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SUMMARY

The paper introduces a methodology to compute strict upper and lower bounds for linear-functional outputs
of the exact solutions of the advection-reaction-diffusion equation. The bounds are computed using implicit
a-posteriori error estimators from stabilized finite element approximations of the exact solution. A new
methodology is introduced, based in the ideas presented in [1] for the Galerkin formulation, that allows
obtaining bounds also for stabilized formulations. This methodology is combined with bothhybrid-flux
andflux-freetechniques for error assessment. The application to stabilized formulations provides sharper
estimates than when applied to Galerkin methods. The best results are found in combination with theflux-
freetechnique.

KEY WORDS: Linear-functional outputs; Exact/guaranteed/strict bounds; Stabilization methods; Error
estimation; Goal-oriented adaptivity; Advection-reaction-diffusion equation.

1. INTRODUCTION

The certification of numerical simulations of partial differential equations is fundamental in
many engineering applications, where end-users aim at obtaining an approximation of a specific
magnitude extracted from the global solution (quantity of interest) with a prescribed accuracy.

Since the mid 2000s, attention has been devoted to provide certified bounds for quantities of
interest [2, 3, 4, 5, 6, 7, 8, 9]. In particular [1] presents a comparison of the performance of two of
the main techniques to compute guaranteed bounds for quantities of interest in the context of the
advection-reaction-diffusion equation: a standard residual type estimator (hybrid-flux) proposed in
[10] and the newflux-freetechnique proposed in [11].

For advection dominated problems, the use of stabilized formulations [12] is of utmost
importance, since Galerkin approximations are often corrupted by spurious node-to-node
oscillations. In the present paper we develop an extension of the techniques presented in [1] to
compute guaranteed bounds for quantities of interest from stabilized approximations of the exact
solution. Thus, strict bounds for quantities of interest are obtained using implicit residual error
estimates, both usinghybrid-flux techniques [13, 14] and theflux-free technique first devised in
[11].
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2. PROBLEM STATEMENT

2.1. Model problem

The steady advection-reaction-diffusion equation reads

−∇ · (ν∇u) +α ·∇u+ σu = f in Ω, (1a)

u = uD onΓD, (1b)

ν∇u · n = g onΓN, (1c)

whereΩ is a plane polygonal domain whose boundary∂Ω is partitioned into two disjoint setsΓD (of
nonzero measure) andΓN, andn is the outward unit normal vector to∂Ω. The datumν is assumed
to be strictly positive andσ is assumed to be non-negative.

The standard variational formulation of the problem consists of findingu ∈ U such that

a(u, v) = ℓ(v) ∀v ∈ V , (2)

where a(·, ·) : H1(Ω)×H1(Ω) → R and ℓ : H1(Ω) → R denote the bilinear and linear forms
respectively defined by

a(w, v) :=

∫

Ω

[
ν∇w ·∇v + (α ·∇w)v + σwv

]
dΩ and ℓ(v) :=

∫

Ω

fv dΩ +

∫

ΓN

gv dΓ,

and U := {v ∈ H1(Ω), v|ΓD
= uD} and V := {v ∈ H1(Ω), v|ΓD

= 0} are the solution and test
spaces,H1(Ω) being the standard Sobolev space.

The data are supposed to be sufficiently smooth and, for simplicity, the coefficientsν, σ and
α are required to be continuous, piecewise polynomials inΩ, uD is assumed to be continuous,
piecewise polynomial onΓD whilef andg are assumed to be piecewise polynomials not necessarily
continuous. That is,f is assumed to be piecewise polynomial on subdomains ofΩ andg is assumed
to be piecewise polynomial on subdomains ofΓN.

The nonsymmetric bilinear forma(·, ·) is continuous and coercive inV . In order to ensure that, it
is assumed that̃σ := σ − 1

2
∇ ·α ≥ 0 in Ω and also that the Dirichlet boundary contains the inflow

boundaries, that isΓ− ⊂ ΓD for Γ− := {x ∈ ∂Ω, α · n < 0}.

2.2. Stabilized finite element approximation

Various stabilization techniques are available for advection-reaction-diffusion problems, all aiming
at precluding oscillations of the finite element approximations without requiring severe mesh
refinement [12]. However, in view of the developments in section4, the streamline upwind Petrov-
Galerkin method (SUPG) is adopted in this work (see remark1 for other possibilities).

The so-called SUPG finite element method is described using atriangulation of the computational
domainΩ into nel triangles whereΩk denotes a general triangle,k = 1, . . . , nel, and the finite-
dimensional spacesUh ⊂ U andVh ⊂ V consisting of the usual continuous, piecewise-polynomial
functions of degreep ≥ 1.

Then, for a given choice of the stabilization parameter to bespecified, an approximation of the
true solutionu is obtained by seekinguh ∈ Uh such that

a(uh, v) +

nel∑

k=1

∫

Ωk

τPk RP (uh)α ·∇v dΩ = ℓ(v) ∀v ∈ Vh, (3)

where
RP (w) = −∇ · (ν∇w) +α ·∇w + σw − f

denotes the strong residual of the differential equation (1a) and τPk is the local stabilization
parameter associated with elementΩk. Note that the superscriptP is used to denote quantities
related with the original problem described by equations (1) or (3).



STRICT OUTPUT BOUNDS FROM STABILIZED SOLUTIONS 3

Remark 1
Although all the developments herein concern the SUPG method, the presented theory is also valid,
as it stands, for other stabilization techniques of the form

a(uh, v) +

nel∑

k=1

∫

Ωk

τPk P(uh)α ·∇v dΩ = ℓ(v) ∀v ∈ Vh, (4)

whereP(·) is a certain given operator. Two widely used choices areP = RP , which yields the
aforementioned consistent SUPG method, andP(v) = α ·∇v, which yields the streamline-upwind
(SU) method. Note that although the present work covers somewidely used stabilization techniques,
it does not cover the full spectrum of stabilization techniques. For instance, the only consistent
stabilization technique covered by this approach is the SUPG method, and thus for instance the
Galerkin-least-squares (GLS) method is beyond the scope ofthe work. Other specific techniques
should be developed to broaden the extent of the work.

2.3. Goal oriented simulations: Outputs and adjoint problem

The purpose of the present work is to develop a posteriori error estimators providing computable
bounds for a given quantity of interest (also calledoutput) and giving local error indicators. The
local information is used to drive adaptive refinement procedures. The final aim is to achieve the
prescribed accuracy in the approximations of the quantities of interest.

When it comes to goal-oriented error estimation, controlling a global measure of the error in
the field solutionu is not necessarily relevant. In this case, the interest is placed in certifying the
accuracy of the desired output of the simulation, which depends onu, and is denoted bys := ℓO(u).
In particular, the objective is to provide upper and lower bounds fors, namely

slb ≤ s ≤ sub.

Here, the quantities of interest are restricted to depend linearly onu

ℓO(u) :=

∫

Ω

fOu dΩ +

∫

ΓN

gOu dΓ, (5)

but other quantities of interest may also be considered [1, 4, 15]. That datafO is assumed to
be piecewise polynomial on subdomains ofΩ andgO is assumed to be piecewise polynomial on
subdomains ofΓN.

One of the key ingredients in developing strategies to compute bounds for the outputs is the
definition of an auxiliary problem, denotedadjointproblem [1, 10, 16, 14, 17]. The variational form
of the adjoint problem consists of findingψ ∈ V such that

a(v, ψ) = ℓO(v) ∀v ∈ V ,

which is equivalent to determineψ such that

−∇ · (ν∇ψ)−α ·∇ψ + (σ −∇ · α)ψ = fO in Ω, (6a)

ψ = 0 onΓD, (6b)

ν∇ψ · n+α · nψ = gO onΓN. (6c)

Analogous to the direct (or primal) problem, the adjoint problem is solved numerically using the
SUPG method. Thus,ψh ∈ Vh is such that

a(v, ψh)−

nel∑

k=1

∫

Ωk

τDk RD(ψh)α ·∇v dΩ = ℓO(v) ∀v ∈ Vh, (7)

where
RD(w) = −∇ · (ν∇w) −α ·∇w + (σ −∇ · α)w − fO

is the strong residual of the differential equation (6a) andτDk is the stabilization parameter associated
with the adjoint problem and the elementΩk. The choice of the stabilization parameter both for the
primal and adjoint problem is addressed in section6.
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3. ENERGY REFORMULATION: REPRESENTATION OF THE OUTPUT BOUNDS

Bounds for the quantity of interests = ℓO(u) can be recovered fromstandard Galerkin
approximations of the primal and adjoint problems using thewell-known inequality

ℓO(uh)−
1

2
‖κes −

1

κ
εs‖2 ≤ ℓO(u) ≤ ℓO(uh) +

1

2
‖κes +

1

κ
εs‖2, (8)

where‖·‖ is the energy norm induced by the symmetric counterpart of the bilinear forma(·, ·),
es andεs ∈ V are the solutions of the symmetrized residual equations andκ ∈ R is an arbitrary
non-zero scalar parameter [14, 10, 1].

To be specific, letas(v, w) := (a(w, v) + a(v, w))/2 be the symmetric counterpart ofa(·, ·). Then,
‖v‖2 = as(v, v) = a(v, v) is generally referred to as the energy norm, andes ∈ V andεs ∈ V , which
are often dubbed assymmetricprimal and adjoint errors, are the solution of the residual equations

as(es, v) = ℓ(v)− a(uh, v) =: RP(v) ∀v ∈ V , (9)

and
as(εs, v) = ℓO(v)− a(v, ψh) =: RD(v) ∀v ∈ V , (10)

respectively. Note that problems (9) and (10) are a modified symmetric version of the standard
residual problems. In the standard residual problems characterizing the primal and adjoint errors,
e := u− uh andε := ψ − ψh, the right hand side is the same as in equations (9) and (10), that is the
weak primal and adjoint residuals associated with the approximationsuh andψh, RP(·) andRD(·) .
However the bilinear forma(·, ·) in the left hand side of the standard residual equations is replaced
by its symmetric counterpartas(·, ·).

