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SUMMARY

A new Petrov–Galerkin (PG) method involving two parameters, namely ˛1 and ˛2, is presented, which 
yields the following schemes on rectangular meshes: (i) a compact stencil obtained by the linear interpola-
tion of the Galerkin FEM and the classical central finite difference method (FDM), should the parameters be 
equal, that is, ˛1 D ˛2 D ˛; and (ii) the nonstandard compact stencil presented in (Int. J. Numer. Meth. 
Engng 2011; 86:18–46) for the Helmholtz equation if the parameters are distinct, that is, ˛1 ¤ ˛2. The 
nonstandard compact stencil is obtained by taking the linear interpolation of the diffusive terms (specified 
by ˛1) and the mass terms (specified by ˛2) that appear in the stencils obtained by the standard Galerkin 
FEM and the classical central FDM, respectively. On square meshes, these two schemes were shown to 
provide solutions to the Helmholtz equation that have a dispersion accuracy of fourth and sixth order, 
respectively (Int. J. Numer. Meth. Engng 2011; 86:18–46). The objective of this paper is to study the 
performance of this PG method for the Helmholtz equation using nonuniform meshes and the treatment of 
natural boundary conditions. 
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1. INTRODUCTION

This paper is a continuation of [1] wherein a simple domain-based higher-order compact numerical
scheme involving two parameters, namely ˛1 and ˛2, was presented for the Helmholtz equation.
The stencil obtained by choosing the parameters as distinct, that is, ˛1 ¤ ˛2 was denoted therein
as the ‘nonstandard compact stencil’. The nonstandard compact stencil is obtained by taking the
linear interpolation of the diffusive terms (specified by ˛1) and the mass terms (specified by ˛2) that
appear in the stencils obtained by the standard Galerkin FEM and the classical central finite differ-
ence method (FDM), respectively. Taking ˛1 D ˛2 D ˛ , the nonstandard compact stencil simplifies
to the ˛ interpolation of the Galerkin FEM and the classical central FDM stencils. For the Helmholtz
equation, generic expressions for the parameters were given, which guarantees a dispersion accu-
racy of sixth order should ˛1 ¤ ˛2 and fourth order should ˛1 D ˛2. As the findings reported
therein and the corresponding analysis were carried out for compact stencils, the contribution of
the Galerkin FEM to the equation stencil corresponds to the choice of the lowest-order rectangular
block finite elements. By blocks, we mean Cartesian product of intervals, and by lowest order, we
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refer to multilinear finite-element (FE) interpolation on these blocks. In this paper, we extend this
scheme to unstructured meshes. The focus of this paper is twofold: (i) to design a Petrov–Galerkin
(PG) method that reproduces on structured meshes the aforesaid numerical scheme and (ii) to study
the performance of this PG method on nonuniform meshes and for problems subjected to natural
boundary conditions.

The basic idea is to construct the basis functions of the test space from the standard FE shape
functions such that their scalar product results in the lumped mass matrix. These basis functions
are designed to have the following features: (i) to be piecewise polynomials of the same degree
as the FE shape functions, (ii) to be a partition of unity (only in the sense that they add up to
unity), and (iii) to have a compact support. The last condition allows us to construct test spaces
that vanish at the Dirichlet boundaries and thus advocating its admittance into weak formulations.
However, this condition makes these basis functions discontinuous at the element boundaries. In
other words, these basis functions belong to the class of regular‡ generalized functions and their
derivatives must be understood in the sense of a distribution. Hence, the test space spanned by
these basis functions is nonconforming. As the row lumping technique is a critical step in the
design of these basis functions (to fulfill the partition of unity constraint), the current work is
restricted only to those FEs where this technique makes sense—simplicial FEs and multilinear
block FEs. We show that using these basis functions with an appropriate single-valued model
on the element boundaries, it is possible to recover the classical FDM stencil of the Helmholtz
equation on structured meshes. The linear interpolation on the element boundaries (specified by
˛1) and the element interiors (specified by ˛2) of these basis functions with the standard FE shape
functions will result in a new class of basis functions. These new basis functions involving two
parameters ˛1 and ˛2 define the test space of the proposed PG method that yields the nonstan-
dard compact stencil of the Helmholtz equation on structured meshes. The proposed PG method
provides the counterpart of the aforesaid scheme on unstructured meshes and allows the treat-
ment of natural boundary conditions (Neumann or Robin) and the source terms in a straightforward
manner.

This paper is organized as follows. In Section 2, we present the statement of the Helmholtz
equation in both the strong and weak forms. In Section 3, we summarize the salient features of
the domain-based higher-order compact schemes proposed for the Helmholtz equation in [1]. In
Section 4, we present the trial and test spaces involved with the PG method proposed in this paper.
The trial space is spanned by the standard conforming FE shape functions. The basis functions
that span the test space are defined using the FE shape functions in a piecewise manner in the
interiors and the edges of the elements, respectively. The precise definition of the basis functions
just in the interior of the elements is given here and only the properties of the basis functions
on the element edges are discussed. The weak form associated with the PG method is also pre-
sented here. In Section 5, the weak form of the proposed PG method, which involves distributional
derivatives of the test functions, is presented in a form that is easier to compute and implement.
Remarks are also made here on the possibility of attaining the sparsity pattern of the Galerkin
FEM. In Section 6, we present the definition of the basis functions on the element edges for the
1D linear and 2D bilinear FEs. It is also shown here that on structured meshes, the proposed PG
method is able to recover the higher-order compact schemes summarized earlier in Section 3. In
Section 7, using some structured simplicial meshes, it is shown that the alpha interpolation of the
FEM and FDM stencils would yield a scheme identical to the alpha-interpolation method (AIM)
[4,5] wherein the mass matrix that appears in the Galerkin FEM is replaced by an alpha-interpolated
mass matrix. The dispersion accuracy of the schemes is discussed here, and remarks are made on
recovering the AIM via the proposed PG method. Some examples are presented in Section 8, using
uniform and nonuniform meshes in 2D made up of bilinear FEs. These examples illustrate the
pollution effect associated with the proposed PG method through convergence studies in the L2

norm, the H 1 semi-norm, and the l1 Euclidean norm. Finally, in Section 9, we arrive at some
conclusions.

‡To distinguish from singular generalized functions such as the Dirac’s ‘delta-function’. For further details, see [2, 3].



2. PROBLEM STATEMENT

The statement of the multidimensional Helmholtz equation in the strong form is

L� WD ��� � �2o� D f .x/ in � (1a)

� D �p on �D (1b)

n �r� �M� D q on �R (1c)

where �o is the wavenumber, f .x/ is the source term, and �p is the prescribed value of � on the
Dirichlet boundary �D. The operator M models either the Dirichlet-to-Neumann (DtN) map should
the BVP be posed on a domain with an exterior DtN boundary or the Neumann/Robin boundary
conditions should the BVP be posed on an interior domain.

