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A method based on the Refined Zigzag Theory (RZT) to model delamination in composite laminated beam
structures is presented. The novelty of this method is the use of one-dimensional finite elements to dis-
cretize the geometry of the beam. The key property of this beam element, named LRZ [1], is the possibility
to capture the relative displacement between consecutive layers which occurs during delamination. The
fracture mode that the LRZ element is capable to predict is mode II. In order to capture the relative dis-
placement using the LRZ element it is necessary to adapt the RZT theory as presented in this paper. The
mechanical properties of the layers are modeled using a continuum isotropic damage model [2]. The
modified Newton–Raphson method is used for solving the non-linear problem.

The RZT theory, the LRZ finite element and the isotropic damage model are described in the paper. Also,
the implicit integrations algorithm is presented. The performance of the LRZ element is analyzed by
studying the delamination in a beam for two different laminates, using the plane stress solution as a
reference.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Delamination, i.e. interlaminar cracks, is a common and danger-
ous source of damage in laminated composite materials [3] charac-
terized by the loss of adherence between the different plies of the
laminate. This phenomenon can occur during the fabrication stage
or during the transportation, storage and service phases. Imperfec-
tion of various natures and thermal and chemical shrinkage of
components may produce delamination during the manufacturing
process. Many causes such as local forces, thermal actions and low
energy impacts may serve as sources of delamination during the
transportation, storage or service period. Geometry discontinuities
such as access holes, notches, free edges or bonded and bolted
joints can also produce delamination due to high stress gradients.
Once delamination occurs, the structural member considerably re-
duces its original stiffness, which leads to its failure in conjunction
with other mechanic phenomena, e.g. buckling, excessive vibration
or loss of fatigue life.

Within the framework of numerical simulation, delamination is
usually modeled using fracture or damage mechanics procedures.
In fracture mechanics, the virtual crack closure technique (VCCT)
[4,5] is the most widely used approach, which is based on the
assumption that the energy necessary to open the crack is the same
to close it. Damage mechanics is based on the concept of a cohesive
damage zone developed near the crack front, where the stresses are
limited by the yield stress and a thin plastic zone is generated in
front of the crack. This technique can easily be implemented in the
finite element method leading to cohesive finite elements [6–10].

Each of these techniques has their own drawbacks. One of the
most significant is that it is necessary to place interface cohesive
or fracture finite elements between the plies where delamination
is expected to occur. If the delamination path is unknown, interface
finite elements must be placed between all plies. This typically
leads to an unbearable computational cost depending on the num-
ber of physical composite layers and on the structure size. In order
to overcome this problem, Martinez et al. [11] proposed to study
delamination under the continuum mechanics setting using a 3D
finite element method and an isotropic damage model which man-
ages material degradation.

The efficacy of all above mentioned techniques is undisputed.
However, the use of 3D finite elements for discretizing the geome-
try considerably increases the computational costs and storage,
specially for non-linear problems. Surely, there are several cases,
for instance: delamination in bonded joints, where 3D finite ele-
ment analysis is indispensable. However, it is practically impossi-
ble to use these methods in large laminated composite structures
with tens of layers, e.g. wind turbine blades or aircraft fuselage
in composite materials, where simpler models should be used.

Classical thin beam/plate theory [12,13] and the more advanced
First Order Shear Deformation Theory (FSDT) [14–16] were the first
simplified theories capable to precisely model a plate structure of
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homogeneous material. However, when applied to highly hetero-
geneous laminated composite materials it is known that both the-
ories give poor predictions. The cause of this drawback is that these
theories propose a linear thickness distribution of the axial dis-
placement, which is unable to represent the complex real kinemat-
ics of a laminated composite. Because of the same reason, both
theories are unable to predict delamination, as they cannot capture
the relative displacement between two consecutive layers.

More accurate models are based on Layer–Wise theories (LWTs)
[17–19] in which the thickness coordinate is divided into a number
of analysis sublayers (that may be not coincident with the number
of physical layers), assuming a separate displacement field within
each ply and forcing displacement constraints and stress contact
conditions at the interfaces. LWT are able to capture accurately
interlaminar stresses directly from the constitutive equations. Also,
these theories are capable to simulate the delamination phenome-
non [20–24] due to the high level of refinement of the displace-
ment field. However, since the number of unknowns is
proportional to the number of analysis sublayers, the computa-
tional cost increases with the number of subdivisions.

