulate
real applications, the lack of an accurate definition of the particles interaction, as
well as the difficult to have a direct coupling of the forces and stresses on the struc-
ture. Anaternativeisfound in the use of a continuum approach. The Particle Finite
Element Method (PFEM) is a numerical method suitable to solve the governing
equations for large deformation problems, allowing us to determine the transitory
and stationary regime of a problem.
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5.12. Experimental setup

The experimental model used to validate the numerical model is reported by Rotter,
et a [89]. The importance of this experiment lies on the use of a full-scaled silo;
since it isidentified the influence on the experimental response given by the scale of
the model ([83],[25]). The model is a full-scaled flat bottomed cylindrica silo, in-
strumented to study the flow patterns and their correlation with the wall pressures.
Several conditions of discharge and materials were tested.

The silo isflat bottomed, which does not include a hopper. The silo is 4200 mm
in diameter with a 9500 mm high barrel section, see Figure 5-3(a). The walls of the
silo were instrumented with strain gauges to measure the deformation, located one
inside the wall and a pair outside the wall. The material discharge was tested with
three different outlets, one concentric and the other two eccentrics — one fully eccen-
tric and one half way between. The outlets have circular dimensions with a full
opening diameter of 480 mm. Each outlet has a hydraulically controlled dlide gate,
which operates from one side. This side gate is opened partially, which makes the
outlet in a shape of acircular segment.
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Figure 5-3. Full-scaled experimental silo: (a) Elevation view (all dimensionsin mm) [25];
(b) Seeding of radio tags per levels[89].
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The measurement of the flow patterns is not obtained directly. Severa pro-
posals have been used but only applicable to laboratory conditions — direct visual
observation, photographic and radiographic techniques, residence time measure-
ment, indicator bars in silo walls penetrations [89]. In the experiment, radio tags
were placed in the silo with the aim of predicting flow patterns during the discharge.

The radio tags were carefully located along and across the material. A total of
280 radio tags were placed uniformly at seven different levels and eight spokes for
each level separated at five different radiuses, see Figure 5-3(b). The silo was filled
concentrically to avoid localization of pressures due to the particle packing. The
filling of the material was stopped at each level and the bulk was raked in order to
dispense aflat surface; afterward, the template with the seeding position was located
to define the exact position of the tags. In order to avoid damage of the radio tags,
they were placed inside tennis balls. The logging system for the tags consisted on an
aerial wired straight into an amplification box. The signal was processed in order to
identify the radio tag at the moment it was expelled through the outlet.

The flow patterns were calculated via an extrapolation of the position of the tags
and their residence time. For the position of the tags along the discharge, the authors
of the experiment define the assumption of atrajectory defined by the shortest path,
which for many markers and mass flow it is correct; and for the velocity, it was
determined an exponential changing velocity supported by the time residence of the
markers. It was observed that even for concentric discharge, a full symmetric pat-
tern was not obtained; however, the difference is too slight to be considered signifi-
cant.

The experiment results are taken from the case corresponding to a concentric
discharge of the iron ore pellets — severa technical aspects of the experiment, de-
scribed as PCB test, are reported in Ref. [89]. The silo was filled concentrically until
a mean height of 6400 mm with iron ore pellets with particle size with a range be-
tween 12-15 mm, and a bulk density of 2.3 tonne/mm?®,

Due to the large number of industrial processes that involve the handling and
storing of iron ore pellets, the mechanical characterization of this material was care-
fully analysed by Gustaffson, in Ref. [37]. The reported internal friction coefficient
is u=0.67, the bulk modulus is K =32 MPa, and the wall friction angle between
iron ore pellets and stedl plateis § =23.7°.

5.1.3. Silosdischarge, numerical smulation

The numerical simulations described in this section show the model capability for
industrial applications. The validation of the model is given comparing the numeri-
cal and experimental flow patterns. Thereafter, it is shown some numerical varia-
tions that allow us to comprehend in a deeper way the influence of the material
properties and the opening of the outlet.

The computational modéd is a flat-bottomed cylindrical silo with a concentric
outlet. The dimensions and filling height are based upon the full-scale PCB experi-
mental test reported by Rotter [89]. The diameter of the silo is 4200 mm and the
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filling height 6400 mm; and a full opening outlet of 480 mm diameter is used as a
reference example.

The simulation is performed via PFEM, using an axisymmetric formulation.
The edge of the outlet is rounded using aradius of 40 mmin order to reduce geomet-
rical singularities, see circled region in Figure 5-4. A non-uniform unstructured
discretization of 6250 nodes is used to describe the initial configuration of the pellets
domain; each node represents 3 degrees of freedom — 2 for displacements and 1 for
the nodal pressure — as a consequence of the mixed formulation.

The non-uniform discretization is fundamental for the simulation, since the
opening of the outlet is considerable small compared to the size of the silo. The
average element size is hf =100 mm except near the outlet, where the element size
is h§ =25 mmapproximately, see Figure 5-4.

*  R=2100mm

6400 mm

H=

Figure 5-4. Computational model for afull-scale silo. Spatia discretization in terms of a
mesh with two mean element sizes of: i‘f = 100mmfor the whole domain, except near the
outlet, and h§ = 25mm for the region surrounding the outlet. A rounded edge for the outlet
is defined in order to reduce geometrical singularities, rg = 40mm.

In all the examples, calculations have been made with the following material da-
ta  bulk density p=2300kgm®, bulk modulus K =60 MPa, shear modulus
G =7 MPa, internd friction coefficient b =1.00 (where the internal friction coef-
ficient is30.57°), cohesion b, =1x10"*MPa(a close to zero value to define a cohe-
sionless material, but defined for the von Mises regularization proposed in Chapter
2), relaxation timerg =2x10"7 sec, and Coulomb’s dry friction = 0.60. The
simulations has been run with a time-step length At =2x10"* sec. The tota time
analysed is 95 sec, corresponding to a volume silo discharge of 20m®. To obtain a
steady start after the gravity is applied the outlet is closed the first 0.5s of the simula-
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tion time. Figure 5-5 shows the particle discretization of the initial, an intermediate
and the final configuration of the numerical silo.

(@ (©)

Figure 5-5. Particle discretization of the domain at different stages of the silo discharge: (a)
Initial outlet opening, (b) 20m* of material discharged, (c) last stage of discharge defining the
remaining material on silo.

5.1.3.1. Flow pattern comparison

To compare the flow patterns achieved by the numerical simulation with those from
the experiment, there are defined seven horizontal lines in the numerical silo are
marked and traced through the solution — the position of those lines is at the same
height than from the experiment described in Figure 5-3(b). The positions at three
different volumes of discharge are compared with the computer visualization of the
experiment in Figure 5-6. The blue lines stand for the numerical results and the red
cross marks for the computer visualization of the tags position. The comparison is
extended to 17m?® of discharged material.

In general, the trends between numerical results and the computer visualization
of the tags are similar in most of the stages. For 1m? of the discharged volume, par-
ticles adjacent to the outlet are in motion, followed by particles further afield. A
velocity wave propagates upward and the funnel flow behaviour is clearly initiated.
Ore pellets located toward the wall remain stagnant — the continuous lines, at least
for the five lower levels, remain horizontal at a significant distance from the wall —
indicating that the material does not crumbles toward the outlet; the material that is
discharged is the one located at the centre of the silo.
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Figure 5-6. Flow patterns comparison between experiment and PFEM for different volumes
of discharge: (a) 1m3, (b) 5m3, (c) 17m3.

The definition of the funnel flow is more pronounced as the material is dis-
charged; for 5m® only the material located at the centre of the silo of the last two
levels remainsin the silo, and for 17m? the funnel is developed completely. This can
be seen by the clearly definition of two principal zones: a stagnant region located
toward the silo walls and the flow region defined by a loose material above the out-
let of the silo.

Nonetheless, significant differences with computer visuaization data are ob-
served, asit is detailed in what follows. For 5m® of discharge, the last two blue lines
(corresponding to the upper levels) exhibit a separation between them and a small
horizontal platform toward the wall is still apparent; by contrast, the plot of the cor-
responding experimental tags defines a unique overlapped contour level.

The material volume defined by the skyline of the tags seems less than the one
defined by the numerical result, however the experimental volume discharged is
5m?®. The progressive decrease of volume observed experimentally at 17m® of dis-
charge is more pronounced that the decrease in volume predicted by the model,
which even retain horizontal platforms of stagnant material. This markedly distinct
response highlights concern with the characterization of the material response,
which should clearly receive careful consideration in future improvements of the
model.

The differences between the experimentally observed and the computational
calculated flow pattern responses may be attributed to three main reasons. The first
one is the numerous simplifying assumptions made in Section 2 in deriving the con-
stitutive model, the second reason due to assumptions introduced to be able to do the
simulation, and the third reason concerns the computer visualization code required
to visualize the position of the tags. Among the simplifying assumptions made in the
model, we suppose that the internal friction coefficient is independent of the pres-
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sure or of the material density being not sensitive to the particle packing of the bulk.
A similar comment can be done on other parameters like the viscosity (defined in
terms of arelaxation time).

Another contributor to these discrepancies may be found in the elementary char-
acter of the outlet’s size and shape. As commented in Section 5.1.2, the outlet has a
hydraulically controlled dlide gate, which is opened partially, making the outlet in a
shape of a circular segment; by contrast, in order to minimize the computational
cost, we assume an axisymmetric geometry, removing in this way the intrinsic 3D
character of the outlet.

The third reason is the computer visualization code itself. As pointed out by the
authors of the experiment in [25], the interpretations of the residence time measure-
ments were made following previous studies by portraying residence times in hori-
zontal and vertical cross-sections through the silo. These contours are more as a
qualitative indicator of the flow pattern than a quantitative description.

An dternative numerical representation of the flow patternsis discussed in what
follows. The ideaisto plot in the same domain the evolution of afixed material line.
In order to get a clear visualization only a few time steps are included in the analy-
sis. The different positions for each level (counting from the bottom) have been
drawn in Figure 5-7. There are plotted severa particles at each level identified by
black dots and joined by a continuous blue line; the material position of the particles
at different time steps defines the flow mechanisms present during its discharge.

It is identified a similar pattern of discharge on al the levels which define the
evolution of afunnel flow with a small contribution of a mass pattern —defined as a
mixed flow with funnel flow predominance. The particles located close to the wall
do not present a noticeable separation in their relative position, but, close to the
outlet, they change abruptly as they converge on the flow. In other words, it is ob-
served that the material on the walls is displaced toward the centre of the silo at
small velocities; once the material reaches the region of vertical displacement its
velocities is increased. The material presents the larger velocities on the centre of
the structure and closer to the outlet — it is represented by a larger distance between
the black points plotted in Figure 5-7.

The discharge mechanism is not considered fully of the funnel type, sinceit is
identified that the material located toward the wall is not completely stagnant, i.e. it
is observed that the particles diminish their level, indicating a discharge of some
material below them.
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Figure 5-7. Evolution of the position for different levels during the material discharge.

A second aternative to understand the discharge mechanism of the silo is
through the mean residence time of the material. Following the philosophy of the
experimental test, the time residence calculated for the material particles located at

the position of the radio tagsis shown in Figure 5-8.
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Figure 5-8. Mean residence time calculation for material particles located at the positions of
the radio tags used on PCB experiment.

The mean residence time allows us to identify the flow behaviour of the material
during its discharge. As it is expected, the material particles located closer to the
outlet and above it are the first to be released; for the tags located just at the centre
of the silo or its axisymmetric axis, the particles are released in order, being the last
to be released the corresponding to level 7. This tendency is inverted as more mate-
rial is discharged and the funnel flow is fully developed; it is observe this transition
is presented for those material particles located at a distance close to 1m from the
outlet. Once that the funnel flow is developed, all the tags corresponding to the up-
per region, level 7, are released in anarrow band of time.

The curves shown in Figure 5-8 also define the presence of stagnant material
during and after the granular flow; thisis defined observing that those particles clos-
er to the wall on the bottom of the silo were never released — only the two first mate-
rial particles of level 1 were released while for the whole level 7 all material was
discharged.

5.1.3.2. Influence of material and geometric parameterson the flow patterns
The advantage of numerical simulations is the capability of easily varying parame-
ters in order to have a wider understanding of the phenomenon; in this section it is
studied the influence of the material and geometric parameters on the discharge
mechanisms of asilo.

The first set of examples corresponds to the study of the flow patterns varying
the internal friction coefficienth, . In order to identify a proper variation of the dis-
charge mechanism due to this coefficient, it was defined a set of values above and
under the reference one; this material coefficient was varied using the following set
b =1[0.7,0.85,1.15] — the calibrated coefficient with respect the experimental essay is
b =1.00.
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The results of this study are summarized in Figure 5-9, where the flow patterns
for the set of internal friction coefficients are compared.