For the solution of the BVP (1), we introduce the following set of functions:
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1.�/ and  D �p on �Dº (2a)

H 1
0 WD ¹ W  2H
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where Hm.�/ is the usual Sobolev space of functions with mth derivatives square integrable. The
variational statement of the BVP (1) can be expressed as follows: find � 2H 1

E .�/ such that
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Let U h � H 1.�/ and V h � H 1.�/ be subspaces obtained via any appropriate discretization
with h being the discretization size parameter. Then, corresponding to Equation (2), we define
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°
 h W h 2 U

h and  h D �
p

h
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±
(4a)

V h0 WD
°
 h W h 2 V
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±
(4b)

The statement of the so-called generalized Galerkin method applied to the weak form of the BVP
(1) is as follows: find �h 2 U hE such that

B. h,�h/D F. h/ 8 h 2 V
h
0 (5)

Taking the discrete test and trial spaces to be distinct, that is, U h ¤ V h, we obtain a PG method.
Otherwise, that is, taking U h D V h, we obtain a Bubnov–Galerkin method. Discretizing both the
trial and test spaces by FEs, we obtain the standard Galerkin FEM. This leads to the approximations
�h DN

a˚a,  h DN a�a, and Equation (5) reduces into the following system of equations:�
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3. ALPHA INTERPOLATION OF FEM AND FDM STENCILS

Consider the BVP (1) posed on an interior 2D domain subjected to Dirichlet boundary conditions
and let f .x/ D 0. Further, let the domain be such that it permits a partition of the same using a
structured mesh consisting of rectangular bilinear FEs. For the considered case, we use the follow-
ing notation to represent a generic compact stencil corresponding to any interior node .i , j / of the
structured mesh. ®

ıjC1, ıj , ıj�1
¯

S
®
ıi�1, ıi , ıiC1

¯t
D 0 (7)

where S represents the matrix of the stencil coefficients. For instance, if the standard mass matrix
obtained in the Galerkin FEM can be assembled for a structured rectangular mesh, then we may
express the corresponding stencil as follows:
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The equation stencil for the Galerkin FEM method corresponding to any interior node .i , j / can
be written as Equation (7) with the following definition of the stencil coefficient matrix (S):

Sfem WD
`2

6`1
¹1, 4, 1ºt¹�1, 2,�1º C

`1
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The stencil for the classical FDM method corresponding to any interior node .i , j / can be written
as Equation (7) with the following definition of S:

Sfdm WD
`2

6`1
¹0, 6, 0ºt¹�1, 2,�1º C

`1

6`2
¹�1, 2,�1ºt¹0, 6, 0º �

�2o`1`2

36
¹0, 6, 0ºt¹0, 6, 0º (11)

The nonstandard compact stencil presented in [1] can be written as Equation (7) with the
following definition of S:
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where ˛1,˛2 are two nondimensional parameters. Note that we can obtain S˛1,˛2 by taking the linear
interpolation of the diffusive terms (specified by ˛1) and the mass terms (specified by ˛2) that appear
in Sfem and Sfdm, respectively. Taking ˛1 D ˛2 D ˛ , we arrive at a stencil that is the ˛ interpolation
of the Galerkin FEM and the classical central FDM stencils, that is, S˛,˛ D .1 � ˛/Sfem C ˛Sfdm.
Choosing ˛1 D ˛2 D 0.5, we obtain a stencil that is the average of the FEM and FDM stencils
in 2D, and it can be shown [1] to be equal to the stencil obtained by the generalized fourth-order
compact Padé approximation [6, 7] (therein using the parameter � D 2). Likewise, taking ˛1 D 0

and ˛2 D ˛, we obtain a stencil that results from the Galerkin FEM using an ˛-interpolated mass
matrix M˛ WD .1 � ˛/M C ˛ML. Taking ˛1 D 0 and ˛2 D 0.5, we obtain the higher-order
mass matrix scheme introduced in [8, 9], which can also be obtained using special quadrature rules
(cf. [10, pp. 446]). Further details on the choice of the parameters to recover various stencils can be
found in [1].

Considering square meshes, that is, `1 D `2 D `, parameters ˛1 and ˛2 that appear in S˛1,˛2 can
be chosen such that the numerical solution be sixth-order accurate, that is,O..�o`/6/ or equivalently



O.!3/ where ! WD .�o`/2. Recall that this is the maximum order of dispersion accuracy that can be
attained on any compact stencil [11]. All such ˛1 and ˛2 should obey the following series expansion
in terms of !.
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where am and bm are coefficients independent of !. The relative phase error P and local truncation
error T of these sixth-order schemes can be expressed as follows:
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As am, bm .m> 2/ can be chosen arbitrarily, infinitely many sixth-order schemes can be designed
through S˛1,˛2 . Of course, some particular choice of am and bm may yield a scheme with better fea-
tures. For instance, am and bm may be chosen such that the local truncation error T be zero along
some chosen directions. Choosing ˛1 D ˛2, the dispersion accuracy can at most be fourth order,
and to attain this, all such ˛1 and ˛2 should obey the following series expansion in terms of !.
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The relative phase error P and local truncation error T of these fourth-order schemes can be
expressed as follows:
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4. TRIAL AND TEST SPACES

We use standard conforming FEs to construct the trial space U h. Thus, if N a represents the corre-
sponding FE shape function of an arbitrary node a and ˚a the corresponding nodal unknowns of
the FE discretization, then every �h 2 U h can be expressed as �h DN a˚a. Let M denote the mass
matrix resulting from the inner product of the FE shape functions, cf. Equation (6b), and let ML

denote the lumped mass matrix. The standard row lumping technique used to obtain ML from the
consistent mass matrix M can be expressed as follows.

Mab
L WD ı

ab
X
c

Mac D ıab
X
c

Z
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N aN c d�D ıab
Z
�

N a d� (19)

The fact that the shape functions N a being a partition of unity is used to arrive at the last part of
Equation (19). For every element K, we define a local transformation matrix W as follows:

W D .1� ˛2/IC ˛2MLM�1 (20)

where I is the identity matrix and ˛2 is a nondimensional parameter. We now construct new basis
functions eW a by using the shape functions N a of the trial space. As is carried out for the FE shape
functions N a, we first define eW a locally for each element and later patch them together to obtain
their global definitions. Thus, within each element K, we defineeW a WDW abN b (21)

Usually, the above definition of eW a will lead to a loss of C 0 continuity at the element edges. By
construction, the domain of eW a is defined as the interior of the elements. Hence, the support of the



global basis function eW a, denoted as supp.eW a/, is the interior of the elements of a patch containing
the node a.