Although inequality (8) does not directly yield a computable expression for the bounds of s,
because it entails the solution of two global infinite dimensional boundary value problems, namely
(9) and (10), the obligation to exactly solve these two problems can be easily removed by noting
that it is sufficient to compute strict upper bounds of the energy norms‖κes ± 1/κεs‖. A complete
description of the procedure for the construction of these bounds is presented in [10] and [1], where
the bounds are computed usinghybrid-fluxandflux-freeimplicit residual a-posteriori error estimates
respectively.

Hence, it is possible to compute bounds for a quantity of interest s = ℓO(u) given standard
Galerkin approximations of the primal and adjoint problems, uh andψh. However, the techniques
providing the bounds fors are not directly applicable when the approximationsuh andψh are
computed using stabilized formulations.

The issues addressed in this article are: (i)can one obtain upper and lower bounds for the quantity
of interest using stabilized approximations of the primal and adjoint problems, and if so,(ii) is it
possible to extend the a posteriori error estimates given in[10] and [1] allowing to compute strict
computable bounds?

The main difficulty of adapting the existing techniques to the use of stabilized methods is caused
by the fact that in this case the weak primal and adjoint residuals fail to verify the standard
orthogonality condition –RP(v) andRD(v) are not necessarily zero forv ∈ Vh, – which is required
both to derive inequality (8) and to formulate the residual type estimation strategies using a domain
decomposition technique. Fortunately, a simple workaround allows to overcome this problem by
introducing two straightforward modifications of the standard procedures. First, a similar expression
to (8) holds by introducing some additional terms accounting forthe non-orthogonality of the primal
residual with respect to the finite element spaceVh. Second, the error estimation strategies yielding
strict upper bounds for‖κes ± 1/κεs‖2 are modified to handle error equations where the residuals,
r.h.s of equations (9) and (10), do not verify the Galerkin orthogonality property.

The following result shows how inequality (8) is modified to account for the non-orthogonality
of the residuals. The proof of this result is omitted here since it is analogous to the proof of theorem
1 in [1] – the only difference being that the terma(e, ψh) = RP(ψh) appearing in the bounds does
not necessarily vanish when working with stabilized approximations for the primal problem.
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Theorem 1
Let es andεs ∈ V be such that for anyv ∈ V

as(es, v) = RP(v) and as(εs, v) = RD(v).

Then,

ℓO(uh) +RP(ψh)−
1

4
‖κes −

1

κ
εs‖2 ≤ ℓO(u) ≤ ℓO(uh) +RP(ψh) +

1

4
‖κes +

1

κ
εs‖2,

and therefore

ℓO(uh) +RP(ψh)−
1

4
‖κes −

1

κ
εs‖2ub ≤ ℓO(u) ≤ ℓO(uh) + RP(ψh) +

1

4
‖κes +

1

κ
εs‖2ub, (11)

where||v||ub represents an upper bound for the value||v||.

Note that the above theorem is valid even if the approximations uh andψh are not computed
using the SUPG finite element method, since no assumptions are made on these approximations.
The above theorem is, then, a generalization of the boundinginequality (8) used to obtain bounds for
outputs from Galerkin approximations of the primal and adjoint problems, where no requirements
onuh andψh are done.

The importance of the above theorem is that it reduces the problem of obtaining upper and lower
bounds fors to obtaining upper bounds for the energy norm of the symmetric errors in the direct and
adjoint problem. Using this result, a procedure to obtain bounds fors may be sketched as follows:

1. Compute the SUPG finite element approximation of the primal problem: finduh ∈ Uh such
that

a(uh, v) +

nel∑

k=1

∫

Ωk

τPk RP (uh)α ·∇v dΩ = ℓ(v) ∀v ∈ Vh.

2. Introduce the adjoint problem associated with the selected output and compute its SUPG finite
element approximation: findψh ∈ Vh such that

a(v, ψh)−

nel∑

k=1

∫

Ωk

τDk RD(ψh)α ·∇v dΩ = ℓO(v) ∀v ∈ Vh.

3. Recover the bounds for the output from the three followingsteps:

3.1 Introduce the modified symmetric versions of the residual problems: findes andεs ∈ V
such that

as(es, v) = RP(v) , as(εs, v) = RD(v) ∀v ∈ V , (12)

whereas(·, ·) is the symmetric counterpart ofa(·, ·)

as(w, v) =

∫

Ω

[
ν∇w ·∇v + σ̃wv

]
dΩ +

1

2

∫

ΓN

α · nwv dΓ. (13)

3.2 Compute the upper and lower bounds fors, slb ≤ s ≤ sub, as

slb := ℓO(uh) +RP(ψh)−
1

4
‖κes −

1

κ
εs‖2ub

sub := ℓO(uh) +RP(ψh) +
1

4
‖κes +

1

κ
εs‖2ub,

where‖v‖ub represents an upper bound for the value of‖v‖ andκ ∈ R is an arbitrary
scalar non-zero parameter.

The computation of strict computable upper bounds for the energy norm forms the subject of next
section. This approach is then used to compute‖κes ± 1/κ εs‖2ub.
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4. UPPER BOUNDS FOR THE ENERGY NORM: COMPLEMENTARY ENERGY
RELAXATION

Consider the auxiliary functionz ∈ V solution of

as(z, v) = R∗(v) ∀v ∈ V , (14)

whereR∗(v) = αRP(v) + βRD(v) for α, β ∈ R. Note thatα = 1 andβ = 0 yieldsz = es and that
α = 0 andβ = 1 yields z = εs. Moreover,α = κ andβ = ±1/κ will be used later to obtain the
required upper bounds for‖κes ± 1/κ εs‖2.

The purpose of this section is to establish a procedure to compute upper bounds of‖z‖2. Note that
the strategies presented in the series of papers [10, 3, 4, 18, 5, 1] may not be directly applied since
they rely on the Galerkin orthogonality property of the residualR∗(·). In this work, two different
approaches to recover upper bounds for‖z‖2 are presented. The first approach is a modification of
[1] which allows to recover bounds for‖z‖2 from SUPG approximations of the primal and adjoint
problems using aflux-freeerror estimation strategy. The second approach consists oftaking some
of the ideas presented in [10] and [19] to be able to recover strict bounds of‖z‖2 usinghybrid-flux
strategies.

Both approaches rely on the use of the standard complementary energy approach. The key idea
is to relax the continuous problem of findingz ∈ V fulfilling equation (14) into obtaining a pair of
dual estimateŝq ∈ [L2(Ω)]2 andr̂ ∈ L2(Ω) such that

∫

Ω

[
νq̂ ·∇v + σ̃r̂v

]
dΩ +

1

2

∫

ΓN

α · nr̂v dΓ = as(z, v) = R∗(v) ∀v ∈ V . (15)

The dual estimateŝq andr̂ are then combined to build up an upper bound for‖z‖. This is stated in
the following theorem (see [1] for a proof).

Theorem 2
Let q̂ ∈ [L2(Ω)]2 and r̂ ∈ L2(Ω) be two dual estimates fulfilling equation (15). Then, an upper
bound for the energy norm of the solutionz of (14) is computed as

‖z‖2 ≤

∫

Ω

[
νq̂ · q̂ + σ̃r̂2

]
dΩ +

1

2

∫

ΓN

α · nr̂2 dΓ. (16)

Moreover the previous inequality turns out to be an equalityfor q̂ = ∇z andr̂ = z.

Theorem2 allows to compute strict upper bounds for‖z‖ recovering two globally equilibrated
dual estimateŝq and r̂, i.e. verifying equation (15). The essential feature of the method is that if
the fieldsf , g, fO andgO are piecewise polynomial, it is possible to determine — amongst all the
dual estimateŝq ∈ [L2(Ω)]2 and r̂ ∈ L2(Ω) verifying equation (15) — two piecewise polynomial
fields verifying equation (15). That is, for a given suitable interpolation degreeq, it is possible to
find q̂ ∈ [P̂q(Ω)]2 andr̂ ∈ P̂q(Ω) verifying equation (15) where

P̂
q(Ω) := {v ∈ L2(Ω), v|Ωk

∈ P
q(Ωk)},

see [10, 20]. A more detailed discussion on the proper choice of the interpolation degreeq is given
in sections4.2and4.3.

Therefore, the computation of strict upper bounds for‖z‖ is reduced to a discrete problem:
determineq̂ ∈ [P̂q(Ω)]2 and r̂ ∈ P̂q(Ω) verifying equation (15). Moreover, for a fixedq ∈ N the
optimal choice is to determinêq andr̂ verifying (15) and minimizing the upper bound

∫

Ω

[
νq̂ · q̂ + σ̃r̂2

]
dΩ +

1

2

∫

ΓN

α · nr̂2 dΓ.

This problem is discrete (with finite number of d.o.f.) but global, that is, affecting the whole domain
Ω. Thankfully, proper domain decomposition techniques allow decomposing the global discrete
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problem into local problems. That is, the piecewise polynomial fields q̂ and r̂ are to be computed
solving local discrete problems.

However, the existing domain decomposition techniques cannot be directly applied if the residual
R∗(·) does not verify the Galerkin orthogonality condition. Thissection considers the two most used
classical domain decomposition techniques – theflux-freeapproach and thehybrid-fluxapproach –
and extends these techniques to be able to deal with non orthogonal residuals.