ZigZag (ZZ) theories are an attractive compromise between the
high accuracy of LWT and the computational efficiency of FSDT
[19,25,26]. In ZZ theories the in-plane displacement is modeled
by a superposition of a piecewise linear displacement functions
(the zigzag function) over a linear, quadratic or cubic displacement
field along the thickness direction. An important property of ZZ
theories is that the number of kinematics variables is independent
of the number of layers. Although many ZZ theories require C1 con-
tinuity for the deflection field, which is a disadvantage versus sim-
pler C0 continuity plate theories, some evolved ZZ techniques
[27,28] have been developed to overcome this shortcoming. How-
ever, several C0 continuous ZZ formulations for beams suffer from
their inability to model correctly a clamped boundary condition,
which makes it difficult to satisfy equilibrium of forces at a sup-
port. So far, the use of the ZZ theories to model delamination in
beams and plates has been quite limited. A C0 plate element for
delamination analysis based on a ZZ model has been developed
by Icardi and Zardo [29].

Tessler et al. [30–32] have developed an improved ZZ model for
beams and plates, called Refined ZigZag Theory (RZT), that adopt
FSDT displacement fields as the baselines. The key attributes of
the RZT are, first, the proposed linear piecewise zigzag function
vanishes at top and bottom surfaces of the structural section. Sec-
ond, it does not require full transverse shear stress continuity
across the laminated. Third, C0 continuity is only required for the
finite element method (FEM) approximation of the kinematic vari-
ables and finally, all boundary conditions, including the fully
clamped condition, can be simulated effectively. Oñate et al. [1]
have taken the RZT as the basis for developing a simple two-noded
linear C0 beam element named LRZ. The accuracy of the LRZ beam
element for analyzing composite laminated beams has been dem-
onstrated for simple support and clamped boundary conditions un-
der different loads. Oñate et al. [1] have also shown that the LRZ
element is capable to capture the relative displacement between
layers, typical of a delamination process. It is necessary to mention
however that this element can only model the fracture mode II.

In this paper we exploit the capabilities of the RZT element to
model delamination (mode II) in laminated beams using an isotro-
pic damage model [2,33] for modeling the nonlinear material
behavior. The paper layout is the following. A brief description of
the RZT theory, the LRZ finite elements and the isotropic damage
model are presented first. Then, the implicit integration algorithm
is shown. The non-linear problem is solved by the modified New-
ton–Raphson method. Finally, the performance of the LRZ element
is shown by modeling delamination in a beam for two different
laminates, where the reference solution is a plane stress analysis.
2. Refined Zigzag Theory (RZT) for beams and LRZ beam element

2.1. RZT kinematics

Consider a composite laminated beam of depth b, thickness h,
and length L, formed by N layer of thickness hk. The reference coor-
dinate system is the 2D Cartesian system (x,z), where x is set as the
in-plane coordinate and z is the thickness coordinate.

The displacement field assumed in the linear piecewise zigzag
RZT is written as

ukðx; zÞ ¼ u0ðxÞ � z � hðxÞ þ �ukðx; zÞ
wðxÞ ¼ w0ðxÞ

ð1aÞ

In Eq. (1a) the zigzag displacement function �uk is expressed as

�uk ¼ /kðzÞ � wðxÞ; k ¼ 1;N ð1bÞ

where superscript k indicates quantities within the kth layer with
zk 6 z 6 zkþ1, and zk is the vertical coordinate of the kth interface;
w is a primary kinematic variable defining the amplitude of the zig-
zag function on the beam and /k is a known piecewise linear zigzag
function. u0 is the uniform axial displacement along the beam axis
direction x; h represents the anticlockwise rotation of the normal
and w0 is the deflection.

The kinematics variables are

a ¼ ½u0 w0 h w �T ð2Þ

The in-plane ek and the transverse shear ck strains are defined as

ek ¼ @uk

@x
¼ @u0

@x
� z � @h

@x
þ /kðzÞ � @w

@x

ck ¼ @uk

@z
þ @w
@x
¼ cðxÞ þ bk � wðxÞ

ð3Þ

which can be written in matrix form as

ek ¼ ek

ck

" #
¼ 1 �z /k 0 0

0 0 0 1 bk

" #
�

@u0
@x
@h
@x
@w
@x

c
w

26666664

37777775 ¼ Skê ð4Þ

where ê is the generalized stain vector. This vector contains the ax-
ial elongation @u0

