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Abstract This article presents a space-time adaptive
strategy for transient elastodynamics. The method aims

at computing an optimal space-time discretization such
that the computed solution has an error in the quantity
of interest below a user-defined tolerance. The method-

ology is based on a goal-oriented error estimate that re-
quires accounting for an auxiliary adjoint problem. The
major novelty of this paper is using modal analysis to
obtain a proper approximation of the adjoint solution.

The idea of using a modal-based description was intro-
duced in a previous work for error estimation purposes.
Here this approach is used for the first time in the con-

text of adaptivity. With respect to the standard direct
time-integration methods, the modal solution of the ad-
joint problem is highly competitive in terms of compu-

tational effort and memory requirements. The perfor-
mance of the proposed strategy is tested in two nu-
merical examples. The two examples are selected to be
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Barcelona (EUETIB),
Compte d’Urgell, 187, E-08036, Barcelona, Spain.
E-mail: nuria.pares@upc.edu

P. Dı́ez (corresponding author)
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(CIMNE), Gran Capitán s/n, E-08034 Barcelona, Spain.
Tel.: (+34) 934017240
Fax.: (+34) 934011825
E-mail: pedro.diez@upc.edu

representative of different wave propagation phenom-
ena, one being a 2D bulky continuum and the second a

2D domain representing a structural frame.

Keywords elastodynamics · adaptivity · goal-oriented

error assessment · adjoint problem · quantity of
interest · modal analysis.

1 Introduction

Computing high fidelity numerical approximations re-
quires a fine discretization and leads to a large con-
sumption of computational resources. Adaptivity aims
at providing the optimal discretization (space mesh and

time grid) guaranteeing some user-prescribed accuracy
at a minimum computational cost. Many adaptive tech-
niques have been developed with application to differ-
ent problem types. These tools are particularly impor-
tant in wave propagation problems, e.g. linear elastody-
namics, because the features of the solution concentrate
at the wave fronts and therefore a fine mesh is only re-
quired at specific regions of the domain.

Over the last three decades, a vast literature has
been produced on adaptivity. Among the the pioneering

works, references [27,18] propose adaptive techniques
for flow problems using curvature and gradient based
error indicators. This type of heuristic error indicators
are used to identify the parts of the solution requiring
a finer mesh size. This approach is applicable to many
problem types because error indicators do not rely on
the problem properties, but in the geometrical features
of the solution. This type of indicators detect properly
the errors associated with interpolation but fail in cap-
turing the error from other sources, e.g. pollution error.

A more reliable alternative to drive mesh adaptivity
are a posteriori error estimators. They are used to effi-
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ciently control the accuracy of some output of the solu-

tion by means of refining the discretization only where

is needed (in the zones where the error is emanating

from). The available outputs for assessing the accuracy

of the approximation are global norms, e.g. the energy

or L2 norm [1,15,32], or quantities of interest [20,21,7,

28]. Error estimators considering quantities of interest

are referred as goal-oriented.

Goal-oriented adaptivity is discussed in the liter-

ature for many problem types. For instance, for ellip-

tic problems [20–22,29,19], for the convection-diffusion-

reaction equation [25,26], for non-linear structural prob-

lems [16,17], for time-dependent parabolic problems [23,

24,5] and for elastodynamics (or other 2nd order hyper-

bolic problems) [2–4,11].

Goal-oriented adaptivity for elastodynamics is a very

challenging topic and it is still ongoing research. The

main difficulties are 1) solving the associated space-time

adjoint solution accurately to estimate the error in the

quantity of interest, 2) splitting the contributions of the

space and time discretization errors and 3) transferring

the solution from one mesh to another without loss of

accuracy.

References [2,3,11] are among the few discussing

goal-oriented adaptivity in elastodynamics. The input

of the adaptive procedure is a desired error tolerance

in some quantity of interest. The adjoint solution is

computed with the same time-integration method as

the original solution. This approach might be memory

demanding because at least the original or the adjoint

solution has to be stored as a whole (at each mesh node

and time point) prior to evaluate the error estimate.

The adaptive strategy presented in this article is an

alternative to the previous approach. Here, the adjoint

problem is approximated using modal analysis, as sug-

gested in reference [30], to preclude the costly adjoint

approximation and storage. The modal-based adjoint

approximation is particularly efficient for some quan-

tities of interest. This is because the adjoint solution

is stored for a few vibration modes instead that for all

time steps. Moreover, the time description of the ad-

joint solution is known analytically once the vibration

frequencies and modes are available. This simplifies the

algorithmic complexity of the adaptive procedure.

The remainder of this paper is organized as fol-

lows. Section 2 presents the equations of elastodynam-

ics. Section 3 presents the weak and discrete versions

of the problem using the double field time-continuous

Galerkin method. The modal-based error assessment

approach is presented in section 4. Section 5 presents

the space-time adaptive procedure. Finally, the method-

ology is illustrated in section 6 with two numerical ex-

amples. The paper is concluded with some remarks.

2 Problem statement

2.1 Governing equations

A visco-elastic body occupies an open bounded domain

Ω ⊂ Rd, d ≤ 3, with boundary ∂Ω. The boundary

is divided in two disjoint parts, ΓN and ΓD such that

∂Ω = ΓN ∪ ΓD and the considered time interval is

I := (0, T ]. Under the assumption of small perturba-

tions, the evolution of displacements u(x, t) and stresses

σ(x, t), x ∈ Ω and t ∈ I, is described by the visco-

elastodynamic equations,

ρ(ü + a1u̇)−∇ · σ = f in Ω × I, (1a)

u = 0 on ΓD × I, (1b)

σ · n = g on ΓN × I, (1c)

u = u0 at Ω × {0}, (1d)

u̇ = v0 at Ω × {0}, (1e)

where an upper dot indicates derivation with re-

spect to time, that is ˙(•) := d
dt (•), and n denotes the

outward unit normal to ∂Ω. The input data includes

the mass density ρ = ρ(x) > 0, the first Rayleigh coeffi-

cient a1 ≥ 0, the body force f = f(x, t) and the traction

g = g(x, t) acting on the Neumann boundary ΓN × I.

The initial conditions for displacements and velocities

are u0 = u0(x) and v0 = v0(x) respectively. For the

sake of simplicity and without any loss of generality,

Dirichlet conditions (1b) are taken as homogeneous.

The set of equations (1) is closed with the constitu-

tive law,

σ := C : ε(u + a2u̇), (2)

where the parameter a2 ≥ 0 is the second Rayleigh

coefficient, the tensor C is the standard 4th-order elastic

Hooke tensor. The strains are given by the kinematic

relation corresponding to small perturbations, that is

ε(w) := 1
2 (∇w +∇Tw).

2.2 Numerical approximation

In order to properly split the space and time error com-

ponents, the adaptive strategy presented in this paper

requires that the numerical solution under considera-

tion fulfills the discrete version of a variational for-

mulation. Thus, a weak residual (integrated both in

space and time) associated with the numerical solution

is readily introduced. The splitting procedure uses the

fact that the residual vanishes for the functions in the

test space, that is Galerkin orthogonality holds.

Among the possible space-time variational formula-

tions available for transient elastodynamics, the double
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field time-continuous Galerkin method [10,2] is the nu-

merical solver selected. Note however that the rationale

of this article can be easily extended to other space-time

variational formulations, for instance, the one proposed

by Johnson [14] or the one proposed by Hulbert and

Hughes [12,13].

The definition of the weak form of the problem re-

quires introducing the following functional spaces: the

standard Sobolev space associated with static displace-

ment fields

V0 := {w ∈ [H1(Ω)]d : w = 0 on ΓD} (3)

and the Bochner space L2(I;V0) associated with V0 of

square-integrable functions from I into V0. With these

notations, the trial space W for the double field time-

continuous Galerkin method is defined as

W := {w ∈ L2(I;V0) : ẇ ∈ L2(I;V ′0)}.

Note that, w ∈ W implies that w ∈ C0(Ī; [L2(Ω)]d)

and therefore functions in W are continuous both in

space and time, but they do not necessarily have a con-

tinuous time derivative.

The test space is associated with a partition of the

time interval I defined as T := {t0, t1, . . . , tN}, with

0 = t0 < t1 < . . . < tN = T . The time points in T de-

fine the time intervals In := (tn−1tn], n = 1, . . . , N . The

time step length for each interval is ∆tn := tn − tn−1,

n = 1, . . . , N and the characteristic time step length for

the partition T is ∆t := max
1≤n≤N

(∆tn).

The test space is defined as

Ŵ := {w ∈ L2(I;V0) : w|In ∈ L2(In;V0) and

ẇ|In ∈ L2(In;V ′0), n = 1, . . . , N}.

Functions in Ŵ when restricted to a time interval In
have the same regularity as functions in W . However,

functions in Ŵ are allowed to be discontinuous-in-time

at the points in T . This property is needed to define a

time marching scheme, computing the solution succes-

sively in each time interval.