Recall that theflux-freeis based on the partition-of-unity property which is used tolocalize the
problems inΩ to subdomains different than elements. That is, the local problems for the dual
estimateŝq and r̂ are posed over patches of elements. By contrast, in thehybrid-flux approach
the dual estimateŝq andr̂ are computed solving local independent problems in each element of the
mesh. This requires the use of flux-equilibration techniques to properly set the boundary conditions
for the local elementary problems. First, the equilibratedresidual method is used to compute the
equilibrated fluxes at the interelementary edges of the meshand these fluxes are then used as
local boundary conditions to compute the dual estimatesq̂ and r̂ in each triangle of the mesh.
The advantage of theflux-freeapproach is that the local problems are self-equilibrated and therefore
it avoids the use of flux-equilibration techniques.

4.1. Modified Galerkin orthogonality property

Recall that in the case thatuh andψh are not computed using the standard Galerkin method, the
residualsRP(v) andRD(v), and thusR∗(v), do not verify the Galerkin orthogonality property, that
is, alsoR∗(v) is not necessarily zero forv ∈ Vh.

However, from equations (3) and (7), the primal and adjoint residuals satisfy

RP(v) −

nel∑

k=1

∫

Ωk

τPk RP (uh)α ·∇v dΩ = 0 ∀v ∈ Vh, (17)

and

RD(v) +

nel∑

k=1

∫

Ωk

τDk RD(ψh)α ·∇v dΩ = 0 ∀v ∈ Vh, (18)

respectively.
These equations – which may be seen as a modified orthogonality of the weak residuals – are

an essential tool to develop the error estimation strategies presented in this section. Henceforth,
equations (17) and (18) will be named after modified orthogonality properties.

Nota that multiplying equations (17) and (18) by the coefficientsα andβ respectively, yield the
subsequent modified orthogonality of the combined residualR∗(·)

R∗(v) +

nel∑

k=1

∫

Ωk

(
−ατPk RP (uh) + βτDk RD(ψh)

)
α ·∇v dΩ = 0 ∀v ∈ Vh. (19)

4.2. Local computation of the dual estimatesq̂ and r̂ using aflux-freeapproach

This section is devoted to detail the computation of the piecewise polynomial dual estimatesq̂ and
r̂ using theflux-freeapproach proposed in [11]. The strategy proposed in [1] can not be directly
applied since the residuals are not orthogonal toVh. However, a simple workaround is proposed,
using the modified orthogonality properties of the primal and adjoint residuals, equations (17), (18)
and (19).

Let xi i = 1, . . . , nnp denote the vertices of the elements (triangles) in the computational mesh
(thus linked toUh) andφi denote the corresponding linear shape functions, which aresuch that
φi(xj) = δij . The support ofφi is denoted byωi and it is called the star centered in, or associated
with, vertexxi. It is important to recall that the linear shape functions based on the vertices are a
partition of unity, namely

nnp∑

i=1

φi = 1. (20)



8 N. PARÉS, P. Dı́EZ AND A. HUERTA

Let alsoV(ωi) andP̂q(ωi) denote the local restrictions of the spacesV andP̂q(Ω) to the starωi.
Formally any functionv ∈ V(ωi) or v ∈ P̂q(ωi) is not defined in the whole domainΩ but only in the
starωi. However, here anyv ∈ V(ωi) or v ∈ P̂q(ωi) is naturally extended toΩ by setting the values
outsideωi to zero. Thus, functions inV(ωi) areH1 functions inωi but generally discontinuous
across the boundary of the starωi, whereas functions in̂Pq(ωi) are piecewise polynomial functions
in the triangles contained inωi vanishing on the elements outsideωi.

The dual estimateŝq andr̂ are computed as

q̂ =

nnp∑

i=1

q̂
i and r̂ =

nnp∑

i=1

r̂i (21)

where the local estimateŝqi ∈ [P̂q(ωi)]2 and r̂i ∈ P̂q(ωi), defined inside the starωi, are such that
for anyv ∈ V(ωi)

∫

ωi

[
νq̂i ·∇v + σ̃r̂iv

]
dΩ +

1

2

∫

ΓN∩∂ωi

α · nr̂iv dΓ = R∗(φiv) +
∑

Ωk⊂ωi

∫

Ωk

f⊥
i v dΩ (22)

where
f⊥
i =

(
−ατPk RP (uh) + βτDk RD(ψh)

)
α ·∇φi.

Remark 2
Note that in [1], the r.h.s. of the local problems forq̂i andr̂i is simplyR∗(φiv). If the same r.h.s. is
chosen here, the local problem (22) is not necessarily solvable, that is, it does not necessarily admit
a solution. The new additional term added in the r.h.s. enforces local solvability of the problems
while preserving the global upper bound property.

This new definition of the r.h.s. causes that problems given in equation (22) have at least one
solution. Indeed, ifωi is a star associated with a strictly positive reaction termσ̃|ωi > 0 or it
intersects the Neumann boundary andα · n|ΓN∩∂ωi 6= 0 the solvability of the local equation (22)
is ensured. On the contrary, the kernel of the bilinear operator appearing in the l.h.s. is the one
dimensional space of constants,P0(ωi), and equation (22) is solvable if and only if the compatibility
condition holds, namely

R∗(φic) +
∑

Ωk⊂ωi

∫

Ωk

f⊥
i c dΩ = 0 ∀c ∈ P

0(ωi).

Now, substituting the definition off⊥
i into the previous equation, taking into account thatc is

constant in the starωi and finally noting that the support of the function∇φi is the starωi, yields
that the compatibility condition is equivalent to

0 = cR∗(φi) +
∑

Ωk⊂ωi

∫

Ωk

(
−ατPk RP (uh) + βτDk RD(ψh)

)
α ·∇φic dΩ

= c
[
R∗(φi) +

nel∑

k=1

∫

Ωk

(
−ατPk RP (uh) + βτDk RD(ψh)

)
α ·∇φi dΩ

]

which follows replacingv = φi ∈ Vh in equation (19).

Theorem 3
The dual estimateŝq =

∑nnp

i=1 q̂
i andr̂ =

∑nnp

i=1 r̂
i, whereq̂i andr̂i verify the local problems given

in (22), verify the hypothesis of theorem2 and therefore

‖z‖2 ≤

∫

Ω

[
νq̂ · q̂ + σ̃r̂2

]
dΩ +

1

2

∫

ΓN

α · nr̂2 dΓ.
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Proof
The dual estimateŝq and r̂ verify equation (15) and therefore theorem3 is a straightforward
particularization of theorem2. Indeed, letv ∈ V which implies v|ωi ∈ V(ωi) and consider the
definition of the dual estimates — equation (21) — and the local equations (22) to obtain

∫

Ω

[
νq̂ ·∇v + σ̃r̂v

]
dΩ +

1

2

∫

ΓN

α · nr̂v dΓ

=

nnp∑

i=1

{∫

ωi

[
νq̂i ·∇v + σ̃r̂iv

]
dΩ +

1

2

∫

ΓN∩∂ωi

α · nr̂iv dΓ

}

=

nnp∑

i=1

{
R∗(φiv) +

∑

Ωk⊂ωi

∫

Ωk

f⊥
i v dΩ

}
.

Then, rearranging terms using the linearity of the residualR∗(·), the partition-of-unity property —
equation (20) — and ∑

ωi∩Ωk 6=∅

f⊥
i = 0 (23)

yields the desired result
∫

Ω

[
νq̂ ·∇v + σ̃r̂v

]
dΩ +

1

2

∫

ΓN

α · nr̂v dΓ

=

nnp∑

i=1

{
R∗(φiv) +

∑

Ωk⊂ωi

∫

Ωk

f⊥
i v dΩ

}
.

= R∗(

nnp∑

i=1

φiv) +

nel∑

k=1

∫

Ωk

( ∑

ωi∩Ωk 6=∅

f⊥
i

)
v dΩ = R∗(v).

Equality (23) is easily obtained, noting that since the support of the functionf⊥
i is ωi, the sum may

be extended not only to the stars intersectingΩk but to all the stars, and then rearranging terms:

∑

ωi∩Ωk 6=∅

f⊥
i =

nnp∑

i=1

f⊥
i =

nnp∑

i=1

(
−ατPk RP (uh) + βτDk RD(ψh)

)
α ·∇φi

=
(
−ατPk RP (uh) + βτDk RD(ψh)

)
α ·∇

( nnp∑

i=1

φi
)

=
(
−ατPk RP (uh) + βτDk RD(ψh)

)
α ·∇1 = 0

where the partition-of-unity property — equation (20) — has been used.

The computation of the dual estimatesq̂
i andr̂i verifying equation (22) is done using the same

strategy as in [1]. Note that the only difference between the computation of the estimates when
introducing stabilization techniques is the new term accounting for the non-orthogonality of the
residuals appearing in the local equations. This new added term

∑

Ωk⊂ωi

∫

Ωk

f⊥
i v dΩ,

which vanishes if no stabilization is used,τPk = τDk = 0, involves only a modification of the source
term of the local problem.

