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SUMMARY

We present a stabilized numerical formulation for incompressible continua based on a higher-order Finite
Calculus (FIC) approach and the finite element method. The focus of the paper is on the derivation of
a stabilized form for the mass balance (incompressibility) equation. The simpler form of the momentum
equations neglecting the non-linear convective terms, which is typical for incompressible solids, Stokes
flows and Lagrangian flows is used for the sake of clarity. The discretized stabilized mass balance equation
adds to the standard divergence of velocity term a pressure Laplacian and an additional boundary term.
The boundary term is relevant for the accuracy of the numerical solution, especially for free surface flow
problems. The Laplacian and boundary stabilization terms are multiplied by non-linear parameters that
have an extremely simple expression in terms of element sizes, the pressure and the discrete residuals of
the incompressibility equation and the momentum equations, thus ensuring the consistency of the method.
The stabilized formulation allows solving the incompressible problem iteratively using an equal-order
interpolation for the velocities (or displacements) and the pressure, which are the only unknowns. The use
of additional pressure gradient projection variables, typical of many stabilized methods, is unnecessary.

The formulation is particularly useful for heterogeneous incompressible materials with discontinuous
material properties, as it allows computing all the stabilization matrices at the element level. Details of
the finite element formulation are given. The good behaviour of the new pressure Laplacian stabilization
(PLS) technique is shown in simple but demonstrative examples of application. A very accurate solution
was obtained in all cases in 2–3 iterations. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that the finite element solution of incompressible continua requires stabilization
in order to obtain physically meaningful solutions.

Stabilization terms are typically needed for two reasons: (1) to avoid spurious velocity oscillations
due to large convective terms in the momentum equations of fluid flow problems and (2) to avoid
spurious pressure oscillations in incompressible continua when an equal-order interpolation is
used for the kinematic variables (the velocities in a fluid or the displacement in a solid) and the
pressure [1, 2].
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Different stabilization procedures have been proposed over the past three decades. Most methods
are based on adding additional terms to the momentum and mass balance (incompressibility)
equations. Those terms depend on the residuals of the discrete governing equations [1–35].

In this paper we assume that convective effects are negligible (or even zero) and focuss on
the derivation of a new approach to obtain a stabilized equation for the mass balance equation of
an incompressible continua using a higher-order finite calculus (FIC) technique [22–26], [30–32]
combined with the finite element method (FEM). The discretized stabilized mass balance equation
adds to the standard divergence of velocity term a pressure Laplacian and an additional boundary
term. The boundary term is relevant for the accuracy of the numerical solution, especially for
free surface flow problems. The Laplacian and boundary stabilization terms are multiplied by
non-linear parameters that have a simple expression in terms of element sizes, the pressure and the
discrete residuals of the incompressibility equation and the momentum equations, thus ensuring the
consistency of the method. The stabilized formulation allows solving the incompressible problem
iteratively using an equal-order linear interpolation for the velocities (or displacements) and the
pressure, which are the only unknowns. The use of additional pressure-gradient projection variables,
typical of many stabilized methods, is unnecessary.

It it also shown that the higher-order FIC approach may be used as starting point for deriving
a more standard sub-grid-type stabilization method, which uses the pressure gradient projections
as additional unknown variables.

The accuracy and efficiency of the new pressure Laplacian stabilization (PLS) procedure are
shown in simple but demonstrative examples of application.

2. GOVERNING EQUATIONS

For conciseness we will write the governing equations as usually done in incompressible fluid
mechanics [1, 2]. Thus, the equations for an incompressible continuum are expressed in the
Lagrangian description using velocity variables as:
Momentum

�
Dvi

Dt
− ��ij

�x j
−bi =0 on � (1)

Mass balance (incompressibility)

εv := �vi

�xi
=0 on �, i =1,2,3 (2)

In Equations (1) and (2), � is the analysis domain, vi is the velocity along the i th coordinate
direction, � is the density, �ij are the Cauchy stresses, bi are the body forces (typically bi =�gi
where gi is the component of the gravity along the i th direction) and εv is the volumetric strain
rate. In addition, in (1) Dvi/Dt is the total derivative of the velocity. In our work we assume that
Dvi/Dt =�vi/�t , i.e. convective derivative terms are neglected, as it is usual in Stokes flows and
Lagrangian descriptions of incompressible continua [25–29, 33, 34, 36, 37].

The problem is completed with the boundary conditions for velocities and tractions, i.e.

vi −v
p
i = 0 on �u (3a)

�ijn j − t p
i = 0 on �t (3b)

where v
p
i denote the prescribed velocities on the Dirichlet boundary �u and t p

i are the traction
forces acting on the Neuman boundary �t , with normal vector n= [n1,n2,n3]T (for 3D problems).
The total boundary is � :=�u ∪�t .

In Equations (1)–(3a) and in the following, summation convention for repeated indices in
products and derivatives is used unless otherwise specified.
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CONSISTENT PRESSURE LAPLACIAN STABILIZATION 173

The Lagrangian governing equations (1)–(3a) hold for incompressible media in both fluid and
solid mechanics. The distinction emerges in the constitutive equations, as described next.

Following standard practice, Cauchy stresses are split into deviatoric and pressure components as

�ij =sij + p�ij (4)

where sij are the deviatoric stresses, p=�i i/3 is the pressure (assumed here to be positive if the
mean normal stress is tensile), and �ij is the Kronećker delta.

For the fluid case we will assume the constitute equations of an isotropic, Newtonian viscous
liquid. In that model, deviatoric stresses are related to deformation rates εij by

sij =2�(εij − 1
3εv�ij) (5a)

where � is the fluid viscosity and

εij = 1

2

(
�vi

�x j
+ �v j

�xi

)
, εv :=εi i (5b)

Remark 1
For an incompressible, linear isotropic solid, the kinematic boundary condition (3a) is usually
expressed in terms of displacement variables and the constitutive equation (5a) is written in
incremental form [29, 36]. This simplest expression is

�sij =sn+1
ij −sn

ij =2G�t[εij − 1
3εv�ij] (6)

where �sij is the increment of the deviatoric stresses between time steps n and n+1, �t is the
time increment and G is the shear modulus. Indeed other incremental forms for the constitutive
equation in solids using an objective time derivative of the stresses can be derived [35–37].