Using these notations, the space-time weak form of

problem (1) reads: find U = [uu,uv] ∈ W ×W such

that

B(U,W) = L(W) ∀W := [wu,wv] ∈ Ŵ × Ŵ , (4)

where the bilinear form B(·, ·) and the linear functional

L(·) are defined as

B(U,W) :=

∫
I

m(u̇v + a1uv,wv) dt

+

∫
I

a(uu + a2uv,wv) dt+m(uv(0),wv(0))

+

∫
I

a(u̇u − uv,wu) dt+ a(uu(0),wu(0)),

L(W) :=

∫
I

l(t; wv) dt

+ a(u0,wu(0)) +m(v0,wv(0)),

where

a(v,w) :=

∫
Ω

ε(v) : C : ε(w) dΩ,

m(v,w) :=

∫
Ω

ρv ·w dΩ,

l(t; w) := (f(t),w) + (g(t),w)ΓN ,

and

(v,w) :=

∫
Ω

v ·w dΩ, (v,w)ΓN
:=

∫
ΓN

v ·w dΓ.

The weak problem (4) is a double field formulation, hav-

ing two unknowns, displacements uu and velocities uv,

which are a priori independent. That is, the velocity

uv is not strongly enforced to coincide with u̇u. How-

ever, the relation between displacements and velocities

is weakly imposed by means of the term a(u̇u−uv,wu).

The initial conditions (1d) and (1e) are also weakly

imposed introducing the terms a(uu(0) − u0,wu(0))

and m(uv(0)−v0,wv(0)) respectively. The weak prob-

lem (4) is consistent with the original strong problem (1)

in the sense that the solution u of problem (1) fulfills

B([u, u̇],W) = L(W) ∀W ∈ Ŵ × Ŵ .

The fully discrete version of problem (4) requires

introducing a finite element partition of the domain Ω,

which in the framework of mesh adaptivity is allowed to

be different at each time point in T . The finite element

mesh discretizing the spatial domain Ω associated with

time tn ∈ T is denoted in the following by Pn. The as-

sociated finite element space of continuous, elementwise

polynomials of degree p is referred as VH0 (Pn) ⊂ V0.

The notation emphasizing the dependence on Pn high-

lights the fact that the finite element space depends on

the computational mesh. The upper-script H stands

for the characteristic element size in the mesh and it is

included in the notation to indicate the discrete char-

acter of the finite element space. In the case that differ-

ent values of p have to be accounted for, the notation

is completed adding p as upper-script, e.g. the spaces
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VH,p0 (Pn) and VH,p+1
0 (Pn) are also used in the follow-

ing.

The space meshes Pn are built considering a hier-

archical tree-based mesh refinement strategy [6,8,31].

In this framework, the computational meshes are ob-

tained recursively splitting the elements of an initial

background mesh denoted as Pbg as shown in figure 1.

Thus, VH0 (Pbg) ⊂ VH0 (Pn) for all the spatial meshes

n = 0, . . . , N .

Fig. 1 A hierarchical tree-based technique is used to build
the space meshes Pn, n = 0, . . . , N from the background mesh
Pbg.

The tree-based structure enormously facilitates the

mesh refinement and unrefinement operations as well

as the data transfer between different meshes. How-

ever, this approach requires dealing with a conforming

approximation on an irregular spatial meshes involving

hanging or irregular nodes. A constrained finite element

approximation is used to enforce the continuity of the

finite element solution across the edges of the mesh con-

taining hanging nodes (introducing constraints on the

local basis functions). A detailed description is given in

appendix A.

The fully discrete problem is obtained replacing in

(4) the trial and test spacesW and Ŵ by their discrete

counterparts. For the sake of simplicity and without loss

of generality, the method is presented here for piecewise

linear (in time) trial functions. Hence, the time depen-

dence of the approximations for displacements and ve-

locities corresponds to a linear interpolation inside the

time intervals In (piecewise linear in I). The space de-

pendence is inherited from the spaces VH0 (Pn). The re-

sulting discrete space-time functional spaces read

WH,∆t
u := {w ∈W : w(0) = u0,

w(t) =

N∑
n=0

θn(t)w(tn),

w(tn) ∈ VH0 (Pn), n = 0, . . . , N},

and

WH,∆t
v := {w ∈W : w(0) = v0,

w(t) =

N∑
n=0

θn(t)w(tn),

w(tn) ∈ VH0 (Pn), n = 0, . . . , N},

where θn(t) are the linear shape functions associated

with the time grid T . Note that functions in WH,∆t
u

and WH,∆t
v are continuous piecewise polynomials ful-

filling the initial conditions for displacements and ve-

locities respectively. Functions w ∈ WH,∆t
u are such

that at the points of the time grid, tn ∈ T , they belong

to one of the standard Finite Element spaces, namely

w(tn) ∈ VH0 (Pn). At an intermediate time t ∈ In,

t 6= tn, function w(t) belongs to VH0 (Pn−1) +VH0 (Pn),

that is the space generated by the superposition of the

two meshes Pn and Pn+1, see figure 2. The same holds

for functions inWH,∆t
v .

The fully discrete test space Ŵ
H,∆t

is defined as

Ŵ
H,∆t

:= {w ∈ Ŵ : w|In ∈ P0(In;VH0 (Pn)),

n = 1, . . . , N},

where P0(In;VH0 (Pn)) denotes the space of constant

functions taking values in In and returning a value in

VH0 (Pn). Functions in Ŵ
H,∆t

are continuous piecewise

polynomials in space and piecewise constants in time.

Function w ∈ Ŵ
H,∆t

is such that, for a time t ∈ In,

w(t) ∈ VH0 (Pn), see figure 2. The polynomial depen-

dence in time of functions in Ŵ
H,∆t

is one degree lower

(piecewise constants) than the polynomial dependence

in time of the trial spaceWH,∆t
u (piecewise linear). In

this case, the trial and test spaces have the same num-

ber of degrees of freedom.

Using the discrete trial and test spaces, the fully

discrete problem reads: find Ũ := [ũu, ũv] ∈WH,∆t
u ×

WH,∆t
v such that

B(Ũ,W) = L(W) ∀W ∈ Ŵ
H,∆t

× Ŵ
H,∆t

. (5)

Problem (5) is integrated over the whole space-time

domain Ω × I. However, having selected discontinuous

test functions results in a time marching scheme that

solves successively N problems in the time slabs Ω×In,

n = 1, . . . , N . Note that the step by step computa-

tional methodology resembles the classical time inte-

gration methods based on finite differences (i.e. Crank

Nicholson, Newmark, etc.). In fact, if the mesh does not

change, then the discrete displacements and velocities

ũu and ũv at times tn, n = 1, . . . , N , coincide with the
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Fig. 2 Illustration of two generic functions, w1 ∈WH,∆t
u (left) and w2 ∈ Ŵ

H,∆t
(right), inside the time interval (tn−1, tn+1]

when the time points tn−1, tn and tn+1 have different computational meshes. The active nodes in meshes Pn−1, Pn and
Pn+1 are marked with circles (◦) on the x-t plane.

approximation given by the Newmark method with pa-

rameters β = 1/4 and γ = 1/2, see [2] for a detailed

proof. The actual resolution of problem (5) is detailed

in appendix A.

2.3 Discretization error and error equation

The discretization error associated with Ũ is defined as

E := U− Ũ = [eu, ev] = [u− ũu, u̇− ũv] ∈W ×W ,

where eu and ev are the errors in displacements and

velocities respectively. The error E fulfills the following

residual equation: find E = [eu, ev] ∈W×W such that

B(E,W) = R(W) := L(W)−B(Ũ,W)

∀W ∈ Ŵ × Ŵ , (6)

which is derived replacing the exact solution U by Ũ+E

in (4) and using linearity of the forms B(·, ·) and L(·).
The residual R(·) fulfils the Galerkin orthogonality

property

R(W) = 0 for all W ∈ Ŵ
H,∆t

× Ŵ
H,∆t

. (7)

Although the Galerkin orthogonality property of the

residual R(·) is not necessary to derive an error estimate

for the error in the quantity of interest, it is required in

the space-time adaptive strategy in order to properly

split the space and time error contributions.

3 Goal-oriented modal-based error assessment

3.1 Quantity of interest and adjoint problem

The proposed a posteriori error estimation adaptive

strategy aims at assessing and controlling the discretiza-

tion error E measured using some specific quantity of

interest. The quantity of interest is defined by means of

a bounded lineal functional LO :W ×W −→ R which

extracts a single representative scalar value of the whole

space-time solution, namely

LO(W) := LOu (wu) + LOv (wv), (8)

where LOu : W −→ R and LOv : W −→ R are linear

functionals representing quantities of interest for dis-

placements and velocities respectively.

The estimation of the value se := LO(E) requires

introducing an auxiliary problem associated with the

functional LO(·), usually denoted by adjoint or dual

problem. The variational form of the adjoint problem

reads: find Ud := [ud
u,u

d
v ] ∈W ×W such that

B(W,Ud) = LO(W) ∀W ∈ Ŵ × Ŵ . (9)

The adjoint solution characterizes the quantity of inter-

est LO(·) in the sense that, if Ud is available, then the

functional LO(·) coincides with B(·,Ud), and in par-

ticular the computable quantity L(Ud) is equal to the

quantity of interest LO(U).