Thus, following the notation used in [1], the r.h.s. of equation (22) can be rewritten as

R∗(φiv) =

∫

ωi

f∗
i v dΩ +

∫

ΓN∩∂ωi

g∗i v dΓ−

∫

ωi

νq̂i
h ·∇v dΩ,



10 N. PARÉS, P. Dı́EZ AND A. HUERTA

where the following compact notation is introduced

f∗
i = α

[
φif − φiα ·∇uh − σφiuh − ν∇uh ·∇φi

]

+β
[
φif

O − ψhα ·∇φi − σφiψh − ν∇ψh ·∇φi

]
+ f⊥

i ,

g∗i = αφig + βφig
O and q̂

i
h = αφi∇uh + β(φi∇ψh +

1

ν
φiψhα),

and therefore, introducing the new unknownq̂
⊥i
∗ = q̂

i + q̂
i
h, the strong form to compute the dual

estimateŝq⊥i
∗ ∈ [P̂q(ωi)]2 andr̂i ∈ P̂q(ωi) is,

−ν∇ · q̂⊥i
∗ + σ̃r̂i = f∗

i in ωi

νq̂⊥i
∗ · n+

1

2
α · nr̂i = g∗i on γ ∈ ΓN ∩ ∂ωi

νq̂⊥i
∗ · n = 0 on γ ∈ ∂ωi − {ΓN ∪ ΓD}

ν q̂
⊥i
∗

∣∣∣
Ωk

· nk + ν q̂
⊥i
∗

∣∣∣
Ωl

· nl = 0 on γ ∈ ∂Ωk ∩ ∂Ωl, Ωk,Ωl ⊂ ωi,

wherenk andnl are the outward normal to the elementsΩk andΩl respectively. See [1] for a
detailed derivation of the strong form of the local problem (22).

Remark 3
The strong problem for the dual estimatesq̂

⊥i
∗ ∈ [P̂q(ωi)]2 and r̂i ∈ P̂q(ωi) admits a solution as

long as a proper interpolation degreeq is chosen.
In particular, assumingσ andν to be piecewise constant, solvability is guaranteed if

q ≥ max(deg(g∗i ), deg(f
∗
i ) + 1).

To be more precise, if the Neumann datag and gO are piecewise polynomials of degree
mg in the boundaryΓN, then deg(g∗i ) = mg + 1. Also, if the interior dataf and fO are in
∈ P̂mf (Ω) and the velocity fieldα ∈ [P̂mα(Ω)]2, deg(f∗

i ) = max(mf + 1,mα(p− 1) + 1, p+
1,m2

α(p− 1),mαp,mαmf ). Thus,

q ≥ max(mg + 1,mf + 2,mαp+ 1, p+ 2,m2
α(p− 1) + 1,mαmf + 1), (24)

The previous restriction is the worst case scenario, since depending on the problem to be solved, for
instance for problems without reaction termσ = 0 or without applied Neumann boundary conditions
(or homogeneous ones), some of the restrictions can be removed or weakened. In particular, in
advection-diffusion problems associated toσ = 0, the termq ≥ p+ 2 may be replaced byq ≥ p+ 1.
Also, it is worth noting that the last two terms in equation (24), namelym2

α(p− 1) + 1 and
mαmf + 1, only appear when stabilization techniques are used. Even in this case, for piecewise
constant or linear velocity fields, these terms have no influence in the selection of the interpolation
degreeq.

4.3. Local computation of the dual estimatesq̂ and r̂ usinghybrid-flux techniques

This section is devoted to detail the computation of the piecewise polynomial dual estimateŝq
and r̂ using thehybrid-flux technique described in [13]. In fact this strategy is a modification of
the technique presented in [10] – which provides a tool to compute strict bounds for quantities of
interest for the advection-reaction-diffusion equation using standard Galerkin approximations of the
primal and adjoint problems – based on the strategy developed in [19] – which provides a tool to
compute asymptotic bounds for quantities of interest from SUPG method approximations of the
primal and adjoint problems.

Hybrid-fluxmethods (or equilibrated residual methods) may be seen as a domain decomposition
strategy which allows to decompose the global problem (15) into solving local problems in each
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element of the finite element mesh. This approach is standardand it is widely used in a posteriori
error estimation for steady problems [13, 21, 14]. The key point is to be able to compute equilibrated
fluxes at the interelementary edges of the mesh which are thenused as local boundary conditions for
the local elementary problems. Standard constructions of the equilibrated fluxes require the r.h.s. of
the residual problem given in (15), that is,R∗(·), to be orthogonal to the finite element spaceVh.
However, the strategy proposed in [19], may be used in the context of the SUPG method to provide
a simple workaround to the problem ofR∗(·) being non-orthogonal toVh.

Equilibrated residual methods compute the dual fieldsq̂ andr̂ verifying equation (15), by means
of computing two piecewise polynomial fieldsq̂ ∈ [P̂q(Ω)]2 andr̂ ∈ P̂

q(Ω) such that
∫

Ω

[
νq̂ ·∇v + σ̃r̂v

]
dΩ +

1

2

∫

ΓN

α · nr̂v dΓ = R∗(v) +
∑

γ∈Γh

∫

γ

λ[v] dΓ ∀v ∈ V̂ . (25)

Here, the “broken” spacêV is V̂ := {v ∈ L2(Ω), v|Ωk
∈ H1(Ωk)}, that is, functions in̂V are allowed

to present discontinuities across the edges of the mesh and are not forced to verify the Dirichlet
boundary conditions,Γh denotes the set of all the edges contained in the interior of the mesh or
on the Dirichlet boundary,λ ∈

∏nel

k=1
H− 1

2 (∂Ωk) are the equilibrated fluxes added to the r.h.s. of
equation (25) in order to yield equilibrated and thus solvable local problems in each element and
[v]|γ is the jump of the functionv along the edgeγ if it is an interior edge or[v]|∂Ω = v for the
exterior edges. In order to properly define the jump of a function across the mesh edges, an arbitrary
ordering of the elements of the mesh is introduced andςk is defined as

ςk(x) =

{
−1 x ∈ Ω̄k ∩ Ω̄l, k < l

+1 otherwise.

In this case

[v]|γ =

{
v|Ωk

ςk + v|Ωl
ςl if γ = Ωk ∩ Ωl ∈ Γh

v if γ ∈ ΓD,

where the values ofv|Ωk
and v|Ωl

at the edgeγ are computed in using the traces of the funcions
v|Ωk

andv|Ωl
onγ.

The different existing equilibration techniques differ inthe choice of the equilibrated fluxesλ
which may be computed with an asymptotic complexity that is linear in the number of vertices of
the mesh using, for instance, the procedure proposed by Ladevèze and Leguillon in [13].

It is a relatively simple matter to see that the dual estimates q̂ andr̂ computed from equation (25)
verify equation (15). Indeed, for anyv ∈ V , that is, for anyv in H1(Ω) vanishing on the Dirichlet
boundary of the domain, ∫

γ

λ[v] dΓ = 0

for all γ ∈ Γh, λ ∈
∏nel

k=1 H
− 1

2 (∂Ωk). Therefore, takingv ∈ V ⊂ V̂ in equation (25) yields

∫

Ω

[
νq̂ ·∇v + σ̃r̂v

]
dΩ +

1

2

∫

ΓN

α · nr̂v dΓ = R∗(v) +
∑

γ∈Γh

∫

γ

λ[v] dΓ = R∗(v),

as required in equation (15).
Note that for a given choice of the equilibrated fluxesλ, the dual estimateŝq and r̂ solution of

(25) can be computed solving independent problems posed over the elements of the mesh: find
q̂
k ∈ [Pq(Ωk)]

2 andr̂k ∈ Pq(Ωk) such that
∫

Ωk

[
νq̂k ·∇v + σ̃r̂kv

]
dΩ +

1

2

∫

ΓN∩∂Ωk

α · nr̂kv dΓ = R∗
k(v) +

∫

∂Ωk\ΓN

ςkλv dΓ ∀v ∈ H1(Ωk).

(26)
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Remark 4
It is tacitly assumed that problems given in equation (26) have at least one solution. For elements
Ωk associated with a strictly positive reaction term̃σ|Ωk

> 0 or intersecting the Neumann boundary
andα · n|ΓN∩∂Ωk

6= 0 the kernel of the r.h.s. of equation (26) is empty, and therefore, equation (26)
has a unique solution. On the contrary, the kernel of the r.h.s. are the constant functions. In this case,
the problem is solvable if and only if the following compatibility condition holds:

R∗
k(1) +

∫

∂Ωk\ΓN

ςkλ dΓ = 0, (27)

that is, if the r.h.s. of equation (26) vanishes forv = 1|Ωk
. This previous condition expresses that the

boundary data must be in equilibrium with the interior load so that the local problems are solvable.
This is precisely the required condition for the fluxesλ to be equilibrated.

Remark 5
In order to enforce the compatibility condition, equation (27), the equilibrated fluxesλ, in the case
whereuh andψh are the Galerkin approximations ofu andψ, are forced to verify

R∗(v) +
∑

γ∈Γh

∫

γ

λ[v] dΓ = 0 ∀v ∈ V̂h, (28)

whereV̂h is obtained fromVh relaxing both the Dirichlet homogeneous boundary conditions and
the continuity of the functions across the edges ofΓh. Note that for 1|Ωk

∈ V̂h, the previous
condition yields to the compatibility condition. However,when using the SUPG approximations,
it is not possible to compute a set of equilibrated fluxesλ verifying equation (28) due to the
non-orthogonality of the residualR∗(·) with respect toVh. Indeed, takev ∈ V ⊂ V̂h, then since
[v]|γ = 0 ∀γ ∈ Γh equation (28) becomesR∗(v) = 0 which does not necessarily hold.

Luckily, [19] proposes a simple workaround to this problem. The equilibrated fluxes are forced
to verify

R∗(v) +

nel∑

k=1

∫

Ωk

(
−ατPk RP (uh) + βτDk RD(ψh)

)
α ·∇v dΩ +

∑

γ∈Γh

∫

γ

λ[v] dΓ = 0 ∀v ∈ V̂h,

(29)
instead of equation (28). Note that again for1|Ωk

∈ V̂h, the previous condition yields to the
compatibility condition, since the additional term vanishes forv being constant inside the elements
of the mesh. Moreover, the set of conditions posed by equations (29) are now compatible since for
anyv ∈ Vh ⊂ V̂h,

R∗(v) +

nel∑

k=1

∫

Ωk

(
−ατPk RP (uh) + βτDk RD(ψh)

)
α ·∇v dΩ = 0,

due to equation (19).

