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Abstract

This paper studies the phenomenon of strain bifurcation and local-
ization in Jo plasticity under plane stress and plane strain conditions.
Necessary conditions for the outcome of bifurcation, localization and
decohesion are analytically established. It is shown that the explicit
consideration of the bifurcation and decohesive limit conditions allows
for the determination of localization angles in certain situations of in-
terest that can be used to conduct benchmark tests on finite element
formulations. The relative merits of irreducible, (stabilized) mixed
and (displacement and/or strain) enhanced formulations are discussed.
Numerical examples show that the mixed displacement/pressure for-
mulation is to be preferred to the standard irreducible schemes in
order to predict correct failure mechanisms with localized patterns of
plastic deformation. Mixed elements are shown to be practically free
from mesh directional bias dependence.



1 Introduction

Structural collapse is often the consequence of the formation of strain local-
ization bands whose width is very small compared to the length scale of the
structure. Depending on the material, the phenomena behind the formation
of these bands may be diverse: concentration of micro-structural defects,
intergranular slip, crystal dislocation, etc. In granular materials, strains con-
centrate in shear bands whose width is at most one order of magnitude larger
than the grain size. In metals, dislocations occur at an even smaller scale.
Therefore, from the structural point of view the localization band is per-
ceived as a fracture surface of negligible width. It is generally accepted that
the amount of energy released during the formation of a fracture unit area is
a material property, called the fracture energy.

The question of modelling strain localization, formation of slip lines and
subsequent structural collapse is a testing nonlinear problem in the field of
computational mechanics. As with many other such challenges, solving real
life, engineering problems can only be tackled by numerical procedures, such
as the finite element method. Unfortunately, the results obtained in the
initial attempts were bafflingly poor: either collapse mechanisms could not
be numerically attained at all or if they could, they were strongly dependent
on the mesh discretization used, both in terms of size and bias of the grid.
In the last decades, many different finite element strategies have been tried
on the issue, and the generated bibliography is voluminous.

The failure of the first attempts on the matter motivated studies directed
to gain further insight in the subject of the necessary conditions for the
occurrence of strain bifurcation and localization. The pioneering work by
Hill [1] was taken up in more recent references ([2], [3], [4], [5], [6], [7], [8])-
The outcome of these efforts was that the necessary conditions for bifurcation
and localization of elasto-plastic materials were identified and formulae were
obtained for the orientation of the shear bands to be expected in general
circunstances. However, lack of a convincing reason for the failure of finite
element simulations to reproduce the analytical results persisted.

Most of the studies regarding localization with Js plasticity have been car-
ried out using the irreducible formulation, with the displacement field as the
only primary variable. However, J5 plastic flow is isochoric by definition, and
for strain localization to take place the plastic regime has to be well devel-
oped and, then, the (incompressible) plastic component of the deformation is
dominant over the elastic part. Displacement-based finite element irreducible



formulations are not well suited to cope with this quasi-incompressibility situ-
ation. The unsuitability of the irreducible formulation is more evident if low
order finite elements are used which, conversely, are the first option when
dealing with potentially discontinuous displacement and/or strain fields.

Reversely, the mixed displacement/pressure (u/p) formulation is a much
more appropriate framework to tackle (quasi)-incompressible problems [11].
However, it is not straight-forward to construct stable mixed low order el-
ements, and one of the successful lines of research that allows to achieve
this is the use of stabilization methods. In previous works ([12], [13], [14],
[15], [16], [17] and [18]), the authors have used the orthogonal subgrid scale
method to stabilize the mixed displacement-pressure method and applied it
to the solution of incompressible elasto-plastic and damage problems. This
stabilized framework leads to a discrete problem which is fully stable, free of
pressure oscillations and volumetric locking and, thus, results obtained are
not spuriously dependent on the directional bias of the finite element mesh.