In practice, the functional LO(·) is selected with the

same structure as L(·), namely

LOu (wu) := a(uO,wu(T )) and (10a)

LOv (wv) :=

∫ T

0

(fO(t),wv(t)) dt

+

∫ T

0

(gO(t),wv(t))ΓN dt+m(vO,wv(T )), (10b)

where fO, gO, vO and uO are the data characterizing

the quantity of interest. The functions fO and gO ex-

tract global or localized averages of velocities in Ω and

ΓN, respectively, integrated over the whole time interval

[0, T ]. The fields vO and uO play the role of weighting
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functions to compute averages of velocities and strains

at the final simulation time T .

For the description of LO(·) given in (10), the weak

adjoint problem (9) is equivalent to the following strong

equation for the adjoint displacement ud,

ρ(üd − a1u̇d)−∇ · σd(ud) = −fO in Ω × I, (11a)

ud = 0 on ΓD × I, (11b)

σd(ud) · n = −gO on ΓN × I, (11c)

ud = uO at Ω × {T}, (11d)

u̇d = vO at Ω × {T}, (11e)

with the constitutive law

σd(ud) := C : ε(ud − a2u̇d). (12)

The strong problem (11) has the same structure as

the original one (1) except that the terms affected by

a1 and a2 have opposite sign and the conditions (11d)

and (11e) are stated for t = T instead that for t = 0

(final conditions instead of initial). Thus, the adjoint

problem is solvable and stable if integrated backwards

in time. The change of sign in the time direction brings

the adjoint problem back to the same features and prop-

erties as the direct one.

3.2 Error representation

The adjoint problem allows rewriting the error in the

quantity of interest in terms of residuals, combining the

original and adjoint problems. Indeed, taking W = Ud

in the error equation (6) and using the definition of the

adjoint problem, the following representation for se is

found

se := R(Ud). (13)

This error representation is useful because states that

the error in the quantity of interest can be exactly com-

puted if the adjoint solution Ud is available. Moreover,

in an error estimation setup where the exact adjoint

solution is not known, replacing Ud by a computable

approximation Ũd in (13) gives an accurate approxi-

mation of the error in the quantity of interest

se ≈ R(Ũd) =: s̃e. (14)

The scalar estimate s̃e provides a single scalar quan-

tity accounting both for the total error associated with

the space and time discretizations and therefore, it does

not directly provide enough information to adapt sep-

arately the space and time discretizations.

The error representation (13) is rewritten in such a

way that the contributions of the space and time dis-

cretization errors are separated. This is achieved by in-

troducing projection operators ΠH and Π∆t associ-

ated with the space and time discretizations.

The spatial projection ΠH is defined for a func-

tion in W ∈ Ŵ × Ŵ and provides a function which is

discrete in space. The spatial discretization (the mesh)

varies along the time but it is constant in a time inter-

val In. Thus, the operator ΠH is defined for t ∈ In,

n = 1, . . . , N , as

[ΠHW](t) := [πHn wu(t),πHn wv(t)],

being πHn the standard interpolation operator from V0

into VH0 (Pn). On the other hand, the projection in time

operator Π∆t maps the time-dependent function W ∈
Ŵ × Ŵ into a piecewise constant in time function.

This projection is defined by taking the average of its

displacement and velocity components inside each time

interval In

[Π∆tW]|In := [π∆tn wu,π
H
n wv],

where

π∆tn w :=
1

meas(In)

∫
In

w dt.

Remark 1. Figure 3 illustrates the projection opera-

tors ΠH and Π∆t using a generic function W ∈ Ŵ ×
Ŵ. Function ΠHW belongs to the space Ŵ

H
× Ŵ

H
,

where

Ŵ
H

:= {w ∈ Ŵ : w|In ∈ L2(In;VH0 (Pn)), and

ẇ|In ∈ L2(In; (VH0 (Pn))′) n = 1, . . . , N}.

Note that ΠHW is discrete in space: for each particu-

lar time t ∈ I, function [ΠHW](t) belongs to one of the

discrete finite elements spaces VH0 (Pn)×VH0 (Pn). How-

ever, the time description of ΠHW is infinite dimen-

sional: for a given x ∈ Ω, ΠHW(x, ·) ∈ L2(I)×L2(I).

On the other hand, the function Π∆tW belong to

Ŵ
∆t
× Ŵ

∆t
, where

Ŵ
∆t

:= {w ∈ Ŵ : w|In ∈ P0(In;V0),

n = 1, . . . , N}.

Note that Π∆tW is piecewise constant in time, but

its spatial description is infinite dimensional, namely

Π∆tW(·, t) ∈ V0 × V0.

Once the space and time projections are introduced,

the space and time errors are separated adding the value

R(ΠHUd)−R(ΠHUd) +R(ΠHΠ∆tUd) in the right

hand side of (13) (the latter term vanishes due to the
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Fig. 3 Illustration of the projection operators ΠH and Π∆t. The figure displays (one field of) the original function W ∈
Ŵ × Ŵ inside the time intervals In = (tn−1, tn] and In+1 = (tn, tn+1] (top) along with its projections in space and time

ΠHW ∈ ŴH × ŴH
(left) and Π∆tW ∈ Ŵ∆t × Ŵ∆t

(right).

Galerkin orthogonality property becauseΠHΠ∆tUd ∈
Ŵ

H,∆t
× Ŵ

H,∆t
). That is,

se = R(Ud −ΠHUd)︸ ︷︷ ︸
=: ses

+R(ΠH(Ud −Π∆tUd))︸ ︷︷ ︸
=: set

. (15)

The terms ses and set are associated with the space and

time discretization errors respectively. Note that ses tends

to zero as the space discretization is refined because

ΠHUd tends to Ud. Similarly, set tends to zero with ∆t

because Π∆tUd tends to Ud. The space and time error

components ses and set are used as refinement indicators

because they can be reduced independently by respec-

tively enriching the space and time discretizations.

The space and time splitting is straightforwardly

transformed to the estimated version of the error s̃e,

replacing Ud by the computable approximation Ũd in

equation (15), namely

s̃e = s̃es + s̃et , (16)

where s̃es := R(Ũd −ΠHŨd) and s̃et := R(ΠHŨd −
ΠHΠ∆tŨd) are the computable space and time error

contributions.

3.3 Modal-based adjoint approximation

The error estimate s̃e is computable once the adjoint ap-

proximation Ũd is available. Typically, the adjoint ap-

proximation is computed using the same code used for

the original problem (1), i.e. using direct time-integration

methods, see reference [2]. An alternative approach pro-

posed in [30] considers modal analysis to compute the

adjoint approximation. The modal-based strategy is par-

ticularly well suited for some particular quantities of in-

terest and allows effectively computing and storing the

adjoint problem. In that case, the adjoint solution is

stored for each vibration mode instead of for each time

step.

Modal analysis requires introducing the semidiscrete

equation (discrete in space but exact in time) associ-

ated with the adjoint problem (11). Consequently, a

discrete version of the functional space V0 is required.

The semidiscrete problem is defined using the finite el-

ement space VH,p+1
0 (Pbg), that stands for the finite el-

ement space associated with the mesh Pbg of degree of

interpolation p + 1 (a p-refined version of VH0 (Pbg)).

Having a p+ 1 degree approximation of the adjoint so-

lution, Ũd, precludes the Galerkin orthogonality effect

and the corresponding underestimation of the error, see

[30]. Recall that, along the adaptive process, the back-

ground mesh is used as the base to build up all the

adapted meshes by local refinement. Thus, the repre-

sentation of Ũd in the adapted mesh is simplified if Ũd

is in VH,p+1
0 (Pbg) .

With these definitions, the semidiscrete problem reads:

find ud,H,p+1(t) ∈ VH,p+1
0 (Pbg) verifying the final con-

ditions ud,H,p+1(T ) = uO and u̇d,H,p+1(T ) = vO and

such that for all t ∈ I

m(üd,H,p+1(t)− a1u̇d,H,p+1,w)

+ a(ud,H,p+1(t)− a2u̇d,H,p+1(t),w) =

− lO(t; w) ∀w ∈ VH,p+1
0 (Pbg), (17)

where lO(t; w) := (fO(t),w) + (gO(t),w)ΓN
.
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Equation (17) leads to an algebraic system of sec-

ond order ordinary differential equations which is con-

veniently rewritten using the eigenvalues and eigenfunc-

tions of the problem: find (ω̃, q̃) ∈ R×VH,p+1
0 (Pbg) such

that

a(q̃,w) = ω̃2m(q̃,w) ∀w ∈ VH,p+1
0 (Pbg). (18)

Note that the number of eigenpairs solution of this

problem is the number of degrees of freedom in the fi-

nite element space VH,p+1
0 (Pbg), denoted by Ndof . The

eigenpairs are sorted from low to high frequencies, namely

ω̃1 ≤ ω̃2 · · · ≤ ω̃Ndof
, and the eigenfunctions are normal-

ized to be orthonormal with respect the mass product,

i.e.

m(q̃i, q̃j) = δij , 1 ≤ i, j ≤ Ndof. (19)

The semidiscrete approximation ud,H,p+1 is expressed

as a linear combination of the eigenfunctions q̃i

ud,H,p+1(x, t) =

Ndof∑
i=1

q̃i(x)ỹi(t). (20)

Thus, the new unknowns of the problem are the time-

dependent coefficients ỹi(t), i = 1, . . . , Ndof . The repre-

sentation in terms of the unknowns ỹi(t) given in (20)

allows uncoupling the system (17) into a set of ordinary

differential equations, namely

¨̃yi − [a1 + a2(ω̃i)
2] ˙̃yi + (ω̃i)

2ỹi = l̃i, (21a)

yHi (T ) = ũi, (21b)

ẏHi (T ) = ṽi, (21c)

where the r.h.s. terms li, ui and vi are computed using

the data characterizing the quantity of interest (10) and

the eigenfunction q̃i

l̃i(t) := (fO(t), q̃i) + (gO(t), q̃i)ΓN ,

ũi := m(uO, q̃i) and ṽi := m(vO, q̃i). (22)

The time dependent coefficients ỹi(t), i = 1, . . . , Ndof ,

may be computed analytically for many particular cases

of the forcing data. The particular solution for constant-

in-time data is given in [30]. Therefore the value of the

adjoint solution ud,H,p+1 at any time t ∈ I is easily re-

constructed from the computed eigenfunctions q̃i and

the analyticaly computed time-dependent functions ỹi(t)

using expression (20).