@x , the pseudo-curvature @h
@x, the derivative of the

amplitude of the zigzag function @w
@x, the average transverse shear

strain c @w0
@x � h
� �

and the variable w.
2.2. Derivation of the zigzag function /k

The zigzag function is defined within each layer as

/k ¼ �/k�1 þ hkbk

2
ðfk þ 1Þ ð5Þ

where �/k�1 is the zigzag function value at the k � 1 interface, with
�/0 ¼ �/N ¼ 0 and nk ¼ 2 ðz�zk�1Þ

hk � 1. The slope bk ¼ @/k

@z of the zigzag

function within each layer is expressed as

bk ¼ G

Gk
� 1 ð6Þ

where G is an average shear modulus that can be expressed in terms
of the shear modulus (Gk) and the thickness (hk) of each layer as

G ¼ h
XN

k¼1

hk

Gk

" #�1

ð7Þ
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For a more detailed description of the RZT for beams, the read-
ers are referred to Tessler et al. [30].

2.3. Stresses and resultant stresses

The relation between the stresses and the strains for the kth
layer is expressed in matrix form as

rk ¼ rk

sk

" #
¼ Ek 0

0 Gk

" #
� ek

ck

" #
¼ Dk � ek ð8Þ

where Ek, Gk and Dk are the Young modulus, the shear modulus and
the constitutive matrix for the kth layer, respectively.The resultant
stresses are computed by integrating the stresses over the beam
section with area A as

r̂ ¼
Z

A
SkrkdA ð9Þ
2.4. LRZ beam element

The kinematics variables of Eq. (2) are discretized using
2-noded C0 beam elements of length le as

a ¼

u0

w0

h

w

26664
37775 ¼X2

i¼1

Ni � aðeÞi ¼ N � aðeÞ ð10Þ

with

Ni ¼ NiI4 and aðeÞi ¼ ½u0i w0i hi wi �
T

being Ni the linear C0 continuous shape function of node ith.
The generalized strains ê of Eq. (4) are expressed in term of the

nodal degrees of freedom (DOF) using Eq. (10) as

ê ¼

@u0
@x
@h
@x
@w
@x

c
w

26666664

37777775 ¼
X2

i¼1

@Ni
@x u0i

@Ni
@x hi

@Ni
@x wi

Nici

Niwi

266666664

377777775 ¼
X2

i¼1

Bi � aðeÞi ¼ B � aðeÞ ð11Þ

being Bi the generalized strain matrix defined as

Bi ¼

@Ni
@x 0 0 0

0 0 @Ni
@x 0

0 0 0 @Ni
@x

0 @Ni
@x �Ni 0

0 0 0 Ni

266666664

377777775 ð12Þ
Fig. 1. The delaminated displacement field is achieved by
Using the virtual work principle and Eqs. (8), (9), and (11), we
can obtain the element stiffness matrix Ke and the equivalent nodal
forces Fe for the LRZ linear beam elements as

Ke ¼
Z

l
BT bDBdl; Fe ¼

Z
l

Niq½1;0;0;0�T dl ð13Þ

where l is the element length, q is the distributive load and bD is the
constitutive generalized matrix defined as

bD ¼ Z
A
½Sk�T DkSkdA ð14Þ

Full integration of matrix Ke requires a two-point Gauss quadra-
ture. This however leads to shear locking for slender beams. This
problem is eliminated by using reduced integration (one-point
Gauss quadrature) for all term of Ke [1].

Details of the formulation of the 2-noded LRZ beam element can
be found in [1].

3. Isotropic damage model

The non-linear behavior of material is modeled with an isotro-
pic damage model [2] in which the level of damage or degradation
is monitored through a single internal scalar variable d. This
variable takes values ranged between 0 (no damage) and 1 (full
damage). The constitutive equation for this model is defined as

r ¼ ð1� dÞr0 ¼ ð1� dÞD0 � e ð14Þ

where r and e are the stress and strain tensors, respectively, and D0

is the undamaged constitutive tensor.In order to distinguish be-
tween a damage state and an undamaged one, it is necessary to de-
fine a damage criterion which is formulated here in the undamaged
stress space as

Fðr0; dÞ ¼ f ðr0Þ � cðdÞ 6 0 ð15Þ

where f(r0) is a norm used to compare different states of deforma-
tion and c(d) is the damage threshold. Damage occurs when the va-
lue of f(r0) is larger than c(d). Damage starts for f(r0) > c0, being c0

the initial damage threshold value which depends on the material
properties. In our work we have defined c0 as

c0 ¼
ftffiffiffiffiffi
E0
p ð16Þ

where ft is the tensile strength and E0 the Young modulus of the
undamaged material.