If ML can be obtained via the row lumping technique, then the basis functions eW a also form a
partition of unity. This statement can be verified within each element as follows:X
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where M�cb denotes the entry corresponding to the indices .c, b/ of the matrix M�1. Note that the
global basis functions eW a, that is, the element contributions obtained from Equation (21) patched
in a piecewise manner, are no longer a linear combination of the global FE shape functions N a.
Thus, eW a will span a function space distinct from the trial space U h but with the same dimensions
as U h. The local expressions (using ˛2 D 1) of the basis functions eW a corresponding to three dif-
ferent element types is listed in Table I. Figure 1 illustrates the construction of the global basis eW a

corresponding to the 1D linear FE shape functions. Note the loss of C 0 continuity at the element
edges in Figure 1(b). The open circles shown in Figure 1(b) signify that the function values taken
by eW a on the element edges are omitted.

We now construct a new composite basis W a defined in a piecewise manner as follows:

W a.x/ WD

´eW a.x/ in the element interiorsbW a.x/ on the element edges
(23)

Table I. Local definition of the basis eW a corresponding to some FEs.

Shape functions N a Basis eW a (choosing ˛2 D 1) Remarks

1C N�a�

2

1C 3 N�a�

2
1D linear FE.

¹ N�aº D ¹�1, 1º�1C N�a�
2

	�1C N	a	
2

	 �1C 3 N�a�
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2

	
2D rectangular bilinear FE.

¹ N�aº D ¹�1, 1, 1,�1º,
¹ N	aº D ¹�1,�1, 1, 1º.

¹.1� � � 	/, � , 	º ¹.3� 4� � 4	/, .4� � 1/, .4	� 1/º 2D linear triangle FE.
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(b)

Figure 1. Basis functions eW a corresponding to the 1D linear FE and choosing ˛2 D 1. (a) Element-wise
comparison of eW a with the 1D FE shape functionsN a. (b) Illustration of the global basis eW a corresponding
to an arbitrary node a patched element-wise. The open circles in these illustrations signify that the function

values taken by eW a on the element edges are omitted.



The composite basis W a is introduced for two reasons, namely (i) to ensure that W a be a par-
tition of unity also on the element edges and (ii) to be able to model bW a such that we recover the
sparsity pattern of the Galerkin FEM. The later condition also allows us to construct test spaces
with functions that vanish on the Dirichlet boundary. Thus, by construction, we require that bW a be
single-valued functions on the element edges with the following properties:X

a

bW a D 1, and supp.bW a/D supp.N ajEh/ (24)

where Eh represents the collection of all the element edges and N ajEh represents the restriction of
N a on Eh. The precise definition of bW a is delayed until Section 6.

From the properties of eW a and bW a, we have supp.W a/D supp.N a/. Note that the global basis
W a are regular generalized functions, that is, they are ordinary functions with a predefined jump
discontinuity at the element edges. Thus, by using Equations (20) and (21), the following result is
straightforward. Z

�

W aN b d�D
X
K

Z
K

eW aN b d�D .1� ˛2/M
ab C ˛2Mab

L (25)

We use the composite basis W a to construct the test space (denoted as V h�) of the PG method.
Therefore, every wh 2 V h� can be expressed as wh D W a�a, where �a is an arbitrary constant
associated with the node a. By construction, the test space V h� has the same dimensions as that of
the trial space U h. In the notation V h�, the symbol ‘�’ is used to emphasize that generally the test
space V h� is nonconforming, that is, V h� 6� H 1.�/. The statement of the proposed PG method
applied to the BVP (1) is as follows: find �h 2 U hE such that,

B.wh,�h/D F.wh/ 8wh 2 V
h�
0 (26)

In order to compute the integral
R
� rwh � r�h d� that appears in Equation (26), one must

understand the derivatives associated with wh in the sense of a distribution. Thus, the proper set-
ting for the PG method is in the space of generalized functions. Recall that to arrive at the termR
� rwh � r�h d� integration by parts needs to be carried out for an integral form of Equation (1a)

containing discontinuous test functions. This is the distinction of the current work from the existing
stabilized FEM-based PG methods that follow the theoretical framework originally proposed for the
streamline–upwind/PG (SUPG) method [12].

The distinction of the current work from discontinuous–Galerkin (DG) methods is illustrated via
a schematic representation of the same in Figure 2. Figure 2(a) illustrates a generic DG method.
Recall that the weights on either side of an element edge in a DG method are not only discontinuous
but also independent. The same applies to the trial solutions (�h), and in addition to this, modelsb�h
for �h are specified on the element edges. For conservative DG methods, b�h, which is sometimes
named as the scalar numerical flux, is single valued on the element edges [13]. On the other hand,
Figure 2(b) illustrates the current PG method. Note that the test functions (wh) remain discontinu-
ous, but they are no longer independent. The restriction of wh to the element interiors and on the
element edges are denoted as ewh and bwh, respectively. The trial solutions for the current PG method
are the standard FE solutions, which are C 0-continuous and are not independent on either side of
the element edge.

The proposed PG method given by Equation (26) is similar to the generalized difference method
(GDM) presented in [14] and the finite volume methods (FVM) analyzed in [15]. The similarity
is in the nature of the trial and the test spaces—the trial space is taken as the standard FE space
and the test space consists of regular generalized functions. The distinction is in the definition of
the test space. In our work, both the trial and test spaces are defined on the primary partition of
the domain. In the GDM and the FVM, the test spaces are defined on the dual partition of a given
primary partition.

Finally, we make note that test functions similar to eW a (with ˛2 D 1) were introduced earlier
in the context of dual mortar methods for non-overlapping domain decomposition techniques [16].



(a) (b)

Figure 2. Comparison of the test function wh and trial solution �h of a generic Discontinuous–Galerkin
(DG) method with those of the current Petrov–Galerkin (PG) method. Schematic representations of wh and
�h for (a) a DG method and (b) the current PG method. Note that unlike for the DG method, wh and �h
for the current PG method are not independent on either side of the edge E. Also note that wh is a regular

generalized function, and its derivatives must be understood in the sense of a distribution.

Therein, such test functions were called as local dual basis functions and were used to construct
the discrete Lagrange multiplier space. In the standard mortar methods, the interface solution on the
slave side depends globally on the values on the master side. The motivation for the introduction
of the local dual basis functions is to reduce this global dependence to a local one without compro-
mising the a priori error estimates obtained for the standard mortar methods. Thus, the mortar map
is represented by a diagonal matrix, which allows the matching/coupling condition to be realized
explicitly.

5. WEAK FORM WITH GENERALIZED TEST FUNCTIONS

In this section, we express Equation (26) in a form that is easier to compute and implement. By
choosing a regularization parameter ", we first construct a sequence of piecewise continuous test
functions w"

h
2 V h � H 1.�/, which converges to wh 2 V h� as " ! 0. Substituting w"

h
in

Equation (5) and taking the limit " ! 0, we obtain the weak form of the PG method using wh
as defined earlier in Equation (26).