In practice, it is not feasible to compute all the

eigenpairs (ω̃i, q̃i), i = 1, . . . , Ndof and consequently the

modal expansion (20) has to be truncatied to the first

M � Ndof terms, namely

ũd(x, t) :=

M∑
i=1

q̃i(x)ỹi(t). (23)

The number of required vibration modes M has

to be selected such that the truncated high frequency

modes (for i > M) are negligible. That is, M is such

that ũd is a good approximation to ud,H,p+1. This is

equivalent to assume that for i > M the values of l̃i,

ũi and ṽi, as defined in (22), are close to zero, and

consequently ỹi(t) ≈ 0. This is guaranteed if the data

fO, gO, uO and vO are well captured by the expansion

of the first M eigenvectors. Consequently, a quantity

of interest can be easily treaded with the modal-based

approach if its associated data fO, gO, uO and vO are

well captured by the expansion of the first M eigen-

functions.

Once the computable adjoint approximation ũd is

available, the double field approximation Ũd used in

the error estimate s̃e given in (14) is readily defined as

Ũd := [ũd, ˙̃ud].

4 Space-time Adaptivity

4.1 Adaptivity framework

The space-time adaptive strategy aims at finding a time

discretization T and a space discretization Pn at each

time point tn ∈ T such that 1) they keep the error se

below a user-prescribed tolerance setol and 2) they are

optimal in the sense that they minimize the compu-

tational cost. In practice, the accuracy prescription is

enforced for the estimated error and the property which

is actually achieved is

|s̃e| ≤ setol. (24)

Changing the space discretization at each time step

tn ∈ T is not computationally affordable. This is be-

cause remeshing operations, matrix assembly and data

transfer between different meshes are costly operations

and cannot, in general, be performed at each time step.

Here, an adaptive strategy organized in time-blocks,

similar to the one proposed in reference [5], is adopted

in order to reduce the number of mesh changes.

The blockwise adaptive strategy consist in splitting

the time interval I into Nbk time intervals (or time

blocks) The time interval I is split into Nbk time inter-

vals (or time blocks)

Ibkm :=

(
T

Nbk
(m− 1),

T

Nbk
m

]
, m = 1, . . . , Nbk.

The blockwise adaptive strategy consists taking the same

space mesh inside each time interval Ibkm , this mesh is

denoted as Pbk
m for m = 1, . . . , Nbk, see figure 4. Note

that with this definition the computational meshes Pn
associated with the time points tn ∈ Ibkm are such that
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Pn = Pbk
m . A generic element of the mesh Pbk

m is de-

noted by Ωmk , k = 1, . . . , N el
m, where N el

m is the number

of elements in Pbk
m .

Additionally, the time step length is assumed to be

constant inside the intervals Ibkm and denoted by ∆tbkm .

Consequently, the time step length ∆tn associated with

times tn ∈ Ibkm are such that ∆tn = ∆tbkm , see figure 4.

Fig. 4 The space mesh is assumed to be constant inside the
time intervals Ibk

m . Analogously, the time step length is taken
constant inside each interval Ibkm .

Following this approach and notation, the adaptive

strategy is reformulated as computing the optimal space

meshes Pbk
m and time step lengths ∆tbkm , for all the time

intervals Ibkm , m = 1, . . . , Nbk such that the associated

numerical solution fulfills (24).

Once the adjoint solution is computed and stored

in the p + 1 version of the background mesh (keeping

the same geometry and topology but increasing the de-

gree of polynomials from p to p + 1), the main stages

of the adaptive procedure are summarized as follows.

The numerical solution is computed sequentially start-

ing from the first time block Ibk1 until the last one IbkNbk .

In each time slab Ibkm , the numerical solution is com-

puted and the corresponding local error contributions

are estimated. The computed solution in Ibkm is accepted

or rejected using the information given by the local er-

ror contributions. The specific acceptability criterion is

detailed later. If the solution is accepted, the loop goes

to the following time interval Ibkm+1. Else, the space or

time discretization (or both) associated with the inter-

val Ibkm are adapted using the local error information

and the solution is re-computed in Ibkm . The process of

adapting the discretization and computing the numer-

ical solution is repeated in the interval Ibkm until the

solution is accepted.

The forthcoming subsections describe in detail 1)

the local error contributions driving the adaptive pro-

cess, 2) the criterion used to accept or reject the solution

in each interval Ibkm and 3) how to adapt the space and

time discretizations when required.

4.2 Local error contributions

The space and time error estimates s̃es and s̃et are de-

composed into contributions associated with the time

blocks Ibkm , m = 1, . . . , Nbk, namely

ηsm := RIbkm (Ũd −ΠHŨd), and

ηtm := RIbkm (ΠH(Ũd −Π∆tŨd))

such that

s̃es =

Nbk∑
m=1

ηsm and s̃et =

Nbk∑
m=1

ηtm.

The local residual RIbkm (·) is the restriction of the resid-

ual R(·) to the time interval Ibkm ,

RIbkm (W) :=

∫
Ibkm

[(f ,wv) + (g,wv)ΓN
] dt

−
∫
Ibkm

m( ˙̃uv + a1ũv,wv) dt

+

∫
Ibkm

a(ũu + a2ũv,wv) dt

−
∫
Ibkm

a( ˙̃uu − ũv,wu) dt.

The indicator ηtm is used to decide if the time dis-

cretization inside Ibkm has to be modified. The criteria

on wether the time grid has to be modified and how it

has to be modified are presented in section 4.3.

The value of ηsm is the indicator used to decide if

the space mesh Pbk
m in the time interval Ibkm has to

be further adapted. Again, the detailed criteria are in-

troduced in section 4.3. In the case the mesh is to be

adapted, the required local error indicators are obtained

by restricting the space integrals involved in ηsm to the

elements Ωmk . That is,

ηsm,k := RΩmk ×Ibkm (Ũd −ΠHŨd),

where

RΩmk ×Ibkm (W) :=

∫
Ibkm

[
(f ,wv)Ωmk + (g,wv)∂Ωmk ∩ΓN

]
dt

−
∫
Ibkm

m( ˙̃uv + a1ũv,wv)Ωmk dt

+

∫
Ibkm

a(ũu + a2ũv,wv)Ωmk dt

−
∫
Ibkm

a( ˙̃uu − ũv,wu)Ωmk dt.
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Note that the error estimate s̃e is expressed as the

sum of the local error contributions defined above

s̃e =

Nbk∑
m=1

(Nel
m∑

k=1

ηsm,k

)
+

Nbk∑
m=1

ηtm.

4.3 Acceptability and remeshing criteria

Following references [2,5], the total target error setol is

split into two error targets, αss
e
tol and αts

e
tol, associ-

ated with the space and time errors. The coefficients αs

and αt are two user-defined positive values such that

αs + αt = 1 used to balance the space and time contri-

butions to the total error. This leaves a free parameter

to be tuned by the user, who must decide the amount of

the total error setol assigned to the space and time dis-

cretizations. Discussing the optimal values for αs and

αt is beyond the scope of this paper.

Thus, in order to achieve the accuracy prescription

stated in (24), the adaptive strategy is designed aiming

at finding a numerical solution such that

|s̃es | ≤ αss
e
tol and |s̃et | ≤ αts

e
tol. (25)

Note that (25) guarantees that equation (24) holds,

because

|s̃e| = |s̃es + s̃et | ≤ |s̃es |+ |s̃et | ≤ αss
e
tol + αts

e
tol = setol.

The conditions (25) are more restrictive than (24).

This is because in (24) s̃es and s̃es with different sign

may cancel each other. The error compensation is not

accounted for in (25) and therefore the resulting crite-

rion is more demanding.

The error contributions are assumed to be uniformly

distributed in time. That is, the space and time error

tolerances, αss
e
tol and αts

e
tol, are divided into equal con-

tributions associated with each time block Ibkm . Thus,

the solution is considered to be acceptable if

|ηsm| ≤
αss

e
tol

Nbk
, (26a)

|ηtm| ≤
αts

e
tol

Nbk
. (26b)

If the restrictions (26) hold, then the inequalities (25)

are fulfilled, because

|s̃es | =
∣∣∣Nbk∑
m=1

ηsm

∣∣∣ ≤ Nbk∑
m=1

|ηsm| ≤ αss
e
tol and

|s̃et | =
∣∣∣Nbk∑
m=1

ηtm

∣∣∣ ≤ Nbk∑
m=1

|ηtm| ≤ αts
e
tol.