The norm chosen in this work is defined as

f ðr0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
e : r0
p

ð17Þ

The evolution law for the damage threshold and the damage
variable d is obtained using the damage consistency parameter
according to the Kuhn–Tucker conditions. The evolution of these
variables can be explicitly integrated [34] to obtain
the residual forces (R) in a plane stress analysis (PS).



Fig. 2. The residual forces are not capable to induce delamination when the zigzag function /k is not updated.
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d ¼ Gðf ðr0ÞÞ
cðdÞ ¼maxfc0; maxff ðr0Þgg

ð18Þ

where G(�) is a monotonic scalar function ranging between 0 and 1
which defines the evolution of the damage variable. In this work an
exponential evolution law is adopted for G as

Gðf ðr0ÞÞ ¼ 1� f 0ðr0Þ
f ðr0Þ

e
B 1� f ðr0 Þ

f 0 ðr0 Þ

� �
with f 0ðr0Þ ¼ c0 ð19Þ

Considering the norm of Eq. (17), the exponential softening of
Eq. (19), and the initial damage threshold value c0 (Eq. (16)), the
parameter B is computed as

B ¼ Gf � E0

l� � ðftÞ2
� 1

2

 !�1

P 0 ð20Þ

being Gf the fracture energy per unit area and l� a characteristic
length. In this paper, l� is equal to the influence of each Gauss point.

4. Algorithm for the non-linear solution

When a degradation process is considered in the constitutive
material model it is necessary to solve a non-linear system of alge-
braic equations of the form

Fext � FintðqÞ ¼ RðqÞ ð21Þ
Fig. 3. Delamination can be captured with the LRZ finite element when the zigzag
being q the discretization parameters, Fext and Fint(q) the external
and internal forces, respectively, and R(q) the residual vector. Note,
that the dynamic forces are not considered in this work.In this
work, the modified Newton–Raphson method is adopted to solve
the nonlinear equation system of Eq. (21). Hence, the following lin-
ear problem is solved for each iteration

dq ¼ ði�1KSÞ�1 i�1R ð22Þ

where dq is the increment of the nodal DOFs at ith iteration. Note
that both the damaged stiffness matrix KS and the residual vector
R were computed at the previous i � 1th iteration. For the LRZ ele-
ment the matrix KS is defined as

i�1KS ¼
Z

l
BT i�1 bDSBdl ð23Þ

with

i�1 bDS ¼
Z

A

i�1Sk
h iT

i�1Dk
S

i�1SkdA and i�1Dk
S ¼ 1� i�1dk

� �
Dk

0 ð24Þ

The updated DOFs are obtained as

iq ¼ i�1qþ dq ð25Þ

This process is repeated until the convergence criterion
kRk 6 1kFk is satisfied [35] where 1 is a predefined error tolerance.

In 2D finite element analysis, the nodal DOFs q are the Cartesian
displacements a ¼ ½ux uy uz �. According to these variables, the
function /k is updated by reducing the shear modulus of the damaged layer.



Fig. 4. Algorithm for solving the non-linear problem using the modified Newton–Raphson method. Note that the zigzag function is updated at each iteration.
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stress resultants obtained by integrating the stresses on the finite
element volume are three forces that induce the movement of
the node. So, when a finite element starts to suffer softening
Fig. 5. Boundary conditions of the analyzed beam.
(d > 0) and its stresses are reduced by Eq. (14), a lack of equilibrium
between the external and the internal forces appears which in-
duces residual forces via Eq. (21). These residual forces applied at
the nodes of a damaged 2D element generate the relative displace-
ment between layers that occurs during a delamination process.
The equilibrium displacement field is achieved using an iterative
process such as that of Eqs. (22) and (25). This process is schema-
tized in Fig. 1.

While in 3D finite element analysis, it is possible to generate the
relative displacement simply using the residual forces, in the LRZ
finite element it is not.

In the LRZ element, the reference surface where the kinematics
variables (Eq. (2)) are computed is the middle surface (z = 0) of the
laminate. The stress resultants computed by integrating the stres-
ses across the beam thickness (Eq. (9)) lead to forces and moments



Table 1
Mechanical properties of linear-elastic layers.