The objectives of the present work are four-fold: (a) to revisit the an-
alytical results on strain bifurcation and localization and to complement
them with a more demanding decohesion condition that the localized solu-
tion must fulfil in the limit, (b) to clarify the specific difficulties encountered
by low order finite element when dealing with strain localization problems
and, particularly, with shear strain localization bands (c) to propose a se-
ries of benchmark problems in plane stress and plane strain situations for
which the analytical solution is known and (d) to assess the relative perfor-
mance of mixed and irreducible quadrilateral and triangular meshes in those
benchmarks.

The outline of the paper is as follows. In Section 2, the mixed formula-
tion for J, plasticity is sketched. In Section 3, the necessary conditions for
strain bifurcation and localization are revised; analytical solutions for the lo-
calization angle under plane stress and plane strain conditions are obtained
from the decohesion limit condition. In Section 4, the mechanical bound-
ary value problem is stated in irreducible, mixed (u/p) and stabilized mixed
formulations. In Section 5, the approximability difficulties associated with
strain localization problems are revised, discussing the role that displace-
ment and/or strain enhancements may play. Section 6 presents results for a
benchmark problem analyzed under plane stress and plane strain conditions
with both irreducible and mixed elements. Finally, conclusions are drawn on
the relative performance of the tested formulations.



2 J, plasticity constitutive model

For an elastoplastic model, the constitutive relation is expressed in total form

. oc=C:(e—¢€P) (1)

where o,e and &P are the (second-order) stress, strain and plastic strain
tensors, and C is the (fourth-order) elastic tensor, which can be expressed as

C:<K—§G)1®1+2GI (2)

where K is the bulk modulus, G is the shear modulus, 1 is the second-order
identity tensor an I is the fourth-order symmetric identity tensor.

By definition, plastic flow in Jy plasticity is purely deviatoric. In such
circunstances, it is advantageous to introduce the following split of the stress
tensor o into its volumetric and deviatoric parts:

oc=pl+ s (3)

where p = %tra and s =dev o, are the pressure and the deviatoric stress,
respectively.
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Figure 1: Yield surface for Jy plasticity in the stress space



The strain tensor € =V*®u, where u are the displacements, is split analo-
gously:

g(u) = %61,1 + e (4)

where ¢, = tre = V - u and e =dev e, the volumetric and the deviatoric
strain, respectively.
Correspondingly, the constitutive equation is split as:

p = Ke (ba)
s = 2Gdeve® = 2Ge° (5b)

where €] and e® = e — e are the elastic volumetric and the deviatoric parts
of the strain tensor, respectively; e is the (deviatoric) plastic strain tensor.
In Jo plasticity, the volumetric part of plastic deformation is zero, so that
gy =¢60=V-u

Table 1 summarizes the Jo elasto-plastic model used in this work, ac-
counting for isotropic softening. The equivalent plastic strain is defined as
£ = \/%fj |€7|| dt, and the equivalent von Mises stress is 5 = /3/2||s]| .

The isotropic softening variable r = r(§) defines the current size of the
yield surface @ (s,r) = 0, as it controls the value of the radius of the von
Mises cylinder (depicted in Figure 1). Initially, when the equivalent plastic
strain & = 0, r is equal to the initial flow stress o,. Along the softening regime
r diminishes and, for large value of the equivalent plastic strain, it eventually
vanishes.

The plastic multiplier 7 is determined from the Kuhn-Tucker and consis-
tency conditions. Details on how to efficiently integrate the Jo elasto-plastic
constitutive model can be found in reference [11].