(27)

Similarly as when splitting the space and time contri-

butions, criteria (26) are stronger than (25). This is

more relevant for large values of Nbk, because the ef-

fect of the triangular inequalities in the equations (27)

is more important. Thus, the adapted numerical solu-

tion might be very conservative if the number of blocks

Nbk is large.

An additional condition is added to (26) in order to

allow unrefinement (mesh coarsening). Note that the

conditions (26) indicate only if the solution is accept-

able and, if not, if the mesh has to be refined. They

do not provide a criterion to unrefine the discretization

when the error indicators ηsm and ηtm are small enough.

Following reference [2], a lower bound based acceptabil-

ity criterion is added to (26):

βs
αss

e
tol

Nbk
≤ |ηsm| , (28a)

βt
αts

e
tol

Nbk
≤
∣∣ηtm∣∣ , (28b)

where the coefficients βs and βt are two user-defined

values such that βs, βt ∈ [0, 1). If the solution does not

fulfill condition (28b), then the time discretization is

modified (in this case unrefined). If (28a) is violated,

then the space mesh is modified and it is expected to

be globally coarsened. However, the space mesh adap-

tion is performed locally and may result in refining

some parts of the domain while others are unrefined.

The space remeshing criterion is described below. The

coarsening criterion (28) is only checked once for each

time block. This is because the need of unrefining the

space or the time grid is expected to be detected with

the first discretization. Moreover, checking for unrefin-

ing at each adaptive step may result in an unstable

scheme.

As previously said, conditions (26) and (28) are the

criteria allowing to decide if the numerical solution is

accepted or rejected inside the interval Ibkm . If conditions

(26) and (28) hold (or only (26) after the first adaptive

iteration), then the solution is accepted. Otherwise, the

space and/or time discretizations are modified.

The time adaptivity is carried out, depending on

the value of ηtm, by either refining the discretization

by halving the time step ∆tbkm (if (26b) is violated) or

doubling it (if (28b) is violated). If both (26b) and (28b)

hold, the time discretization is unchanged.

If either (26a) or (28a) are not fulfilled, the space

mesh is to be modified. Then, local criterion is required

to decide which elements have to be refined or unre-

fined, depending on the value of the local indicators

ηsm,k, k = 1, . . . , N el
m (for a given m = 1, . . . , Nbk). Sim-

ilarly as for the time discretization, the elements to be

refined are subdivided (the element size divided by two)

while the elements to be coarsened are collapsed with

the neighboring elements, doubling the element size. In
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order to set up a space remeshing criterion, the optimal

mesh is assumed to yield a uniform error distribution.

Thus, the local versions (restricted to the contributions

associated with element Ωmk ) of the conditions (26a)

and (28a) read

γmβs
αss

e
tol

NbkN el
m

≤
∣∣ηsm,k∣∣ ≤ γm αss

e
tol

NbkN el
m

, (29)

where

γm :=

∑Nel
m

k=1 |ηsm,k|∣∣∣∑Nel
m

k=1 η
s
m,k

∣∣∣ ≥ 1.

The coefficient γm is introduced in order to mitigate

the cancellation effect, see reference [9]. It is worth not-

ing that introducing the factor γm does not introduce

a distortion in the criterion: if all the local element er-

ror contributions fulfill (29), then equation (28a) holds.

This is shown by noting that

|ηsm| =
∣∣∣Nel

m∑
k=1

ηsm,k

∣∣∣ =
1

γm

(Nel
m∑

k=1

|ηsm,k|
)

and therefore

βs
αss

e
tol

Nbk
=

1

γm

(Nel
m∑

k=1

γmβs
αss

e
tol

NbkN el
m

)
≤ 1

γm

(Nel
m∑

k=1

|ηsm,k|
)

= |ηsm|

and

αss
e
tol

Nbk
=

1

γm

(Nel
m∑

k=1

γm
αss

e
tol

NbkN el
m

)
≥ 1

γm

(Nel
m∑

k=1

|ηsm,k|
)

= |ηsm|.

The complete space-time adaptive strategy is sum-

marized in algorithm 1.

5 Numerical Examples

5.1 Example 1: perforated plate under impulse loading

This example illustrates the performance of the pro-

posed space-time adaptive strategy in a 2D wave prop-

agation problem. The computational domain Ω is a per-

forated rectangular plate, Ω := (−0.5, 0.5)×(0, 0.5)\Ω0

m2, with Ω0 := {(x, y) ∈ R2 : x2+(y−0.25)2 ≤ 0.0252 }
m2, see figure 5. The plate is clamped at the bottom

side and the horizontal displacement is blocked at both

Data:
Problem statement: Problem geometry (Ω, ΓN, ΓD),
final time (T ), material data (E, ν, ρ), loads and
initial conditions (f , g, u0, v0).
Problem discretization: background computational
mesh (Pbg).
Error control: data defining the quantity of interest
(fO, gO, uO, vO) and number of vibration modes M .
Adaptivty parameters: Number of time blocks (Nbk),
prescribed error (setol), error splitting coefficients
(αs, αt), unrefinement parameters (βs, βt).

Result: Numerical approximation Ũ and error
estimate s̃e fulfilling |s̃e| ≤ setol.

// Modal analysis

Generate higher order space VH,p+1
0 (Pbg);

Compute the eigenpairs (ω̃i, q̃i), i = 1, . . . ,M in the

space VH,p+1
0 (Pbg);

// Adjoint problem (modal solution)

Compute the values l̃i, ũi, ṽi (using fO, gO, uO, vO

and q̃i, i = 1, . . . ,M) ;
Compute the time dependent functions ỹi(t) (using

l̃i, ũi, ṽi and ω̃i, i = 1, . . . ,M) ;
// Problem computation, error assessment and

adaptivity

Initialize discretization: Pbk
1 = Pbg, ∆tbk1 = T/Nbk;

for m = 1 . . . Nbk do
repeat

// Compute solution and error estimate

Compute solution Ũ in the time interval Ibkm
and the error indicators ηsm, ηsm,k and ηtm;

// Mesh adaptivity

if The acceptability criteria for ηsm or ηtm are
not fulfilled then

Refine/unrefine the spatial mesh Pbk
m

(using ηsm,k) and/or the time step ∆tbkm
(using ηtm);

end

until The acceptability criteria for ηsm and ηtm
are fulfilled ;
Set initial discretization for the next time interval:
Pbk
m+1 = Pbk

m , ∆tbkm+1 = ∆tbkm ;

end

Algorithm 1: Algorithm for problem approxima-

tion with error control and space-time mesh adap-

tivity.

vertical sides. The plate is initially at rest, u0 = v0 = 0,

and loaded with the time dependent traction

g(t) =

{
−g(t)e2 on Γg,

0 elsewhere,
(30)

where Γg := (−0.025, 0.025)×{0.5} m, e2 := (0, 1) and

g(t) is the impulsive time-dependent function defined in

figure 5 with parameters gmax = 30 Pa and tg = 0.005

s. No body force is acting in this example, f = 0. The

material properties of the plate are Young’s modulus

E = 8/3 Pa, Poisson’s ratio ρ = 1/3, the density ρ = 1

kg/m3 and the damping coefficients a1 = 0 s−1, a2 =

10−4 s. The final simulation time is T = 0.25 s.
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Fig. 5 Example 1: Definition of the problem geometry (top)
and time-dependence of the external load (bottom).

The background mesh Pbg for the quadtree remesh-

ing strategy is plotted in figure 6. Note that only half of

the domain is discretized due to the problem’s symme-

try by introducing proper symmetry boundary condi-

tions. The finite element spaces VH,10 (Pn), n = 1, . . . , N ,

used for solving the direct problem are build using bi-

linear elements (quadrilaterals with 4 nodes, i.e. p = 1)

while the finite element space for the adjoint, VH,20 (Pn),

is build using serendipity elements (quadrilaterals with

8 nodes, i.e. p = 2).

Fig. 6 Example 1: Background mesh Pbg with 2452 elements
for the quadtree remeshing strategy and for the adjoint prob-
lem approximation. Only half of the domain is discretized due
to the problem’s symmetry.

The quantity of interest considered in this example

is a weighted average of the vertical velocities in the

region

ΩO := {(x, y ∈ R2 : x2 + (y − 0.1)2 < 0.0752)} m2,

see figure 5. Specifically, the quantity of interest is de-

fined as

LO(W) := m(vO,wv(T )),

corresponding to fO = gO = uO = 0 in (8). The

weighting function vO with local support inΩO is vO =

[0, vaux(
√
x2 + (y − 0.1)2)] for

vaux(r) =


10

3πR2ρ

(
2
( r
R
− 1
)3

+ 3
( r
R
− 1
)2)

for 0 ≤ r ≤ R,
0 for R < r,

R = 0.075 being the radius of the region of interest.

Note that since the x-component of vO is zero, the

quantity of interest gives an average of the vertical ve-

locity in the region of interest ΩO and at time t = T .