Consider an arbitrary elementK with boundary @K and define two sub-domains within it, namely
Ko and K", as shown in Figure 3(a). The boundary that K" shares with Ko is denoted by @Ko. The
external normals to @K and @Ko are denoted by n and noC, respectively. The normal no� WD �noC.
The regularization parameter " characterizes the width of the K" sub-domain. Consider a regular-
ized piecewise continuous test function w"

h
over K whose definition can be split over Ko,K", and

@K as follows:

w"h.x/ WD

8̂<̂
:
ewh.x/ 8x 2Ko

h.x/ 8x 2K"bwh.x/ 8x 2 @K

(27)

ewhj@Ko D 
hj@Ko , 
hj@K D bwh (28)

Thus, as shown in Figure 3(b), taking the limit "! 0, the test function w"
h

develops a sharp layer
at the element boundary @K, and we arrive at a class of generalized test function wh, which was
represented schematically in Figure 2(b). Likewise, in the limit "! 0, the term rw"

h
will represent

the generalized derivative of the test function wh. Consider the term
R
� rw

"
h
� r�h d�, which can

be written in the following equivalent forms.



(a) (b)

Figure 3. Schematic diagrams of an arbitrary element K and a regularized test function w"
h

defined over it.
(a) The element K is further divided into two sub-domains Ko and K". (b) The test function w"

h
is defined

piecewise as follows: ewh over Ko, 
h over K", bwh on @K and with ewhj@Ko D 
hj@Ko . The regularization
parameter " characterizes the width of theK" domain, and taking the limit "! 0, we recover the generalized

function wh.

Z
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rw"h �r�h d�D
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rewh �r�h d�C
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h �r�h d�

�
(29a)
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rewh �r�h d��
Z
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h��h d��
Z
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ewhnoC �r�h d�
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Z
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bwhn �r�h d�

�
(29b)
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�
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Z
Ko

ewh��h d��
Z
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h��h d�C
Z
@K

bwhn �r�h d�

�
(29c)

Equations (29b) and (29c) result from integrating by parts the corresponding terms in
Equation (29a) and using the relations in Equation (28). Taking the limit " ! 0 on both sides
of Equation (29), we obtainZ

�

rwh �r�h d�D
Z
Th
rewh �r�h d�C lim

"!0

X
K

Z
K"

r
h �r�h d� (30a)

D

Z
Th
rewh �r�h d�C

X
K

Z
@K

.bwh �ewh/n �r�h d� (30b)

D�

Z
Th
ewh��h d�C

X
K

Z
@K

bwhn �r�h d� (30c)

where
R
Th represents the piecewise integral

P
K

R
K . Note that the integral

R
K"

that appears
in Equation (30a) does not vanish as " ! 0. On the other hand, using the form expressed
in Equation (30b), the extra labor just involves the evaluation of the element boundary inte-
grals. This can be easily incorporated within an ‘assemble-by-elements’ data structure. Hence,
for the implementation of the PG method, we use Equation (30b) to compute the bilinear form
in Equation (26).

B.wh,�h/ WD
Z
Th
rewh �r�h d�C

X
K

Z
@K

.bwh �ewh/n �r�h d�

�

Z
Th
�2oewh�h d��

Z
�R

bwhM�h d�

(31)

We obtain the discrete system matrix by making the approximations �h D N a˚a, wh D
W a�a and substituting it into Equation (31). Note that the approximation wh D W a�a implies



ewh D eW a�a and bwh D bW a�a. However, to remark on the sparsity pattern of the discrete system,
it is more appropriate to express the bilinear form in Equation (26) using Equation (30c). Following
this line, the discrete system matrix A can be expressed as follows:

Aab D�
Z
Th
eW a�N b d�C

X
K

Z
@K

bW an�rN b d� �
Z
Th
�2o
eW aN b d��

Z
�R

bW aMN b d� (32)

Recall that by construction, supp.eW a/ is the interior of the elements of a patch containing the
node a. Further, if bW a be designed such that supp.bW a/ D supp.N ajEh/, then from Equation (32),
we see that the resulting discrete system A will have a sparsity pattern equivalent to that of the
Galerkin FEM. In other words, to attain the Galerkin FEM sparsity pattern, bW a should be zero
wherever N a is zero.

6. BLOCK FINITE ELEMENTS

In this section, we complete the definition of the composite basis functions W a of the test space
given by Equation (23) when the trial spaces are spanned by the lowest-order block FEs. In other
words, we define bW a on the element edges for the 1D linear and the 2D bilinear FEs.

6.1. 1D linear FE

Recall that by construction the basis functions eW a are defined only in the interior of the elements.
Hence, in Figure 1(b), open circles were used to indicate that the values taken by eW a on the nodes
a � 1, a, and a C 1 are omitted. Let bW aja�1, bW aja and bW ajaC1 be the corresponding function
values assigned to bW a on these edges. For bW a to be a partition of unity on the element edges, the
following relation should hold:

bW aja�1C bW aja C bW ajaC1 D 1 (33)

There exists an infinity of solutions for Equation (33), but only the choice
°bW aja�1, bW aja,bW ajaC1

±
D ¹0, 1, 0º satisfies the properties given in Equation (24). This choice will result in a

discrete system that has the same sparsity structure as that of the Galerkin FEM or the classical
FDM. Also, the space spanned by these weights can be restricted to zero on the Dirichlet boundary
without being trivially zero inside the domain and, thus, justifying their admittance in weak for-
mulations. Thus, using the 1D linear FE, Equation (24) is satisfied if and only if bW a is defined as
follows.

bW a DN ajEh (34)

Following Equation (23) and using Equations (21) and (34), the local expression of the composite
basis W a within each element can be expressed as

W a D

8̂̂<̂
:̂
1C .1C 2˛2/� N�

a

2
�1 < � < 1

1C � N�a

2
� D˙1

(35)

Choosing ˛2 D 0 in Equation (35), the composite basis W a simplifies to the standard 1D FE
shape functions N a. Likewise, choosing ˛2 D 1, the composite basis W a corresponding to the 1D
linear FE can be represented as shown in Figure 4.

Consider the BVP (1) subjected to Dirichlet boundary conditions and let f D 0. UsingW a given
by Equation (35) in the weak form of the PG method given by Equation (26), the following equation
stencil is obtained:
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Figure 4. The composite basis functions W a corresponding to the 1D linear FE and choosing ˛2 D 1. The
filled circles in these illustrations represent the chosen model for bW a on the element edges. (a) Illustration
of the basis W a defined locally within an element. (b) The global basis W a corresponding to an arbitrary

node a patched element-wise.
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Equation (36) is precisely the stencil obtained from the Galerkin FEM by using an alpha-
interpolated mass matrix. For the 1D case using linear FE and as shown in Equation (37), it is
equivalent to the alpha interpolation of the stencils obtained by the Galerkin FEM and the classical
FDM methods.