For the bifurcation and localization analysis in the next Section, it is
convenient to recall that Eq. (1) can also be expressed in rate form as:

G=C: ¢ (6)

where & and & are the (second-order) stress and strain rate tensors, and C
is the (fourth-order) elastic tensor, which, for associative plasticity, can be
expressed as [11]:
C.m@®m:C
C?=C- 5 (7)
m:C:m+ZH

where m =0®/0s is the second-order plastic flow tensor and the harden-
ing/softening parameter is H = H(§) = 0r/0¢ (see Table 1).
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1)  Von Mises yield function, ®:
@ (s.r) = sl = /A= /3G 1)

2)  lIsotropic softening variable, :

o 1 - ﬂi ) < < 2= . .
r=47 ( 7 & SES linear softening

0 e <{<o0
r =0, exp (—%Hf §) <¢éE< o exponential softening

where £ is the equivalent plastic strain, o, is the flow stress
and Hg > 0 is the softening coefficient.

3)  Plastic evolution laws:

e’ =

ym
= 7\/5

where * is the plastic multiplier and the plastic flow tensor
0P

. S
s sl

is normal to the yield surface.

Table 1: J, plastic constitutive model

With the definitions introduced above, the rate of deviatoric plastic work
s WP =s: & = sf = r§ Therefore, the total plastic work along a plastic
process involving full softening, that is, from an elastic statet = 0,£ = 0,r =
0., to a totally developed plastic state with ¢t = 00, & = 0o, r = 0, is equal to

t=
0o 0.2

P \P I+ — > _ "o
we = [ oirie= [Cr(as - 3 (s)

both for linear or exponential softening.
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Figure 2: Stress-strain curve with exponential softening

Defining the elastic deviatoric strain energy at yielding ast¢ = o2 /2 (2G)
and the material brittleness number as IIp = US /WE, , the softening para-
meter can be expressed as

Hg =2G I1p 9)

Let us now assume that plastic dissipation localizes in a band of width
b (see discussion in the next Section). Let us establish the requirements for
this situation to be consistent with a limit case discrete model in which the
strain energy is dissipated in a widthless discontinuity, say a slip line, and
this dissipated energy per unit of slip line area is the fracture energy of the
material G.

The classical procedure ([19], [20], [21]), sketched in Figure 2, is as follows.
The total energy dissipated during the fracture process per unit volume D
within the localization band must fulfill the equation

Dh—g — D:% (10)

For a plastic model, D = W2 | and, using Eqs. (8) and (9), this renders:

uc b

> =2G = 11

G /b z (11)
where the length £ = (G /US) is the material length, which depends only on
the material properties. FEq. (11) makes the dimensional softening modulus
Hg dependent on the ratio between the width of the localization band and
the material length.

Hg =2G 11 =2G



3 Bifurcation and localization analysis in J2
plasticity

3.1 Continuous, localized and discrete failure. Failure
analysis

Let us consider a solid domain €2 subjected to a deformation evolution process
leading to failure. Depending on the degree of continuity of the displacement
and strain fields leading to full material deterioration, failure can be classified

as ([6], [7], [8], [9]):

e Continuous failure: when the kinematic compatibility conditions of
a continuum medium are preserved during the deformation and frac-
ture process, that is, displacement and strain fields are continuous,
displacement and strain jumps do not appear, [a] = 0,[€] = 0.

e Localized failure: when the kinematic compatibility conditions of
a continuum medium are not fulfilled by the strain field during the
failure process, that is, the displacement is continuous, but strains are
discontinuous, strain jumps do appear, [0] = 0,[€] # 0.

e Discrete failure: when kinematic compatibility conditions are vio-
lated both by the displacement and strain fields to produce a fracture,
that is, the displacement and strains are discontinuous, displacement
and strain jumps do appear, [u] # 0,[€] # 0.

For each type of failure to befall, there are necessary conditions that must
be fulfilled. Analyzing the evolution of an increasing deformation process
leading to failure (described by a stress-strain law such as the one depicted
in Figure 2 for a point undergoing failure), several conditions can be identified
that act as failure diagnostics, in the sense that they mark the occurrence
of necessary requisites for a certain type of failure to be initiated. These
are: the bifurcation condition, the localization condition and the decohesion
condition. In the following, these requirements are discussed for the case of
associative Jo-plasticity.