Therefore, the strategy to compute the dual estimatesq̂ andr̂ solution of (25), is equivalent to the
strategy proposed in [10], that is, for each element of the mesh, the restriction of the dual estimates
q̂ andr̂ to the element,̂qk andr̂k, are computed solving the local equation (26). The only difference
is that now, the equilibrated fluxes are found solving the modified equation (29).

Remark 6
The strong problem for the dual estimates (26) admits a solution as long as a proper interpolation
degreeq is chosen, see [10]. The same derivation applies in this context since the stabilization term
only affects to the computation of the equilibrated fluxes which again can be taken to be functions of
degreep in the edges of the mesh independently of the stabilization terms. In particular, following
the notation of remark3 it can be stated that

q ≥ max(mg,mf + 1,mαp, p+ 1), (30)
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As in the flux-free context, the previous restriction is the worst case scenario. In particular, the term
q ≥ p+ 1 appears only forσ > 0. Forσ = 0 this restriction turns intoq ≥ p.
Thus, regarding the choice of the interpolation degree of the dual estimates,q, the hybrid-flux
technique presents two advantages: 1) the local problems are not weighted by the linear shape
functionsφi and therefore the minimum value of the local polynomial order, q, is one less than
for the flux-free technique, and 2) the stabilization term plays a role only in computing the
equilibrated fluxes,λ. Thus, the choice of the interpolation degreeq depends linearly onmα (and
not quadratically as in the flux-free case for stabilized techniques).

4.4. Computational cost versus accuracy

This section is devoted to compare the computational effortrequired to solve the local problems for
both the flux-free and the hybrid-flux approach versus the accuracy of the methods. The explanation
given herein, is valid whether the bounds are computed either using stabilized or standard finite
element techniques, since the presented extension does notaffect the computational cost of the
methods. However, this section is included to clarify and illustrate the resemblances/differences of
the two presented strategies.
In both cases, the cost of computing strict upper bounds for quantities of interest is proportional
to the number of vertex nodes in the mesh once the adjoint finite element approximation has been
computed. Indeed, given the finite element approximationuh, the computation of the bounds starts
by solving the adjoint problem using finite elements. In general, both finite element approximations
are computed using the same interpolation degreep, and thus, the first step of the bounding
procedure has the same cost as the primal problem. Given the primal and adjoint finite element
approximations, in the flux-free approach a local problem for each star is solved with a constant
cost that only depends on the interpolation polynomial degreeq of the dual estimates and in the
hybrid-flux approach first a local problem for each star is solved with a constant cost that only
depends on the interpolation polynomial degreep and then a local problem for each element is
solved with a constant cost that only depends on the interpolation polynomial degreeq for the dual
estimates.
Both approaches require looping on the vertex nodes of the mesh and the hybrid-flux approach
requires and extra loop on the elements of the mesh. The cost of the vertex loop for the flux-free
strategy is more expensive than the same loop for the hybrid-flux approach, since the unknowns
for the flux-free local problems are directly the dual estimates (both in the edges and interior
of the triangles) while the unknowns for the hybrid-flux approach in the first vertex-loop stage
are the equilibrated fluxes (polynomials of degreep at the edges of the elements incident to the
node). During the second stage, the hybrid-flux approach unknowns are also the dual estimates
of interpolation degreeq but the advantage is that the problems are solved independently on each
element of the mesh.
Although the cost of the flux-free technique is slightly higher, numerical examples show that
the use of flux-free techniques yields tighter bounds for thequantities of interest. Increasing the
local interpolation degreeq in both approaches improves the bounds since the dual estimates have
more degrees of freedom that can be used to optimize the bounds. However, based on the authors
experience, there is no considerable gain in increasing theinterpolation degreeq, especially in the
flux-free context, see [20]. Thus, it is advisable to use the least possible interpolation degreeq
in both approaches, also in the hybrid-flux approach, since the quality of the bounds is mainly
governed by the quality of the equilibrated fluxes and not by the interpolation degreeq. Even if the
local interpolation degreeq is increased in the hybrid-flux approach, in general this approach is not
able to achieve the accuracy of the flux-free approach, thus,increasing the computational cost does
not yield to the same accuracy.
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5. BOUNDS FOR THE QUANTITY OF INTERESTs = ℓO(u): AN ALGORITHMIC
SUMMARY

According to theorem1upper and lower bounds ofs = ℓO(u) are available once upper bounds of the
energy norm‖z‖ are obtained for the two combinations(α, β) = (κ, 1/κ) and(α, β) = (κ,−1/κ).
The general strategy to obtain these upper bounds is devisedin the previous section. Due to
the linearity of the problem, obtaining the estimates for these two valuesz = κes ± 1/κεs is
equivalent to obtain the estimates forz = es andz = εs separately, that is for the two combinations
(α, β) = (1, 0) and(α, β) = (0, 1).

This section summarizes the main steps to compute bounds forℓO(u) for both theflux-freeand
thehybrid-fluxapproach.

5.1. Computation of the output bounds using theflux-freeapproach

The main steps of the procedure to compute bounds forℓO(u) using theflux-freeapproach are the
following:

1. Compute the primal and adjoint SUPG approximations,uh andψh respectively.
2. For each starωi (associated with nodexi of the mesh) compute the primal and adjoint dual

estimateŝqi
P , q̂

i
D ∈ [P̂q(ωi)]2 andr̂iP , r̂

i
D ∈ P̂q(ωi) such that for allv ∈ V(ωi)

∫

ωi

[
νq̂i

P ·∇v + σ̃r̂iP v
]
dΩ +

1

2

∫

ΓN∩∂ωi

α · nr̂iP v dΓ

= RP(φiv)−
∑

Ωk⊂ωi

∫

Ωk

τPk RP (uh)α ·∇φiv dΩ,

and
∫

ωi

[
νq̂i

D ·∇v + σ̃r̂iDv
]
dΩ +

1

2

∫

ΓN∩∂ωi

α · nr̂iDv dΓ

= RD(φiv) +
∑

Ωk⊂ωi

∫

Ωk

τDk RD(ψh)α ·∇φiv dΩ.

3 Recover the global estimates

q̂P =

nnp∑

i=1

q̂
i
P , r̂P =

nnp∑

i=1

r̂iP and q̂D =

nnp∑

i=1

q̂
i
D, r̂D =

nnp∑

i=1

r̂iD.

4 Compute the three scalar quantities

(ηP )2 :=

nel∑

k=1

ηPk =

nel∑

k=1

∫

Ωk

[
νq̂P · q̂P + σ̃(r̂P )

2
]
dΩ +

1

2

∫

ΓN∩Ωk

α · n(r̂P )
2 dΓ,

(ηD)2 :=

nel∑

k=1

ηDk =

nel∑

k=1

∫

Ωk

[
νq̂D · q̂D + σ̃(r̂D)2

]
dΩ +

1

2

∫

ΓN∩Ωk

α · n(r̂D)2 dΓ,

ηPD :=

nel∑

k=1

ηPD
k =

nel∑

k=1

∫

Ωk

[
νq̂P · q̂D + σ̃r̂P r̂D

]
dΩ +

1

2

∫

ΓN∩Ωk

α · nr̂P r̂D dΓ,

5. Recover the bounds for the outputslb ≤ s ≤ sub as

slb := sh +RP(ψh)−
1

2
ηP ηD +

1

2
ηPD ≤ s ≤ sh +RP(ψh) +

1

2
ηP ηD +

1

2
ηPD =: sub,

(31)
wheresh = ℓO(uh).
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5.2. Computation of the output bounds using thehybrid-fluxapproach

The main steps of the procedure to compute bounds forℓO(u) using thehybrid-fluxapproach are
the following:

1. Compute the primal and adjoint SUPG approximations,uh andψh respectively.
2. ComputeλP andλD solutions of

RP(v)−

nel∑

k=1

∫

Ωk

τPk RP (uh)α ·∇v dΩ +
∑

γ∈Γh

∫

γ

λP [v] dΓ = 0 ∀v ∈ V̂h,

and

RD(v) +

nel∑

k=1

∫

Ωk

τDk RD(ψh)α ·∇v dΩ +
∑

γ∈Γh

∫

γ

λD[v] dΓ = 0 ∀v ∈ V̂h.

3. For each element of the meshΩk compute the primal and adjoint dual estimatesq̂
k
P , q̂

k
D ∈

[Pq(Ωk)]
2 andr̂kP , r̂

k
D ∈ Pq(Ωk) such that for allv ∈ H1(Ωk)

∫

Ωk

[
νq̂k

P ·∇v + σ̃r̂kP v
]
dΩ +

1

2

∫

ΓN∩∂Ωk

α · nr̂kP v dΓ = RP
k (v) +

∫

∂Ωk\ΓN

ςkλ
P v dΓ,

and
∫

Ωk

[
νq̂k

D ·∇v + σ̃r̂kDv
]
dΩ +

1

2

∫

ΓN∩∂Ωk

α · nr̂kDv dΓ = RD
k (v) +

∫

∂Ωk\ΓN

ςkλ
Dv dΓ.