6.2. 2D bilinear FE

Consider the following definition of bW a defined locally on the edges of the 2D bilinear FE,

bW a D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

1C .1C 2˛1/� N�
a

2

!�
1C 	 N	a

2

�
.� , 	/ 2 .�1, 1/� ¹˙1º

1C � N�a

2

!�
1C .1C 2˛1/	 N	

a

2

�
.� , 	/ 2 ¹˙1º � .�1, 1/

1C � N�a

2

!�
1C 	 N	a

2

�
.� , 	/ 2 ¹˙1º � ¹˙1º

(38)

One can arrive at the above definition by taking the Cartesian product of the 1D counterparts of
W a defined earlier in Equation (35) and then replacing the parameter ˛2 therein by ˛1. Clearly, the
functions bW a defined via Equation (38) are a partition of unity. Likewise, on the edges whenever
the expression for ˛1 is single-valued, we have simultaneously a single-valued model for bW a. Thus,
should any length scale appear within the expression for ˛1, then it should be proportional to the cor-
responding edge length. Note that on the element edges wherever N a D 0, we have simultaneouslybW a D 0. In this way, it is possible to retain the sparsity pattern of the Galerkin FEM.

Consider the discrete diffusion term
R
� rW

a �rN b d� calculated using a structured mesh in 2D
made up of rectangular bilinear FEs. As the Laplacian of the shape functions N b is zero in the inte-
rior of a rectangular bilinear FE, we use the form given in Equation (30c) to calculate the considered
diffusion term. Thus,
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Z
@K

bW an �rN b d� D
`2

6`1

264
.2C ˛1/ �.2C ˛1/ �.1� ˛1/ .1� ˛1/
�.2C ˛1/ .2C ˛1/ .1� ˛1/ �.1� ˛1/
�.1� ˛1/ .1� ˛1/ .2C ˛1/ �.2C ˛1/
.1� ˛1/ �.1� ˛1/ �.2C ˛1/ .2C ˛1/

375

C
`1

6`2

264
.2C ˛1/ .1� ˛1/ �.1� ˛1/ �.2C ˛1/
.1� ˛1/ .2C ˛1/ �.2C ˛1/ �.1� ˛1/
�.1� ˛1/ �.2C ˛1/ .2C ˛1/ .1� ˛1/
�.2C ˛1/ �.1� ˛1/ .1� ˛1/ .2C ˛1/

375
(39b)

The stencil coefficient matrix Sd corresponding to the assembly of the element matrices given by
Equation (39b) can be expressed as follows:

Sd WD
`2

6`1
¹.1� ˛1/, .4C 2˛1/, .1� ˛1/º

t¹�1, 2,�1º

C
`1

6`2
¹�1, 2,�1ºt¹.1� ˛1/, .4C 2˛1/, .1� ˛1/º

(40a)

) Sd WD .1� ˛1/
`2

6`1
¹1, 4, 1ºt¹�1, 2,�1º C ˛1

`2

6`1
¹0, 6, 0ºt¹�1, 2,�1º

C .1� ˛1/
`1

6`2
¹�1, 2,�1ºt¹1, 4, 1º C ˛1

`1

6`2
¹�1, 2,�1ºt¹0, 6, 0º

(40b)

Equation (40b) is precisely the linear interpolation (specified by ˛1) of the diffusion terms
obtained by using the Galerkin FEM and classical FDM stencils in 2D (cf. Equation (12)). Unlike
in 1D where we had a unique way to model bW a so as to retain the sparsity pattern of the Galerkin
FEM, in 2D, many alternatives models exist. However, all acceptable models for bW a have to be a
partition of unity for every element and be single-valued on the element edges.

Following Equation (23) and using Equations (21) and (38), the local expression of the composite
basis W a within each element can be expressed as

W a D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

W abN b .� , 	/ 2 .�1, 1/� .�1, 1/�1C .1C 2˛1/� N�a
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	�1C 	 N	a
2

	
.� , 	/ 2 .�1, 1/� ¹˙1º�1C � N�a

2

	�1C .1C 2˛1/	 N	a
2

	
.� , 	/ 2 ¹˙1º � .�1, 1/�1C � N�a

2

	�1C 	 N	a
2

	
.� , 	/ 2 ¹˙1º � ¹˙1º

(41)

where W is the matrix of constant coefficients given by Equation (20). Recall that the matrix W
involves the parameter ˛2 in its definition. Note that on structured 2D meshes using the basis W a

given by Equation (41), the PG method defined in Equation (26) will yield the nonstandard com-
pact stencil summarized in Equation (12). This observation follows by using the results given in
Equations (25), (39), and (40) in the discrete system matrix given in Equation (32).

6.3. Stabilization parameters on unstructured meshes

As most of the expressions for ˛1 and ˛2 optimized for square meshes need not be optimal for
unstructured meshes, in the current work, we consider only the simplest expressions that would
guarantee fourth-order (cf. Equation (42a)) and sixth-order (cf. Equation (42b)) dispersion accuracy



on square meshes. On unstructured meshes, the expressions for ˛1 and ˛2 corresponding to these
two choices can be written as follows:

˛1 D ˛2 D
1

2
(42a)

˛1 D
1

2
�
b!
60
I ˛2 D

1

2
�
e!
40

(42b)

where b! WD .�ob̀/2 and e! WD .�oè/2.b̀andè represent the models used for the length measures cor-
responding to the element edges and the interior, respectively. In the current study for each element,
we have chosenb̀equal to the edge length (will vary from edge to edge) andèequal to the maximum
edge length. Note that using this model, ˛1 is always single-valued on the edges. On square meshes
using Equation (42b), we recover ˛1 and ˛2 as given in Equation (13) up to the first two terms,
which is sufficient to attain sixth-order dispersion accuracy.

7. SIMPLICIAL FINITE ELEMENTS

Consider a rectangular domain discretized by structured simplicial FEs. Such discretization would
typically yield stencils as shown in Figure 5. The stencils with the hypotenuse oriented along left
and right are labeled using the markers o D l and o D r , respectively. The flag ‘o’ indicates the
stencil tilt.

The equation stencil for the Galerkin FEM corresponding to any interior node .i , j / can be written
as Equation (7) with the following definition of stencil coefficient matrix:

Sfem D
`2

`1

24 0 0 0

�1 2 �1
0 0 0

35C `1

`2

24 0 �1 0

0 2 0

0 �1 0

35� �2o`1`2
12

24 ıol 1 ıor
1 6 1

ıor 1 ıol

35 (43)

where ıol and ıor are Kronecker deltas. Note that by using simplicial FEs, the contribution of the dif-
fusion term in Equation (43) is identical to that obtained in the FDM stencil given by Equation (11).
Thus, the stencil obtained via an ˛ interpolation of the Galerkin FEM and the FDM stencils will
lead to the following stencil coefficient matrix:

S˛ D
`2

`1

24 0 0 0

�1 2 �1
0 0 0

35C `1

`2

240 �1 0

0 2 0

0 �1 0

35� �2o`1`2
12

24.1� ˛/ıol .1� ˛/ .1� ˛/ıor
.1� ˛/ 6.1C ˛/ .1� ˛/
.1� ˛/ıor .1� ˛/ .1� ˛/ıol

35
(44)

We see that by using simplicial FEs in 2D, the ˛ interpolation of Galerkin FEM and FDM is
equivalent to the AIM [4, 5]. In the AIM, the consistent mass matrix M that appears in the Galerkin

1

2

1

2

(a)
1

2

1

2

(b)

Figure 5. Stencils obtained by using a structured simplicial finite element mesh with the hypotenuse
oriented/tilted along (a) left, that is, o D l ; and (b) right , that is, o D r . The flag ‘o’ indicates the

stencil tilt.