Bifurcation condition. This condition is usually associated to the sta-
tionarity of stress evolution with respect to the strain history, & = 0. Because



of the rate Eq. (6), the stationary condition, or limit state, implies
det C* =0 (12)

Because positive definiteness of the constitutive tensor is invoked to prove
solvability and uniqueness of the irreducible mechanical problem in incremen-
tal form, Eq. (12) is often called the loss of uniqueness condition. This name
is not really appropriate as such condition would be met at an inflection point
in the stress-strain relation if such point existed and that would not imply
loss of uniqueness of the solution.

Loss of uniqueness is a necessary condition for bifurcation to take place, as
it implies the existence of a limit or stationary stress point and two alternative
solutions beyond that situation one solution in which all material points at
the stationary level of stress proceed to deform forward (along a branch of
the stress-strain curve with negative slope) and another solution in which
some points deform forward and some others backward (unloading along
the branch with positive slope). Therefore, the true necessary condition for
(continuous or discontinuous) failure to materialize is that there exist strain
rates €, such that € : & < 0 and, therefore:

€:C?:6<0 (13)

Note that Eq. (12) is obtained by restricting Eq. (13) to the equality case.

Localization condition. This condition detects the possibility of forma-
tion of spatial discontinuities along material surfaces defined by a normal
vector n. The condition applies both to weak (strain) as to strong (strain
and displacement) discontinuities depending on the severity of the jumps in
the kinematic fields.

Consider the body €2, as shown in Figure 3, crossed by a discontinuity S.
Regions Q1 and Q0 are the parts of the body located “in front” and “behind”
S. Consider, as in Figure 3a.1, that ST and S~ are two lines that run parallel
to S, at a relative distance b. Surfaces S* and S~ delimit a localization band
of width b where strain localization may occur.

Let w = u™ — u~ be the difference between the displacement “in front”
and “behind” the localization band and 8 = w /b be a deformation vector
defined with respect to b. The top graph in Figure 3a.2 shows a certain
displacement component along a line normal to S, with the jump w occurring
continuously between S~ and S*. The strain corresponding to the variation
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Figure 3: Localized failure: (a) weak and (b) strong discontinuities

of the displacement along the line normal to S is shown in the bottom graph.
The behaviour inside the localization band is established through a softening
stress-strain law like the one in Figure 2.

Let us now consider the case of strong discontinuities. Note that such case
can be formally constructed from the one previously discussed of a localiza-
tion band of width b comprised between two weak discontinuities simply by
taking the limit b6 — 0. In this case, as shown in Figure 3b.1, the weak dis-
continuities at lines St and S~ converge to a strong discontinuity at line S.
Now, w = ut —u~ =[u], the difference between the displacement rates “in
front” and “behind” the discontinuity line, is a real displacement jump; the
deformation vector 8 = limy,_q w / bis not only discontinuous but unbounded
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(see Figure 3b.2). The behaviour of such a strong discontinuity must be es-
tablished via a discrete softening traction-jump law or, through a reqularized
softening stress-strain law like in the previous case of a localization band [21].

Reversely, a localization band of width b bounded by two weak discon-
tinuities can be viewed as a regularized strong discontinuity, and the corre-
sponding softening stress-strain law as a regularization of a certain discrete
traction-displacement jump law. This is the standpoint behind the soften-
ing regularization procedure described in Section 2 and the one that will be
pursued throughout this work.

According to Maxwell’s compatibility condition, the jump in the strain
field between the inside and the outside of the localization band can be
expressed as [¢] = (n® B)". According to Cauchy’s theorem, the jump on
the variation of tractions, t = n - & across the discontinuity lines St and S~

must be null, [[ t ] = 0. Assuming a linear comparison solid, this is shown to
imply the singularity of the (second-order) acoustic tensor Q¥ =n-C? -n :
det Q7 =0 (14)

The occurrence of this condition for a given pair n and C® implies the
loss of material ellipticity of the constitutive relation and this is a necessary
condition for the appearance of weak discontinuities and localized failure to
take place. Eq. (14) is also called discontinuous bifurcation condition.