3. INTEGRAL FORM OF THE MOMENTUM EQUATIONS

The weighted residual form of Equations (1) and (3b) is∫
�

wi

[
�

�vi

�t
− ��ij

�x j
−bi

]
d�+

∫
�t

wi (�ijn j − t p
i )d�=0 (7)

where wi are the components of an appropriate test function.
Integrating by parts the term involving �ij in Equation (7) and substituting Equation (4) into the

expression for �ij gives an integral (weak form) expression of the momentum equations as:∫
�

[
wi�

�vi

�t
+ �wi

�x j
sij − �wi

�xi
p

]
d�−

∫
�

wi bi d�−
∫

�t

wi t
p
i d�=0 (8)

Equation (8) is the starting point for the finite element discretization of the momentum equations.

4. ABOUT THE PRESSURE STABILIZATION FOR INCOMPRESSIBLE CONTINUA

Many stabilization procedures for solving incompressible problems in fluid and solid mechanics
have been proposed [1–23]. Earlier procedures added to the standard incompressibility equation
(either in the strong form or in the variational equation) a pressure Laplacian scaled by a stabilization
coefficient that depends on physical parameters and the time step increment. Some of these
stabilization methods are described in [1, 2]. A similar stabilization procedure adds to the variational
equation a local L2 polynomial pressure projection multiplied by the inverse of the kinematic
viscosity [19]. These approaches are inconsistent since the stabilization term does not vanish for
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the exact solution, which can lead to errors in the pressure distribution and in the preservation
of the total volume. An improved approach adds to the incompressibility condition a term that
is the function of the discretized momentum equations, thus ensuring consistency. A standard
procedure of this kind is the Galerkin least-square (GLS) method [4, 8]. Another procedure of
this type, which has attracted much interest recently, is the so-called pressure-gradient projection
stabilization (PGPS) (also called orthogonal sub-scales stabilization method) [15, 17, 21]. In the
PGPS method, pressure gradients are projected onto a continuous field; the difference between
the actual gradients and their own projections generates stabilization terms. This is equivalent to
replacing the incompressible equation (2) by the following equation:

εv +∇T{�(∇p+p)}=0 (9)

where p is a continuous function (termed the pressure gradient projection vector) obtained by
projecting the pressure gradient ∇p on the velocity field, and � is a stabilization parameter.
Typically, � is chosen as a function of the viscosity parameter and the mesh size. The optimal
definition of the stabilization parameter is still a challenge in GLS and PGPS methods.

The term (∇p+p) in Equation (9) can be interpreted as the discrete residual of the momentum
equations. As a result, the total number of discrete unknown is increased by the inclusion of the
p field, which is discretized via pressure shape functions. For completeness, the set of governing
discrete equations is extended with additional equations requiring the vanishing of the sum (∇p+p)
in a weighted residual sense. This ensures the consistency of the method.

PGPS methods are useful for homogeneous flows lacking free-surfaces but encounter severe
difficulties for fluids with heterogeneous properties (also called multi-fluids [34, 38]) and, in some
cases, for free-surface flows. The two main drawbacks of PGPS methods are:

1. When there are jumps in the physical properties of the fluid, such as the density or the viscosity,
the pressure gradient field is discontinuous. The projection of this physical discontinuity on
a continuous field introduces large errors in the mass conservation equation.

2. When pressure segregation techniques are used for solving the Navier–Stokes equations, PGPS
methods induce errors on the boundary conditions that may lead to unacceptable volume
errors. This error is larger for free surface flows [39].

Furthermore, PGPS methods increase the number of problem variables (u, p and p) as well as
the connectivity (bandwidth) of the matrices to be solved. This affects negatively the efficiency of
the stabilization procedure and of the overall numerical scheme.

We present herein a procedure, termed PLS for Pressure Laplacian Stabilization, that simply
adds two stabilization terms to the variational form of the incompressibility equation: (1) a pressure
Laplacian and (2) a boundary integral. Both terms are multiplied by residual-dependent stabiliza-
tion parameters which expression emerges naturally from the formulation. Consistency is preserved
since the stabilization parameters vanish for the exact solution. An advantage of the new stabi-
lization terms is that the Laplace matrix and the boundary matrix are computed at element level.
Accordingly, the connectivity (bandwidth) of the unstabilized matrices is not affected. Because
pressure gradient continuity is not enforced, as it happens in PGPS methods, the treatment of
heterogeneous multi-fluid problems, such as mixing, is facilitated.

A serendipitous advantage is that the inclusion of the boundary term sidesteps the need for
prescribing known boundary pressure values when a segregated solution procedure is used. This
is essential for ensuring the overall conservation of mass in the analysis domain for free surface
flows [39].

An apparent drawback of the PLS method is that the resulting stabilized equation is non-linear
(due to the residual dependence of the stabilization parameters) and this requires using an iterative
solution scheme. Convergence of the solution has been found, however, in 2–3 iterations for all
the problems tested in this work. In addition, the non-linearity can be easily handled within a
time-integration scheme in transient problems, or in practical problems where other non-linearities
might appear due to the presence of convective terms in the momentum equations (such as in
Navier–Stokes flows) or non-linear material behaviour.
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5. STABILIZED FORM OF THE MASS BALANCE EQUATION VIA
HIGHER-ORDER FINITE CALCULUS

5.1. On the proportionality of the pressure and the volumetric strain rate

Let us assume a relationship between the pressure and the volumetric strain rate typical for
‘compressible’ and ‘quasi-incompressible’ materials, as

1

K
p=εv (10)

where K is the bulk modulus. Clearly for a full incompressible material K =∞ and εv =0. For
finite, although very large, values of K the following expression can be readily deduced from
Equation (10):

1

K
∇p=∇εv (11)

where ∇ is the gradient operator. For 2D problems, ∇= [�/�x1,�/�x2]T.
Equation (11) shows that pressure and volumetric strain rate gradients are co-directional for any

K �=0. We will assume that this property also holds for the full incompressible case (at least for
values of K comfortably representable on the computer without overflow). From Equations (10)
and (11) we deduce

∇εv

|∇εv| = ∇p

|∇p| and hence
�εv

�xi
= �p

�xi

|∇εv|
|∇p| (12)

5.2. Higher-order FIC form of the mass balance equation

The Finite Calculus (FIC) form of the mass balance equation for the full incompressible case is
obtained by using a higher-order Taylor series expansion for expressing the balance of mass in a
finite size domain in terms of values of the velocity derivatives at the center of the domain (Figure A1
of Appendix A). The higher-order FIC mass balance equation is written for 2D problems as:

εv + h2
1

24

�2
εv

�x2
1

+ h2
2

24

�2
εv

�x2
2

=0 (13)

In Equation (13) h1 and h2 are the sizes of the rectangular domain where the mass balance is
enforced. The derivation of Equation (13) is shown in Appendix A. Clearly for the infinitesimal
case h1 =h2 =0 and the standard incompressibility equation (εv =0) is recovered.