FEM is replaced by the ˛-interpolated mass matrix M˛ WD .1�˛/MC˛ML. Consider the following
definition for the composite basis W a when using simplicial FEs,

W a D

² eW a WDW abN b in the element interiorbW a WDN a on the element edges
(45)

Consider the BVP (1) posed on an interior 2D domain subjected to Dirichlet boundary condi-
tions and let f .x/ D 0. Using the basis W a given by Equation (45) in the PG method defined in
Equation (26), we recover the AIM. In particular, for the structured simplicial FE meshes shown
in Figure 5, we recover the stencil given in Equation (44). We can guess that a solution to any

generic stencil takes the form ˚ i ,j WD �.xi1, xj2 / D exp
h
i
�
�h1x

i
1C �

h
2x

j
2

	i
. Substituting this solu-

tion into the stencil formed by S˛ given in Equation (44) and defining �1 WD exp


i�h1 `1

�
and

�2 WD exp


i�h2 `2

�
we obtain the characteristic equation as follows:
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(46)

where !1 WD .�o`1/2 and !2 WD .�o`2/2. For the dispersion analysis of S˛ given in Equation (44),
we restrict to the case `1 D `2 D `. In this case, the stencil coefficient matrix S˛ simplifies to

S˛ D

24 ıolS2 S1 ıorS2
S1 S0 S1
ıorS2 S1 ıolS2

35 I S0 WD 4� .1C ˛/.!=2/

S1 WD �1� .1� ˛/.!=12/

S2 WD �.1� ˛/.!=12/

(47)

where ! WD .�o`/2. The characteristic equation given in Equation (46) now becomes simplified to
the following:

S0C 2S1

h
cos

�
�h1 `

	
C cos

�
�h2 `

	i
C 2S2 cos

�
�h1 `˙ �

h
2 `
	
D 0 (48)

The ‘˙’ that appears in the above equation corresponds to the cases o D r and o D l , respec-
tively (Figure 5). The parameter ˛ may be expressed as a generic series expansion in terms of ! as
follows:

˛ WD

1X
mD0

am!
m � a0C a1! C a2!

2C a3!
3CO.!4/ (49)

where am and bm are coefficients independent of !. Following the approach used in [1], which was
originally presented in [11], the relative phase error (P ) and local truncation error (T ) along any
direction ˇ can be written as

P D r1! CO.!
2/ I T D�2r1! CO.!

2/ (50)

r1 WD
.a0 � 1/

24
Œ2˙ sin.2ˇ/�C

�
3C cos.4ˇ/

96

�
(51)

Clearly, it is impossible to obtain the condition r1 D 0 by a choice of the coefficient a0 that is
independent of the angle ˇ. Thus, unlike for the structured bilinear block FEs, for the structured
simplicial FEs shown in Figure 5, the pollution is essentially of the same order as for those of the
Galerkin FEM, the FDM, and the GLS-FEM [17, 18]. Nevertheless, just like for the GLS-FEM, the
coefficient a0 can be chosen so as to arrive at a higher-order modification of the interior stencil of
the Galerkin FEM. Similar studies for eigenvalue problems using the AIM with simplicial FEs was
carried out in [4, 5, 19, 20].



Remark: Following the approach taken for bilinear block FEs, it is possible to provide different
models for the PG weights on the elements edges. This idea will be explored in future works.

8. EXAMPLES

In this section, we present some examples in 2D for the problem defined by Equation (1) and consid-
ering the following problem data: the wavenumber �o 2 ¹50, 100º, the source f D 0, the direction
of wave propagation ˇ D .=9/, and the domain � D Œ0, 1� � Œ0, 1�. The domain � is discretized
by considering both uniform and nonuniform meshes made up of just the bilinear block FEs. The
nonuniform meshes are obtained by randomly perturbing the interior nodes of uniform meshes with
coordinates .xi ,yi / as follows [21, 22]:

x
0

i D xi C `1ı rand./I y
0

i D yi C `2ı rand./ (52)

where .x
0

i ,y
0

i / represent the corresponding coordinates of the uniform mesh, ı is a mesh distortion
parameter, and rand./ is a function that returns random numbers uniformly distributed in the interval
Œ�1, 1�. Figure 6 illustrates an instance of an unstructured mesh obtained by this procedure using a
50� 50 square mesh and the parameter ı D 0.2.

We consider the following four cases concerned with the choice of the stabilization parameters
˛1 and ˛2:

I: ˛1 D ˛2 D 0. This case corresponds to the Galerkin FEM.
II: ˛1 D ˛2 D 1. This case on rectangular meshes corresponds to the classical FDM. We denote

this case as FDM/PG as it is obtained within a PG framework. FDM/PG is a straightforward
extension of the FDM to unstructured meshes.

III: ˛1 D ˛2 D .1=2/. This case corresponds to a discrete system that is equivalent to the average
of the Galerkin FEM and the FDM/PG. On rectangular meshes, we obtain the stencil associ-
ated with .SfemCSfdm/=2, which is equivalent to the one obtained using the generalized Padé
approximation in 2D [6, 7]. The dispersion accuracy on square meshes is of fourth order.

IV: ˛1 ¤ ˛2 ¤ 0 and given by Equation (42b). On rectangular meshes, this case yields the
nonstandard compact stencil presented in [1] and summarized in Equation (12). Recall
that on square meshes these expressions, for parameters ˛1 and ˛2, guarantee sixth-order
dispersion accuracy.
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Figure 6. Meshes made of bilinear block FEs. (a) Uniform mesh, ı D 0. (b) Nonuniform mesh, ı D 0.2.



For these considerations, we study the convergence of the relative error in the following norms:

L2 norm
k� � �hk0

k�k0
WD

Œ
R
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2 d��1=2

Œ
R
� j�j

2 d��1=2
(53a)

H 1 semi-norm
k� � �hk1

k�k1
WD

Œ
R
�
jr.� � �h/j

2 d��1=2

Œ
R
� jr�j

2 d��1=2
(53b)

l1 Euclidean norm
j˚e �˚hj1

j˚ej1
WD

maxi j˚ ie �˚
i
h
j

maxi j˚ ie j
(53c)

where ˚e is the exact solution sampled at the nodes of the mesh. In the convergence studies carried
out here, the numerical solutions corresponding to the four cases, namely I–IV, are compared with
the following solutions: the nodally exact FE interpolant denoted by Ih� and the best approxima-
tions with respect to the L2 norm and the H 1 semi-norm denoted by P 0

h
� and P 1

h
�, respectively.

The solutions Ih�, P 0
h
�, and P 1

h
� can be found as shown in Equation (54).