Classically, the problem of determining the onset of the discontinuous bi-
furcation consists in finding the first instant of the loading process (maximum
value of the softening parameter H = H,.) and the corresponding orientation
of the discontinuity n.,. that satisfy that det Q% (H,.,n..) = 0.

Condition (14) is not very stringent. A situation exhibiting neutral load-
ing inside and outside the localization band would meet it, without being
really a localization scenario.

This point deserves some additional discussion. Following reference [7], let
us require that for the localization band to form and in subsequent instants,
material points inside the band undergo plastic loading (4 > 0) while points
outside the band unload elastically (¥ = 0). If € is the regular (unloading)
strain rate which is common to the points outside and inside the localization
band, the corresponding stress rates are:

Ot = Ciéoy =C:E (15a)
Gwt = C:(ém — &%) = C: (é+ (n®B) —mn) (15b)
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where [€] =€t — €t = (M ® ﬁ)q is the difference in the total strain rate,
and the plastic strain rate is €& = ym (¥ is the plastic multiplier and m is
the plastic flow tensor). Therefore, the jump in the stress rate is:

[6] = Gin—Few = C: (m®B) ~5m) (16)
Substituting, the traction equality, [[1': ] =n- [6] =0, reads:

n-[c; ((n®5)5—7m)} —0 (17)

and this is an alternative stating of the discontinuous bifurcation condition in
Eq. (14). Defining the elastic acoustic tensor as Q = n - C - n and making use
of the symmetries of tensor C, Eq. (17) determines uniquely the deformation
vector rate ﬁ as:

B=4Q"' (m:Cn) (18)
Let us now require, as said, that material points outside the band unload

elastically, that is:
m: o <0 (19)

while points inside the band comply with the plastic consistency condition,
d =0:

: 0P 0P
¢ = —:0+—7 2
55 S5 (20a)
2
= m: G — Y H =0 (20Db)
Using this result and Eq. (16), Eq. (19) can be rewritten as:
2, NS
nggm:C:[(n@)ﬁ) —fym} (21)
Substituting (18 ) in (21), yields [7]:
Hgg[a:Q_lza—m:C:m] (22)

wherea = m : C-n. Eq. (21) determines the maximum value of the softening
parameter that allows for strain localization with a discontinuous strain field.
We will refer to Eq. (21) as the localization condition. Note that Eq. (14) is
obtained by restricting Eq. (21) to the equality case.

12



Incidentally, let us remark that any softening law designed to allow full
decohesion across the localization band at the end of the straining process (for
|le|| — oo) must be such that the softening parameter H = 0 in the limit, as
shown in Figure 2. This means that, whatever happens before, the softening
parameter H must increase during the final stages of the deformation process,
from negative values to zero, asymptotically (like in exponential softening)
or abruptly (like in linear softening). Therefore, if condition (21) is not met
at the initial stages of the deformation process, say at yielding, and the
localization condition is fulfilled at a later stage of the deformation process,
it will be because plastic flow will make the right hand side of the inequality
increase at a faster rate than the left hand side, which be increasing as well.

Decohesion condition. This condition reflects the necessity of having null
rate of traction at the discontinuity (weak or strong) at the end of the strain-
ing process, that is
lim €t=0 (23)
llel—o0
Ast =n-é&, Eq. (23) implies that, in the limit ||€]| — 00, & = Gexs =
Gint = 0. Because of Eq. (15a), the condition & = 0 implies that, in the
decohesion limit, the regular (unloading) strain rate € vanishes and then, Eq.
(15b), the condition &y, = 0 implies that, in the limit, the plastic tensor has
the structure dictated by Maxwell’s compatibility condition:

(n®B) =4m (24)

or, in other words, it implies that, in the limit ||| — oo, the localized strain
rate field is purely plastic (inelastic in a general case).