Equation (13) can be interpreted as a non-local mass balance equation incorporating the size of
the domain used to enforce the mass balance condition and higher-order second derivative terms
of the volumetric strain rate. Equation (13) can be extended to account for temporal stabilization
terms. These terms, however, are disregarded here as they have not be found to be relevant for the
problems investigated so far.

Remark 2
In previous works we have developed stabilized FIC form of the mass balance equation obtained
by expressing the velocity derivatives in terms of their values sampled at the corner points of the
mass balance domain via Taylor series and retaining the second derivatives of the velocities only.
The resulting expression is [22–26].

εv ± 1
2 hT∇εv =0 (14)

For 2D problems h= [h1,h2]T. The sign in Equation (14) is positive or negative depending
whether the sampling point at which velocity derivatives are computed is the corner node 1 or 7
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in Figure A1, respectively. The sign in Equation (14) is irrelevant in practice. Equation (14) will
be used for deriving the expression for the stabilization parameters in Section 5.4.

5.3. Weighted residual form of the higher-order FIC mass balance equation

The weighted residual form of Equation (13) is

∫
�

q

(
εv + h2

1

24

�2
εv

�x2
1

+ h2
2

24

�2
εv

�x2
2

)
d�=0 (15)

where q are adequate test functions.
Integrating by parts the second derivative terms in Equation (15) gives

∫
�

qεv d�−
∫

�

(
h2

1

24

�q

�x1

�εv

�x1
+ h2

2

24

�q

�x2

�εv

�x2

)
d�+

∫
�

q

24

(
n1h2

1
�εv

�x1
+n2h2

2
�εv

�x2

)
d�=0 (16)

where ni are the components of the normal vector to the boundary �.
In the derivation of Equation (16), space derivatives of the characteristic lengths h1 and h2 have

been neglected. This assumption holds exactly if both lengths are taken to be constant over the
rectangular domain (or locally constant at each integration point). In any case this assumption does
not invalidate the derivation, as long as the discretized formulation converges to correct velocity
and pressure fields satisfying the momentum and incompressibility equations in an average sense
and up to the desired order of accuracy.

Using the relationships in Equation (12) we can write

∫
�

(
h2

1

24

�q

�x1

�εv

�x1
+ h2

2

24

�q

�x2

�εv

�x2

)
d� =

∫
�

(
h2

1
�q

�x1

�p

�x1
+h2

2
�q

�x2

�p

�x2

) |∇εv|
24|∇p| d�

=
∫

�

(
2∑

i=1
�i

�q

�xi

�p

�xi

)
d� (17)

with

�i =
h2

i |∇εv|
24|∇p| , i =1,2 (for 2D problems) (18)

Substituting Equations (17) and (20) into (16) we write the stabilized mass balance equation as:

∫
�

qεv d�−
∫

�
(∇Tq)Dv∇p d�+

∫
�

qg d�=0 (19)

For 2D problems

Dv =
[

�1 0

0 �2

]
and g =

2∑
i=1

h2
i

24
ni

�εv

�xi
(20)

5.4. Computation of the domain stabilization parameters �i

The momentum equations (1) can be written using Equations (4) and (5a) as:

�
�vi

�t
− �

�x j
(2�εij)+ 2

3
�

�εv

�xi
− �p

�xi
−bi =0 (21)
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From Equation (21) we deduce (neglecting space variations of the viscosity)

2

3
�

�εv

�xi
=rmi (22)

with

rmi :=−�
�vi

�t
+ �

�x j
(2�εij)+ �p

�xi
+bi (23)

and, hence

2
3�|∇εv|=|rm | (24)

where rm = [rm1,rm2 ]T is the vector containing the momentum equations.
From the first-order FIC mass balance equation (14) (with the negative sign) we deduce

1
2 h�|∇εv|=εv (25)

where h� is the projection of h along the gradient of εv , i.e.

h� = hi

|∇εv|
�εv

�xi
= hT∇εv

|∇εv| (26)

Equations (24) and (25) are consistently modified as follows:

2
3�|v||∇εv| = |v||rm | (27)

1
2 ph�|∇εv| = pεv (28)

In Equation (27) v is the modulus of the velocity vector.
For the discretized problem the r.h.s. of Equations (27) and (28) represents the power of the

residual forces in the momentum equations and of the volumetric strain rate, respectively. Clearly,
these powers will vanish for the exact solution. Note also that the product ph� in Equation (28) is
always positive, as pεv�0.

From Equations (27) and (28) we deduce

|∇εv|= pεv +|v||rm |
1
2 |ph�|+ 2

3�|v| (29)

Substituting Equation (29) into (18) gives the expression for the stabilization parameters as:

�i =
h2

i (pεv +|v||rm |
(12|ph�|+16�|v|)|∇p| (30)

Note that the expression of �i in Equation (30) will vanish for values of vi and p satisfying exactly
the incompressibility equation (εv =0) and the momentum equations (|rm |=0). Clearly for the
discrete problem, the stabilization parameters depend on the numerical errors in the approximation
for εv and rm , as it is desirable. In practice, it is advisable to choose a cut-off value for �i . In our
work we have chosen the following limiting band: 10−8��i�105.
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Remark 3
Using only Equation (25) for defining |∇εv| and substituting this into Equation (18) gives

�i =
h2

i |rm |
16�|∇p| (31)

In the absence of body forces and assuming steady-state conditions and a linear FE approximation,
then |rm |=|∇p| and

�i =
h2

i

16�
(32)

which is a form of the stabilization parameter typically found in the literature for Stokes flow
[1, 2, 17, 22, 25].