In the figure are plotted, in afront view with a continuous blue line, the position
of the markers at each level for different volumes of material discharged — 1m®, 5m?,
10m?, 15m?, and 20m>; with a dotted red line, it is marked the original height for the
second and fourth levels, to observe its variation during the discharge. The front
views show for the four cases, from left to right, how the flow evolves since the
material is released.

For the whole set of internal friction angles, the flow isidentified as being of the
funnel type; it is observed on the first column, 1m? that the flow is formed at the
centre or axisymmetric axis of the silo. As the material continue to be discharged,
the stagnant zones are more clearly identified — shown at the fourth and fifth col-
umns of each internal friction coefficient, corresponding to 15m* and 20m? of mate-
rial discharged.

As it is expected, the internal friction coefficient of the model plays a funda
mental role in the behaviour of the material. Lower values of internal friction coef-
ficient allow the material to develop larger deformations for the same external exci-
tation — in this case gravitational forces. Figure 5-9(a) shows a funnel flow with a
high contribution of mass flow during the discharge, which is described by a flow
nourished by material located of the bottom region of the silo. The lower levels of
markers show a narrow region of stagnant material toward the wall, which describes
afunnel flow. The mass flow contribution is identified by the large amount of mate-
rial discharged from the bottom of the silo since the upper tags markers remain on
the silo—level 6 and 7 for 15m® and level 7 for 20m® of material discharged.

The funnel flow is recovered with a slight increment on the internal friction co-
efficient. Figure 5-9(b) displays the flow patterns obtained for a discharge using
b =0.85. It is observed a wider region of the stagnant zone, releasing materia of
the upper levels. Comparing with previous internal friction coefficient, it is ob-
served that the uppermost level has been released at 15m? of material discharged.

The flow patterns corresponding to the reference internal friction coefficient,
b =1.00, are plotted in Figure 5-9(c). The funnel is achieved with the discharge of
15m® of material — material from the last level has been discharged; and the stagnant
zones are wider as expected. A more detailed description of its discharge was ex-
plained in previous section.

A higher value than the reference example was used for the interna friction co-
efficient, in order to force a more pronounced flow funnel. Figure 5-9(d) shows the
flow patterns for a value of b =1.15 (corresponding to a Mohr-Coulomb internal
friction angle 6 ~ 34.77°). Astheinterna friction coefficient is increased, the stag-
nant zone is more pronounced toward the centre of the silo defining a vertical nar-
row region of flow closer to the axisymmetric axis. Since the funnel flow is strongly
defined, the material corresponding to the upper levels of the markers is released
since the first 10m> of the material discharged.
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Figure 5-9. Variation of level markers during material discharge— 1m?, 5m®, 10m®, 15m°,
and 20m® — for different internal friction angles: (a) by = 0.70, (b) by = 0.85, ()b =1.00,
and ()b, =1.15.



Industrial applications 107

@

height(mm)
height(mm)

0 0 0 0
0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000
radius(mm) radius(mm) radius(mm) radius(mm) radius(mm)
1m’ 5m?® 10m? 15 m? 20m?

Figure 5-9 (Continued).

The influence of the internal friction coefficient on the discharge mechanisms
could be summarized studying the flow patterns present at 20m® for each friction
coefficient value — fifth column of Figure 5-9. It was marked with a black cross
mark at the inflection point of the curvature of each level of the markers. It isidenti-
fied that the flow encompasses a wider region as the internal friction coefficient is
smaller; for b =0.70 the loosen material present an elliptic region, while, for a
granular mediawith b =1.15, the loosen materia flow is defined in a narrow verti-
cal region.

The second study consists of the analysis of the opening size variation for the
outlet on the discharge of the silo. From the previous set of examples, it is identified
a strong influence on the flow type due to the internal friction coefficient; even
though, it is indispensable to study the dependency of the flow as the dimensions of
the outlet are modified. The study analyses the flow patterns during discharge for
three different outlet sizes and constraining the value of the internal friction coeffi-
cient with the reference exampleb =1.00. The radiuses to explore, for a full-
circular section outlet, are: 170mm, 240mm, and 310mm —the outlet radius used in
the reference example shown in the previous section is 240mm, and its correspond-
ing flow patterns were plotted in Figure 5-9.

Figure 5-10 compares the variation of the level markers as a function of the flow
type for the remaining two radiuses at 1m?, 5m?, 10m®, 15m°, and 20m°. The contin-
uous blue line denotes the evolution of the seven levels of markers, and the dotted
red lines are used, as in previous figure, as a reference for the height of the second
and fourth levels. It is observed that, for both discharges, the predominant flow is of
the funnel type. Even though, the patterns show a variation on the definition of the
stagnant zones and the flow region on the silo.
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Figure 5-10(a) shows the evolution of levels for the markers for the smallest ra-
dius used; the flow patterns show a broader stagnant zone than for larger radiuses,
see Figure 5-9(c) and Figure 5-10(b) for R= 240 mmand R = 310 mm respective-
ly. The flow region is defined by a vertical narrow zone located at the centre of the
silo; although, it is observed a delay on the discharge of the upper levels — the mate-
rial on these levels remains inside the silo after 20m? of material discharged.

The largest radius of the outlet shows, likewise, a semi-mass flow discharge. In
contrast with the smaller outlets, the core of the funnel flow spreads toward the walls
on the upper levels of the silo. This reduction of the stagnant zone on the upper
levels appears even at the first stages of the discharge (1m® and 5m® of discharged
material in Figure 5-10(b)).
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Figure 5-10. Variation of level markers during material discharge — 1m®, 5m®, 10m?®, 15m®,
and 20m® — for different outlet radius: (&) R= 170 mm, (b) R= 310 mm.
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5.1.3.3. Velocitiesfield during silo discharge

Velocity fields on the silo are information required to determine design parameters
as the residence time distribution, mixing properties of the material, and the rate of
wall wear [75]. Numerical simulations allow processing the data accordingly to
understand different features of the phenomenon. In this section, the velocity con-
tours obtained for different amounts of material discharged and the maximum veloc-
ities obtained during the whole process are discussed.

Plotting the contours of the velocity field is an alternative procedure to under-
stand the discharge mechanisms on a silo. In this context, the contours correspond-
ing to different volumes of discharged material, internal friction coefficient
b =1.00 and an outlet radiusR =170 mm, are shown in Figure 5-11. It is ob-
served that the funnel flow develops since the first cubic meters of material are dis-
charged.

Accordingly to the flow zones proposed by Brown and Hawksley [75],
Figure 5-1, the flow is characterized mainly by a stagnant zone (described by arela-
tive null velocity of the material) and a vertical motion presented by the whole mate-
rial located above the outlet. Asit is expected, the maximum velocities are present
on the outlet region; it is considered a zone of loose material where its motion is
conditioned through a free fall, where friction between particles is almost neglected.

@ (b) O

Ll (i),
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Figure 5-11. Velocity contours for material with internal friction coefficient b, =1.00
through an outlet with radius R =170 mmfor different amounts of material discharged:
(a) 1m?, (b) 5m°, and (c) 20m>.

The transition between a stagnant zone and a flow zone is defined by the pres-
ence of a discontinuity on the velocities. This discontinuity is not necessary be
coincident with a stress discontinuity since it could be present in a continuous stress
field [75]. The term discontinuity for velocities is not as strict as for stresses; in
terms of a velocity field, it is defined by a large velocity gradient over a small dis-
tance.
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The discontinuity on the velocities field is shown in Figure 5-12 by means of
horizontal cuts at different height levels for the same amounts of material discharged
presented in previous figure — 1m®, 5m®, and 20m®.
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Figure 5-12. Velocity variations on horizontal cuts at different height levels for materia with
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amounts of material discharged: (a) 1m®, (b) 5m®, and (c) 20m®.
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It is observed clearly, at the three stages of the discharge, how at the flow zone
the velocities present a certain constant value, and then abruptly, changes toward the
stagnant zone to a relative null value. In this transition, it is observed the narrow
region that defines the discontinuity on the velocities field. For the first cubic meter
of discharged material, Figure 5-12(a), the granular flow of the material close to the
bottom of the silo presents a higher magnitude than for 5m® and 20m? of discharge;
this is considered since it represent the transitory regime from the opening of the
outlet. For 5m® and 20m® of material discharged, Figure 5-12(b) and Figure 5-12(c)
respectively, this magnitude diminishes as well as the velocities on the upper levels
increases. Likewise, the flow zone presents a narrowing of the section that defines
the vertical motion of the granular material once the steady regime is reached — it
narrows from a distance of 800 mm to 600 mm approximately.

Velocity fields supplement the understanding of the granular flow. It can be ob-
served, from previous figures, that the discharge is characterized by a vertical sliding
of a“rigid block” of material — nourished by the material from the upper levels —
and that , after a certain distance from the outlet, the material is loosen and the parti-
cles gain velocity toward the outlet.

The maximum absolute velocities appearing during the whole discharge alow
identifying the smoothness of the flow during the process. Figure 5-13 shows the
comparison of the maximum velocities reached during the discharge of two models
— for a material with internal friction angle b, =1.00 and an outlet dimension
R =170 mmand R= 240 mm respectively. From those curves two main features are
identified: the discharged of the material takes place in a steady state regime during
the full process; and second, as it is expected, the maximum velocities on the mate-
rial areincreased asthe silo’s outlet radiusis larger.
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Figure 5-13. Maximum absolute velocities for amaterial with internal friction angle
b, = 1.00 comparing two different outlets— R=170 mmand R= 240 mm.
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5.1.3.4. Pressuredistribution

Probably the most relevant result from the analysis is the pressure distribution acting
on the silo wall. Unfortunately, wall pressures for this experimental test are not
reported on the referenced technical report [89] since measurement difficulties ap-
peared during the experiments. Nevertheless, numerical pressure distributions can
be analysed from the previous validation campaign of the flow patterns.

It is expected that numerical pressures distribution differ from hydrostatic dis-
tributions in a static condition. These differences result due to the influence of the
internal friction angle and wall friction, which the last, gradually transfers vertical
loadsinto the walls.

Firstly, we reproduce numerically the hydrostatic analysis, in which the silo is
hypothetical filled with water and the resulting numerical pressure is compared with
the hydrostatic distribution. In order to reproduce the mechanical behaviour of the
fluid by means of our constitutive model, the internal friction coefficient of the ma-
terial was set to zero, b, = 0.00.

Figure 5-14(a) shows the wall pressure distribution for different bulk modulus
compared with the hydrostatic pressure distribution. The difference between the
curves is a consequence of the compressibility of the elastic part of the model; the
theoretical hydrostatic pressure is recovered when the bulk modulus is increased,
defined by the continuous black linein Figure 5-14 (a).
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Figure 5-14. Wall pressures when material confined: (a) wall pressure distribution for differ-
ent bulk modulus compared with the hydrostatic pressure; (b) variation of pressure distribu-
tionson the silo’swall for different internal friction coefficients.

Our concern now is to examine the response of the numerical results when the
internal friction coefficient is increased. These results are shown in Figure 5-14(b).
It is observed that the maximum pressures on the wall are reached for hydrostatic
pressures — null internal friction angle; once the material recovers the friction be-
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tween particles, a redistribution of the pressures takes place, reducing the pressure
exerted on the walls as the internal friction angle increases.

Likewise, the pressures reached on the silo’s wall and the granular material de-
pend on the geometry of the problem itself; Figure 5-15 presents these pressures
distributions for different volumes of material discharged using two different open-
ing size on their outlets— R=170 mm and R=170 mm. Figure 5-15(a.1) showsthe
pressure evolution on the material for the smallest radius, R=170 mm; it is observed
that the stresses fields suffer a redistribution when the materia is released. The
pressures on the material located at the wall are increased up to 50% just as the out-
let is opened — as it is displayed by the variations on the values for a material con-
fined and at 1m® of material discharged. In contrast with the material pressures, the
wall pressures do not suffer a substantial increment when the material is released,
see Figure 5-15(a.2). In this case, the radial stressisincremented at the bottom of the
silo and reduced almost linearly toward its upper level.

For both properties, material pressure and wall pressure, the maximum values
are present at the bottom of the silo. During the discharge, pressures along the wall
are reduced, since there is a lower amount of material inside the silo, but the maxi-
mum values at the bottom remain constant. This monotonic behaviour is expected,
since it corresponds to a concentric discharge — maximum values for the highest
amount of material in the silo, which decrease asiit is discharged.

The evolution of the stresses during the material dischargeis similar for the out-
let of radiusR =240 nm. Figure 5-15(b.1) shows the material pressures for different
amounts of discharge; the comparison with those obtained with the smaller outlet
shows that the mechanical response of the material is similar, presenting an incre-
ment up to 50% of the magnitude on the pressures at the bottom once the outlet is
opened. The difference on the pressure redistribution between both outlets size cases
is that, for the wider opening, the level of pressures on the material near the wall
maintains the same magnitude — almost for the two first meters from the bottom of
the material.