The adjoint problem associated to the quantity of

interest is approximated using a truncated modal based

approximation where only the first 60 vibration modes

are kept. This corresponds to slightly modify the quan-

tity of interest of the problem. In the following, the

function vO in the exact quantity of interest LO(W) =

m(vO,wv(T )) is replaced by its projection onto the first

M = 60 vibration modes q̃i, i = 1, . . . ,M , namely

vO,M (x) :=

M∑
i=1

viq̃i(x), where vi := m(vO, q̃i).

Figure 7 shows that the truncated discrete approxima-

tion vO,M provides a fairly good approximation of the

exact weighting function vO. It is worth noting that the

quantity of interest is no longer strictly measuring only

the vertical velocity of the solution and has no longer a

local support. However, as can bee seen, the influence

of the horizontal velocity and the average outside ΩO

are small.

The exact solution U (and therefore the exact quan-

tity of interest s) are unknown in this example. The

exact solution is replaced here by an overkill approxi-

mation of the problem, namely Uovk, computed with

a finite elements mesh with N el = 627712 elements

and N = 1600 time steps. The overkill discretization is

finest discretization considered in this example. The ex-

act value of the quantity of interest is approximated us-

ing the overkill approximation, s ≈ sovk := LO(Uovk) =

2.4227 · 10−2 m/s.

The behavior of the adaptive strategy is first ana-

lyzed for a prescribed target error setol = 5 · 10−5 m/s.

The user-prescribed parameters for the simulation are

set to Nbk = 20 for the number of space-time blocks,

αs = 0.9 and αt = 0.1 for the coefficients used to split

the total error budget into space and time and βs = 0.5

and βt = 0.1 for the lower bound factors.
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Fig. 7 Example 1: Exact (top) and truncated (bottom) weighting functions vO defining the quantity of interest LO(·).

Figure 8 shows several snapshots of an adapted nu-

merical solution obtained with the proposed method-

ology. The quantity of interest associated with the nu-

merical solution is s̃ := LO(Ũ) = 2.4242 · 10−2 m/s

with an assessed error of s̃e = −1.5756 · 10−5 m/s.

Thus the prescribed target error setol = 5 · 10−5 m/s

is fulfilled quite sharply, that is, |s̃e| ≤ setol, and |s̃e|
and setol are of the same order of magnitude. More-

over, the error with respect the overkill solution, namely

seovk := sovk − s̃ = −1.5125 · 10−5 m/s, is also be-

low (in absolute value) the user-defined value setol. Note

that the assessed error is a good approximation of the

overkill error. That is, the effectivity of the error esti-

mate, s̃e/seovk = 1.041, is fairly close to the unity.

Figure 9 shows the history of the number of ele-

ments and the time step length along the adapted com-

putation. Note that the number of elements increases

with time as the elastic waves spread along the plate

and therefore a larger area has to be refined. The time

step is refined only when the external load is acting at

the beginning of the computation. Additionally, figure

9 also shows the number of iterations performed in each

space-time block until reaching convergence. As can be

seen, convergence is reach for the whole computation

with at most four iterations per block.

The performance of the space-time adaptive strat-

egy is also tested versus a uniform refinement. Three

non-adapted (uniform) approximations are computed

using three different space meshes and three different

number of time steps N , see table 1. The initial space

mesh corresponds to the background mesh showed in

figure 6 which is recursively refined to obtain the other

spatial meshes (each quadrilateral element is recursively

subdivided into four new ones). The ratio H/∆t, or

equivalently the ratio N/(N el)
1
2 , is kept constant in the

three uniform approximations. This is to ensure that

the space and time errors are reduced at the same ratio

taking into account that the space discretization error

scales as H2 and the time discretization error as ∆t2,

see [9] and [2].

Table 1 Example 1: Space and time discretizations for the
three uniform solutions.

Nel # nodes N

1 2452 2547 100
2 9808 9997 200
3 39232 39609 400

On the other hand, the space-time adaptive com-

putations are performed prescribing similar total tar-

get errors as the errors obtained using uniform refine-

ments. Specifically, four different simulations are per-

formed setting setol = 1 · 10−3, 5 · 10−4, 1 · 10−4 and

5·10−5 m/s combined with three different values for the
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Fig. 8 Example 1: Snapshots of the computed solution (magnitude of velocities in m/s) and the computational mesh at several
time points for the adapted solution verifying the prescribed target error setol = 5 · 10−5 m/s.

number of blocks, Nbk = 5, 10 and 20. The additional

parameters of the adaptive procedure are αs = 0.9,

βs = 0.5 and αt = βt = 0.1. The computational com-

plexity of the simulations is measured here using the

number of space-time elements (or cells), namely

N cells :=

Nbk∑
m=1

N el
m

T

Nbk∆tbkm
,

corresponding to sum up the number of space-time ele-

ments used inside each time interval Ibkm ,m = 1, . . . , Nbk.

Note that if a single space mesh is considered in the

whole simulation time, then the number of space-time

cells N cells coincides with N cells = N elN .

Figure 10 shows the convergence of the estimates.

The estimates obtained for the uniform refinement meet

the expected a-priori convergence rate of −2/3. This

expected convergence rate is obtained considering the

a-priori estimates of the error se ∝ H2 + (∆t)2, the re-

lation N cells ∝ (H2∆t)−1 and noting that if the ratio

H/∆t is constant, thenH and∆t can be written asH =

κH? and ∆t = κ∆t?, where H? and ∆t? are the ele-

ment and step length of the coarsest uniform discretiza-

tion and κ is a refinement factor. It is then straightfor-

ward that, se ∝ (N cells)−2/3 since (H2∆t)2/3 = C(H2+

(∆t)2) ∝ se for C = ((H∗)2∆t∗)2/3)/((H∗)2 + (∆t∗)2).

From figure 10 and table 2 it can be seen that be-

sides converging at the correct convergence rate, the

estimates are really accurate since their effectivities are

very close to 1.

As expected, the use of an adaptive refinement strat-

egy leads to better approximations for the quantity of

interest with less computational cost. The adapted so-

lutions have a lower error than the uniform approxima-

tions for the same number of space-time cells.

5.2 Example 2: 2D structure

Consider the structure given in figure 11. The struc-

ture is initially at rest (u0 = v0 = 0), clamped at the

supports and subjected to the time-dependent traction

g =

{
g(t)e1 on Γg,

0 elsewhere.

The set Γg is the region of the Neumann boundary

where the load is applied, vector e1 := (1, 0) is the

first cartesian unit vector and function g(t) describes
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Table 2 Example 1: Performance of the estimate for both the uniform and adaptive strategies. The overkill value of the
quantity of interest is sovk = 2.4227 · 10−2 m/s obtained with Ncell = 1004339200 space-time elements.

setol [m/s] Ncell s̃ [m/s] s̃e [m/s] seovk [m/s] s̃e/seovk
u

n
if

o
rm – 245200 2.4498·10−2 -2.7186·10−4 -2.7180·10−4 1.000

– 1961600 2.4299·10−2 -7.1606·10−5 -7.2345·10−5 0.989
– 15692800 2.4244·10−2 -1.7813·10−5 -1.7659·10−5 1.008

N
b
k

=
5 1·10−3 220680 2.4498·10−2 -2.7186·10−4 -2.7180·10−4 1.000

5·10−4 499920 2.4391·10−2 -1.6337·10−4 -1.6403·10−4 0.996
1·10−4 2211720 2.4261·10−2 -3.3703·10−5 -3.4096·10−5 0.988
5·10−5 5511720 2.4236·10−2 -1.0823·10−5 -8.9160·10−6 1.213

N
b
k

=
1
0 1·10−3 245200 2.4498·10−2 -2.7186·10−4 -2.7180·10−4 1.000

5·10−4 391280 2.4313·10−2 -8.6724·10−5 -8.6226·10−5 1.005
1·10−4 5158120 2.4251·10−2 -2.4351·10−5 -2.4455·10−5 0.995
5·10−5 7074440 2.4244·10−2 -1.5773·10−5 -1.7111·10−5 0.921

N
b
k

=
2
0 1·10−3 279900 2.4439·10−2 -2.1096·10−4 -2.1219·10−4 0.994

5·10−4 462735 2.4351·10−2 -1.2062·10−4 -1.2446·10−4 0.969
1·10−4 6732720 2.4261·10−2 -3.6194·10−5 -3.4268·10−5 1.056
5·10−5 9080750 2.4242·10−2 -1.5756·10−5 -1.5125·10−5 1.041
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Fig. 9 Example 1: History of the number of elements (top)
and of the time step (middle). Number of iterations to achieve
convergence in each block (bottom).

the time evolution of g given in figure 11. The traction
g is the only external loading in this example (that is

f = 0). Other material and geometric parameters uni-
vocally defining the problem are reported in table 3.

5.5 6 6.5 7
−5

−4.8

−4.6

−4.4

−4.2

−4

−3.8

−3.6

3

2

Fig. 10 Example 1: Error convergence for the adapted and
uniform computations. The adapted solutions are obtained
using three different values of the number of time blocks Nbk.