3 Compute the three scalar quantities

(ηP )2 :=

nel∑

k=1

ηPk =

nel∑

k=1

∫

Ωk

[
νq̂P · q̂P + σ̃(r̂P )

2
]
dΩ +

1

2

∫

∩Ωk

α · n(r̂P )
2 dΓ,

(ηD)2 :=

nel∑

k=1

ηDk =

nel∑

k=1

∫

Ωk

[
νq̂D · q̂D + σ̃(r̂D)2

]
dΩ +

1

2

∫

∩Ωk

α · n(r̂D)2 dΓ,

ηPD :=

nel∑

k=1

ηPD
k =

nel∑

k=1

∫

Ωk

[
νq̂P · q̂D + σ̃r̂P r̂D

]
dΩ +

1

2

∫

∩Ωk

α · nr̂P r̂D dΓ,

4. Recover the bounds for the outputslb ≤ s ≤ sub as

slb := sh +RP(ψh)−
1

2
ηP ηD +

1

2
ηPD ≤ s ≤ sh +RP(ψh) +

1

2
ηP ηD +

1

2
ηPD =: sub,

(32)
wheresh = ℓO(uh).

6. NUMERICAL EXAMPLES

This section presents the performance of the estimates providing the bounds for quantities of
interest in three numerical examples, which are defined in a two-dimensional domain and which
are discretized using conforming piecewise linear finite elements.

In all the examples, both the primal and adjoint approximationsuh andψh are computed both
using the standard Galerkin Finite Element method and the SUPG method. When using stabilization
techniques, as the SUPG method, the choice of the stabilization parameter plays a major role, since
the accuracy of the discrete solution is highly influenced bythis choice. The appropiate selection of
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this parameter is not discussed here since the primary goal of this work is to show the performance
of the error estimation strategy. Thus, the stabilization parameter is chosen following [22]. However,
the error estimation procedure is valid for any choice of thedefinition of the stabilization parameter,
see for instance [23, 24, 25, 26].

The stabilization parameter for the primal approximationuh is taken to be constant inside each
elementΩk of the mesh,

τPk =
hk

2|α|k

(
1 +

9

(Pe)2k
+

(
hkσk
2|α|k

)2
)− 1

2

, (33)

wherehk is the element size – computed as the radius of the circumcircle of the triangle –,|α|k is a
measure of the norm of the velocityα inside the element – computed as the norm of the velocity at
the barycenter of the triangle –, andPek is the local Péclet number defined as:

(Pe)k =
1

2
|α|khkνk.

Analogously, the stabilization parameter for the adjoint problem is

τDk =
hk

2|α|k

(
1 +

9

(Pe)2k
+

(
hk(σk − |∇ ·α|k)

2|α|k

)2
)− 1

2

. (34)

Note that if the velocity fieldα is divergence free, then the primal and adjoint stabilization
parameters coincide,τPk = τDk .

As mentioned above, in the following examples both the Galerkin and SUPG approximations
of the problem are computed using linear elements, that is, the parameter describing the space
discretization isp = 1, and the dual estimates providing the bounds for the output are computed
using piecewise third order polynomials, which corresponds to q = 3. The dual estimates are
computed both using theflux-freeand thehybrid-fluxerror estimation strategies (the later also called
residual equilibrated method). In the following, the notation FF and EQ is used in figures and tables
to denote the two previous techniques respectively.

In the following, the bound averagesave := (sub + slb)/2 is taken as a new approximation of the
quantity of interest and the half bound gap∆ = (sub − slb)/2 is seen as an error indicator. Note that
stating thatslb andsub are exact upper bounds for the outputs implies thats ∈ (slb, sub) which can
be rewritten ass = save ±∆.

The meshes are adapted to reduce the half bound gap∆. In the examples a simple adaptive
strategy is used based on the decomposition of∆ into local positive contributions from the elements:

∆ =

nel∑

k=1

∆k,

where the element contribution to the half bound gap∆k is

∆k :=
1

4
κ2ηPk +

1

4κ2
ηDk .

Note that this decomposition is valid because

∆ =
sub − slb

2
=

1

2
ηP ηD =

1

4
κ2(ηP )2 +

1

4κ2
(ηD)2 =

nel∑

k=1

[1
4
κ2ηPk +

1

4κ2
ηDk

]
=

nel∑

k=1

∆k.

The remeshing strategy consists in subdividing the elements with the larger values of∆k at each
step of the adaptive procedure.
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6.1. Example 1: quasi-2D transport

The first example is the quasi-2D transport problem introduced in [10]. The advection-diffusion
equation is considered in the unit squareΩ = [0, 1]× [0, 1] with ν = 1, σ = 0 and a uniform
horizontal velocity fieldα = (α, 0). The boundary conditions are of Dirichlet type on the lateral
sides,u(1, y) = 0 andu(0, y) = 1, and Neumann homogeneous on the top and bottom sides. The
source term isf = 0 so that the analytical solution is

u(x, y) =
eα − eαx

eα − 1

and the quantity of interest is taken to be the average normalgradient on the right side of the domain,
namely

s =

∫ 1

0

∇u(1, y) · n dΓ =
αeα

1− eα
.

Following [10], this quantity of interest can be rewritten using the interior function χ = x as
s = a(u, χ), which in turn using the Green’s formula can be rewritten ass = ℓO(u) using the
functional

ℓO(v) = a(v, χ).

This quantity of interest is not directly in the form of (5), but using Green’s formula,a(v, χ) can be
rewritten like (5) with fO = −∇ · (ν∇χ)−∇ ·αχ−α ·∇χ+ σχ andgO = ν∇χ · n+α · nχ
for all v ∈ V . However, it is worth noting that following the derivationsincluded in [3] it is possible
to compute the dual estimates without doing the conversion of the functionalℓO(v) in terms offO

andgO, in a much simpler manner.
This example allows testing the quality of the bounds for theoutput for different values ofα,

ranging from a pure diffusion problem to a advection-dominated advection-diffusion problem. Four
different strategies are compared for the values ofα = 5, 150 and500: the bounds obtained for the
stabilizedhybrid-fluxandflux-freestrategies presented in this paper are compared with the bounds
obtained using the standardhybrid-fluxandflux-freestrategies presented in [10] and [1] respectively.
The results are shown in figure1 and tableI.
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Figure 1. Example 1: convergence of the relative half bound gap (∆/s) for a uniformh-refinement procedure
obtained from standard Galerkin finite element approximations and SUPG approximations using both

hybrid-fluxandflux-freestrategies.



18 N. PARÉS, P. Dı́EZ AND A. HUERTA

α = 5 α = 50 α = 500
s = −5.033918 s = −50 s = −500

nel save ∆/|save| save ∆/|save| save ∆/|save|
F

F
-G

al
er

ki
n 32 −5.02103 0.03474 13.85636 13.80392 273561.10163 1.11887

1152 −5.03362 0.00097 −50.00000 0.10165 −330.48485 15.68297
3872 −5.03383 0.00029 −50.00000 0.02963 −499.99731 3.17566
8192 −5.03388 0.00014 −50.00000 0.01384 −500.00000 1.50201
14112 −5.03389 0.00008 −50.00000 0.00798 −500.00000 0.86799

F
F

-S
U

P
G 32 −5.01987 0.03470 −50.08000 1.72392 −507.69541 20.57684

1152 −5.03362 0.00097 −50.00000 0.09685 −500.00000 3.20511
3872 −5.03383 0.00029 −50.00000 0.02926 −500.00000 1.55460
8192 −5.03388 0.00014 −50.00000 0.01377 −500.00000 0.93795
14112 −5.03389 0.00008 −50.00000 0.00796 −500.00000 0.62550

E
Q

-G
al

er
ki

n 32 −5.02872 0.05664 42.04600 6.81851 437796.96760 1.11699
1152 −5.03379 0.00166 −49.99259 0.16532 −245.33712 32.20248
3872 −5.03388 0.00050 −49.99772 0.04958 −499.78202 4.88044
8192 −5.03390 0.00023 −49.99891 0.02350 −499.89784 2.32843
14112 −5.03391 0.00014 −49.99936 0.01366 −499.94023 1.35665

E
Q

-S
U

P
G 32 −5.03205 0.05456 −50.27436 2.04817 −546.27178 22.33189

1152 −5.03379 0.00166 −49.99375 0.14623 −499.66067 3.85809
3872 −5.03388 0.00050 −49.99788 0.04753 −499.88878 1.90775
8192 −5.03390 0.00023 −49.99895 0.02302 −499.94213 1.18005
14112 −5.03391 0.00014 −49.99937 0.01349 −499.96335 0.80898

Table I. Example 1: bounds for a uniformh-refinement procedure obtained from standard Galerkin finite
element approximations and SUPG approximations for different values ofα = 5, 50, 500.

Figure1 shows the convergence of the half bound gap. As expected, thehalf bound gap has a
quadratic rate of converge in all the strategies, although this convergence rate is only achieved in the
asymptotic range. It can be appreciated that as the influenceof the convective term becomes more
important, finer meshes are needed to reach the asymptotic range.

As noted in [1], the results herein confirm that theflux-freestrategy has a better performance than
thehybrid-fluxstrategy, both for standard and stabilized formulations. Also, it can be seen that for
low values of the advection parameter the bounds obtained using the standard Galerkin method are
pretty similar to the ones obtained using stabilized methods. However, as the advection parameter
increases, the stabilized formulations perform better than the non-stabilized ones. As observed in
[10] and [1] as the advection parameter increases the bounds degenerate due to the introduction of
the symmetrized residual equations. As it can be seen, the use of stabilization techniques does not
avoid the blow-up of the bounds for highly dominated advection problems, but it allows alleviating
this behavior for intermediate values ofα. Finally, it is worth noting that as the finite element mesh is
refined, the difference between the performance of standardand stabilized formulations diminishes
and both approaches provide similar results, as expected.