Materials Young’s modulus (E0) Shear modulus (G0)

Mechanical properties of linear-elastic plies (MPa)
A 157.9 � 104 5.93 � 104

B 104.0 � 101 4.00 � 102

C 5.3 � 101 2.12 � 101

D 2.19 � 101 0.876 � 101

E 0.82 � 101 0.328 � 101

F 0.73 � 10�1 0.29 � 10�1

G 7.3 � 101 2.92 � 101

Table 2
Mechanical properties of cohesive layers (cl).

Materials Young’s
modulus
(E0) (MPa)

Shear
modulus
(G0) (MPa)

Tensile
strength
(ft) (MPa)

Fracture energy (Gf)
(kN/m)

Ductile

ðGD
f Þ

Fragile

ðGF
f Þ

Mechanical properties of cohesive plies (cl)
Hcl 104.0 � 101 4.0 � 102 6.5 5.0 � 104 1.0 � 10�2

Icl 0.73 � 10�1 0.29 � 10�1 0.02 5.0 � 104 1.0 � 10�3

Table 3
Layer distribution of laminated materials.

Laminate Layer distribution hk/h h
(mm)

Laminated materials
L1 (A/B/A/Hcl/A/B/A/

B/A)
(0.11/0.11/0.11/0.01/0.22/0.11/
0.11/0.11/0.11)

9.1

L2 (C/D/E/F/C/Icl/G/E/
D/G)

(1.0/0.12/0.1/0.08/0.14/0.02/0.08/
0.1/0.06/0.2)

25.0
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applied at the beam element nodes on the reference surface. Con-
sequently, there are no forces within the laminate capable of pro-
ducing the relative displacement between plies. For this reason, in
the RZT theory, the reduced value of stresses by Eq. (14) in an iter-
ative process gives as result an amplification of the initial kinemat-
ics of the laminate, instead of an update of the delamination
kinematics. That is so, because the variables of Eq. (2) are not capa-
ble to modify by themselves the zigzag form of the axial displace-
ment, but they can only vary the scale of the original zigzag
distribution. Fig. 2 outlines the above-mentioned problem.

In summary, the form of the zigzag axial displacement is gov-
erned by the zigzag function /k (Eq. (5)). Therefore, in order to
modify the zigzag form of the laminated kinematics (Eq. (1a)) dur-
ing a delamination process, it is essential to update function /k

depending on the value of damage variable d. Since /k depends
on the shear modulus, the update of /k is obtained by reducing
the initial elastic shear modulus Gk

0 at the damaged layer k byeGk ¼ ð1� dkÞGk
0 ð26Þ
Fig. 6. Four-noded quadrilateral finite element me
Thus, function /k is expressed in term of the damaged shear
modulus as

/k ¼ �/k�1 þ hk~bk

2
ðfk þ 1Þ ð27Þ

with

~bk ¼
eGeGk
� 1 and eG ¼ h

XN

k¼1

hkeGk

" #�1

ð28Þ

This simple but effective update of the zigzag function /k allows
us to capture the relative displacement between two layers in a
delamination process. A scheme of this process is shown in Fig. 3.

Fig. 4 shows the integration algorithm for solving Eq. (21) using
the modified Newton–Raphson iterative scheme (Eqs. (22)–(25)),
the isotropic damage model and the adapted zigzag function com-
puted by Eq. (27).
5. Numerical simulations

The validity of the algorithm for capturing the relative in-plane
displacement (Mode II) between layers is studied by modeling a
beam of length L = 0.5 m supported as shown in Fig. 5. A vertical
displacement Dw at the clamped support is imposed. The beam
is analyzed for two laminates (L1 and L2) with properties shown
in Tables 1–3.

The proposed method allows damage to occur at any layer of
the laminate, so is not necessary to predefine the path of the crack.
However since the objective of this work is to demonstrate the
capability of the LRZ element for predicting relative displacement
between layers, the interface where delamination will take place
is defined at the onset of the analysis. Therefore, there is only
one layer for each laminate, called ‘‘cohesive layer’’ (cl) henceforth
(Fig. 7), whose mechanical behavior is modeled by the isotropic
damage model, while the other plies are treated as linear-elastic.
Consequently, delamination occurs when damage starts at the
cohesive layer, which leads to a loss of its previous stiffness and in-
duces the relative displacement between the adjacent layers to it.