Ih� WDN
a˚ae (54a)Z
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E (54b)Z
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h �/ d�D 0 8 wh 2 U

h
0 ) k � �P 1h � k1 6 k � � �h k1 8 �h 2 U

h
E (54c)

As the exact solution � is sinusoidal, we have used a third-order Gauss quadrature rule to evaluate
the expressions involving � in Equations (53) and (54).

8.1. Example 1: Dirichlet boundary conditions

In this example, only the Dirichlet boundary conditions are prescribed such that the exact solution
is �.x/D sin.�ˇ � x/, where �ˇ WD �o.cos.ˇ/, sin.ˇ//. Uniform meshes with n� n square elements
are considered with n given by the following expression.

nD ceil
�
50� 2m=8

	
I m 2 ¹0, 1, 2, : : : 28º (55)

where ceil.m/ is a function that returns the nearest integer greater than or equal to m. Nonuniform
meshes are obtained corresponding to each uniform mesh using the procedure described earlier. For
these considerations, we present the plots of the relative error versus the mesh size.

Figure 7 illustrates the convergence of the relative error in the L2 norm. Clearly, the error lines
of the considered solutions are bounded from below by the error line of P 0

h
� (L2-BA) and show a

tendency to become parallel to the error line of P 0
h
� as ` ! 0. Figure 7(a, b) shows the L2 error

considering �o D 50 and for uniform (ı D 0) and nonuniform (ı D 0.2) meshes, respectively. As
expected, the error lines corresponding to cases I and II differs substantially from those of Ih�,
P 0
h
�, and P 1

h
�. The error lines corresponding to cases III and IV are very close to that of Ih�. As

the solution in case IV has sixth-order dispersion accuracy on square meshes, it is almost the same
as Ih�. On nonuniform meshes, the quality of the solution in case IV deteriorates and is similar to
that of case III. Figure 7(c, d) show the error lines considering �o D 100 and for the choices ı D 0
and ı D 0.2, respectively. As expected all the error lines corresponding to cases I–IV deviate further
from the error lines of Ih�, P 0

h
�, and P 1

h
� (the pollution effect). On square meshes, the solution

of case IV shows the least deviation and is practically identical to Ih� (Figure 7(c)). The pollution
associated with the solution of case III is similar to that of cases I and II on coarse meshes, but it
diminishes rapidly on further mesh refinement. Again, on nonuniform meshes, the quality of the
solution in case IV deteriorates, showing an appreciable deviation from the error lines of Ih�, P 0

h
�,

and P 1
h
� and is similar to that of case III (Figure 7(d)). A distinctive feature in these plots is the

formation of spikes in the error lines. Their presence is more evident for higher wavenumbers and
on nonuniform meshes where the dispersion errors are relatively higher. As here we have prescribed
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Figure 7. Convergence of the relative error in the L2 norm using ˇ D .=9/ and Dirichlet boundary con-
ditions. The wavenumber �o and the mesh distortion parameter used are (a) �o D 50, ı D 0; (b) �o D 50,

ı D 0.2; (c) �o D 100, ı D 0; and (d) �o D 100, ı D 0.2.

only the Dirichlet boundary conditions, the numerical solutions might suffer spurious amplitude
and/or phase modulations to satisfy them [17]. Encounters with zones of degeneracy (wherein the
solution might blow up due to numerical resonance) also contributes to huge errors in the amplitude
[1, 17, 23]. Fortunately, these spurious modulations reduce should other choices for the boundary
conditions be employed, namely an exterior problem with DtN boundary conditions [17] and an
interior problem with Robin boundary conditions [11].

Figure 8 illustrates the convergence of the relative error in the H 1 semi-norm. Clearly, the error
lines of the considered solutions are bounded from below by the error line of P 1

h
� (H 1-BA). Unlike

the errors measured in the L2 norm, the errors measured in the H 1 semi-norm show a tendency to
merge with the error line of P 1

h
�. Figure 8(a, b) (�o D 50) shows that the error lines of cases III
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Figure 8. Convergence of the relative error in the H1 semi-norm using ˇ D .=9/ and Dirichlet boundary
conditions. The wavenumber �o and the mesh distortion parameter used are (a) �o D 50, ı D 0; (b) �o D 50,

ı D 0.2; (c) �o D 100, ı D 0; and (d) �o D 100, ı D 0.2.

and IV are practically the same as of Ih�, P 0
h
�, and P 1

h
�. Figure 8(c, d) (�o D 100) shows that the

deviations of the error lines of cases III and IV from the error line of P 1
h
�, even though they exist,

is smaller than that observed using the L2 norm.
Figure 9 illustrates the convergence of the relative error in the l1 Euclidean norm, which is a

measure of nodal exactness. Figure 9(a, c) shows that on unifrom meshes (ı D 0), the error lines
of cases III and IV converge at a rate of fourth and sixth order, respectively. Figure 9(b, d) shows
that on nonuniform meshes (ı D 0.2) the higher-order accuracy of case IV deteriorates and has a
trend similar to that of case III. Also, in an average sense, both cases III and IV have second-order
convergence rate similar to P 0

h
� and P 1

h
�. For the wavenumber �o D 50, the errors found for cases

III and IV are similar to that of P 0
h
� (Figure 9(b)).
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Figure 9. Convergence of the relative error in the l1 Euclidean norm using ˇ D .=9/ and Dirichlet
boundary conditions. The wavenumber �o and the mesh distortion parameter used are (a) �o D 50, ı D 0;

(b) �o D 50, ı D 0.2; (c) �o D 100, ı D 0; and (d) �o D 100, ı D 0.2.

8.2. Example 2: Robin boundary conditions

In this example, only the Robin boundary conditions are prescribed such that the exact solution is
�.x/D exp.i�ˇ �x/, where �ˇ WD �o.cos.ˇ/, sin.ˇ//. The operator M that appears in Equation (1c)
is chosen as M WD i�o. Thus, q.x/ WD i.n � �ˇ � �o/ exp.i�ˇ � x/. Uniform meshes with n�n square
elements are considered with n given by the following expression.

nD ceil

�
m�o

2

�
I m 2 ¹10, 10.5, 11, 11.5, : : : 25º (56)



Choosing n by the above expression guarantees the presence of at least m elements per wave-
length. Nonuniform meshes are obtained corresponding to each uniform mesh using the procedure
described earlier. For these considerations, we present the plots of the relative error versus ��, where
�� WD .�o`=/. The choice of �� as the abscissa in the plots allows us to single out the pollution
effect.