Remark 1 FEq. (24) is different from Eq. (21), in the sense that it is much
more constrictive in the possibilities for the orientation n. Consequently, it
does not follow from the fact that a given discontinuity orientation n satisfies
the localization condition det QP (H,n) = 0 for a given mazimum (negative)
H < 0 value, that the same orientation n will in the limit ||e|| — oo satisfy
the decohesion condition, with H = 0. In other words, it does not follow from
the fact that a certain discontinuity can form at an orientation given by Eq.
(21) that such discontinuity can reach the decohesion limit.

Remark 2 Reversely, the condition & = 0 (for |le|| — oo, in the final
stages of the deformation process) from which Eq. (24) follows is exactly the
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same stationary condition & = 0 in FEq. (12), necessary for the existence of
a limit point and the initiation of strain bifurcation, plus the compatibility
requirement that the difference in the rate of the strain field satisfies Mazwell’s
condition, [¢] = (m® B)°.

Remark 3 Hence, Eq. (24) is the necessary and sufficient condition for the
occurrence of bifurcation and localization of the strain field and decohesion
in the limit case along a localization band (or a reqularized strong discontinu-
ity) with orientation n. This is why the term strong discontinuity condition
was used in reference [8] for it. However, the decohesion condition, like the
localization condition, applies both to weak and strong discontinuities alike.

Remark 4 From the previous Remarks and because the localization band is
bounded by material surfaces, it follows that Eq. (24) must hold all along the
localization process, for the decohesive limit to be reached.

Remark 5 The physical interpretation of this condition is simple: all of the
difference in the strain field between the interior and the exterior points of
the localization band must be inelastic (plastic in this case).

Remark 6 For a given plastic flow tensor m (and plastic multiplier ),
Eq. (24) determines the orientation of the discontinuity n (and the rate of
the deformation vector 6 ). This is exploited in the next Section. However,
the solution for the corresponding (nonlinear) equations may be not uniquely
determined or may not exist.

Remark 7 The orientation of the discontinuity n derived from Eq. (24)
does not depend on the elastic properties. It depends only on the plastic yield
surface adopted and the stress state.

3.2 Orientation of the discontinuity

The question of determining the orientation of the material surface exhibit-
ing strain (in the weak discontinuity case) or displacement (in the strong
discontinuity case) jumps has been object of some attention in the literature.

Several authors have found analytical solutions for the localization condi-
tion, Eq. (21). In reference [2], analytical expressions for the orientation of
n., are obtained for tridimensional cases by means of the spectral analysis of
the acoustic tensor Q and using Lagrange multipliers. In [3] two-dimensional
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Figure 4: Definition of critical localization angle

problems are analyzed by maximizing a convenient second-degree polynomial
scalar function. In [4], bifurcation orientations are found for some particular
cases of Jo plasticity by direct eigen-analysis of Q. References [5] and [6] ob-
tained a geometrical solution for the problem in the plane stress and plane
strain cases. Finally, references [7] and [8] tackled the problem within the
context of the strong discontinuity approach.

In this work, a different approach is adopted. Attention will be restricted
to cases of Jy associative plasticity under plane stress and plane strain con-
dition. In this cases, analytical expressions for the orientation of localization
bands for which the decohesion condition, Eq. (23), rather than the localiza-
tion condition, Eq. (21), can be fulfilled are easy to obtain.

In the following, an orthonormal base {n,t,p} is used, with n normal to
the surface S, t tangent to it and on the plane of interest and p orthogonal
to the plane of the problem. In this base, the deformation vector rate can be
expressed as B8 = 3,n+ 3t .