Remark 4
Other residual-based expressions for the stabilization parameter �i can be found. For instance, two
alternative expressions for �i are

�i =
h2

i

|∇p|

(
�|v|+ �|h�|

2�t

)
|εv|+|rm |(

12�|h�v|+6�
h2

�

�t
+16�

) (33)

and

�i =h2
i

⎡
⎢⎢⎣ �|h�v|+�

24�|h�v|| p
εv

|+16�2 |∇p|
|rm |

⎤
⎥⎥⎦ (34)

The derivation of above expressions is shown in Appendix B. The merits and drawbacks of the
different expressions for �i will be studied in a subsequent work [40].

5.5. PLS boundary stabilization term

For the computation of the boundary integral in Equation (19) we proceed as follows.
From the relationships in Equation (12) we express the boundary term g of Equation (20) as

g =
2∑

i=1

h2
i

24
ni

�εv

�xi
=

2∑
i=1

h2
i

24
ni

|∇εv|
|∇p|

�p

�xi
=�bi

�p

�xi
(35a)

where �bi is a boundary stabilization parameter given by

�bi =
h2

i ni |∇εv|
24|∇p| no sum in i (35b)

Substituting the expression for |∇εv| of Equation (29) into (34) we find

�bi =�i ni no sum in i (35c)

where �i is given by Equation (30) (or by Equations (33) or (34)) with all the terms computed at
the boundary edge.

The boundary integral in Equation (19) is finally expressed in terms of the pressure gradient
components as: ∫

�
q�bi

�p

�xi
d� (36)
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Remark 5
For hi = h j = h then �i = � and �bi = �ni . In this case, the boundary integral (36) can be
expressed as

∫
�

q�
�p

�n
d� (37)

where �p/�n =ni�p/�xi is the gradient of the pressure normal to the boundary.

5.6. PLS characteristic lengths

The definition of the characteristic distances hi is a relatively minor issue given the consistency of
the expressions for the stabilization parameters (they vanish for the exact solution). Any expression
relating the hi distances to the element sizes can be used in practice.

In our work we have used the following definition for hi :

hi =max[lTj a j ], j =1,ns (38)

with a1 = [1,0]T and a2 = [0,1]T for 2D problems, li are the vectors along the sides of the element
and ns is the number of sides (ns =3 for triangles). For instance, for side 1 of a triangle linking
nodes 2 and 3, li = [x3

1 −x2
1 , x3

2 −x2
2 ]T, where xi

1, xi
2 are the horizontal and vertical coordinates of

node i .
For the examples solved in this paper results using the expression for hi of Equation (38) have

been found to be very similar to those using a constant value for hi defined as:

hi =he with he = [Ae]1/2 (39)

6. FINITE ELEMENT DISCRETIZATION

We will discretize the domain � with a mesh of standard three-noded triangles (for 2D) or four-
noded tetrahedra (for 3D).

The velocities and the pressure are interpolated over each element using the same linear approx-
imation as (for 3D problems)

v=

⎧⎪⎨
⎪⎩

v1

v2

v3

⎫⎪⎬
⎪⎭=

n∑
i=1

Ni v̄i , p=
n∑

i=1
Ni p̄i (40)

where Ni = Ni Id , Ni is the standard linear shape function for node i , Id is the d ×d unit
matrix, d is the number of space dimensions, n is the number of nodes in the element (n =3/4
for linear triangles/tetrahedra) and v̄i and p̄i are the nodal values of the velocity vector
components and the pressure, respectively. Indeed, any other approximation for v and p can be
used.

Substituting the approximation (40) into the governing equations (8) and (19) and choosing
wi = Ni gives the following global system of equations:

[
M 0

0 0

]
d

dt

{
v̄

p̄

}
+
[

K Q

QT −(L−B)

]{
v̄

p̄

}
=
{

f

0

}
(41)
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The matrices and vectors in Equation (41) are formed by assembling the element contributions
given in Box 1 for 3D problems.

Me
ij =

∫
�e

�NT
i N j d�, Ke

ij =
∫

�e
GT

i DG j d�, Qe
ij =

∫
�e

GT
i mN j d�

with

Gi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�Ni

�x1
0 0

0
�Ni

�x2
0

0 0
�Ni

�x3

�Ni

�x2

�Ni

�x1
0

�Ni

�x3
0

�Ni

�x1

0
�Ni

�x3

�Ni

�x2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, m= [1,1,1,0,0,0]T, D=�

[
2I3 0

0 I3

]

Le
ij =

∫
�e

�k
�Ni

�xk

�N j

�xk
d�, Be

ij =
∫

�
�bk Ni

�N j

�xk
d�

f e
i =

∫
�e

Ni bd�+
∫

�e
t

Ni tp d�, i, j =1,2,3

I3 :3×3unit matrix, b= [b1,b2,b3]T, tp = [t p
1 , t p

2 , t p
3 ]T

�e
t : boundary of element e coincident with the external Neuman boundary

Box 1. Element expression of the matrices and vectors in Equation (41) for 3D problems.

Matrix M is computed with a three point Gauss quadrature. The rest of the matrices and vectors
in Equation (41) are computed with only a one-point quadrature. A higher-order quadrature might
be required in some cases for integrating the non-linear terms in matrices L and B. The simple
one-point quadrature has however sufficient to obtain good results for the problems solved in
the paper.

A monolithic transient solution of the system of Equations (41) can be found using the following
iterative scheme:

j+1

{
v̄

p̄

}n+1

= [ j Hn+1]−1

⎧⎨
⎩f+ 1

�t
Mv̄n

0

⎫⎬
⎭ (42a)

with

H=
⎡
⎣K+ 1

�t
M Q

QT −(L−B)

⎤
⎦ (42b)
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In Equations (42b) (·)n and (·)n+1 denote values at times t and t +�t , respectively, whereas the
upper left index j denotes the iteration number; i.e. j (·)n+1 denotes values at time t +�t and the
j th iteration.