The pressures exerted by the material on the wall, for different volumes of dis-
charge, are shown in Figure 5-15(b.2). The evolution of the pressures shows the
same behaviour than for the smaller outlet, being the only difference a dlightly in-
crement on the magnitude of the pressures. Since the wall pressures for both dis-
charges show a similar response, it is expected that the increment on the material
pressures be caused by aredistribution of the gravitational loads of the material.
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Figure 5-15. Evolution of pressures distributions during the discharge of a: (a) Silo with an
outlet of R=170 nm: (b) Silo with an outlet of R= 240 mm. It is displayed first the mate-
rial pressures, then wall pressures exerted by the material.

5.2.  Tumbling mills modelling

This section focuses on the numerical simulations of granular materia in atumbling
mill. The model capability to simulate tumbling processes is verified via the numer-
ical simulation of the experimental test of a rotational drum conducted by [94]. The
experimental model was proposed to study the power required to set and keep in
motion a charge composed of dry sand; for the numerical simulations, the power
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draw is also computed and validated against the experimental data, in which the
power is plotted in terms of the rotational speed of the drum.

The following sections are divided as follows: first, it is given some basic con-
cepts about the behaviour of the charge in tumbling mills; thereafter, it is described
the experimental setup reported by [94]. Finally, the comparison of the curves cor-
responding to the torque and power required for the system are given.

5.2.1. A brief description of the chargein atumbling mill

Comminution of the material consumes 50% of the total mineral processing cost
[17]. Studies have found that the grinding of granular material in tumbling mills are
inefficient, since large amount of energy is wasted due to the impact of the material
does not shred the granular particles [99]. The study of charge motion during the
milling process allows us to understand how energy is consumed and which efforts
could be donein order to optimize the operating conditions of the drum.

Due to the large amount of energy required for the comminution of the material,
it is necessary to optimize the operating conditions of the process. As may be sur-
mised, this optimization task is a rather difficult one, mainly because material be-
haviour within the drum is poorly understood, being hard to establish the milling
internal dynamics. Different techniques have been proposed in order to monitor the
performance of a tumbling mill. Among them are found: the use of mill noise and
mill vibrations, to measure the degree of filling [92], the force exerted by the materi-
al on the lifters [99], and the power readings during the grinding process, in order to
interpret the filling degree of the material [17].

Measuring the driving torque and relate it to the process by numerical models
can be one possible way to validate, control, and optimise the grinding system. Since
the numerical model herein presented is developed in the framework of continuum
mechanics, it is straightforward the calculation of the system energy, via the balance
equations, for its validation with experimental results.

It is important to have in mind the complex nature of the milling process when
creating models, to decrease the gap between model and reality, more physically
precise models are necessary. Measurements are important for improving the mill-
ing efficiency and gaining more understanding of the processitself. A step towards a
more physically correct numerical description of mill systems was the combined
DEM-FEM model presented by [53]. With the DEM-FEM, model forces and me-
chanical waves, as well as structural responses and their influence on the charge
motion can be studied. The model gives the opportunity to optimize the material
selection of the mill structure. In the work by [52], a combined SPH-FEM model
was used in simulations of tumbling mill processes.

The PFEM is a numerical tool with the potential to track the positions of the
particles inside the drum due to its robustness for large deformation problems. De-
spite the material during the tumbling process is not considered as a dense granular
medium and neither its kinematics corresponds to slow granular flows — since the
large velocities during the process and the spreading and collisions of the particles —
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the numerical simulation, presented in the following sections, alows us to validate
the model in terms of the power required to set and keep in motion the full system.

5.2.2. Experimental measurement of power consumption for a tumbling mill
—experimental setup

The model capability to simulate tumbling processes is verified comparing with the
experimental test reported by [94]. The experiment consists of the measurement of
the power consumption during the comminution of a mill charge, varying the granu-
lar mass and the rotational velocity of the drum.

The measurements were conducted on a laboratory scaled ball mill. The scaled
mode! has an inner diameter ¢ = 284 mmand a depth | = 441 mm; the displace-
ment of the charge is controlled by eight semicircular bumps of diameter
¢, = 25 mmspaced uniformly as lifters. The charge consists of dry sand of density
about 2500 kg/ m’ and porosity around 33%. Figure 5-16 shows the drum dimension
aswell as the placement of the lifters.

@ (b)

Figure 5-16. Scaled model of atumbling ball mill, all measuresin mm: (a) Front view, (b)
Model depth [94].

The computation of the power is given in terms of the torque applied to the
drum and its angular speed. The torque was measured as the reaction force applied
on aload cell at a given distance from the rotation centre, and the average rotational
speed of the system was obtained measuring the number of revolutions during along
period. Due to the impulsive nature of the charge, it is convenient to measure the
average torque and angular speed, to define a relatively invariant measure of the
required power [16].
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The rotational speed at which the drum was subjected to, is defined in terms of a
critical speed of the system, given by the following equation [94]:

r.
Werit = 60—;{ : (5.2)

where gisthe gravitational constant, I, the inner radius, and wgi; the speed, given
in rpm. Figure 5-17 shows the averaged measured power for the system correlated to
the degree of filling of the drum and its critical speed.
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Figure 5-17. Averaged power measured on dry sand [94].

5.2.3. Numerical simulation of a tumbling mill

As mentioned before, the proposed constitutive model isin principle only suited for
representing dry dense granular materials. In the present example of a tumbling
mill, the drum reaches relatively high rotational speeds and the granular particles
tend to separate from each other. The assumption of dense flow, thus, is not strictly
valid in the context of this example, and therefore, an accurate representation of the
motion of the material within the drum cannot be expected. However, our interest
does not lay on an accurate simulation of such local details, but rather on examining
the overall behaviour of the system in terms of the mechanical power required to
maintain the tumbling process.

Accordingly, numerical and experimental torque values will be compared for
three different rotational speeds — 35%, 65%, and 95% of the system critical speed.
The smallest rotational speed will be used to calibrate the internal friction coefficient
and the relaxation time, b and 7 respectively, while the other two cases will be
used for the model validation.

The degree of filling selected of the drum is 35%. The geometry of the model
corresponds directly to the experimental setup using an internal diameter of
¢ =284 mm, and eight semi-circular bumps of diameter ¢, = 25 mmas the lifters
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of the mill. The experimental drum is modelled using a two-dimensiona plain-
strain state of depth | = 441 mm.

The initial spatial discretization has approximately 2250 nodes and 4500 linear
triangular elements. As regards time discretization, time steps of At = :I/ 10000 sec.
are used. The granular material/mill structure plate interaction is modelled with the
same algorithm used for the silo example; in this case the wall friction coefficient is
set to the same value than in the bulk domain.

Asfor the materia properties of the granular material, the internal friction coef-
ficient and the wall friction coefficient is set to b =0.30, and the cohesion parame-
ter to b, =0.01Pa — arelatively small value of cohesion just to ensure numerical
stability via the von Mises regularization earlier described. Likewise, the employed
bulk and shear modulus are K =32 MPa and G =7 MPa, respectively. The visco-
plastic regularization is a function of the relaxation time 7g; for these tests, the
relaxation timeis 7R =5x107% sec.

5.2.3.1. Torque comparison

In order to calculate the power required by the mill to keep its rotational speed, the
balance of the mechanical energy of the system is used. This balance states that the
sum of the rate of change of the kinetic energy K. and the rate of the internal me-
chanical work B, of acontinuum is equal to the rate of external mechanical work
Psi [42], as given by the following equation

o i (1) 4 A (1) = P (1) (52)

Since the kinetic energy is a function of the velocity field and the internal me-
chanical work is a function of the stress field, it is fundamental to obtain a smooth
response of those fields. The velocity contours, shown in Figure 5-18, determine the
kinematic response of the charge while the drum rotates. This velocities distribution
presents the same pattern in the transient and stationary regime, varying the magni-
tudes reached in each stage.

The motion of the charge is defined by an overturn of the material from the wall
toward the centre, where the larger velocities show up at the outer region of the
material and relative null velocities are located on the core of the material. A rele-
vant difference between the transient and stationary regimes is that, on its accelera-
tion stage, the material presents a higher degree of consolidation, see Figure 5-18(a).
Instead, when the material reaches the stationary regime, Figure 5-18(b), it is ob-
served that the material experiences arelaxation.
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Figure 5-18. Velocity contours for the granular flow (m/s) at a rotational speed of 35% of
critical speed: (a) transitory regime, acceleration process, (b) stationary regime, after two
revolutions.

Pressure contours are displayed in Figure 5-19. It is worth noting that computed
pressures are relatively smooth, a fact that indicates that the used mixed formulation
is fulfilling the purpose of overcoming the deleterious effects of volumetric locking.
Likewise, it can be observed that pressures in the tensile regime are, at least, one
order of magnitude smaller than those in the compressive regime. The contours
indicate that the maximum compressive pressures are given on the charge propelled
by the bump or lifter, and that, after the material overpass the bump, a region of
loose material is formed presenting small or null compressive pressures, see
Figure 5-19(b).

The torque obtained from the numerical simulations is computed using the in-
ternal power defined in equation (5.2), and the rotational speed of the system. The
experimental torque data reported corresponds to a full revolution in its steady state.
Therefore, in order to compare with numerical simulations, it is required to measure
the torque in a steady state. The loading conditions for the tumbling mill are defined
by an acceleration period of two seconds until the rotational speed is reached; there-
after, it is set a complete revolution to reach the steady regime at the second revolu-
tion with constant velocity, which is the one to be compared.
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Figure 5-19. Pressure distribution on the material (MPa): (a) materia at rest, (b) material on
stationary regime after two revolutions at constant velocity.

Figure 5-20 shows the evolution of the torque curve of the numerical simulation,
for arotational speed at 35% of the critical speed, during the three loading stages —
an acceleration period of two seconds, a revolution considered on transient regime,
and the stationary regime reached at the second revolution.

The maximum value of the torque is reached at the transition between the accel-
eration stage and the condition of constant rotational speed. It is observed a dlight
diminution of the torque value on the first revolution; this is due to the relaxation
that the material suffers until it reaches its steady state.
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Figure 5-20. Torque evolution —transient and stationary response.
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Comparison between experimental and numerical torque for different rotational
speeds is shown in Figure 5-21. For the experimental data, a continuous red line is
used and the experimental values are denoted by a red mark; on the other hand,
numerical values are represented by a continuous black line. The comparison shows
the values for afull revolution of the drum and the motion is considered in a steady
state; for the numerical smulations it is used the information obtained after the sec-
ond revolution at constant velocity.

Figure 5-21(a) shows the torque comparison for a rotational speed correspond-
ing to 35% of the system’s critical speed, which is the one used for calibration pur-
poses. While a reasonable overall agreement is achieved in terms of a mean re-
sponse, discrepancies are detected in the oscillating pattern around this mean value.
Indeed, experimental torque oscillates more abruptly, and at a higher frequency, than
its numerical counterpart does. It can be easily shown that the period of the oscilla-
tions in the numerical results is related with the circumferentia spacing of the
bumps in the drum.

The comparison with experimental data for higher velocities presents the same
behavior than in the above commented reference example. Figure 5-21(b) showsthe
comparison for arotational speed at 65% of the critical speed. The torque presents,
as in the previous example, an oscillatory response that corresponds to the interac-
tion of the material with the bumps of the drum. It is remarked that the amplitude of
the oscillations in the computed results are notably higher than in the previous case,
attributed for the increment of the rotational speed.

Lastly, the torque for a rotational speed of 95% is given in Figure 5-21(c). The
same oscillation pattern is observed, with a further increase in the amplitude. This
fact confirms the influence of the rotational speed in the amplitude of the oscillations
predicted by the numerical model. This influence, however, is not perceived in the
experimental graphs (the amplitude in this case is, on average, similar in the three
studied cases). Nevertheless, the model is able to capture with reasonable accuracy
the mean torque in the three cases.

This is confirmed by the comparison of averaged power of the experimental da-
ta and the one obtained by numerical smulation for the three different rotational
speeds, see Figure 5-22. As expected, the highest accuracy is observed for the lowest
rotational speed, for thisis the one used to calibrate the model. As the speed isin-
creased, the deviation between experimental and numerical results increases, abeit it
remains at moderate levels. In conclusion, despite the limitation of the model, the
overall resultsin terms of power consumption can be deemed reasonably accurate.
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Figure 5-21. Torque comparison between experimental and numerical models for rotational
speeds at: (a) 35% of critical speed — reference example, (b) 65% of critical speed, (c) 95% of
critical speed.
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Figure 5-22. Average power comparison for the three different rotational speeds.