3.2.1 Plane stress conditions

In plane stress conditions, the out of plane components of the strain tensor
need not be explicitly considered, since o3 = 0 [11]. Then, the decohesion
condition can be expressed in the base {n,t, p} directly as

B % Bt . Mpn Myt
n = 25

l %ﬁt 0 7 Mpt My (25)
Therefore, the actual condition can be stated as:

My = 0 (26)

15



Let my, ms (my > my) and e;, ey be the principal eigen values and
the principal directions of the plastic flow tensor m, respectively. Let 6 be
the angle of n with respect to ey, so that n = cosf e; + sinfl e;. Then the
component my can be expressed as

my = (my — my) sin® 0 + my (27)

From Egs. (26) and (27) the critical angle (see Figure 4 for its definition)
can be computed as:

ma

sin?6,, = — (28)

m1 — My
Note that Eq. (28) provides for two opposite values for angle 6... Note also
that there are stress combinations, for instance, with m; > my > 0, for
which sin 6. > 1, and localization with decohesion is impossible.
Alternatively, Eq. (28) may be written as:
mo ~

tan?f,, = ——— = tanf (29)
my

where 0 is the angle between the projection of the flow vector (normal to the
yields surface cylinder) and the principal axis o axis (see Figure 5).

In the case of J, plasticity, it is verified that m; = s;, where s; are the
deviatoric principal stresses.

Using these results, Table 2 can be obtained for the critical orientations
in different plane stress load combinations.

Stress components Critical angle 6.,
01 09
Plane stress | P1 Pure Shear 1.0] -1.0 45.00°
P2 Uniaxial Tension | 1.0 | 0.00 35.26°
P3 Biaxial Tension 1 | 1.0 | 0.25 21.80°
P4 Biaxial Tension 2 | 1.0 | 0.50 0.00°

Table 2: Localization angles for plane stress

In a plane stress state, the bifurcation and localization conditions are
both fulfilled at the onset of yielding. Therefore, softening and localization
occur immediately after the yield surface is reached for the first time. At
that instant, it also happens that plastic flow is in the direction required for
the decohesion condition to be eventually met.
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Figure 5: Locus and flow directions and localization angles in plane stress
conditions

It is clear from Figure 5 that bifurcation of the strain field after yield-
ing consists on the points inside the localization band undergoing further
straining in the direction of the plastic flow, while the points outside the
localization band unload elastically. For the pure shear case, P1, bifurcation
and localization befall without the need of strain rotation, because the direc-
tion of plastic flow coincides with the direction of elastic loading/unloading.
However, for the other investigated stress combinations, P2 (uniaxial strain-
ing), P3 and P4 (mixed loading), a significant amount of reorientation of the
principal strain directions takes place during the localization process. They
have to rotate from being coaxial with the principal stress directions at the
instant of yielding to be totally aligned with the plastic flow to be able to
meet the decohesion condition.

3.2.2 Plane strain conditions

Under plane strain conditions, the decohesion condition in the base {n,t,p}
is

Bn %ﬁt 0 Mpn  Mnp 0
%ﬁt 0 0=y mu mg O (30)
0 0 0 0 0 my

From this, it must be m;; = 0, and then, as for the plane stress case, it follows

that: .
tanf,, = —— (31)
my
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Stress components Critical angle 6.,
01 (o)
Plane strain | P1 Pure Shear 1.0] -1.0 45.0°
P2 Uniaxial Tension | 1.0 | 0.00 45.0°
P3 Biaxial Tension 1 | 1.0 | 0.25 45.0°
P4 Biaxial Tension 2 | 1.0 | 0.50 45.0°

Table 3: Localization angles for plane strain

But, in this case, due to the plane strain constraint €,, = 0 and the flow rule
€P = 4 m, the limit decohesion condition o = 0 implies € = € and:

Mypp =0 (32)

Taking into account that for a purely deviatoric flow m,, = m3 = s3 =
—(s1 + s2) and m; = s;, Eq. (32) implies that in the decohesive limit

s53=0= 5] = —89 = M1 = —Ms (33)

Replacing condition (33) into expression (31) it is concluded that the local-
ization angle in plane strain condition is always 6., = 45.0°, irrespective of
the stress loading conditions (see Table 3).