For the steady-state case, we can solve for the velocity and pressure variables simultaneously
by inverting the system

Hsa= f̄ (43a)

with

a=
{

v̄

p̄

}
, Hs =

[
K Q

QT −(L−B)

]
, f̄=

{
f

0

}
(43b)

Clearly, as the stabilization parameters are a function of the velocity and the pressure, the
solution of Equation (43a) must be found iteratively. A simple direct iteration scheme gives

j+1a= [ j Hs]−1f (44)

where, as usual, j denotes the iteration number.
For transient problems, an implicit segregated approach has typically more advantages. For

instant, the following iterative scheme can be used for computing v̄ and p̄ in time as

Step 1

j+1v̄n+1 = v̄n +
[

1

�t
M+K

]−1

[f+Q j p̄n+1] (45a)

Step 2
j+1p̄n+1 = [ j Ln+1 − j B̄n+1]−1[QT j+1v̄n+1] (45b)

Neglecting matrix B in Equation (47) would require prescribing the pressure at some point
of the domain for inverting the Laplace matrix L. As mentioned earlier, the typical option of
making p=0 at a free boundary introduces an error in the mass conservation equation leading to
considerable mass losses for viscous free surface flow problems [39]. The presence of the boundary
mass matrix B in Equation (45b) avoids the need for prescribing the pressure at the boundary and
this is another distinct feature of the PLS formulation.

Remark 6
The boundary matrix B is non-symmetrical. Symmetry of the system matrix Hs can be recovered
by shifting the boundary terms to the r.h.s. of Equation (43a). This gives

Hs =
[

K Q

QT −L

]
, f̄=

{
f

fp

}
(46a)

with

f pi =
∫

�
Ni�bk

�p

�xk
d� (46b)

The boundary force vector fp is now computed at each iteration as part of the iterative process.
For the examples solved in the paper we have found that this does not increase the total number
of iterations.

Remark 7
Symmetry of the boundary stabilization matrix can also be recovered by defining matrix B as:

Be
ij =

∫
�

�̄bi Ni N j d� with �̄b = �bk

p

�p

�xk
(47)
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Matrix Be
ij of Equation (47) has now the form of a boundary mass-type matrix. The price for

the symmetry of B is the increased non-linearity of the boundary stabilization parameter. The
usefulness of this alternative will be investigated in the future research.

7. PRESSURE-GRADIENT PROJECTION FORMULATION

An alternative stabilized formulation can be derived from the higher-order FIC equations by
introducing the so-called pressure-gradient projection variables. The resulting stabilized mass
balance equations can be derived in a number of ways [1, 2, 15–18, 20, 21, 29–33]. Here we show
how a PGPS (for pressure-gradient projection stabilization) formulation can be readily obtained
following the higher-order FIC approach previously described.

From the momentum equations it can be found

h2
i

24

�εv

�xi
= �̂i rmi (48)

where rmi is defined in Equation (23). The stabilization parameter �̂i is [20, 21, 23]

�̂i =
h2

i

24

[
�l2

4�t
+ 2�

3

]−1

(49)

and l is a typical grid distance. The expression for �̂i of Equation (49) can be also obtained as a
particular case of Equation (33).

The FIC characteristic lengths hi are expressed in terms of the grid distance l as

hi =�i l (50)

where �i is a numerical parameter.
Introducing Equation (50) into (49) the stabilization parameter for the PGPS method is

obtained as:

�̂i =
�2

i[
6�

�t
+16

�

l2

] (51)

Note that Equation (51) is applicable for the viscous (Stokes) and inviscid limit cases.
For relatively fine grids, the numerical solution is insensitive to the values of �i [25]. For the

coarse mesh used in the examples of Section 9 we have obtained good results for the range of
values of �i such that

√
2��i�

√
6. More specifically for the computations shown in the paper we

have chosen �i =�=√
6 and, hence

�̂i = �̂= 1[
�

�t
+ 8�

3l2

] (52)

As for the element distance l we have taken l =2[�e]1/2 for three-noded triangular meshes.
The value of �̂ in Equation (52) coincides with that deduced in previous works using other

arguments [23, 25, 26].
Equations (51) and (52) show that the stabilization parameters in the PGPS method are constant

for each element. This is an important difference versus the PLS formulation where a non-linear
(and consistent) form for the stabilization parameters is used.

The momentum residuals rmi are now split as follows:

rmi := �p

�xi
+ 1

�̂i
	i (no sum in i) (53a)
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with

	i = �̂i

(
−�

�vi

�t
+ �sij

�x j
+bi

)
(53b)

is the i th pressure-gradient projection weighted by the i th stabilization parameter. Note that the
sum (�p/�xi )+1/�̂i	i vanishes for the exact solution for which rmi =0. The 	i ’s are now taken
as additional variables which are discretized with the standard FEM in the same manner as for the
pressure.

The form of rmi in Equation (53a) has been chosen so as to ensure that the term (1/�̂i )	i
is discontinuous between adjacent elements after discretization. This is essential for accurately
capturing high discontinuous pressure gradient jumps typical of fluids with heterogeneous physical
properties (either the viscosity or the pressure) [34, 38, 41]. In this manner the term 1

�̂i
	i can match

the discrete pressure gradient term �p/�xi , which is naturally discontinuous between elements for
a linear approximation of the pressure.

Remark 8
The form of 	i in Equation (53b) is motivated by the recent work of the first two authors on
modelling of multi-fluids with different physical properties [34, 41]. A slightly different expression
for 	i was chosen in [34, 41] as

	i = 1

�

[
−�

�vi

�t
+ �sij

�xi
+bi

]
and hence rmi := �p

�xi
+�	i (54)

The form of 	i of Equation (53b) chosen here leads to similar good results for the pressure gradient
jumps (Section 9.2) and has been found to be simpler to implement in practice.

Substituting Equation (48) into the second and third integral of Equation (16) and using (53a)
give (for 2D problems)

∫
�

qεv d�−
∫

�

2∑
i=1

�q

�xi

(
�̂i

�p

�xi
+	i

)
d�+

∫
�

q
2∑

i=1
ni

(
�̂i

�p

�xi
+	i

)
d�=0 (55)

The boundary integral in Equation (55) is typically neglected in PGPS formulations and will be
disregarded from here onward.