This example focusses in the quantity of interest

LO(W) :=
1

meas(Γg)
(e1,wu(T ))Γg , (31)

which is the average of the final displacement in the

boundary Γg where the external load is applied. Note
that this quantity is not accounted in the generic quan-
tity of interest given in equation (10). Consequently,
quantity (31) is rewritten as

LO(W) = a(uO,wu(T )),
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P1
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P3

P5

P4

P6

P7

Fig. 11 Example 2: Problem statement (top) and time de-
pendent loading at Γg (bottom).

Table 3 Example 2: Problem parameterization

Geometry (data in m)

P1 := (0.55, 0.00)
P2 := (0.45, 0.45)
P3 := (0.45, 0.55)
P4 := (0.45, 1.45)
P5 := (0.55, 1.55)
P6 := (−0.55, 1.55)
P7 := (−0.45, 1.45)
Γg := {−0.55} × (1.45, 1.55)

Physical properties

E = 2 · 1011 Pa
ν = 0.2
ρ = 8 · 103 kg/m3

a1 = 0 s−1

a2 = 1 · 10−5 s
T = 2 · 10−3 s

External load

gmax = 108 Pa
tg = 2 · 10−4 s

where uO is the exact solution of the static linear elas-

ticity problem: find uO ∈ V0 such that

a(uO,w) =
1

meas(Γg)
(e1,w)Γg , ∀w ∈ V0. (32)

After this reformulation, the quantity of interest is a

particular case of the ones included in (10) and there-

fore the associated adjoint problem has the same struc-

ture as the original one. In particular, the function

uO is the final displacement condition for the adjoint

problem. The other forcing data for the adjoint are

zero in this case, namely vO = fO = gO = 0. Note

that function uO is solution of an infinite dimensional

problem and therefore it is unknown. In this exam-

ple, the unknown function uO is replaced by the com-

putable one ũO obtained by solving problem (32) in the

discrete space VH,p+1
0 (Pbg) associated with the back-

ground mesh of the adaptive process. Three different

background meshes are used in this example, see figure

12.

Background mesh 1

Background mesh 2

Background mesh 3

Fig. 12 Example 2: Background meshes used in this exam-
ple. The number of elements in each of them is 800, 3200 and
12800 respectively.

The quantity of interest (31) is well suited for the

modal based approach becasue the weighting function

ũO is well captured by the expansion of few eigenvec-

tors. This ensures that the adjoint solution is also prop-



Modal-based goal-oriented adaptivity for structural dynamics 17

erly represented using few vibration modes. The projec-
tion of ũO into the expansion of the first M eigenvectors
is defined as

ũO,M :=
M∑
i=1

ũiq̃i,

where ũi := m(ũO, q̃i), i = 1, . . . ,M . Thus, the relative
error in the projection is

εM :=
||ũO − ũO,M ||m
||ũO||m

,

where || · ||m := (m(·, ·))1/2. Figure 13 shows the error
εM as a function of the number of eigenvectors M . Note
that the error εM rapidly decreases as M increases. The
number of eigenvectors considered in this example is
M = 60 and the associated projection error is ε60 =
5.94 · 10−5.

10 20 30 40 50 60

−4

−3 5

−3

−2 5

−2

−1 5

Fig. 13 Example 2: Error in projecting the weighting
function ũ into the expansion of the first M eigenvectors
q̃1, . . . , q̃M . The eigenvectors q̃i and the weighting function
ũO are computed in the space VH,p+1

0 (Pbg) associated with
the background mesh number 2 plotted in figure 12.

The exact value of the quantity of interest is un-
known in this example. An overkill approximation of
the quantity of interest, sovk := 1.2086 · 10−3 m, is
computed using a finite element mesh of N el = 204800
elements and N = 6400 time steps. This discretization

is the richest one considered in this example.

Figures 14 and 15 show snapshots of the computed
solution and the computational mesh at several time
points. This particular solution is obtained using the
background mesh number 2, taking Nbk = 10 time
blocks and prescribing the error to the value setol =
5 · 10−6 m. The coefficients used to split the total error
budget into space and time are αs = 0.9 and αt = 0.1

and the unrefinement factors are taken as βs = 0.5
and βt = 0.1. The computed quantity of interest is
s̃ = 1.2069 · 10−3 m and the assessed error is s̃e =
8.8942 · 10−7 m. Note that the restriction |s̃e| ≤ seuser is
also fulfilled in this example. Moreover, the error with

respect the overkill solution, seovk = 1.7516 · 10−6 m, is
also below the user-defined value setol.

Figure 16 shows the history of number of elements
in the computational mesh and the time step length
for this particular computation. Note that the number
of mesh elements increases in time because the stress
waves spread in the structure. Note also that the time
step length is smaller at the beginning of the compu-
tation due to the effect of the external load acting at
the initial simulation time. Figure 16 also shows the
number of iterations until achieve convergence in each
time block. Note that the number of iterations is always
equal or less than four.
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Fig. 16 Example 2: Evolution along the adaptive process
of the number of elements (top) and the time step (center).
Number of remeshing iterations to achieve convergence in
each block (bottom).

The performance of the adaptive strategy is com-
pared with respect to uniform mesh refinement. To this

end, the uniform refined computations are obtained us-
ing the meshes plotted in figure 12 and three different
number of time steps N , see table 4. Note that the ra-
tio H/∆t is also kept constant in this example to ensure
that the space and time errors are reduced at the same
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Fig. 14 Example 2: Snapshots of the computed solution (magnitude of velocities in m/s) at several time points.

rate. On the other hand, the adapted solutions are ob-

tained using Nbk = 10 and four different values of the

prescriber error, setol = 5 · 10−5, 1 · 10−5, 5 · 10−6 and

1 ·10−6 m. The dependence of the results on the chosen

background mesh is studied by computing the adaptive

solutions using the three background meshes plotted in

figure 12. Twelve adaptive solutions are computed all

together (one for each value of the prescribed error and

one for each background mesh).

Table 4 Example 2: Space and time discretizations for the
three uniform solutions.

Nel # nodes N

1 200 300 200
2 800 1000 400
3 3200 3600 800
4 12800 13600 1600

Table 5 and figure 17 and give the results for the

adaptive and non-adaptive solutions. The convergence

curves in figure 17 shows that the adapted solutions

achieve a smaller error than the non-adapted solutions

for the same number of space-time elements N cells. The

effectivity of the error estimate, namely s̃e/se, is also

shown in figure 17. Note that the computed effectivity

(i.e. the quality of the error estimate) is better the finer

is the background mesh. This is because the adjoint

problem and the extractor ũO are computed using the

background mesh. Thus, the finer the background mesh,

the better the quality of the adjoint and, therefore, the

better the quality of the error estimate. Note that the

computed effectivities in this example are slightly worse

than the ones obtained in the first numerical example.

Even though, the adaptive computations give more ac-

curate results than the non-adapted solutions for the

same number of space-time elements.

6 Closure

This article presents a goal-oriented space-time adap-

tive methodology for linear elastodynamics. The strat-

egy aims at computing an optimal space-time discretiza-

tion such that the numerical solution has an error in the

quantity of interest below some user-defined tolerance.

The space-time adaptation is driven by a goal-oriented
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Fig. 15 Example 2: Snapshots of the computational mesh at several time points.

Table 5 Example 2: Performance of the estimate for both the uniform and adaptive strategies (for four different background
meshes). The overkill value for the quantity of interest sovk = 1.2086 · 10−3 m is obtained using a uniform spatial mesh of
Ncell = 1310720000 space-time elements.

setol [m] Ncell s̃ [m] s̃e [m] seovk [m] s̃e/seovk

u
n

if
o
rm – 40000 1.1914·10−3 1.4558·10−5 1.7262·10−5 0.843

– 320000 1.2037·10−3 3.6897·10−6 4.8973·10−6 0.753
– 2560000 1.2068·10−3 1.3679·10−6 1.8601·10−6 0.735
– 20480000 1.2079·10−3 5.6641·10−7 7.0564·10−7 0.802

b
g
.

m
es

h
1 5·10−5 28696 1.2048·10−3 1.4506·10−6 3.8845·10−6 0.373

1·10−5 86181 1.2068·10−3 3.0110·10−7 1.8337·10−6 0.164
5·10−6 153536 1.2067·10−3 4.2316·10−7 1.9152·10−6 0.220
1·10−6 239936 1.2067·10−3 5.8772·10−7 1.9421·10−6 0.302

b
g
.

m
es

h
2 5·10−5 90400 1.2025·10−3 4.9028·10−6 6.1079·10−6 0.802

1·10−5 113004 1.2066·10−3 1.0330·10−6 2.0820·10−6 0.496
5·10−6 174672 1.2069·10−3 8.8942·10−7 1.7516·10−6 0.507
1·10−6 1212673 1.2079·10−3 1.5956·10−7 7.4439·10−7 0.214

b
g
.

m
es

h
3 5·10−5 368000 1.2056·10−3 2.5760·10−6 3.0675·10−6 0.839

1·10−5 380800 1.2063·10−3 1.8447·10−6 2.3364·10−6 0.789
5·10−6 435724 1.2071·10−3 1.3130·10−6 1.5426·10−6 0.851
1·10−6 3024438 1.2083·10−3 1.5152·10−7 3.7024·10−7 0.409

b
g
.

m
es

h
4 5·10−5 1472000 1.2065·10−3 1.9816·10−6 2.1207·10−6 0.934
1·10−5 1523200 1.2073·10−3 1.1698·10−6 1.3089·10−6 0.893
5·10−6 1676800 1.2077·10−3 7.8304·10−7 9.2219·10−7 0.849
1·10−6 4461564 1.2084·10−3 1.8781·10−7 2.2230·10−7 0.844
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Fig. 17 Example 2: Error convergence for the adapted and
uniform computations (top) and computed effectivity of the
error estiamte (bottom). The adapted solutions are obtained
using three background meshes.

error estimate that requires approximating an auxiliary

adjoint problem.