In order to show the influence of the fracture energy Gcl
f in the

delamination process, two values of this parameter (a larger one
and a smaller one) are adopted for the cohesive layer in each lam-
inate. For clarity, in the followings the largest value ðGD

f Þ is associ-
ated to a ‘‘ductile’’ material while the smallest ðGF

f Þ to a ‘‘fragile’’
material.

LRZ meshes of 2, 16, 128 finite elements are used in the
analysis.

The reference solution is obtained by the plane stress analysis
(PS) using 4-noded quadrilateral finite elements and the isotropic
damage model presented in Section 4. The iterative process uses
the modified Newton–Rhapson method explained in Section 5.
The beam length, the thickness of the elastic layers and the thick-
ness of the cohesive ply are discretized using 100, 2 and 1 finite
elements, respectively. The discretization chosen leads to meshes
of 1700 and 1900 4-noded quadrilateral PS elements for the lami-
shes for laminate L1 (a), and laminate L2 (b).



Fig. 7. Cohesive layer in laminate L1 (a), and laminate L2 (b).
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Fig. 8. Load versus displacement curves for laminate L1 with ductile (a) and fragile (b) fracture energy.
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nates L1 and L2, respectively. The 2D meshes for each laminate are
shown in Figs. 6 and 7.

The simulation is made under the following considerations:
quasi-static application of vertical displacement at the clamped
support, geometrically linear problem and small deformation.

Figs. 8 and 9 show the load–displacement graph for the lami-
nates L1 and L2, respectively, where the curves are obtained by
the PS analysis and the LRZ beam element. The load corresponds
to the vertical reaction at the clamped support. The displacement
corresponds to the incremental displacement Dw applied to the
clamped support (Fig. 5). The curves shown in Figures a are obtained
when the ‘‘ductile’’ ðGD

f Þ fracture energy is considered. The response
of the beam when the ‘‘fragile’’ ðGF

f Þ fracture energy is used is shown
in Figures b. The fracture energy values are noted in Table 2.

The results reveal an admissible agreement between the results
obtained using PS analysis and LRZ beam elements. The errors for
the finest LRZ meshes, at the end of simulation, for the cases L1-GD

f

(Fig. 8a), L1-GF
f (Fig. 8b), L2� GD

f (Fig. 9a) and L2� GF
f (Fig. 9b) are
(a) Undamaged
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Fig. 10. Thickness distribution of the axial displacement u at the simply supported end
kinematics when the ‘‘ductile’’ (b) and the ‘‘fragile’’ (c) fracture energy is used.
less than 11.0%, 2.5%, 7.5% and 2.9%, respectively. The LRZ solution
exhibits small drops of load for the case L1� GD

f (Fig. 8a), which are
not present in the PS solution. The cause of each drop is that the
cohesive layer of some finite elements is totally damage at the
same increment, which produces a discontinuous loss of stiffness
during the simulation. The number of simultaneously delaminated
elements, involved on each drop, depends on the longitudinal dis-
tribution of the transverse shear stress of the cohesive layer.

When the ‘‘fragile’’ value of the fracture energy ðGF
f Þ is used, the

cohesive layer completely loses its energy at the delamination on-
set, which provokes the sharp drop in the sample resistance, as
shown in Figures b. The loss of resistance computed by the PS solu-
tion is around 56% for both laminates, while the LRZ solution gives
60% and 70% for L1 and L2, respectively.

In all cases, both the initial stiffness and the stiffness once
delamination process has started are very close to the stiffness ob-
tained by 2D analysis. Also, is shown that delamination starts for
the same values of displacement and load.
(b) Ductile material
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The thickness distribution of the axial displacement u at the
simply supported end, before and after delamination onset, is
shown in Figs. 10 and 11 for laminates L1 and L2, respectively.

The undamaged kinematics is shown in Figures a, in which the
very good match between PS and LRZ kinematics is evident.

Figs. 10 and 11b and c show the delaminated kinematics at the
end of simulation when the ‘‘ductile’’ and the ‘‘fragile’’ fracture en-
ergy values are used, respectively. In the ‘‘ductile’’ case (Figures b),
the LRZ elements are capable to capture the relative displacement
with errors around 11% and 16% for laminates L1 and L2, respec-
tively. In the ‘‘fragile’’ case (Figures c), the errors are less than
3.3% for both laminates.

Almost identical results are obtained with the quadratic LRZ
beam element.