The following addition equation is introduced for computing the pressure gradient projection
variables 	i

∫
�

2∑
i=1

w̄i

(
�p

�xi
+ 1

�̂i
	i

)
d�=0 (56)

In our work w̄i =q = Ni is chosen.
Clearly, the term (�p/�xi )+(1/�̂i )	i (no sum in i) vanishes for the exact solution (see

Equation (53a)) and this ensures the consistency of the method.
The next step is the space discretization of the velocities vi , the pressure p and the pressure-

gradient projections 	i in terms of nodal values. In our work a standard linear interpolation is used
for all variables. The resulting system of discretized equations is

M ˙̄v+Kv̄+Qp̄= f (57a)

Qv̄−Lp̄−Cp̄=0 (57b)

Tp̄+CTp̄=0 (57c)
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where all matrices and vectors are defined in Box 1 except T and C given (for each element) by

Te =

⎡
⎢⎢⎣

T̂e
1 0 0

0 T̂e
2 0

0 0 T̂e
3

⎤
⎥⎥⎦ , [T̂ e

i ]kl =
∫

�e

1

�̂i
Nk Nl d�, k, l =1,2,3

Ce = [Qe,Qe,Qe]

(58)

In Equations (57) ¯(·) as usual denotes nodal values for the corresponding variables and ˙̄v=�v̄/�t .
As mentioned earlier in the derivation of Equation (57b) we have disregarded the contribution of
the boundary term in Equation (55). The solution of Equations (57a) is typically performed via an
iterative staggered scheme.

The nodal pressure-gradient projection values p̄ can be eliminated from Equation (57c) using a
diagonal form for T as:

p̄=−T−1
d CTp̄ where Td =diag(T) (59)

Substituting p̄ from Equation (59) into (57b) yields the following system of two equations for
v̄ and p̄:

M ˙̄v+Kv̄+Qp̄ = f (60a)

Qv̄−(L−L̂)p̄ = 0 (60b)

where L̂=CT−1
d CT is the discrete pressure Laplace matrix. This matrix has a wider bandwidth

than the Laplace pressure matrix L in Equation (41). The difference between L and L̂ provides
the necessary stabilization for the accurate solution of Equations (60).

The system of Equations (60) is solved with the following iterative segregated scheme:

Step 1
j+1v̄n+1 = v̄n +�tM−1

d [f−K j v̄n+1 −Q j p̄n+1] (61a)

Step 2

j+1p̄n+1 = [L−L̂]−1Q j+1v̄n+1 (61b)

The iterations proceed until a converged solution for v̄n+1 and p̄n+1 is found.

7.1. Differences between the PGPS and the PLS methods

1. In the PGPS method the stabilization parameters are typically taken as constant (at least
for homogeneous meshes and constant viscous fluids). In the PLS method, however, the
stabilization parameters vary as a function of the volumetric strain rate and the residual of
the momentum equations.

2. In the PGPS method the amount of stabilization is varied in space. This variation is introduced
by the difference between the Laplace pressure matrix L and the discrete pressure Laplace
matrix L̂. In the PLS method the amount of stabilization is also variable in space, but the
variation is introduced by the consistent stabilization parameters �i and �bi .

3. The consistency in the PGPS method is guaranteed by introducing the discrete residual of the
momentum equations rmi := (�p/�xi )+(1/�̂i )	i (no sum in i) in the stabilized mass balance
equation (Equation (55)). This term vanishes for the exact solution giving rmi =0. In the
PLS method the consistency is guaranteed by the expression of the stabilization parameters
�i and �bi which also vanish for the exact solution (i.e. for εv =0 and rmi =0).

4. Both methods are non-linear from the stabilization point of view. The PLS method is non-
linear due to the fact that the stabilization parameters are a function of the volumetric strain
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rate, the pressure gradient and the residual of the momentum equations. PGPS methods are
non-linear due to the definition of the pressure gradient projection field 	i which is a function
of the pressure field.

5. The PLS method introduces a boundary stabilization term which is a function of a constant
stabilization parameter multiplied by the volumetric strain rate, which ensures the consistency
of the term. The boundary stabilization term is relevant for free surface flow problems.

6. In PSPS methods the boundary stabilization term is usually neglected. This simplification is
acceptable on external boundaries because the difference between the pressure gradient and
the continuous pressure gradient projection is in general small, but cannot be neglected at
internal interfaces with a jump in the physical properties.

7. The PLS method is a priori more efficient than the PGPS method as:

(i) It does not need the evaluation of an auxiliary vector field (i.e. the pressure gradient
projections 	i ).

(ii) The bandwidth of the assembled equation system for the pressure is smaller due to the
larger bandwidth of the discrete Laplace matrix L̂.

(iii) As a consequence of (i) and (ii) the computational cost of the PLS method is considerably
smaller.

(iv) The PLS method can represent exactly a pressure gradient jump (Section 9.2).

The numerical results obtained so far show that the PLS is not only more efficient than the
PGPS but in many cases is even more accurate.

8. RELATIONSHIP WITH THE GLS METHOD

The well-known GLS formulation [4, 8] can be readily derived as a particular case of the higher-
order FIC formulation presented.

The starting point is the weak form of the higher-order FIC mass balance equations
(Equation (16)). From Equation (22) we deduce

�εv

�xi
= 3

2�
rmi (62)

Substituting Equation (62) into (16) gives∫
�

qεv d�−
∫

�

(
2∑

i=1
�i

�q

�xi
rmi

)
d�+

∫
�

(
2∑

i=1
�i ni rmi

)
d�=0 (63)

with

�i =
h2

i

16�
(64)

It is interesting that this expression for �i was obtained in Equation (32) as a particular case of
the general form (30).

Note the coincidence of Equation (63) with the enhanced GLS formulation for Stokes flows
(including a boundary integral term) presented in [8].

The FIC technique therefore emerges as a ‘parent’ methodology for deriving a family of stabilized
FEM for incompressible continua. A study of the possibilities of the FIC-FEM procedure for these
types of problems is presented in [40].

9. EXAMPLES

We have chosen three relative simple, but demonstrative, examples to verify the efficiency and
accuracy of the new PLS formulation versus the PGPS method described in Section 7.
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Figure 1. Square analysis domain (1×1mts) and finite element mesh used.