The major novelty of this work is computing the ad-

joint solution with modal analysis instead of the stan-

dard direct time-integration methods. The modal-based

approach is particularly efficient for some quantities of

interest, because it allows to efficiently compute and

store the adjoint solution.

The numerical examples show that the proposed

strategy furnishes adapted solutions fulfilling the user-

defined error tolerance. That is, both the assessed and

computed errors are below the user-defined error value.

Moreover, the discretizations obtained with the pro-

posed adaptive strategy are more efficient than the ones

obtained with a uniform refinement of all mesh elements

and time steps. The adaptive discretizations provide

more accurate results than uniform remeshing, for the

same number of space-time elements.

The proposed error estimate accounts for both the

space and time discretization errors. The global error

estimate is split into two contributions corresponding

to the space and time errors using the Galerkin orthog-

onality property of the residual. This applies for space-

time finite elements like time-continuous Galerkin meth-

ods. The extension of the approach to tackle other time-

integration schemes, e.g. the ones based on finite differ-

ences and/or explicit methods with lumped mass ma-

trix, requires further investigation.
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A Linear system to be solved at each time step

This appendix details how the time-continuous Galerkin ap-
proximation is computed when the space mesh changes be-
tween times slabs.

Recall that the numerical approximation Ũ solution of
the discrete problem (5) is computed sequentially starting
from the first time slab I1 until the last one IN . Specifically,
assuming that the solution at the time-slab In−1 is known,

the approximation Ũ restricted to the slab In is found solving
the problem: find Ũ|In ∈W

H,∆t
u |In ×W

H,∆t
v |In such that

∫
In

[
m( ˙̃uv + a1ũv,wv) + a(ũu + a2ũv,wv)

]
dt

=

∫
In

l(t;wv) dt, ∀wv ∈ VH0 (Pn), (33a)

∫
In

a( ˙̃uu − ũv,wu) dt = 0, ∀wu ∈ VH0 (Pn), (33b)

Ũ(t+n−1) = Ũ(tn−1), (33c)

where, for n > 1, Ũ(tn−1) is the solution at the end of the

previous interval In−1 and, for n = 1, Ũ(tn−1 = t0) is de-

fined using the initial conditions, Ũ(t0) = [u0,v0].

From the definition of the discrete spaces WH,∆t
u and

WH,∆t
v , the numerical displacements and velocities ũu and

ũv inside the interval In are expressed as a combination of
the values at times tn−1 and tn, namely

ũu|In = ũu(tn−1)θn−1(t) + ũu(tn)θn(t), (34a)

ũv|In = ũv(tn−1)θn−1(t) + ũv(tn)θn(t). (34b)

Thus, using the initial conditions for the interval (33c), the
values ũu(tn−1) and ũv(tn−1) ∈ VH0 (Pn−1) are known and
the only unknowns to be determined are ũu(tn) and ũv(tn) ∈
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VH0 (Pn). These unknowns are found inserting the represen-
tation (34) in equation (33) and noting that the following
properties of the time-shape functions hold,∫
In

θn−1(t) dt =

∫
In

θn(t) dt =
∆tn

2
and

−
∫
In

θ̇n−1(t) dt =

∫
In

θ̇n(t) dt = 1.

Specifically, [ũu(tn), ũv(tn)] ∈ VH0 (Pn) × VH0 (Pn) is such
that

m(ũv(tn),wv) +
∆tn

2
c(ũv(tn),wv) +

∆tn

2
a(ũu(tn),wv)

= lv,n(wv), ∀wv ∈ VH0 (Pn), (35a)

and

a(ũu(tn),wu)−
∆tn

2
a(ũv(tn),wu)

= lu,n(wu), ∀wu ∈ VH0 (Pn), (35b)

where

lv,n(w) :=

∫
In

l(t;w) dt+m(ũv(tn−1),w)

−
∆tn

2
c(ũv(tn−1),w)−

∆tn

2
a(ũu(tn−1),w),

lu,n(w) := a(ũu(tn−1),w) +
∆tn

2
a(ũv(tn−1),w),

c(v,w) := m(a1v,w) + a(a2v,w).

Note that since the values ũu(tn−1) and ũv(tn−1) are known,
the terms associated with this values are placed in the right
hand side of the equations.

The computation of the terms appearing in the left hand
side of (35) entails no difficulty since all the spatial functions
belong to VH0 (Pn). On the contrary, if different spatial com-
putational meshes are used at times tn−1 and tn, the compu-
tation of the nodal force vectors associated with lu,n(·) and
lv,n(·) involves computing mass and energy products of func-
tions defined in the mesh at time tn−1 and functions defined
in the mesh at time tn, e.g. m(ũv(tn−1),wv).

The use of different spatial meshes is efficiently handled
by solving the discrete problem (35) using the auxiliary union
mesh Pn−1,n containing in each zone of the domain the finer
elements either in Pn−1 or Pn, see figure 18, namely

Pn−1,n := {ω = 4∩4′ for 4 ∈ Pn−1, 4′ ∈ Pn}.

Note that, any function belonging either to VH0 (Pn−1) or
VH0 (Pn) can be represented in the finite element space asso-
ciated to Pn−1,n, namely VH0 (Pn−1,n), without lose of in-
formation. Thus, the products involving functions in different
meshes are efficiently computed after projecting the functions
in the space VH0 (Pn−1,n). However, discretizing problem (35)
using the mesh Pn−1,n requires introducing additional con-
strains to enforce that the computed fields ũu(tn) and ũv(tn)
belong to VH0 (Pn) and not to VH0 (Pn−1,n). That is, prob-
lem (35) leads to the following system of equations when dis-
cretized in the auxiliary finite element mesh Pn−1,n:

Kn −∆tn
2

Kn AT
n 0

∆tn
2

Kn Mn + ∆tn
2

Cn 0 AT
n

An 0 0 0
0 An 0 0



Uu,n
Uv,n
λu,n
λv,n

 =


Fu,n
Fv,n
0
0

 (36)

Pn−1

Pn

Pn−1,n

Fig. 18 Illustration of the computational meshes Pn−1, Pn
and their union Pn−1,n.

where

Fu,n := KnUu,n−1 +
∆tn

2
KnUv,n−1,

Fv,n := (Mn −
∆tn

2
Cn)Uv,n−1

−
∆tn

2
KnUu,n−1 +

∫
In

F(t) dt,

and Cn := a1Mn + a2Kn. The matrices Mn and Kn and
the vector F(t) are the discrete counterparts of the bilin-
ear forms m(·, ·) and a(·, ·) and the linear form l(t; ·) in the
space VH0 (Pn−1,n) and the vectors Uu,n, Uv,n, Uu,n−1 and
Uv,n−1 contain the degrees of freedom of functions ũu(tn),
ũv(tn), ũu(tn−1) and ũv(tn−1) expressed in the discrete
space VH0 (Pn−1,n). Note that the linear constrains AnUu,n =
0 and AnUv,n = 0 are introduced in order to ensure that
the computed fields ũu(tn) and ũu(tn) belong to VH0 (Pn)
and also to impose continuity of the solution at the hang-
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ing nodes, see figure 19. The vectors λu,n and λv,n are the
associated Lagrange multipliers.

Fig. 19 The numerical solution is constrained at the nodes
of the mesh Pn−1,n corresponding to hanging nodes in the
mesh Pn and also at the nodes of Pn−1,n which disappear
in mesh Pn.

Note that system (36) is at the first sight of double size
than the one associated with the Newmark method. However,
system (36) can be rewritten in a more convenient way by
subtracting to the second row of the matrix in (36) the first

row multiplied by ∆tn
2

. That is,


Kn −∆tn

2
Kn AT

n 0

0 Mn + ∆tn
2

Cn +
∆t2

n

4
Kn −∆tn2

AT
n AT

n

An 0 0 0
0 An 0 0



Uu,n
Uv,n
λu,n
λv,n



=


Fu,n

Fv,n − ∆tn
2

Fu,n
0
0

 .
This reformulation allows to compute the velocities separately
from the displacements solving a system of the same size as
the usual system arising in the Newmark method, namely,[
Mn + ∆tn

2
Cn +

∆t2
n

4
Kn AT

n

An 0

] [
Uv,n
λ∗n

]
=

[
Fv,n − ∆tn

2
Fu,n

0

]
,

with λ∗n := λv,n − ∆tn
2
λu,n. Once the velocities Uv,n are

known, the displacements are obtained solving the system[
Kn AT

n

An 0

] [
Uu,n
λu,n

]
=

[
Fu,n + ∆tn

2
KnUv,n

0

]
. (37)
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