5.2.3.2. Inclusion of milling balls

Comminution of granular material within a rotating drum by crushing caused by the
impact of steel balls is a problem of high interest for many industries — ceramics,
composites, foods, minerals, paints, inks and pharmaceuticals, etc. As a first step
towards the full simulation of this admittedly challenging problem, we explore in
this example the possibilities of the proposed numerical model to capture, at least,
the mechanical interaction between several (hard) bodies and dry sand; thus, crush-
ing effects are not contemplated in the simulation.

The charge for the model is formed by the same charge volume than in previous
examples, among sand and fifteen rods of two different diameters, namely 10 rods of
¢ =15mm and 5 rods of ¢, =10nm, see Figure 5-23. The material and numerical
parameters are the same of those given in the introduction of section 5.2.2.

Since there is no available experimental data for this simulation, the mechanical
response of the charge for this example, including the steel rods, is compared with
the numerical simulation defined previously as the reference example composed
only by dry sand, Figure 5-21(a).

Figure 5-24(a) shows a snapshot of the pressure field in the stationary regime.
The rods define local areas where the pressures present the maximum values — it is
found on the material located between the rods and the drum wall and between the
rods themselves.
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QO 10 rods (¢ = 15 mm)
O 5rods (¢ =10 mm)

Figure 5-23. Numerical model of dry sand and steel rods for atumbling ball mill.

The influence of the rods on the material is observed via the plastic multiplier.
Since the model is formulated in the framework of plasticity, this parameter identi-
fies the material in the plastic or elastic regime. For the charge conformed by dry
sand, the plastic multiplier lies on the range of full plasticity while for the material
interacting with the rods, zones where the material does not reach completely plas-
ticity can be appreciated. Figure 5-24 (b), shows this concept by means of an elastic
factor, defined herein as a =(1—AX)"", where AX denotes the plastic multiplier;
a = 0 standsfor afull plasticity regimeand o =1 for afull elastic regime.
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Figure 5-24. Mechanical variablesin the charge during motion: (8) volumetric pressuresin
the material, (b) plastic multiplier.

Figure 5-25 shows the numerical comparison of both charges (with and without
stedl rods) for a degree of filling of the drum of 35% and using the referentia rota-
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tional speed of 35% of the critical speed. It may be observed that, as it could be
expected, the torque of the charge with the steel rods increases significantly. Like-
wise, the torque in the case of dry sand with steel rods shows a higher degree of
oscillations during the motion of the charge, a fact that may be attributable to the
displacement and impact of the rods during the process.
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Figure 5-25. Torque comparison for a charge at 35% of degree of filling at 35% of the critical
speed, with and without steel rods.

The magnitude of the torque could be only considered as correct when compar-
ing with experimental data; even though, it is considered that its magnitude was
increased significantly. This large increment is considered due to the modelling of
the steel balls by the two-dimensional plane strain model. Some alternatives could
be considered to characterize more precisely this response as reducing the density of
the stedl.
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Chapter 6
Conclusions

In this chapter, the conclusions of this work as well as some final remarks are pre-
sented.

6.1. Concluding remarks

The overall goa of this work was to develop a numerical tool for the simulation of
granular flows on industrial applications. A phenomenological approach was adopt-
ed to mathematically represent the kinematic behaviour of granular flows and to
properly characterize staghant and flow zones, as well as the jamming transition in
the material. The scope of the proposed approach is limited to cohesionless materi-
alsand slow flows.

Simulations of two types of industrial processes, namely, silo discharge and mo-
tion of a charge in a tumbling mill, have illustrated the potential of the proposed
congtitutive model, in combination with the Particle Finite Element Method
(PFEM), as a robust modelling tool, suitable to characterize dry dense granular
flowsinindustrial processes.

On the modelling of granular materials
e Due to the phenomenological richness exhibited by granular materials, now-
adays it is not possible to characterize their full response in a unified consti-
tutive model, being of fundamental importance reducing the conditions to
simulate, according to the phenomena under study, in order to define arelia
ble model.
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A continuum formulation within the framework of large deformation plastici-
ty was proposed. The continuum approach alows us to capture variables
such as pressures and velocity fields that other methods, such as the Discrete
Element Method (DEM), are not always able to represent adequately.

Due to the large deformations presented during granular flows, the PFEM al-
gorithm is proposed as a robust methodology to simulate these conditions.
Based on a Lagrangian formulation, this approach is able to characterize both
transient and stationary conditions.

The proposed constitutive model, based on a visco-elasto-plastic model,
shows a good ability to predict the kinematic behaviour of dense granular
flows. The elasto-plastic constitutive model characterizes the solid-like state,
while the jamming transition and the non-dependence on the shear rate when
flowing is given by the visco-plastic regularization.

Continuum description of dense granular flows

The assumption of modelling dry or cohesionless dense granular flows
through a continuum approach has been proved appropriate as long as the
domain under study islarger enough than the particle size.

The mechanical properties of cohesionless dense granular materials are gov-
erned by the frictional interaction between particles; in that sense, it is con-
sidered as a non-cohesive granular media when the interstitial fluid between
particles is neglected. The definition of dense granular flows embraces those
flowing conditions characterized by small velocities and deformations with
no significant volumetric variations.

The constitutive model was developed within the framework of large plas-
tic/small elastic deformations through a hypoelastic model. To extend the
model to scenarios in which large volumetric variations take place, it would
be necessary to seek for aternative ways of formulating the elastic part of the
model.

In this work, for the tensile regime, the yield surface is regularized using a
von Mises type model. This regularization has proven more robust and easier
to implement than classic “cap” models. The impact of adopting this admit-
tedly objectionable regularization — it presumes that the material can sustain a
certain degree of tensile stresses—is minimal since the percentage of material
of the domain in tensile stress state ranges from 0.4 to 5.17%, see Table 6-1.

In the case of the examples corresponding to the spreading of a granular
media on a horizontal plane, as it was expected, the percentage of material on
stress states with positive pressures remained at low levels (around 0.4%) and
only for the case with the larger initial aspect ratio, a = 6.2, this percentage
increased up to 1.735%. The silo discharge example showed the smallest per-
centage of material (0.395%) since the only region on this stress state was
toward the outlet. Finally, as discussed before, due to the large velocities
present on the material, the tumbling mill example showed the larger per-
centage; till, it is observed that for the reference example (a rotational speed
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of 35% of the critical speed), this percentage is less than 2% of the total ma-
terial. From these examples, it is concluded that the regularization of the apex
of the Drucker-Prager yield surface with an extension of a von Mises model
(which, recall, was introduced to increase the robustness of the integration
scheme) does not have a significant impact on the physical consistency of
numerical predictions due to the small amount of material undergoing tensile
stresses.

Example V(p>0)/Mg x100
Spreading a = 0.41 0.418
Spreading a=1.91 0.402
Spreading a = 6.2 1.735
Silo, Ryt = 170mm 0.395
Mill, Vi = 35%Vg 1818
Mill, Vi = 65%V, 3.837
Mill, Vi = 95%V, 5171

Table 6-1. Percentage of total volume in a stress state with positive pressures of repre-
sentative examples presented in this document.

Due to the nearly incompressible behaviour exhibit by dense granular flows,
the description of the deformation via a solely deviatoric non-associative
plastic potential is proposed. In addition, it has been shown that the proposed
model satisfies the dissipation inequality.

Numerical formulation

The modelling of granular flows deals with large displacements and deformations of
the material; for this reason, it was necessary to define an algorithm, robust enough,
to perform these simulations. For thiswork, it was necessary to establish and couple
different numerical, in order to achieve efficient and robust performance in the simu-
lations.

The implementation of the Impl-Ex scheme for the numerical integration of
the model increased the robustness compared with a typical implicit integra-
tion scheme. The explicit extrapolation of the plastic dip rate A\ has greater
impact at those stress states located toward the apex of the Drucker-Prager
yield surface, in where, atypical implicit schemeisin general undetermined.

The continuous particle discretization of the domain allowed us to control the
mesh homogeneity by inserting and removing particles as required as well as
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repositioning them through geometric metrics. Likewise, this dynamic dis-
cretization allowed us to define non-uniform meshes — as those described for
the silo discharge in the previous chapter— whereas for computational effi-
ciency, it was necessary to define a finer mesh, where large strains are pre-
sent, and at the same time a coarse mesh where the material is stagnant and
no significant variations are presented.

e Due to the reconnecting process that involves classic PFEM, the definition of
the boundary through the a.-shape method has been seen as the natural algo-
rithm for its construction; however, we consider that this method (without
further refinement) leads to inconsistencies in the conservation of mass and
to the presence of pressure instabilities. The definition of a constraint bound-
ary, as a material surface, circumvents these drawbacks. The algorithm for
this treatment of the free boundary does not represent an additional effort
since the remeshing process, described in Chapter 4, embraces many of the
tasks necessary to its definition.

e The other modification proposed to classic PFEM is associated to the trans-
ference of the internal variables information between the converged mesh and
the one after the remeshing. Due to large variation in the position and the
number of particles between meshes, it is found that the transference through
mesh projection is more suitable in terms of computational cost — in the pro-
cesses of insertion and removal of particles the standard nodal smoothing
process could be executed but for the repositioning of particles alocal search
has to be done in order to interpolate the nodal information.

e The solid-granular materia interaction is modelled by a proposal for a con-
tact method based on the Contact Domain Method (CDM) [77]. The contact
interface is defined in terms of atolerance gap and its construction is given in
a natural manner from the reconnecting process that naturally takes place in
the PFEM. A significant contribution for this contact methodology has been
to define the constitutive model for the interface domain similarly than the
proposed for the granular flows presented in equation (3.23). This constitu-
tive equation has proved sufficient to model properly the wall friction angle —
a fundamental parameter to model granular flows. This approach entails an
easier implementation and more robust algorithm than the classic CDM.

¢ In contrast to classic PFEM, which defines the contact conditions for the sol-
id/granular material interaction in terms of the geometric a-shape method, in
this approach, the contact conditions are ensured via a tolerance gap (for the
impenetrability condition) and the detachment by the component normal to
the surface in atensile regime.

Numerical simulations— validations and industrial applications

Due to the vast typology of the kinematics of granular materials, it is a hard task to
find experimental tests that present significant information about their behaviour.
The tests reported in Ref. [62] are taken to calibrate and validate our numerical
model. For the simulations of the two industrial applications, shown in previous
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chapter, experimental tests conducted with the aim to study the flow patterns and the
power consumption, for the silo discharge and the tumbling mill respectively, were
compared.

Soreading of a granular media on a horizontal plane

The experimental test reported by [62] shows a proper manner to calibrate
and validate our numerical model, but also it is identified as a reliable guide
to calibrate materials for others problems — as the iron ore pellets for the silo
discharge and the sand in the tumbling mill — where the material parameters
are not totally clarified.

It has been shown that the numerical model proposed in this work is able to
capture two fundamental observations reported in the experimental tests in
Ref. [62], namely, that the deposit profile is independent of the mass M, be-
ing only a function of the initial aspect ratio a; and that the interaction with
the substrate does not affect the behaviour of the collapsing pile (it only af-
fectsfor very largeinitial aspect ratios).

A discrepancy with the tests described in Ref. [62] is that of the velocity for
the removal of the cylinder. Ref. [62] states that the removal of the cylinder is
given in aperiod of time smaller than the critical time — measured in terms of
the cylinder pile height. Yet, it was found, via numerical simulations, that
the removal of the cylinder actually takes longer than this critical time. It was
also found that, although the velocity of removal affects the transient re-
sponse, its influence of the final shape of the deposit profileis negligible.
Numerical simulations alowed us to understand more in depth the inner
mechanisms that are present during the flow of granular materials. Using the
elastic factor ao(AN\), it was possible to discern which regions are in the
elastic regime and which undergo plastic deformations (flow zones).

The oscillations given on the pressures and vertical stresses, measured at the
bottom of confined material, presented a barely perceptible dissipation along
time. The visco-elastic regularization, based on a Kelvin-Voigt model, suc-
ceed in dissipating the spurious oscillations due to dynamic effect.

Slo discharge modelling

Flow patterns given for a concentric discharge of iron ore pellets were com-
pared with experimental results. The resemblance between experimental and
numerical results in most stages of the discharge can be deemed acceptable
from an engineering point of view.

Simulation varying material parameters and the opening of the outlet allowed
us to acquire a firmer grasp on the flow mechanisms that take place during
the silo discharge. Theinterna friction coefficient affects directly the defini-
tion of a mass or a funnel flow; for small values, the mass flow dominates
while for larger values, funnel flow takes place.