The performance of the bounds in an adaptive process is analyzed for the valueα = 500. Starting
with a structured mesh of64 triangular elements, a series of adapted meshes is producedby
subdividing at each step the elements whose contribution tothe half bound gap is larger than the
average contribution, that is,∆k > ∆/nel. The adaptive procedure is guided by the indicators (local
half bound gap) provided by the strictflux-freeerror estimate, but at each step, the bounds provided
by the stricthybrid-flux strategy are also computed to compare the results. The initial mesh of
64 elements certifies a wide interval for the quantity of interest s = 20165.45± 131.51% using
the standard Galerkin approach ands = −499.99± 1271.33% using the SUPG approach. After
remeshing, the bounds associated with the final mesh set a much narrower intervals = −500.00±
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1.39% (for the standard Galerkin approach for a mesh of11422 elements) ands = −500.00± 0.72%
(for the SUPG approach for a mesh of13280 elements). The results for the intermediate meshes can
be seen in figure2. It can be observed that stabilizing the solutions for largePéclet numbers helps
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Figure 2. Example 1: convergence of the relative half bound gap (∆/|s|) for an adaptiveh-refinement
procedure obtained from standard Galerkin finite element approximations and SUPG approximations.

Comparison with the results for the uniform mesh refinement.

reducing the bound gap with no additional cost both for the hybrid-flux and flux-free approaches.
Figure3 shows the final adapted meshes obtained for both the Galerkinand SUPG approaches. The
meshes are refined in the areas where either the primal or adjoint solutions present the boundary
layers. The main difference between both approaches is thatin the first iterations the Galerkin
method yields a highly oscillating solution which producesthe refinement in areas where no
refinement is needed (interior of the square).

Figure 3. Example 1: Final adapted meshes obtained for both the Galerkin (left) and SUPG (right)
approaches consisting of11422 and13280 elements respectively.

6.2. Example 2: interior layers behind an obstacle

The second example is taken from [27]. The computational domain is

Ω = {(x, y) ∈ (−1, 1)2, |x|+ |y| > 1/2}.
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where the hole inside the square is conceived as an obstacle inside the computational domain (see
figure 4). Equation (2) is solved inΩ with ν = 1, σ = 0 and a uniform horizontal velocity field
α = (300, 0). The boundary conditions are of Dirichlet type on all the boundary, homogeneous in
the outer square and equal to1 in the interior square, that is

uD =

{
1 for |x|+ |y| = 1/2
0 elsewhere.
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22

24

26

ΩO

α

Figure 4. Example 2: Domain (left), initial mesh (both for the uniform and adaptive refinements) consisting
of 300 triangular linear elements (center) and local Péclet number distribution for the initial mesh (right).

The obstacle inside the flow field gives rise to two interior layers and a boundary layer at the front
part of the obstacle (with respect to the flow) and a boundary layer at a part of the boundary behind
the obstacle.

The quantity of interest is the integral of the solution in the regionΩO ∈ Ω ∩ [0, 1]2 which
corresponds tofO = 1 in ΩO and zero elsewhere.

The quality of the bounds is analyzed first for a uniform mesh refinement. The primal and adjoint
solutions obtained with the mesh of8012 elements are shown in figure5. As it can be seen, neither
the Galerkin nor the SUPG manage to properly supress the spurious local oscillations appearing in
the discrete solutions for this quite fine uniformly-refinedmesh. However, even though the proposed
stabilization technique does not completely remove the spurious oscillations, the SUPG method
provides a much more accurate solution than the Galerkin method.

The results of the a-posteriori error estimates presented in this paper are displayed in tableII
and in figure6. As it can be seen, for coarse meshes the use of stabilizationtechniques provides

flux-free hybrid-flux
nel sh slb sub ∆ slb sub ∆

G
al

er
ki

n 300 0.429511 −20.630848 17.672803 19.151825 −37.282079 31.544310 34.413194
744 0.407245 −7.343591 8.283259 7.813425 −15.776144 16.418931 16.097538
1694 0.418403 −3.685801 4.320300 4.003050 −8.935262 9.011232 8.973247
3725 0.395036 −1.869613 2.650419 2.260016 −5.058863 5.745099 5.401981
8012 0.395134 −0.943283 1.691546 1.317414 −3.074477 3.685708 3.380092

S
U

P
G

300 0.407135 −5.336663 6.048435 5.692549 −11.895049 11.616651 11.755850
744 0.427548 −3.941503 4.680051 4.310777 −9.416113 9.122311 9.269212
1694 0.419324 −2.582214 3.321779 2.951997 −6.698040 6.685539 6.691789
3725 0.403191 −1.584882 2.349696 1.967289 −3.878484 4.349016 4.113750
8012 0.398523 −0.878744 1.646389 1.262566 −2.626193 3.182316 2.904255

Table II. Example 2: bounds for a uniformh-refinement procedure obtained from standard Galerkin finite
element approximations and SUPG approximations.

a clear reduction of the half bound gap that becomes less important as the finite element mesh is
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Figure 5. Example 2: Primal (top) and adjoint (bottom) solutions for the last mesh of the uniform refinement
(consisting of8012 elements) obtained using the standard Galerkin finite element method (left) and the

SUPG method (right).
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Figure 6. Example 2: bounds for a uniformh-refinement procedure obtained from standard Galerkin finite
element approximations and SUPG approximations (left) andits convergence (right).

refined. Also, again theflux-freestrategy provides better results than thehybrid-flux one. It can
also be appreciated that the standard method to obtain bounds for quantities of interest, even when
using stabilization strategies, yields poor results when using a uniform refinement (very fine meshes
are needed to effectively reduce the bound gaps). Thus in this case it is crucial to use adaptive
techniques.

The quality of the bounds is also analyzed for an adaptive refinement. A series of adapted meshes
is produced by subdividing at each step10% of the elements, those with the larger contributions
to the half bound gap, until∆ < 0.016. The adaptive procedure is guided by the indicators (local
half bound gap) provided by the strictflux-freeerror estimate. However, in each step, the bounds
provided by the stricthybrid-fluxstrategy are also computed to compare the results.
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The initial mesh of300 elements certifies a wide interval for the quantity of interest s =
−1.479± 19.152 using the standard Galerkin approach ands = 0.356± 5.693 using the SUPG
approach. After remeshing, the bounds associated with the final mesh set a much narrower interval
s = 0.3798± 0.01508 (for the standard Galerkin approach for a mesh of12126 elements) and
s = 0.3800± 0.01574 (for the SUPG approach for a mesh of12330 elements). The results for the
intermediate meshes can be seen in tablesIII andIV and in figure7.

standard Galerkin finite element approximation
flux-free hybrid-flux

nel sh slb sub ∆ slb sub ∆
300 0.429511 −20.630848 17.672803 19.151825 −37.282079 31.544310 34.413194
357 0.431046 −11.812368 10.758631 11.285499 −24.099566 21.238144 22.668855
415 0.394818 −6.887437 9.467279 8.177358 −15.872191 19.296528 17.584360
492 0.401901 −4.615369 5.155705 4.885537 −11.592608 11.844514 11.718561
577 0.399312 −2.731070 3.449440 3.090255 −8.311474 8.934480 8.622977
682 0.399517 −2.105179 2.619031 2.362105 −7.025657 7.210070 7.117863
794 0.392198 −1.205988 1.968473 1.587230 −5.302291 5.927614 5.614953
923 0.381479 −0.972389 1.666009 1.319199 −4.565030 5.216576 4.890803
1072 0.385116 −0.704109 1.404819 1.054464 −3.927010 4.565738 4.246374
1230 0.384589 −0.446016 1.198208 0.822112 −3.183883 3.910679 3.547281
1405 0.383902 −0.224545 1.002875 0.613710 −2.686555 3.452816 3.069686
1615 0.382516 −0.103822 0.868474 0.486148 −2.229312 2.983397 2.606355
1851 0.381386 −0.007228 0.769074 0.388151 −1.882978 2.636305 2.259642
2115 0.381416 0.079254 0.683584 0.302165 −1.677128 2.435176 2.056152
2397 0.381370 0.138560 0.624934 0.243187 −1.475130 2.227198 1.851164
2768 0.380450 0.188917 0.572342 0.191713 −1.380715 2.140712 1.760714
3198 0.380351 0.239798 0.519340 0.139771 −1.075553 1.832568 1.454060
3575 0.380190 0.277870 0.481789 0.101959 −0.789506 1.546283 1.167894
4022 0.380264 0.293013 0.466865 0.086926 −0.791676 1.550964 1.171320
4580 0.379990 0.308917 0.450748 0.070915 −0.704982 1.463868 1.084425
5186 0.379945 0.320062 0.439756 0.059847 −0.633929 1.391602 1.012765
6116 0.379935 0.336028 0.423666 0.043819 −0.415468 1.172784 0.794126
6840 0.379865 0.347440 0.412151 0.032355 −0.269414 1.027825 0.648620
7895 0.379881 0.353315 0.406319 0.026502 −0.230727 0.989450 0.610089
8967 0.379837 0.357404 0.402180 0.022388 −0.186034 0.944352 0.565193
10301 0.379816 0.360808 0.398750 0.018971 −0.156364 0.913923 0.535144
12126 0.379826 0.364697 0.394854 0.015079 −0.058975 0.817103 0.438039

Table III. Example 2: bounds for an apativeh-refinement procedure obtained from standard Galerkin finite
element approximations.

It can be observed that stabilizing the solutions yields much better results for the coarser meshes
and that both approaches converge to the same results for lowlocal Péclet numbers. However, in this
particular example, since the SUPG approximations are not obtained using an optimal stabilitzation
parameter, for very fine meshes, the SUPG approximation doesnot perform better than the Galerkin
approximation and thus the bounds for the output are also a little bit worse. Figure8 displays the
primal and adjoint solutions obtained in the final meshes along with the final adapted meshes
obtained for both the Galerkin and SUPG approaches. It can beobserved that the meshes are
refined in the areas where either the primal or adjoint solutions present larger gradients and that
both approaches provide very close results.