Fig. 12 shows the thickness distribution of the zigzag function /
for laminate L1 (Fig. 12a) and laminate L2 (Fig. 12b). The solid line
represents the initial zigzag function (undamaged), whereas that
the dashed line and the dash-dot line correspond to the damaged
(a) Undamaged
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Fig. 11. Thickness distribution of the axial displacement u at the simply supported end
kinematics when the ‘‘ductile’’ (b) and the ‘‘fragile’’ (c) fracture energy is used.
zigzag function when the damage variable of cohesive layer is
equal to 0.9 and 1, respectively. As is mentioned in Section 5, the
ability of the LRZ element to capture the relative displacement be-
tween plies during a delamination process lies in updating the zig-
zag function as the layers are damaged.

In order to compare the performance of the PS and the LRZ anal-
yses, both the total increment numbers and incremental displace-
ment values as well as the tolerance value ð1 ¼ 1� 10�4Þ are the
same for both methods. The total increment numbers are equal
to 1000 and 7000 for laminates L1 and L2, respectively. The
incremental displacement value applied in each increment is
1 � 10�3 mm and 4 � 10�3 mm for L1 and L2, respectively. Tables
4 and 5 show the total number of iterations, the maximum number
of iteration needed for achieving convergence in any increment
and the total CPU time used in the simulation for L1 and L2,
respectively.

As expected, the computation time needed for the PS analysis is
several times greater than that required for the LRZ solutions.
(b) Ductile material
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Fig. 12. Undamaged and damaged zigzag function for laminate L1 (a) and laminate L2 (b).

Table 4
Computational cost of the iterative process for laminate L1.

Finite
elements

GD
f ¼ 5:0� 104 (Ductile) GF

f ¼ 1:0� 10�2 (Fragile)

Total
iter.

Max.
iter.

Time
(seg)

Total
iter.

Max.
iter.

Time
(seg)

Computational cost of the iterative process for laminate L1
2D 1700 9308 485 3069.0 3465 254 1127.0

LRZ 2 1543 166 1.52 – – –
16 1286 81 1.57 1009 9 1.27

128 2291 225 19.61 1036 23 9.45

Table 5
Computational cost of the iterative process for laminate L2.

Finite
elements

GD
f ¼ 5:0� 104 (Ductile) GF

f ¼ 1:0� 10�3 (Fragile)

Total
iter.

Max.
iter.

Time
(seg)

Total
iter.

Max.
iter.

Time
(seg)

Computational cost of the iterative process for laminate L2
2D 1900 18,374 88 6967.0 10,141 144 4223.0

LRZ 2 7298 76 8.10 – – –
16 7131 53 8.11 7016 11 7.96

128 7072 71 64.51 7372 101 65.46
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Comparing with the finest 128-LRZ mesh, PS uses at best around 67
times the time used by LRZ solution for laminate L2 and
GF

f ¼ 1:0� 10�3 (Table 5). At worst, the time used by PS is 156
times greater than that required by the LRZ solution for laminate
L1 and GD

f ¼ 5:0� 104 (Table 4). If the comparison is made versus
the 16-LRZ mesh, the time used by the PS solution is 530 and
1954 times of that needed by the LRZ solution at best and at worst
scenarios, respectively.

6. Conclusions

We have presented a promising numerical method based on the
RZT for simulating the delamination process (mode II) in laminated
beams. This method uses LRZ beam elements for modeling the
beam kinematic and an isotropic damage model for modeling the
material behavior.
Results show that in order to capture the relative displacement
between layers during delamination, the zigzag function has to be
updated according as the layers are damaged. Therefore, both the
stresses and the zigzag function are degraded by the damage var-
iable during the iterative process.

The ability of this formulation to capture the relative displace-
ment has been proved by the study of delamination in a beam
for two different laminates. The comparison of the LRZ solution
with the plane stress plate elements analysis revels that the tech-
nique presented is capable to predict both the onset and the prop-
agation of delamination. Also, the updating of zigzag function has
proven to be essential for reproducing the delaminated kinematics.

A comparison of the computational time between both adopted
techniques has shown that, as expected, the computation time and
the memory space needed by the LRZ beam element is several
times less than that required by a 2D PS analysis.

The extension of the proposed formulation to plate and shells is
possible since the RZT plate theory has the same basic features as
the RZT beam theory. Because of the kinematics of the RZT plate
theory, the extended formulation is able to model not only the
fracture mode II but also the mode III. However, this methodology
is unable to simulate the fracture mode I since the vertical dis-
placement is defined constant through the thickness of the
laminate.
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