Even though the type of flow is essentially a function of the internal friction
parameter, it has been observed that the opening of the outlet also plays a
fundamental rolein thisrespect. The spreading of the core of the funnel flow
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issmaller as long as the opening of the outlet remains small; for larger open-
ings, the funnel tends to open toward the walls at the upper levels of the ma-
terial.

Although wall pressures could not be compared with experimental results,
since they were not reported for this problem, it was possible to state a good
agreement of the bulk pressure provided by the model and the theoretical hy-
drostatic pressures on a fluid. Once the flow patterns were validated, it was
possible to determine the bulk pressures and the stresses exerted by the mate-
rial on thewalls.

It is taken for granted that the concentric discharge is not a limit case when
studying the silos discharge. From the previous examples it was corroborated
that the maximum pressures are given once the materia is released and the
pressures suffer redistribution, showing a monotonic behaviour at reducing
the magnitude of the pressures. However, it was not the scope of thiswork to
study of the silo’s structure while discharging but to explore the performance
of the numerical tool for modelling this problem.

Tumbling mills modelling

Tumbling mill processes involve, in general, rapid granular flows, which are
not in principle full candidates to be modelled by the considered model — in
principle, it is only suited for representing dry dense granular materials. In
spite of this fact, the numerical model was tested in order to explore the sys-
tem response in terms of the energy balance and aso in order to characterize
the tumbling mill process. The predictions furnished by the proposed numeri-
cal model showed a well agreement with experimental [94] results when ex-
amining the overall behaviour of the system in terms of the mechanical pow-
er required to maintain the tumbling process.

In Ref. [94] , the experimental model was proposed to study the power re-
quired to set and keep in motion a charge composed of dry sand; for the nu-
merical simulations, the power draw was computed through the energy bal-
ance equation. The computation of the power was given in terms of the
torque applied to the drum and its angular speed.

For this example, the calibration of the model was obtained comparing the
averaged torque of the experimental tests for the smaller rotational speed at a
certain volume filling of the drum. As the speed was increased, the deviation
between experimental and numerical results increased, abeit it remains at
moderate levels. In conclusion, despite the limitation of the model, the over-
all results in terms of power consumption can be deemed reasonably accu-
rate. The comparison of the consumption of the power of the system shows a
higher degree of accuracy for lower rotational speeds, which indicates that
the ssimulations for large rotational speeds could be improved by enriching
the constitutive model with some means to represent rapid granular flows.
Numerical results (which incidentally, showed a smoother response than the
experimentally reported behaviour) allowed us to examine the influence of
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the lifters on the oscillations of the torque. These oscillations presented an
increase of their magnitude as the rotational speed increases.

e The PFEM showed to be a powerful numerical tool to perform multi-body
simulations such as the inclusion of steel balls in the charge of the tumbling
mill. The magnitude of the torque for the same amount of material and same
rotational speed was compared for the case of the charge with and without the
steel rods. The magnitude of the torque showed a substantial increment,
which could not be validated since the lack of experimental data for this ex-
ample. This large increment may be due to the fact that the modelling of the
steel ballsis carried out in a two-dimensiona plane strain model. Some al-
ternatives could be considered to characterize more precisely this response as
reducing the density of the steel.
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Appendix A
PFEM remeshing enhancement

The reconnecting process of the Particle Finite Element Method (PFEM) allows
handling large deformation problems in a Lagrangian or material description due to
its inherent reconnecting process. Despite this advantage, the constraining of a finite
number of particles for characterizing the domain entails in some problems, a re-
maining distortion and non-uniformity for the mesh.

The remeshing process, herein described, has been proved to enhance the solu-
tion in terms of a more uniform distribution of the particles. As mentioned in Sec-
tion 3.1.2, the procedure of the algorithm consists in three main steps: the insertion,
removal, and collapsing of particles.

A.1. Insertion of particles

The insertion of particles is proposed for those elements in which the connecting
nodes tend to disperse, increasing the corresponding areca. The algorithm is con-
trolled by an algebraic metric for the size of the elements. The relative size metric
792 determines those elements unusually large with respect a reference element.
The metric is given by the ratio of the area of the physical triangle « to the area of
the reference triangle w.

o (A-1)

For those elements with 79% > Tg)lls , it is inserted a new particle in the element’s

centre of mass, as shown in Figure A-1(a).
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Figure A-1. Insertion of particles in elements: (a) criterion for interior elements, (b) criteria
for boundary elements.

For those boundary elements, the insertion is restricted taking into account the
shape of the element as a second parameter. As mentioned in [2], it is essential to
control that no internal angle is close to 180°. This is verified by determining the
ratio fgg between the circumscribed and inscribed circles radiuses of the boundary
triangular element, R, and R respectively.

fog = % (A-2)

This shape or distortion metric is a scalar value in the range of fgy =[2,00].
For those equilateral elements, the ratio of the circumscribed and inscribed circles of
the equilateral triangles is fgq = 2, as shown in Figure A-2(a). The metric increases
its magnitude when any distortion is presented — in other words, any of the internal
angles is wider with respect the others, see Figure A-2(b).

Depending on this distortion metric, the position of the new particle will vary.
If the angle of the vertex of the internal node defines a distortion metric greater than

a metric tolerance, fgq > f4%, it is included the new particle at the middle of the

tol >
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two boundary nodes of the element; if not, it is placed in its centre of mass as in the
interior elements. Both cases are shown in Figure A-1(b).

@ (b)

fsha e = 2 fsha e >> 2

Figure A-2. Circumscribed and inscribed circle relations for triangles.

A.2. Removal or collapsing of particles

In contrast with the process for the particles insertion, the removal of particles is
defined at a nodal level. The size metric, given in equation (A-1), is computed for
each element connecting a node for certain patch and averaged for a nodal value,
given by:

n
TSE = Z% (A-3)
=1

where nis the number of elements of the patch. If the averaged value is smaller
than the tolerance value, Trag < Ti" , the particle it is removed, as shown in
Figure A-3(a).

For boundary elements, the criterion is according to the length of the boundary
segment, see Figure A-3(b). The distance between adjacent nodes is measured; if

the distance is smaller than a tolerance length | <Ii5", the nodes are collapsed —

defining a new particle located at the centre of the collapsing particles coordinates.
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@

‘

(b)

T "X )12

Figure A-3. Removal of particles in the domain: (a) criterion for interior particles, (b) criteri-

on for boundary particles.

A.3. Repositioning of particles

The criteria for insertion and removal of particles, presented in previous sections,
control the size homogeneity on the mesh but the elimination of remaining distortion
in some elements is not guaranteed. After these procedures, the reconnection of
particles through a Delaunay tessellation is computed; thereafter, the quality of the
mesh is studied in order to ensure its smoothness. For this purpose, the algebraic
quality metrics proposed in [59] are followed.

The algorithm for the repositioning of particles takes place at a nodal level, sim-
ilarly than the removal of particles procedure. The analysis is effected at an ele-
mental level (computation of the algebraic metrics) and weighing their contribution
to the connecting particle of the patch. Depending on the averaged value on the
node, the particle is reallocated.
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Knupp, in Ref. [59], proposed the quality metric, defined by f, , by the multipli-
cative combination of the relative size and shape metrics, given by fg,. and fgpe
respectively.

fq = fsize' fshape (A-4)

It is a dimensionless value, referenced to an ideal element, which has a specific
size and shape. This quality metric is defined in the rank f, =[0,1] — with f, =0 for
those elements completely degenerated and f; = 1for those elements with the same
size and shape than the reference value, f; .

The relative size metric determines those elements unusually large or small, rel-
ative to the reference element. The metric is defined as

f.— min(ﬁze,%gze) (A-5)

where 752 is the ratio of the areas given by equation (A-1) . The metric follows the
same rank fg,. =[0,1] than the quality metric — with fg,, =1, if and only if the
physical element has the same area as the reference triangle, and fg,. = Oif the
physical element differs [59].

The shape quality metric computes the distortion that an element presents. It is
calculated in order to be compared with an equilateral triangle, and it is independent
of the node of the triangle at which is computed. The shape metric is defined by

f _ V3rsin6 (A-6)
T reosd +r?
where I =My /N, , is the ratio of two adjacent lengths. Similarly, the shape
metric follows the same rank than the mentioned above — fg,,,. = 1for those ele-
ments which are equilateral triangles and fg,,,. = O for those completely distorted
[59].

Once the metric for each triangular element is computed, this value is averaged
at a nodal level by the contribution of each connected element at the nodes. In this
sense, the metric is modified to a nodal value, fqpatd‘. For that fqpe‘tCh < fi1, the
nodal position is reallocated by the well-known Laplacian or barycentric smoothing
process [33]. Defining Pjas any node connecting particle coordinates to the refer-
ence node coordinates P ; the method consists in minimizing the lengths of the edges
of the patch.

gL o
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A 4. Collapsing of two adjacent boundary lengths due to the pres-
ence of high concavity on the boundary

The collapsing of two adjacent boundary lengths is a singularity in the finite element
method given in large deformation problems due to a boundary constraint. In the
existence of a pronounced large interior angle of the adjacent boundary lengths, it is
possible to be a source of mesh overlapping. The algorithm described in this section
is proposed to solve this condition by a geometrical manipulation of the boundary
and it is posed to reduce at the minimum its affectation on the mass conservation.

The control of the concavity is defined in terms of a tolerance angle, ¢y, . The
algorithm takes place whenever the external angle of the adjacent segments is small-
er than the tolerance one, see Figure A-4 (a).

© < Yol (A-8)

The reposition of the node kis located at the centre of mass of a fictional trian-
gle defined by the boundary particles jlk , Figure A-4(b); defining a new position k'
and a new angle ¢', see Figure A-4(c). For geometrical properties, this new angle is
greater than the defined as the tolerance angle.

© <@g <’

The new adjacent boundary segments, |k'and K'j respectively, must satisfy in
the following remeshing process the dimension criterion described in previous sec-
tion A.2.

@

Figure A-4. Collapsing of two adjacent boundary segments for pronounced concavity: (a)
Computation of angle of two adjacent boundary segments, (b) Definition of the centre of
mass of fictitious element jlk, and (c¢) Repositioning of node k at the previous calculated
centre of mass K'.

An alternative procedure is the real collapse of both adjacent lengths by collaps-
ing nodes | and j of Figure A-4(a). The drawbacks found following this approach
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are mainly two: the insertion of a greater volume or mass in the domain; and, in a
second place, the unbalance continuity in stresses and pressures since k being a
boundary particle would be defined as an interior one.

The full algorithm for the remeshing process is described in Box 3-1

Given a converged mesh (2, in t,,;
1. Insertion of particles if needed
1.1 Computing of size metric 752
1.2 For interior elements
-if 7% > Tiﬁf to insert new particle at the centre of mass of the element.
1.3 For boundary elements
- if 79> 7 and fyg > 99 to insert new particle at the
middle of two boundary nodes of the element
- elseif 79% > 7\ | to insert new particle at the centre of mass
of the element.
2. Removal of particles if needed
2.1 Computing of size metric 752
2.2 Averaged nodal metric for connecting node of the patch

r?ozgal *ZQI/W

2.3 if Tnodal < T, to remove connecting particle of the corre-
sponding patch
2.4 For boundary nodes, if | <I§", to collapse adjacent particles
defining a new particle at the middle of them
3. Collapsing of two adjacent boundary lengths
3.1 Compute angle between each adjacent boundary lengths ¢
3.2 o <y
- Calculate centre of mass K’ of fictitious triangular element jlk
- Reallocate particle k of the connecting boundary lengths to the
new position K.
4. Delaunay triangulation
5. Local smoothing to relocate particles if needed
5.1 Compute relative size metric f,, for each element
5.2 Compute shape metric fg,,,. for each element
5.3 Compute quality metric f, = fg,. - f.0e fOr each element
5.4 Averaged nodal metric for connecting node of the patch

n
fqpaICh = 21: f(;
i=

5.51f fqpawh < fi perform Laplacian smoothing for correspond-
ing node

Box A.1. Remeshing process for a dynamic particle discretization.
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Appendix B
Algorithmic tangent constitutive tensor

This section covers the formulation of the algorithmic tensor arising from the linear-
ization of the constitutive equation. It is presented following the order in which the
constitutive model was defined: first, for the elasto-plastic model, and then, the
contribution of the visco-plastic regularization.

B.1. Elasto-plastic description

The problem to solve is to find ¢}, that satisfies the Lie derivative of the Kirch-
hoff stress tensor.