STRICT OUTPUT BOUNDS FROM STABILIZED SOLUTIONS 23

stabilized SUPG finite element approximation
flux-free hybrid-flux

nel sh slb sub ∆ slb sub ∆
300 0.407135 −5.336663 6.048435 5.692549 −11.895049 11.616651 11.755850
348 0.429727 −4.281018 4.983699 4.632359 −10.633115 10.369201 10.501158
418 0.428071 −3.166066 3.868888 3.517477 −9.588084 8.985694 9.286889
516 0.421839 −2.265427 2.983470 2.624448 −7.666838 7.408345 7.537592
610 0.403156 −1.464917 2.228815 1.846866 −5.698544 6.070066 5.884305
735 0.401751 −1.056960 1.829619 1.443289 −4.794489 5.237296 5.015893
918 0.395629 −0.608291 1.377529 0.992910 −3.717249 4.246143 3.981696
1139 0.388709 −0.326000 1.097425 0.711713 −2.993937 3.696043 3.344990
1347 0.386049 −0.189252 0.957050 0.573151 −2.588543 3.311109 2.949826
1634 0.385730 −0.030445 0.796235 0.413340 −2.016893 2.736674 2.376783
2017 0.382891 0.086123 0.677498 0.295688 −1.641892 2.387876 2.014884
2366 0.382033 0.142205 0.620629 0.239212 −1.611950 2.359493 1.985721
2830 0.381993 0.196499 0.565911 0.184706 −1.330300 2.063420 1.696860
3383 0.380941 0.247565 0.513481 0.132958 −1.108488 1.852603 1.480546
4032 0.380849 0.285735 0.474613 0.094439 −1.022337 1.762936 1.392637
4677 0.380305 0.306157 0.453796 0.073820 −0.839117 1.580229 1.209673
5456 0.380254 0.322223 0.438008 0.057893 −0.731359 1.482723 1.107041
6417 0.380200 0.336554 0.423612 0.043529 −0.553114 1.311487 0.932301
7347 0.380118 0.348275 0.411643 0.031684 −0.326203 1.084242 0.705222
8684 0.380082 0.355037 0.404833 0.024898 −0.257523 1.015184 0.636353
10264 0.379933 0.359460 0.400439 0.020490 −0.213317 0.973382 0.593350
12330 0.379947 0.364213 0.395691 0.015739 −0.108349 0.867665 0.488007

Table IV. Example 2: bounds for an apativeh-refinement procedure obtained from SUPG approximations.
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Figure 7. Example 2: convergence of the half bound gap for an adaptiveh-refinement procedure obtained
from standard Galerkin finite element approximations and SUPG approximations. Comparison with the

results for the uniform mesh refinement.

6.3. Example 3: inner shockfront and boundary layer

The final example is a advection-diffusion problem posed on the unit squareΩ = [0, 1]× [0, 1] with
ν = 1, σ = 0 and a uniform velocity fieldα = (300, 150). The right-hand side is homogeneous,
f = 0 and on the whole boundary Dirichlet boundary conditions aregivenuD = 1 at the lower and
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Figure 8. Example 2: Primal (left) and adjoint (center) solutions for the last meshes of the adaptive
refinement obtained using the standard Galerkin finite element method (top) and the SUPG method (bottom).
Final meshes consisting of12126 elements for the Galerkin method (top-right) and12330 for the SUPG

method (bottom-right).

right boundary anduD = 0 elsewhere (see figure9). This example has been presented in [28]. Due

ΩO

α

uD = 1

uD = 0

u
D
=

1

u
D
=

0

Figure 9. Example 3: Domain (left), initial mesh (both for the uniform and adaptive refinements) consisting
of 32 triangular linear elements (middle) and final mesh of the adaptive procedure for the standard Galerkin

approach consisting of12524 elements.

to the velocity field and the distribution of the boundary conditions, an inner shockfront appears
starting in the lower left corner and a boundary layer occursat the right boundary, fromy = 1/2 to
y = 1.
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The quantity of interest is taken to be the integral of the solution over the lower right half square,
namely

ℓO(u) =

∫

ΩO

u(x, y) dΩ

which corresponds tofO = 1 in ΩO and zero elsewhere. That isΩO = {(x, y) ∈ Ω, x ≥ y} as can
be seen in figure9. Both the primal and adjoint solutions obtained in the final mesh of the adaptive
procedure are shown in figure10.
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Figure 10. Example 3: Primal (left) and adjoint (right) solutions for the last mesh of the adaptive procedure.

The sensitivity of the proposed error estimation strategy is tested with respect to the definition
of the stabilization parameter. Although the optimal selection of this parameter is not addressed in
this paper, since the choice of the stabilization significantly influences the quality of the discrete
solution three different choices for the stabilization parameter have been considered here to be able
to compare the efficiency of the bounds for the quantity of interest.

The first choice of the stabilization parameter is the stabilization parameter used in the two first
examples given in equations (33) and (34), denoted byτ1k . Note that in this particular example,
the stabilization parameter for the primal and adjoint problem coincide since the velocity field
is divergence free. This stabilization parameter is compared with the well known expression
hk/(2|α|k) (coth((Pe)k)− 1/(Pe)k). In order to compute the previous expression, two different
choices for the element size are used: the smallest edge sideof the triangle,h1k, and the diameter of
the elementΩk in the direction of the advection fieldα,h2k, see [24]. These two different expressions
to compute the element size yield two different choices of the stabilization parameter, denoted by
τ2k andτ3k respectively.

The quality of the bounds is analyzed for an adaptive refinement. A series of adapted meshes is
produced by subdividing at each step10% of the elements, those with the larger contributions to
the half bound gap, until∆ < 0.002. The adaptive procedure is guided by the indicators (local half
bound gap) provided by the strictflux-freeerror estimate. The results for thehybrid-fluxmethod are
not reported since, as in the previous examples, its performance is much worse than theflux-free
method.

The initial mesh of32 elements certifies a wide interval for the quantity of interest s =
40.085± 44.666 using the standard Galerkin approach ands1 = 0.340± 1.870, s2 = 0.341± 1.859
ands3 = 0.312± 1.777 for the three different SUPG approximations (associated with τ1k , τ2k and
τ3k respectively). As it can be seen, in the initial mesh, there is a great difference between the non-
stabilized formulations and the stabilized ones. The different choices of the stabilization parameter
yield to similar results, the third one being the best one forthis problem.

After remeshing, the bounds associated with the final mesh set a much narrower intervals =
0.25793± 0.00194 = 0.25793± 0.75% (for the standard Galerkin approach for a mesh of12524
elements),s1 = 0.25784± 0.00191 = 0.25784± 0.74% (for the SUPG approach for a mesh of
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12507 elements),s2 = 0.25784± 0.00191 = 0.25784± 0.74% (for the SUPG approach for a mesh
of 12418 elements) ands3 = 0.25786± 0.00187 = 0.25786± 0.72% (for the SUPG approach for a
mesh of13280 elements).

The convergence of the bounds is shown in figure11. Again for the coarser meshes, the use of
stabilization provides better results, and as the meshes are refined, the half bound gap reduction
provided by stabilization techniques becomes less important. It can also be appreciated that once
the finite element meshes are fine enough, there is no big difference between Galerkin and SUPG.
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Figure 11. Example 3: Series of adaptedh-refined. Bounds (left) and their convergence (right) for the
standard Galerkin approach and the SUPG approach for the three different choices of the stabilization

parameter.

The final mesh of the adaptive procedure for the standard Galerkin approach is shown in figure
10. The final meshes associated to the stabilized approaches are not shown since they are practically
identical to the one obtained using the standard Galerkin approach. Thus stabilized techniques are
well suited to drive goal-oriented adaptive procedures. Itis worth noting for this quantity of interest,
the meshes are refined mainly in the boundary layer and that there is no need to overly refine the
interior shock front to obtain accurate approximations of the quantity of interest.

7. CONCLUSIONS

A simple and effective extension of guaranteed goal-oriented implicit residual estimators to
stabilized methods has been presented. Bothhybrid-fluxandflux-freestrategies have been extended
to be able to deal with stabilized approximations of the exact solution. Thus, this paper introduces
two new techniques to compute strict upper and lower bounds for functional outputs from stabilized
approximations.

The proposed strategies are an extension of theflux-free technique presented in [11] and the
hybrid-fluxtechnique presented in [10]. Theflux-freeestimates yield much sharper bounds than the
hybrid-fluxapproach both for the stabilized and non-stabilized approaches.

The presented strategies are only valid, as they stand, for stabilization techniques which may
be rewritten in the form (4) including the widely used SUPG and SU techniques. Althoughthe
performance of the estimates is only shown for the SUPG method, the results presented herein
for the SUPG methods using thehybdrid-fluxequilibration are in very good agreement with the
results presented in [19] for the SU method using also a modification of thehybrid-fluxmethod.
No significant differences are observed between the performance of the estimates due to the choice
of the stabilization technique. Thus, it is expected that the fact of selecting one among the different
stabilization techniques represented by the form (4) does not affect the performance of the estimates.

As shown in [11] the bounds for the quantity of interest are not robust with respect to the
advection parameter, since the effectivities of the boundsdeteriorate as the advection term becomes
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dominant. In this work, sharper bounds which alleviate thisbehavior have been obtained combining
stabilization techniques along with goal-oriented adaptivity. Obtaining robust bounds for quantities
of interest in the context of advection-dominated problemsis still and open research topic, this work
being a first contribution.

Finally, the indicators provided by the error estimators are well suited to guide goal-oriented
adaptive procedures. It has also been observed that when adaptivity is used, special care should be
taken when defining the stabilization parameter to yield stabilized discrete approximations better
than the standard Galerkin approximations.
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