Figures 10–12 illustrate the convergence of the relative error in the L2 norm, the H 1 semi-norm,
and the l1 Euclidean norm, respectively. Clearly, all the spurious modulations that appeared in
the error lines considering only the Dirichlet boundary conditions (Figures 7–9) diminish when the
Robin boundary conditions are prescribed. Also, in Figures 10–12, by freezing the value of ı and
increasing the value of �o, we observe the following trait. The location of the error lines of Ih�,
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Figure 10. Convergence of the relative error in the L2 norm using ˇ D .=9/ and Robin boundary condi-
tions. The wavenumber �o and the mesh distortion parameter used are (a) �o D 50, ı D 0; (b) �o D 100,

ı D 0; (c) �o D 50, ı D 0.2; and (d) �o D 100, ı D 0.2.
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Figure 11. Convergence of the relative error in the H1 semi-norm using ˇ D .=9/ and Robin boundary
conditions. The wavenumber �o and the mesh distortion parameter used are (a) �o D 50, ı D 0; (b) �o D 100,

ı D 0; (c) �o D 50, ı D 0.2; and (d) �o D 100, ı D 0.2.

P 0
h
�, and P 1

h
� is practically unaffected by an increase in �o (no pollution). As expected, the error

lines of cases I and II not only are located high above the error lines of Ih�, P 0
h
�, and P 1

h
� but also

shift higher with an increase in �o (pollution effect).
On uniform meshes (ı D 0), the error lines of cases III and IV not only are located close to the

respective best approximations but also show negligible upward shift with an increase in �o (small
pollution). Clearly, on uniform meshes, the performance of case IV is relatively better than that of
case III (although the difference is small). The pollution effect is more visible for these cases on
nonuniform meshes (ı D 0.2). In the L2 norm, the error lines of cases III and IV show an accu-
racy at par with Ih� and P 1

h
� (Figure 10(c, d)). In the H 1 semi-norm, the error lines of cases III

and IV are practically the same as those corresponding to Ih�, P 0
h
�, and P 1

h
� (Figure 11(c, d)).

In the l1 Euclidean norm, the error lines of cases III and IV are close to the error line of P 0
h
�
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Figure 12. Convergence of the relative error in the l1 Euclidean norm using ˇ D .=9/ and Robin bound-
ary conditions. The wavenumber �o and the mesh distortion parameter used are (a) �o D 50, ı D 0;

(b) �o D 100, ı D 0; (c) �o D 50, ı D 0.2; and (d) �o D 100, ı D 0.2.

(Figure 12(c, d)). Further, in Figure 12, note that in an average sense all the error lines have second-
order convergence rate in the l1 Euclidean norm. This result is due to the error in the approximation
of the Robin boundary condition. Thus, unlike in Figure 9 wherein the error lines of cases III and IV
showed fourth-order and sixth-order convergence rates, respectively, here it drops to second order.

9. CONCLUSIONS

A new PG method involving two parameters, namely ˛1 and ˛2, is presented, which yields the fol-
lowing schemes on rectangular meshes: (i) a compact stencil obtained by the ˛ interpolation of the



Galerkin FEM and the classical central FDM, should the two parameters be made equal, that is,
˛1 D ˛2 D ˛; and (ii) the nonstandard compact stencil presented in [1] for the Helmholtz equation
if the parameters are distinct, that is, ˛1 ¤ ˛2. On square meshes, these two schemes were shown
to provide solutions to the Helmholtz equation that have a dispersion accuracy of fourth and sixth
order, respectively [1]. Thus, this PG method yields in a straightforward manner the counterparts of
these two schemes on unstructured meshes.

The salient features of this new PG method include the following. The solution space is discretized
by standard C 0-continuous FEs. The test functions/weights are piecewise polynomials of the same
degree as the FE shape functions and are generally discontinuous at the inter-element boundaries.
Models for the weights on the inter-element boundaries are provided such that the sparsity pattern
is the same as that for the Galerkin FEM. Parameters ˛1 and ˛2 determine the shape of the weights
on the element edges and the interiors, respectively. The choice ˛1 D ˛2 D 0 yield weights that
are identical to the FE shape functions, and hence, we recover the Galekin FEM. The weights are a
partition of unity only in the sense that they add up to unity. As the row lumping technique for the
FEM mass matrices is a critical step in the design of these weights (to fulfill the partition of unity
constraint), the current PG method is restricted only to those FEs where this technique makes sense,
that is, linear interpolation on simplices and multilinear interpolation on blocks.

The ˛ interpolation of FEM and FDM on a rectangular domain discretized by structured simpli-
cial FE mesh would yield a scheme identical to the AIM [4,5] wherein the mass matrix that appears
in the Galerkin FEM is replaced by an ˛-interpolated mass matrix. In the current PG method, we
recover the AIM (even on unstructured simplicial meshes) by making the choice bW a D N ajEh .
Unfortunately, in this case, the dispersion accuracy drops to second order.

Recall that on square meshes many existing higher-order compact schemes (including the QSFEM
[11]) can be recovered by an appropriate choice of parameters ˛1 and ˛2 [1]. As most of the expres-
sions for ˛1 and ˛2 optimized for square meshes need not be optimal for unstructured meshes in the
presented examples, we have considered only the simplest expressions that would guarantee fourth-
order (choosing ˛1 D ˛2 D .1=2/) and sixth-order (˛1,˛2 given by Equation (42b)) dispersion
accuracy on square meshes. Convergence studies of the solution error corresponding to these two
choices are carried out to quantify the pollution effect, and comparisons are made with respect to
the errors of the Galekin FEM, the nodally exact FE interpolant, and the best approximations in the
L2 norm and the H 1 semi-norm, respectively. Both the Dirichlet and Robin boundary conditions
were considered in the examples. The wavenumbers �o D 50 and �o D 100 were chosen to represent
values in the mid-frequency and high-frequency ranges, respectively.

For the Dirichlet problem, the results on square meshes verify the higher-order dispersion accu-
racy and the low pollution effect. However, on nonuniform meshes, the dispersion accuracy of the
current PG method drops down to second order (verified by the errors in the l1 Euclidean norm).
Also, the performance of both the choices for parameters ˛1 and ˛2 is similar on nonuniform
meshes. For the mid-frequency range, that is, �o D 50, the errors in the l1 Euclidean norm for
both the parameter choices is close to the error of the best approximation in the L2 norm. In the
high-frequency range, that is, �o D 100, the improvement with respect to the Galerkin FEM is sig-
nificant. However, the solutions exhibit spurious modulations indicating that there is still room for
improvement.

For the Robin problem, these spurious modulations in the solutions cease to exist. The pollution
effect on square meshes is greatly reduced, and on nonuniform meshes it is small. Also, the location
of the error lines of the current PG method is between the error lines of pollution-free solutions,
namely the nodally exact FE interpolant and the best approximations in the L2 norm and the H 1

semi-norm, thus indicating high accuracy.
The additional cost of implementation of the current PG method is just the evaluation of the

element boundary integrals (cf. Equation (31)). All the algebraic evaluations are carried out at the
element level unlike the quasi-optimal PG method [21], where it is carried out at the patch level. This
feature allows the current PG method to be easily incorporated within an ‘assemble-by-elements’
data structure. The choice of parameters ˛1 D ˛2 D .1=2/ render the current PG method indepen-
dent of the problem and mesh data. In this sense and for this choice, the current PG method could
be labeled ‘parameter-free’.
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