LT =Cn : Lena (B-1)

Recalling equation (3.23), the integration of the Kirchhoff stress tensor is given
by the following expression

Tni = adev Tt + Poy 1 (B-2)
where:
a=a(AN):= ! B-3
- 14 2uAN (B-3)

Substituting the definition of the auxiliary state ‘r}{fi, given by equation (3.11),
and the pressure term of equation (2.34), the equation (B-2) reads:
Thy = adevi, | +adev(c:e,, )+KInd, 1 (B-4)
where:

'i'n+1 = fut1 Tn 'fr;r+1 (B-5)
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Equation (B-5) is the description, in the current configuration, of the Kirchhoff
stress tensor of the intermediate reference configuration, carried out by the push-
forward operation.

In the following sections, the algorithm for an Impl-Ex and full implicit scheme
are presented in order to gain a complete understanding of both models — the imple-
mentation for this work follows the implicit-explicit method.

B.1.1. Impl-EX integration of the constitutive model

The Impl-Ex integration scheme is based on the full implicit integration of the stress
tensor but combining an explicit extrapolation of the internal variables — the plastic
multiplier A\, , given in equation (3.34).

The Lie derivative for the Kirchhoff stress tensor defined in equation (B-1), fol-
lowing the Impl-Ex integration scheme, is computed “freezing” the plastic parameter
a(AMNy,; ), in equation (B-3), on the current time step. The derivative of the stress

field with respect the Almansi strain tensor is summarized as:
Ly (Tny1) = aly (devin, ) +al, (dev(c :en ) (B-6)
KL, (103 )1+ (KIn dp )L, (1)

Below is shown the process for computing the derivative for each term given in
equation (B-6) separately.

o L (adevi,,)

The pull-back operation is performed over the definition of a deviatoric tensor

¢ (adevin,, )= ¢, (B-7)

A 1,04
OC[TnH _5(1 “Tntl )1]

Calculating the corresponding operations for the covariant and contravariant
tensors, the equation above reads

1 _
T, —g(C:‘rn)C !

6" (adevin,, ) =a (B-8)

It is observed that the pull-back operation computed in equation (B-8) describes
the deviatoric part of the Kirchhoff stress tensor T, in the intermediate reference
configuration t,, .

#; ' (adeviy,, ) = aDEVT, (B-9)
Computing the directional derivative with respect Au for the equation above
0 1 _ _
%(aDEVrn ) L —ga[(dC :1,)C ' +(Ci1y)dCT (B-10)

The derivative for the right Cauchy-Green tensor C is deduced through the def-
inition of the spatial velocity gradient 1, and the definition of the material Green-
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Lagrange strain rate tensor, E [42]. After some manipulation, it is easily deduced
that:

dC = 2dE (B-11)

The derivative of the inverse of the right Cauchy-Green tensor is computed us-
ing the identity definition of the tensor,C~!.C =1; applying the chain rule and
substituting definition given in equation (B-11), its derivative reads:

dc'=-Cc'.dc.ct=-2C!.dE.C! (B-12)

Finally, equations (B-11) and (B-12) are substituted into equation (B-10) - ex-
pressing the derivative of the deviatoric part of the stress tensor in the material con-
figuration.

d(aDEVT,) = %a[(C :1,)C-dE-C™' —(dE:7,)C"'| (B-13)

In order to express equation (B-13) in its spatial description, the pull-forward
operation is applied, leading to

2 . A
¢.[d(aDEVT, )| = ga[(l A )den —(denyy i Ty )1] (B-14)
After some manipulation, equation (B-14) reads

N 2 . A
Ly (ovdevin,, ) = ga[t”nﬂi —1® %, ] deyy, (B-15)

e L (adev(c:en))

The second term of equation (B-6) is rewritten by applying the definition of the
elastic constitutive tensor, ¢ given in equation (2.13). After some manipulation,
this fourth order tensor is expressed in terms of the shear and bulk modulus, G and
K respectively.

c=G/* +Kigl1=c® 4 (B-16)

where G =2y . Substituting the definition given in equation (B-16) into the second
term of equation (B-6), the derivative is expressed by:

L, (adev(c:eny )= I—v(acdev :en+1) (B-17)

Applying the derivative for each term of equation (B-17)

dev

L, (ozcdeV teni ) =al,c% :eny +ac®™ :de, (B-18)

The Lie derivative expressed on the second term of the RHS of equation (B-18)
corresponds to the deviatoric part of the Lie derivative of the elastic constitutive
tensorc . Its derivative is expressed as

L,(c)=a:Le (B-19)
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where deduction of a is given in detail in Ref. [13]; the index notation of this fourth
order tensor is given by

alM = 74H[Aei,'1+16"k + 6”(Ae2+1 ] - 2)\{5” Aeﬁﬂ + 6% tr Aep g ] (B-20)
Substituting definition (B-19) into equation (B-18), the Lie derivative reads

Ly (acdev “eny ) = O‘(adev (€ns1)+c® ) sdeny (B-21)

o KL(InJy, )1
Applying the chain rule, the derivative d(InJ,,; )is computed as

1
——d(Jn1) (B-22)

d(ann+1):J L
n—+

Taking into account the definition of the Lie derivative of the Jacobian determi-
nant, defined as

Ly (Jni1) = Jnn 1L, (eni1) (B-23)
the directional derivative reads
d ( JIni1 ) =Jnp11:deyy,y (B-24)
Substituting equation (B-24) into equation (B-22), we get
1
d(InJny) :J_ld(JnH )=1:den, (B-25)
n+
Defining the derivative for the pressure term as
d(pry)=HK(1:den,) (B-26)
Finally, the derivative of the third term in the RHS of equation (B-6) is given by
d( Py )I=K(1®1): deyyy (B-27)
* Pl (1 )
The last term is defined directly from the following expression
d(1)=-2de,, (B-28)

Defining the derivative of the last term as
Pni1d (1) = —2py; deqyy (B-29)

Taking into account each derivative defined for equation (B-6), the elasto-
plastic algorithmic tangent tensor ¢ that satisfies equation (B-1) is defined as
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2
c® =Zaftri e — 10t |+ aa% (e +cdv) 4
3 [trEny ey ( (ent1) ) (B-30)

K(1®@1)+—2py.¢

B.1.2. Implicit integration of the constitutive model

The implementation of the algorithmic tangent constitutive tensor in this work is
developed with an Impl-Ex integration scheme; however, in this section the full
description for an implicit integration scheme of the constitutive model is presented.

The implicit scheme is formulated deriving each term of equation (B-4) — the
plastic parametera(AXy,; ), given in equation (B-3) is computed at the same
time step.

Lytny =d(a)devin,, +al, (devi,,, )+

d(a)dev(c:ey)+al,(dev(c:e,;))+KIndy 1 (B-31)

It is observed from equation (B-31) that the only term that remains to be defined
is the directional derivative of the plastic parameter or( A, ), .1 - The derivative of
this parameter, da(AM)), is deduced using its definition given in equation (B-3).

2u
o oy (A = €88 @)
HAAnL1
where
fo__
(1+2uAN ) (539

Recalling the definition of the slip rate, given in equation (3.22)
rial

d)(T):Hl
24 (by — by Py )
we observe that it is defined as a function of the yield function, evaluated in the
auxiliary state t% | and the pressure. The derivative of the discretized slip rate,
expressed in the RHS of equation (B-32), is computed deriving by parts equation
(B-34):

Ay = (B-34)

B 1 trial bo(r)™
d<A)\)_2N(b2_b1pn+1)d v +2u(b2—b1pn+1)

Sdph (B-35)

The remaining term to be defined is the derivative of the yield surface — since
the computation of the derivative of the pressure is expressed in equation (B-26).
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° d¢(T)tﬁal

The derivative of the yield surface, defined in equation (3.14), is expressed as
do(7)™ = d(|dev e ) + b pi (B-36)

The expression for the derivative of the norm of the deviatoric part of the trial
stress tensor, first term of the RHS of equation (B-36), reads

trial ||

d("dev T [ (devTiia ): dev i} +

2||de”mal | (B37)

trial . trial
devtpfy : d(dev Tl )]

Using the definition of the trial stress tensor, equation (3.11), and aided by the
previous calculations defined in equations (B-15) and (B-21), the derivative of the
deviatoric part of the trial reads

rial 2 a3 -
d(devr}]ﬁ):{g[trTn+1"*1®Tn+1] (B-38)
Jradev (en+1 ) + Cdev } . den+1

Due to the symmetry of the Kirchhoff stress tensor and the definition of the de-

rivative of the deviatoric part of the stress tensor given in the equation above, the
expression in equation (B-37) is rewritten as

) dev Tﬁf{ (2
2 " dev Ttl’ldl

trial
d(”dev T

3 Slrtnge—10t,, ]
(B-39)

+al® (eny )+ } sdenyy

The notation of equation (B-39) is shortened as

)= :den, (B-40)

trial
d( " dev Ty

where:

dev il {2 d }
= —— M o d e — 10t ]+a% (e, )+ -
2||deV‘rmfll 3[ n+1 nit] (ens1) (B-41)

The second term of the RHS of equation (B-35) corresponds to the derivative of
the pressure. As mentioned before, the computation of this derivative was carried
out in the previous section and defined by equation (B-26).

Substituting equation (B-40) and (B-26) into equation (B-36), the derivative of
the yield surface reads

dg (7)™ = B:den,y + by (1: deqy) (B-42)

The derivative of the discretized slip rate, given in equation (B-35), is complete-
ly defined by equations (B-42) and (B-26). Substituting those terms and regrouping
them, the derivative of the slip rate reads
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d(AX) =[nB+KI(Vib +7,)]: deny, (B-43)
where:

1

. trial
=5 b "y

2N(b2 _blpn+1 )2

Finally, the description of the derivative of the plastic parameter a(AM)for a
full implicit integration scheme is obtained. Substituting equation (B-45) into equa-
tion (B-32)

Yo = (B-44)

and

da = ¢[y1 8+ RKI1(yib +7,)]: deqyy (B-45)

B.2. Visco-plastic regularization

The integration of the visco-plastic regularization in the algorithmic tangent tensor is
given obtaining the directional derivative of equation (3.32)

dryh, =ndeid +(1—n)drd, (B-46)
The derivative of the trial stress tensor fulfils the following expression

drp? =c' i de,,, (B-47)

trial

where the elastic algorithmic tangent modulus c ™ is defined as

¢l — ¢ 4+ a(en) (B-48)
where the expressions for ¢ and a were given previously. The deduction of equa-
tion (B-48) is given in more detail in Ref. [13].

The second term was defined in previous section, where the elasto-plastic con-
stitutive tensor is given by equation (B-30) — for an implicit / explicit integration
scheme (Impl-EX). Finally, the visco-plastic description of the algorithmic constitu-
tive tensor is stated as follows.

c'P = pctmal 4 (1—7)c (B-49)
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Appendix C
Linearization of the variational problem

The non-linear variational problem is solved using a traditional iterative Newton-
Raphson. The linearization is computed in terms of the directional or Gateaux deriv-
atives of the residual vectors, defined by equations (3.42) and (3.43), with respect to
the incremental displacement Au and the pressure 7 .

C.1. Linearization of the continuum description

The derivatives of the residual vectors are shown separately in terms of each com-
puted component. The process is similar for each term: it is carried out expressing
each equation in the reference configuration t,, via the pull-back operator; thereaf-
ter, it is performed the directional derivative; and finally, the expression is returned
to its description in the current configuration via the push-forward operator.

® 6Au R

The directional derivative of equation (3.42), with respect the incremental dis-
placement Au , is computed on the vector of internal forces 6,,G™™* — since it is
the only term being a function of the incremental displacement. The derivative of the
vector of internal forces, given in equation (3.42), is performed in the intermediate
reference configuration. The following equation relates both the reference and cur-
rent configurations in terms of the determinant of the deformation gradient tensor J .

fgm Ay = an Jdg, (C-1)
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Applying the property of the determinant of the product of two tensors, into
equation (3.2), the Jacobian determinant reads

J = Jny1 n (C-2)

The Cauchy stress tensor, using equations (C-1) and (C-2), is expressed in terms
of the Kirchhoff stress tensor in the intermediate reference configuration as

Jo, o018 = [ inaonn = [ %oy do; (C3)

note that T stands for the Kirchhoff stress tensor relative to the intermediate refer-
ence configuration t =t,,.