All the problems studied have been solved in a square container of dimensions 1×1m using a
coarse finite element mesh of 10×10×2 three-noded triangles (Figure 1). Note that the mesh is
non-symmetrical. The values of the characteristic distances hi and h for this problem have been
taken simply as h1 =h2 =h =0.1m.

For the PLS method we have used the iterative monolithic scheme of Equation (42a) with the
stabilization parameters �i defined by Equation (30). For the PGPS method we have used the
iterative segregated scheme of Equations (61).

The boundary terms in the stabilized mass balance equation (19) for the PLS method have been
found to be irrelevant for the problems solved here.

The solution for v̄ and p̄ has been found in time, starting from a known initial solution with
v̄0 = p̄0 =0. The iterations stop when the increment of the velocity increment vector (in L2 norm)
between two iterations is less than 10−10.

For the first iteration and the first time step, the following initial value of the stabilization
parameters has been chosen for the PLS method

0�1
i =0�̂1 =

⎡
⎢⎣ 1

�

�t
+ 8�

3l2

⎤
⎥⎦ with l =0.1m (65)

The above expression coincides with that for the (constant) stabilization parameters for the
PGPS method chosen for solving the examples presented next (see Equation (52)).

9.1. Square water container

We solve for the pressure distribution in a square container filled with water. The body forces are
b1 =0 and b2 =�g with values of the density and gravity constant equal to �=1000Kg/m3 and
g =−10m/s2, respectively. The viscosity is �=10−3 Ns/m2. A time increment of �t =10−2 s has
been chosen when solving Equation (42a). The normal velocity has been prescribed to zero at the
bottom line and the two vertical walls. The nodes on the top surface are allowed to move freely.
The solution for this simple problem for the first time step is v=0 and an hydrostatic distribution
of the pressure which is independent of the fluid viscosity. This solution basically does not change
in time (except for very small oscillations of the velocity and the pressure).

Figure 2 shows the pressure distribution along the central vertical line obtained with the PLS
method for the first time step and different iterations. A converged solution that approximates
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Figure 2. Square container filled with water. Pressure distribution along the central vertical line (x1 =0.5)
obtained with the PLS method.

Figure 3. Square container filled with water. Pressure distribution along the central vertical line (x1 =0.5)
obtained with the PGPS method.

practically exactly the hydrostatic distribution is found in just two iterations. The same solution is
found using the PGPS method in 8 iterations (Figure 3).

Figure 4 shows the time evolution of the relative increment of volume in the domain obtained with
the PLS method. Note the oscillatory distribution of �V /V with values not exceeding 2.5×10−5.
This evidences the good performance of the PLS method in terms of volume preservation.

9.2. Square liquid container with two fluids of different density

The same square container of the previous example is considered assuming that the upper half
is filled with a liquid of density �=10−3 Kg/m3. The value of the gravity constant is again
g =−10m/s2 and the viscosity is the same for both fluids with �=10−3 Ns/m−2. A time step of
�t =10−3 s has been taken. The boundary conditions are the same as for the previous example.
The exact analytical solution for the first time step is v=0 in the whole container and a linear
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Figure 4. Square container filled with water. Time evolution of the relative volume increment in the
domain (V =1m2). PLS results.

Figure 5. Square container filled with two fluids of different denstiy. Pressure distribution along the central
vertical line (x1 =0.5) obtained with the PLS method.

distribution of the pressure ranging from p=0 at the top (x2 =1.0m) to p=10−2 Pa at x2 =0.5m;
and again a linear distribution of the pressure from p=10−2 Pa at x2 =0.5m to p=5,000Pa at
x2 =0.

The converged solution for the PLS method is obtained in just two iterations (Figure 5). The
same solution is found using the PGPS method in 8 iterations (Figure 6).

9.3. Driven cavity flow

The flow in a driven square cavity of 1×1m is studied the PLS and PGPS methods.
The horizontal velocity on the top surface nodes has been prescribed to v

p
1 (x1,1)=1m/s. The

vertical velocity has also been prescribed to zero at all nodes on the top surface with the exception
of the central node with coordinate (0.5,1) which is left free to move in the vertical direction.
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Figure 6. Square container filled with two fluids of different density. Pressure distribution along the central
vertical line (x1 =0.5) obtained with the PGPS method.

Figure 7. Driven cavity flow. Pressure distribution along the horizontal line for x2 =0.5m. PLS results.

The normal velocity at the bottom line and the two vertical walls have been prescribed to zero.
The physical properties are �=10−10 Kg/m3, g =0N/m2, �=1Ns/m2. The time increment is
�t =10−2 s.

It can be easily verified that, for the material properties chosen and the values of the pressure
and the volumetric strain rate, the value of the stabilization parameter �i for the PLS method is
approximately constant over the whole analysis domain and equal to

�i =�� h2
i

16�
= 10−2

16
=6.25×10−3 m2s

Kg
(66)

Figure 7 shows the initial solution for the pressure distribution along the horizontal axis for
x2 =0.5 m and the solution found in the second iteration. This solution does not change in an
appreciable manner in subsequent iterations. Figure 8 shows the solutions obtained with the PGPS
method. The converged solution after eight iterations agrees reasonably well with that found with
the PLS method in just two iterations.
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Figure 8. Driven cavity flow. Pressure distribution along the horizontal line for x2 =0.5m. PGPS results.

(a) (b)

Figure 9. Driven cavity flow. Pressure contours. Numbers indicate the pressure value for the isobar line.
(a) PLS method and (b) PGPS method.

A ‘correct’ solution could have been obtained with the PLS method in just one iteration by
using the constant value of the stabilization parameter of Equation (66).

Figure 9 shows the pressure contours for both the PLS and PGPS method for the converged
solution. Both results are equally good and evidence the singularity of the pressure at the top
upper corners. We emphasize again the good results obtained with the PLS method with a coarse
non-symmetric mesh of three-noded linear triangles.

Similar good results have been obtained for all the problems presented in the paper using four-
noded quadrilateral elements with a 2×2 quadrature [40]. In addition, the formulation is directly
applicable to non-structured meshes.

For the problems studied the cost of the numerical solutions obtained with the PLS method is
considerably less (about one half) that for the PGPS method. More detailed cost studies should be
however performed for larger size problems using structured and non-structured meshes.

10. CONCLUDING REMARKS

We have derived a stabilized finite element formulation for incompressible continua via a higher-
order FIC method. The method differs from alternative stabilized formulation in that the stabilization
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is introduced in the mass balance equation by a domain pressure Laplacian matrix and a boundary
mass matrix multiplied by stabilization parameters, which depend on the discrete residual of
the momentum and incompressibility equations. Despite the non-linearity of the stabilized mass
balance equation, the convergence to the correct incompressible solution has been found in 2–3
iterations for all the problems studied in the paper.

The PLS method has distinct advantages over alternative stabilization procedures, the main ones
being the possibility to operate with just velocity and pressure variables only, the consistent form
of the stabilization terms, the natural definition of the stabilization parameters, the preservation
of mass for free surface flow problems, the possibility to accurately reproduce pressure gradient
jumps in fluids with different densities, the simplicity and reduced bandwith of all the stabilization
matrices involved and the fast convergence of the method.

The price to be paid for these advantages is the non-linearity of the stabilized formulation.
This might prove to be not so disadvantageous for transient problems (for which the stabilization
parameters can be made constant within each time step) or for intrinsically non-linear flows such
as Navier-Stokes and non-Newtonian fluid problems.

The good features of the PLS method versus other existing finite element stabilized methods
will be verified in more complex flow problems in subsequent work [40].

APPENDIX A

A.1 Derivation of second order FIC mass balance equation

Let us consider the balance of mass in a rectangular domain of dimensions h1 ×h2 (Figure A1).
For simplicity, we denote the horizontal and vertical velocities u and v, respectively. We express
the horizontal and vertical velocities at points 1–8 in terms of the values at the center point O. For
instance, the horizontal velocities at points 1,2,3 are expressed in terms of the values at the center
point using a Taylor series expansion up to third-order terms as follows:

u1 = u0 + h1

2
u′

,1 − h2

2
u′

,2 + 1

2

(
h2

1

4
u′′
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2
u′′
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2
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,2
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+1
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[
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8
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8
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(A3)

where

(·)′,i =
�u

�xi
, (·)′,i j =

�2u

�xi�x j
, (·)′,i i j =

�3u

�xi�xi�x j

and all the derivatives are computed at the center point 0 with coordinates (x, y).
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Figure A1. Rectangular mass balance domain h1 ×h2 in the interior of the body. Parabolic distribution of
the velocity along the sides.

Similarly, for points 5,6,7

u5 = u0 − h1
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(A4)

u6 = u0 − h1
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8
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,1 (A5)

u7 = u0 − h1
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(A6)

Assuming a parabolic distribution of the horizontal velocity along each edge the balance of
mass in the x1 direction is computed as:

∑
�u =�

h2

6
[u5 +4u6 +u7]−�

h2

6
[u1 +4u2 +u3]=−�h1h2

[
u′

1 + 1

24
(h2

1u′′′
1 +h2

2u′′′
,122)

]
(A7)

Following an identical procedure the balance of mass in the vertical direction x2 is obtained as:

∑
�u =−�h1h2

[
v′
,2 + 1

24
(h2

1v
′′′
,122 +h2

2v
′′′
,2)

]
(A8)

The balance of mass in the domain is finally expressed as:

∑
�(u+v)=−�h1h2

[
u′

,1 +v′
,2 + 1

24
h2

1(u′
,1 +v′

,2)′′1 + 1

24
h2

2(u′
,1 +v′

,2)′′2

]
=0 (A9)

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:171–195
DOI: 10.1002/nme



CONSISTENT PRESSURE LAPLACIAN STABILIZATION 193

The higher-order FIC mass balance equation is therefore (defining u ≡v1 and v≡v2)

�v1

�x1
+ �v2

�x2
+ h2

1

24

�2

�x2
1

(
�v1

�x1
+ �v2

�x2

)
+ h2

2

24

�2

�x2
2

(
�v1

�x1
+ �v2

�x2

)
=0 (A10)

or

εv + h2
1

24

�2
εv

�x2
1

+ h2
2

24

�2
εv

�x2
2

=0 in � (A11)

with

εv = �v1

�x1
+ �v2

�x2
= �vi

�xi
(A12)

Clearly for the infinitesimal case h1 =h2 =0 and the standard form of the mass balance equation
(εv =0) is recovered.

APPENDIX B

We will derive first the expressions for the stabilization parameters given in Equation (33).
From Equations (24) and (25) the following identities hold:

2

3
�|∇εv| = |rm | (B1)

�|h�|
2

|v||∇εv| = �|v||εv| (B2)

�
h2

�

4�t
|∇εv| =

�|h�|
2�t

|εv| (B3)

From Equations (B1)–(B3) we deduce

|∇εv|=

(
�|v|+ �|h�|

2�t

)
|εv|+|rm |

�|h�v|
2

+�
h2

�

4�t
+ 2

3�

(B4)

Substituting Equation (B4) into Equation (18) gives

�i =
h2

i

|∇p|

(
�|v|+ �|h�|

2�t

)
|εv|+|rm |(

12�|h�v|+6�
h2

�

�t
+16�

) (B5)

which is the sought expression for �i .
For the derivation of the expression for �i of Equation (34) we proceed as follows. From

Equations (10), (11) and (24) we deduce the following identities:

�|h�v| |∇p|
|∇εv| = �|h�v|

∣∣∣∣ p

εv

∣∣∣∣ (B6)

�
|∇p|
|∇εv| = 2

3
�2 |∇p|

|rm | (B7)
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Combining Equations (B6) and (B7) gives

|∇p|
|∇εv| =

�|h�v|
∣∣∣∣ p

εv

∣∣∣∣+ 2
3�2 |∇p|

|rm |
�|h�v|+�

(B8)

Substituting Equation (B8) into Equation (18) gives

�i =h2
i

⎡
⎢⎢⎣ �|h�v|+�

24�|h�v|| p
εv

|+16�2 |∇p|
|rm |

⎤
⎥⎥⎦ (B9)

which is the sought expression for �i .
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