The description in the reference configuration of a given tensor, described in the
current configuration, is established by the pull-back operator. The pull-back opera-
tion for a contravariant tensor is given by

X(o)f =f (o) T (C-4)
and for a covariant tensor
(o =T (o) f (C-5)

Equation (3.42) is described in the reference configuration by the proper use of
the pull-back operators as:

o 1 R \V,
G = [ — - DEVSy,y : ¥y (w)ds2, +

n ]

’ . (C-6)
1, — 1 (IPCLs ) : T (Sw)d2y

n Jn
where pis the pressure corresponding to the relative Kirchhoff stress tensort ,
S and V, the Second Piola-Kirchhoff stress tensor and the gradient operator, respec-
tively, referenced to the intermediate configuration.
The LHS of equation (C-6) is condensed to simplify the development of the Ja-
cobian matrix.
int,mix 1 Q \V
Gyt = f ~—Jos1-Snea Vi (OwW)de2, (C-7)
@ n

where:
Sny =DEVS,,, +JpC! (C-8)

Defining the vector of internal forces in the intermediate reference configura-
tion, its derivative is computed applying the chain rule
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o 1 . _
D (G ) = [ 5 Dau (Faa ) S+ T (6w, +
o ) _ (C-9)
f!) j_fn+1 "Dy (Sn+1 ) : Vo (6w)df2,
nJn
Observation C-1

The derivative of the gradient of the test function éw vanishes since
it is not a function of the displacement field.

Below, the directional derivative for each term ( fr,,1,S,.; ) is defined. Thereaf-
ter, each term is substituted into equation (C-9). The deformation gradient tensor f
is defined in terms of the scalar parameter ¢ and the incremental displacement Au :

fu+pAu)=1+Vu+eoV(Au) (C-10)

The Gateaux derivative of equation (C-10) is given by

d
@f(u—i-goAu)

=V(Au) (C-11)
=0

The second derivative, corresponding to the relative second Piola-Kirchhoff
stress tensor S, is defined applying the chain rule with respect the Green-Lagrange
strain tensor
d d

:ES:@E (C-12)

%S(u—i—@Au)

=0

The derivative for the Second Piola Kirchhoff stress tensor by the Green-
Lagrange strain tensor is expressed in the intermediate reference configuration as

ds
C?® = [ﬁ] (C-13)
n+l
From equation (C-13), the algorithmic tangent constitutive tensor is deduced —

see Appendix B.

The directional derivative of the Green-Lagrange strain tensor, defined in the
second term of the product of the RHS of equation (C-12), after some manipulation
of the terms reads

d
@E(H@Au) Z%[fTV(Au)JrV(Au)Tﬂ (C-14)

=0
Substituting equation (C-13) and (C-14) into equation (C-12)

d
@S(u+gpAu) :%Cep:[fT'V(Au)+V(Au)T-f] (C-15)

p=0

Due to the major symmetry of the algorithmic tangent tensor, equation (C-15) is
rewritten as
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d
@S(u—i—@Au) :Cep:[fT~V(Au)] (C-16)

»=0

Substituting both equations (C-11) and (C-16) into equation (C-9), the deriva-
tive of the internal forces with respect the incremental displacement reads:
mat

DAu (G[i‘lnt,mix ) _ DAu (G;]nt,mix )geo + DAu (Gént,mix ) (C-17)

; ; €0 : . \mat . . .
where Dy, (G,Hm’m‘x )g and Dy, (G,ﬁm’m‘x) will define the geometric and materi-
al parts of the Jacobian or stiffness matrix respectively; in the reference configura-
tion t,,, defined as:

it mix | €€0 1= =~ =
DAy (Grgm’mlx )g = fQ j_vn (Au)-Spyy 0 Vi (dw)ds2, (C-18)
@ in

and
i ix \mat 1 = =
D (G )™ = [ St CP 1 i Tn(20): T (ow)dhy (c-19)
nJn
The description in the current or spatial configuration of a given tensor, de-

scribed in the reference configurationt,, is computed by the push-forward, defined
for a contravariant tensor as

Xo (o) =F-(o) £ (C-20)
and for a covariant tensor
Xo (o =fT (o) f! (C-21)

The description of equation (C-17) in the current or spatial configuration reads

DAu ( int,mix ) — DAu ( int,mix )geo i DA“ ( int,mix (C-22)

mat
+1 +1 +1 )

where:
Do (G = [ Vaer (Au)0n Vo (WA (C23)

and

int,mix \Mmat
DAu <Gn+1 )

= f o Vo (Au):e® Vo, (dw)dey, (C-24)

e 5R!

The directional derivative of equation (3.42) with respect the pressure is defined
as D, G"™*  With the vector of internal forces defined in the current reference
configuration for a decoupled Second Piola-Kirchhoff stress tensor, equation (C-6),
the derivative in terms of the pressure, reads
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D, ( Gri1nt,mjx ) _ fg

n

]_ _ - —
j—fn+1 -JID, () Chly : Vi (6wW)ds2, (C-25)
n

The unique term defined as function of the pressure is the pressure itself. Its de-
rivative is defined as

d
@(W +péq)|  =4éq (C-26)

p=0

Equation (C-26) is substituted into (C-25) to define the derivative of the vector
of the internal forces with respect to the pressure

D, (G )= [ , 80linis foia - Caly: Vi (Sw)de2, (C-27)

Similarly than for the first derivative term, equation (C-27) is described in the
spatial configuration applying the push-forward operator

D (G )= [ 80V (6W)d2n (C-28)

° 5Au R4

The directional derivative of equation (3.43) with respect to the incremental dis-
placements is defined as D, RY.

InJ

DauRY :fg 60D ay 5

]dﬂo (C-29)
Equation (C-29) is rewritten by computing the derivative of the quotient as

1-J
DauRS :fQ 5Q[J—2 Dy (J)d6% (C-30)

The derivative Dy, (J)is computed applying the chain rule and using the definition
of the derivative of a determinant, obtaining:

0J OF
D ( ):6_F:%

=JF T :V,(Au) (C-31)

=0

Substituting equation (C-31) into equation (C-30)

1-J

]JF‘T Vo (Au)de2, (C-32)

The expression of equation (C-32) in the current configuration is obtained using
equation  (C-1) and rewriting the double contraction term  as
FT:Vy(Au)=tr [F 1.V, (Au)] ; finally, the equation reads

1-J
DAuWJrl:fQ ](SQ[ 32

]tr (Voo (D)2 (C-33)
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. 5K

The derivative of equation (3.43) in terms of the pressure defined as D, R}
reads:

1
DR} = [, 704D, (m)d%% (C-34)
and the directional derivative term D, (7 ) is obtained straight forward as
1
DRI = f! 7 haemde, (C-35)

The equation (C-35) is expressed in the current configuration using equation
(C-1)

1
DRl = [, 350067, (C-36)

The summary of the linearization of the non-linear variational problem is given
in Box C.1.

Derivative 5, R

Dy, ( int, m1x ) Da, ( int, mlx )g +Dp, ( int, Imx

s

where:
Dau (Grlwrﬂmx geO f Vn+1 (Au)-6n. 1 Vi (SW)d2n
int;mix \mat ¢]
Dau (Gn-st-l ) = Vi1 (Au):e® Vi, (dw)d2,

Ot

Derivative 6. R"

(Grlmtﬂmx ) = fQ 69V (6W)df2,

n+1

Derivative 65, R

DAu(R?H):fQ

Derivative ¢, RY

D, (R, )= f L sq5rdn,,

L IR

Derivative ¢®? — derived in Appendix B

+1

6q[1 J]tr[vnH(Au)]dnnﬂ

2 A o
c%®P = ga[trrnﬂe—l@‘rnﬂ ]+a(adev (ens1 )“‘de)"‘

K(1®1)+ 2Py

Box C.1. Linearization of the non-linear variational problem (equations (3.42) and (3.43)) —
a continuum description.
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C.2. Stiffness matrix — spatial discretization

The discretization of the system of equations is computed in terms of equations
(3.44)-(3.47). The numerical approximations of the gradient of the incremental
displacement, V(Au) and V(6w)read

Np
v(au") =3OV (N) Au (C-37)

i=1

Np
V(ow') =3 V(N )ow (C-38)

i=1

Equation (3.42) is rewritten in terms of vectors of nodal forces as
[Ru }h _ [Fint,mix _ [Fext + [Fine } (C-39)
where:
[Fint,mix Lh :fge"h'v(N' )dQe (1=1:3) (C-40)
h _

FeXtL :er Nlphbthe+ﬁe NlthdI‘e (l :123) (C-41)
[Fine ]:1 — er N, p"vhd0e (1=1:3) (C-42)

h
Similarly, it is defined the residual vector [ R ]I from the discretization of equa-
tion (3.43) is discretized as

RO = [ o[

J h
The discretization of the linearization of the residual vector, shown in previous
section, defines Jacobian or stiffness matrix. The discretization of the term corre-
sponding to the linearization of the vector of internal forces in terms of the incre-
mental displacement D, (G‘m’mlx ) , given by equation (C-22), reads as

h h

—%NAwa]dQe—O; (1=A=12,..,n,) (C-43)

w h &) maf
[K LJ :[Kg ]IJ +[K t]lJ (4
where:
(ke [ [ V(N )0V (N, o (45
[Kmat H‘J :erv( N; ).[Cep]h,V(M )dQ® (C-46)

The discretization of the linearization of the vector of internal forces with re-
spect to the pressure D (G‘““m‘x ) , given in equation (C-28), is defined as
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(K LhA = fQEV(Nl )NAdQ® (C-47)

Following the same process for the linearization terms of the second equation in
terms of the incremental displacement D, ( Rq> and pressure D ( R4 ) , equations
(C-33) and (C-35) respectively, the discretization for each term reads

__1h
(K™ ]TA = er N ﬁ V(Na)dQe (C-48)

and
(K] = fﬂ% N, N dQ® (C-49)

h
It is observed that the mass matrix defined by the term [ K™ ]I A requires three inte-
gration points due to the product of the shape functions N; N4 .
Finally, the elemental Jacobian or stiffness matrix is defined from equations
(C-44), (C-47), (C-48), and (C-49).
KUU KU‘n’ h

K\ =
IA Kﬂ'u Kﬂ'ﬂ'

(C-50)

1A

A summary of the definition and implementation of the discretized stiffness ma-
trix is given in Box C.2
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Element stiffness matrix K®
KUU KUTr
KTrLI Kﬂ'ﬂ' } =

(Kuu>|i,.]j <KU7T)Ii,A

K® =
(Kﬂu)l,Ak <Km)|,A

where:

[Kuu]li,.]j :[Kgm]ngj +[Kmat]li,Jj
ON, ON
li JJ ij anl 8)(|J Ok Qe|
[ mat] 8N| cP 8NJ| |
L3 Ox Cikj X

[ K &°

[KUW]nA 8NI NA|Qe|

(K] = [ 2 e e

[K’W]l,AZEM Na Q2]

Vector of residual forces [R“ ]
[Ru ] _ [Fint,mix ]_[Fext ]+[Fine ] =0

where:
[Fms o~ [ 8.9 (N; o
[P f N|pebedQe+f N, tedre

[Fine | :er N|peVedQe

Vector of residual forces [Rq ]

(RO = e
|0°|= [ dee°

e
B3 Lo

And

Box C.2. Element stiffness matrix K€ and vector of residual forces R (integration for a
three nodes linear triangle in the current configuration {1 ).
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Appendix D
Mixed formulation in axisymmetric
problems

In this section, we develop the vector of generalized forces and the stiffness matrix
corresponding to the mixed formulation for the axisymmetric case.

D.1. Vector of nodal forces

From equation (3.42) we know that the expression for the internal work is given
ble,ll'

Gint,mix = fQ 10” 'Vn+1(5w)lj dg)ﬂ+1 (D_l)

where o = deV(U)ij + 1 .The extension to the axisymmetric case is formalized
as

int,mix,axi __ mix,axi . yraxi axi
G = J e il : Vi (6w), dgty (D-2)
N1

' The formulation for this Appendix is directly described in a discretized notation.
" As mentioned in previous chapters, the superscript “mix™ refers to the definition of G in terms of W
and 7T .
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where:
oy o 0
mix,axi __
Onti =|021 02 0 (D-3)
0 0 0'33
and

d(ow), 9(éw)
8X1n+1 aX?Jrl
a(ow), O(éw),

1

b (dw), = T g (D-4)
0 0 W
X1n+1

Taking into account equations (D-3) and (D-4), the expression for the internal
work, defined in equation (D-2), is split in terms of , on the one hand, a matrix
[2x2] (r and Z components) and, on the other hand, the term(33)corresponding
tod :

int,mix,axi __ mix,axi yraxi axi
G = fﬂ? 0ij n-+1 (6W)ij |i 12 dORt +
1 BB

o . (D)
Jop oBTRL (W), A
+1
From equation (D-5), and taking into account the approximations given in equa-
tions (3.46) and the expression of its gradient in (C-38), the vector of internal forces
is defined as

L ON . N .
Fmt,mlx,axl = f o | d axl1 4 033 | 5‘1 d axl1 .
[ ]“ 1048 ! ox; |. . " 00 Xn+1 I " (D 6)
1 lisja,2 1
It is important to remark that the computation of o33 = ﬁr% requires three Gauss

points for its integration; the problem arises from the computation of the defor-
mation gradient tensor f,,; =1+ V, (Au,,, ), where the component f53' has the
following expression

N (x)uy

i U (x)
oy P S Sy | N
33 + X + X D-7)

being a function that varies with respect to x ( as opposed to the rest of components
fi; |i’j:1,2 , that are constant at the element level). For this reason, the component o33
of equation (D-6) and the computation of J,,,; require three Gauss points in their
integration.

Finally, the expression of the incompressibility term, given in equation (3.43) is
directly described for the axisymmetric case as



Mixed formulation in axisymmetric problems 163

i InJ A
q.ax1 | n+1 axi
[R Li ‘[Qﬁu N (Ins1 )2 o ‘fnﬁu NANETLY N NATrAdQnJrl (D-8)

D.2. Stiffness matrix

The extension for the Jacobian matrix to the axisymmetric case is carried out in a
similar way than in Appendix C, presenting each term of the derivatives of equations
(3.48) and (3.52) separately.

° 6Au [ int,mix,axi

The vector of internal forces is decomposed as

Fint,mix,axi _ Fim,mix,axi,(2><2) + Faxi,(33) (D-9)
where:
1 osicest ON -
= int,mix,axi,(2x2) __ -axi qaxi | do ]
j;)ne\] K 6Xj s 5 (D-10)
S 1 N &
Fmt,lmx,am _ I1 d axi ~
f A 0 (D-11)

L

Similarly, the term of the derivative of the internal work with respect to the incre-
mental displacement is split as

6Au Fint,mix,axi — 6Au Fint,mix,axi,(2><2) + 6Au F axi,(33) (D—l 2)

The first term of the RHS of equation (D-12) was calculated in Appendix C and
it is equivalent, for an axisymmetric model, to:

int,mix,axi ON; ON i i
S F i (2x2) _ [fe 8 an| 8)qJ 'dQne+1]AUJi+

10Ny o ON -
[fon Tt 0% o 00 ]Au"’

Notice that, from the first term of the RHS of equation (D-13), the geometric
part of the stiffness matrix [ngo ]IJ given in equation (C-45) in Appendix C, is
defined. For the axisymmetric case, this term reads:

i ANy ONy oy

In the second term of the RHS of equation (D-13), the double dot contraction of
the term CIkll 6§ is split as

(D-13)
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ON ON ON
Ieklpj a)qJ _Cﬁ(lpj ax: +CiekpSS 8X1”il (D-IS)

and substituting equation (D-15) into equation (D-13), the expression of the inte-
grand becomes expressible as

L ONi o ONy axi | i
fﬁm 3, 0% i gy I = HiS A H (D-16)
where:
: 1 ON, P ON;
axi __ d _
1J anH n+1 8Xk |k|] 8X| 521'1 (D 17)
i 1 ONy o Ny R
i _f% Ty O S dOgy, (D-18)

On the other hand, the second term of the RHS of equation (D-12), after the
pull-back operation, is given by

DpuF™ ) = oGV 4 R 5+ (D-19)

where:
G = [, 6.1 e Ol Snd (D-20)
aXl f 5|1 f33383 dOg (D-21)

After computing the derivative of the corresponding component of the defor-
mation gradient df;; = Njuj, / X', equation (D-20) takes the form

Aaxi(33)] 1NNy i ;
9GS} ]n f 2 Gin g — - 6uy, S AR (D-22)

whereas the corresponding component of the stiffness matrix of equation (D-22) is
expressed in the current configuration t,,; (after some manipulation) as

G = [l BudiuNiNy 8 dag, (D-23)

(X1 )
For the second term, expressed in equation (D-21), it could be proved that:
f330S;; = f35' C33|, 331 (D-24)

and with the definition of the Euler-Almansi strain tensor, equation (D-24) can be
rewritten as
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axi

«1| oy ou;
f3305;3 = fss 033|, 5
2 6u?+1 8u|”+1

(D-25)

It is observed from equation (D-4) that equation (D-25) could be rewritten as

6U| mix 6Ul
f330S;5 = fa3 ng|mx + f'chy —— D-26
) 3Un+1 i 8U1n+1 ( )

Finally, substituting equation (D-26) into equation (D-21) yields (in the refer-
ence configuration)

axi, _ NI —1_.€ep,mix aN axi
[aH }n B f}ne 6|1 J 1 f33 C55|J au n+1 (SU dQﬂ
(D-27)

—1,.€p,mix

5|1511 i f&s C3333 n+1 —- 65Uy dOR
n

Similarly than in the previous term of the stiffness matrix, from equation (D-27)

the corresponding term of the stiffness matrix for equation (D-21) is obtained (ex-
pressed in the current configuration) as

A 1 ON
H ax1,( 33) — 6 N ep,mix J d axi +
1J f e i1 Jn+1 X1n+1 | 33“ U In+1 Q1+1

N
Jog B0 3, o

+1

N, axi (D-28)
()

1
Finally, using equation (D-14), (D-17), (D-18), (D-23), and (D-28), the term
[ KW ]liJj of the Jacobian matrix takes the form

[ K uu ]”Jj =GY¥ i1 H ajn + H axi 4 Gax1 J(33) + Hlajxi,(ﬁ) (D-29)

e & F int,mix,axi

From the decoupling into deviatoric and volumetric part of the Second Piola-
Kirchhoff stress tensor S™* = DEVS + JpC ™! the derivative of equation (D-9) with
respect to the pressure is given by

int,mix,axi 1 | R i
87TF t,mix,a :fﬂnej_ f”?X' n+18pc‘q-1_8xrl1 dQnax +
| i
i a2 (D-30)
1 N 6 axi
e i = fB%)q Jn+lapc33ldQn
93 Jn X'

The computation of the first term of the RHS of equation (D-30) was deduced in
in Appendix C and given by equation (C-47):
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N,
1 OX”

5 [intmixaxi _ f N7 AdQn (D-31)

For the second term of the RHS of equation (D-30), after some manipulation
and taking into account the definition Cy3' = 1/ (fs3 )2 , We can write

¥ 1 ~ A
8, F38) = f o B NP NAT A DO (D-32)
O X
Finally, from equations (D-31) and (D-32), the corresponding term of the stiff-
ness matrix [ Kyr ]” 3 is obtained:
LS LiJj =+ 0y (D-33)
where:
Xi __ aNl Xi
Ly = e NadOR (D-34)
L) f 6.1 - Ny N A0, (D-35)
° 6Au Rq,axi

This derivative is deduced in equation (C-48) in Appendix C; it should be noted
that for its extension to the axisymmetric case, we have to introduce the following
decomposition

axi 1-J
R = [ N'[ RE ]

On the other hand, the term [ K™ ] of the stiffness matrix is given by
wu _
Ky = Jog, M 5]

° 67T Rq,axi

ONa

g d (D-36)

Ak|k12 + n+1 AuAl

Ny
ax{("*l k1,2

Na

Nl
X

_|_

dOgY, (D-37)

This last term is deduced directly from equation (C-49) in Appendix C; its ax-
isymmetric counterpart reads

5, R j; . Jn+1/<3 N; N a7 O (D-38)

and the corresponding term of the stiffness matrix [ K™ ]I ; is
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1
K™, = fﬂﬂ Jn+1/{N | N A0 (D-39)

I mplementation for a three Gauss point integration
The integration of a given function g in an axisymmetric domain is rewritten by its
integration as a solid of revolution

f eﬂgd = f%g(%X{‘“)dA?ﬂ (D-40)

As well as the component (33)of the deformation gradient f*, equation
(D-40) requires at least three Gauss points for its proper integration:

f%g(zwx{w) ZW||J &) a(&)(2mxt) (D-41)

where Ng, =3, W; are the corresponding quadrature weights, and J €the Jacobian
for the mapping to the parent domain, which for a three-node triangle is constant
given by J€ = 2A°.

Taking into account equations (D-40) and (D-41), Box D.1 summarizes the im-
plementation of the generalized force vectors and the stiffness matrix.

Stiffness matrix K"
e[k [k (o
- 7u v - Xi xi
K (K™ e (K™ )i
where:
[Kuu]an *[ i 1iJj +[Hm]|uj Jr[HaXi 1iJj Jr{ém(w)]mj Jr[':'aXi’m)]an
> , ON N
[ LIJ] :Z{(SIJ % OX — o 2T ngl} Wig - 2A7
kg %,
- (1 N, o ON 3
Kl =2 ek Geanil]| o2
i (1 6N 3
[HaXI]HJj - {J 3_IC$33NJ511277} Wig 2AT
kg \Yn+l %

Box D.1. Stiffness matrix K™ and vector of residual forces R™™! for axisymmetric
problems (integration for a three nodes linear triangle in the current configuration ;).
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g 28

{ ].,J, 23: uéﬂ{N NJX%QW}

1

X

(A& 23: 3, N mmx Moo 1 g 288+
lig s il |33|] 6)(| N+l kg +1

X

3 [ N
2{3_6'1511'\] ch il QW] a2
kg n+1 ng,l %X
[Kuﬂ]“A: erﬁelt;;i,(m
. ON, -
?IA = Z{a PYE] NA27TX29+11} Wkg '2A$+1
kg %
Xg
L?i‘,i (33) Z{%N NA27T}| Wig - 2AT1
ko] =5~ L2 ) MNa e s o Wig - 2%
[ ]IAk_Z 3 8X“+1X1 +Nabjy 27 - Wig - 2A7
kg J X
1
[KWW]IA:E{J KJNl NAQWXQJ%} 'VNng'zA?Jrl
kg n+1
Xg
Generalized forces [Fim’mi"’an ]” and[Rq,axi ]:‘
o 3 ON N
[Fmt,mlx,axl]“ _ Z i pw nll + 033 nJlrl 5|1]27TXQQ+’11 ~\X’kg '2A$+1 +
kg K.l Xg
3 InJ
axi 1 W
o], =3 ] o, +
kg (‘Jn+1) Xg
3
{—N, NAQWQJ%} Wig - 2A7
kg "]n+1/{/ ’ Xg

Box D.1. (Continued)




Appendix E
Visco-elastic regularization of the
constitutive model

In order to dissipate the dynamic oscillations present in the stress fields, it is pro-
posed a visco-elastic regularization of the constitutive model for granular flows.
The regularization is based on a Kelvin-Voigt model in terms of the rate of defor-
mation tensor. In this section are presented the definition of this additional term as
well as the pertinent modifications for the implementation in the Jacobian matrix.

E.1. Kelvin-Voigt visco-elastic model

The rheological model of the Kelvin-Voigt model consists of the connection in par-
allel of a Newtonian damper and a Hookean elastic spring. The constitutive equa-
tion, for a small deformation formulation, is expressed for both terms giving
de(t
G(t)=EE(t)+n—d(t) (E-1)

where E is the Young modulus and 7 the dissipative coefficient. The first term of
the RHS corresponds to the Hookean elastic spring while the second to the visco
regularization itself.

The constitutive model proposed for dense granular flows is defined in the
framework of large deformation plasticity; the first term corresponding to the elastic
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term is defined by equation (2.35), and the term associated to the Newtonian damper
is given by establishing the pressure as a function of its density'*.

m=n(p) (E-2)

The time derivative of equation (E-2) is obtained applying the chain rule
. _dn(p).

= d—pp (E-3)

The time derivative of the density, given in equation (E-3), is obtained aided by
the definition of the rate form of the continuity mass equation.

p(x,t)+p(x,t)divv(x,t)=0 (E-4)

Solving equation (E-4) for pand substituting the value into equation (E-3), the
rate form of the pressure is described in terms of the velocity components.
d .
ﬁ:*Mp(X,t)leV(X,t) (E-5)
dp
Equation (E-5) is rewritten in terms of the rate of deformation tensor and a ma-
terial bulk modulus parameter

T =Ky (p)trd (E-6)

where K is approximated by the two first terms of a Taylor expansion of a com-
pressibility curve; and for the second term, the equality tr d = divv is used, which is
easily deduced using the definition of the rate of deformation tensor. Since the mate-
rial is considerable incompressible, it is correct to assume a constant value for the
bulk modulus.

The numerical approximation of the time derivative for the pressures allows us
to relate the dissipative coefficient 1 with the bulk modulus K,, n=7n(K, ), de-
fining the corresponding term of the Newtonian damper. The pressure term, given in
equation (2.34), with the Kelvin-Voigt regularization is expressed by

I
W:/ﬁ)lnTJ—H]trd (E-7)

The visco-elastic regularization has effect on the second equation of the mixed
formulation given by equation (2.40). Rewriting this equation to include the addi-
tional term, it is expressed as

InJ 1)1
fO 5q[n—+ﬂtrd——7r ~dQ, = (E-8)

"2 Recalling that 7 stands for the pressure term associated to the Cauchy stress tensor and |0 for the

pressure term corresponding to the Kirchhoff stress tensor.
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