For a geometrical interpretation of the critical angle 6., consider that the
decohesion condition s3 = 0 implies that the equality o1 + 092 = 203 holds.
This means that the cohesion condition can only be met at the intersection of
the yield cylinder and the plane o1+ 09 = 203, which is a plane that contains
the hydrostatic axis 0; = 09 = o3 and the line 0; + 052 = 0 in the 03 = 0
plane. This intersection is composed of two lines parallel to the hydrostatic
axis, whose projections in the o1 — o plane are two parallel lines at 6 = 45°
with the o axis (see Figure 6).

The intrinsic restriction €,, = 0 that defines the plane strain condition
deserves an additional comment. The limit condition o = 0, which implies
my, = 0, does not only apply to the decohesion limit, but also to the bi-
furcation condition itself, necessary for a softening response to take place.
This means that, unlike what happens under plane stress situations, bifur-
cation does not commonly coincides with the onset of yielding. In general,
substantial rotation of the principal strain directions has to take place from
the onset of plastic behavior (where principal directions of strain and stress
coincide and principal values are proportional), to the limit point where soft-
ening behavior may be initiated (where neither of the previous conditions
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Figure 6: Locus and flow directions and localization angles in plane strain
conditions

happen). Only for pure shear, point P1 in Figure 6, it is ¢y = ¢, = 0 in
the elastic range, and thus yielding and bifurcation may happen at the same
time (in fact, the pure shear case complies both with the plane stress and
plane strain requirements). For the other investigated stress combinations,
P2 (uniaxial straining), P3 and P4 (mixed loading), stress will continue to
rise under increasing strain after plastic flow. Only when a certain amount
of plastic behaviour has come about, with the corresponding reorientation of
the principal strain directions, the localization process is set in motion. This
reorientation is larger the more the yielding state differs from pure shear.
Note that the expression for the localization angle found both plane stress
and strain conditions, tan?f,.. = —(sy /1), does not depend on the elastic
constitutive tensor C: it is independent of the elastic material properties.

4 Irreducible, mixed and stabilized formula-
tions

The strong form of the continuum elasto-plasticity problem can be stated as:
given the elastic tensor C and prescribed body forces f, find the displacement
u, strain g, plastic strain e? and stress o, fields, such that:

V-o+f =0 (34a)
o = C:(e—¢P (34b)
e = Viu (34c)



The field of plastic strains, €P, is computed locally depending on the partic-
ular plastic model selected, but it can be considered as a certain function of
the stress field and its history, e? = (o).

These equations, subjected to appropriate Dirichlet and Neumann bound-
ary conditions, must be satisfied in €2, the open and bounded domain of R"dim
occupied by the solid in a space of ng;n dimensions.

4.1 The irreducible formulation

In the standard irreducible form of the elasto-plasticity problem Eq. (34c) is
substituted into Eq. (34b), so that the stresses can be expressed in term of
the displacement u and the plastic strain ? fields as:

oc=C:(Viu—-¢e?) (35)

The strong form of the irreducible problem reduces to Eq. (34a), once
Eq. (35) is substituted, subjected to appropriate Dirichlet and Neumann
boundary conditions. In the following, we will assume these in the form of
prescribed displacements u = u on 9€,, and prescribed tractions t on 9,
respectively. The associated weak form is:

(vwW-o)+(v,f) =0 Vv (36)

where u, v € V are the displacement field and its variations, V = H} () is
the space of continuous functions with discontinuous derivatives, L? () is the
space of square integrable functions in €2 and (-, ) denotes the inner product
in L?(2). Integrating Eq. (36) by parts, the problem can be rewritten in
the standard form as:

(Vv,o) = (v,f) = (v,t),, =0 Wv (37)

The discrete finite element form of the problem is obtained from Eq. (37)
by substituting the displacement field and their variations by their standard
finite element interpolations:

(Vv 04) = (Vi ) — (Vi t) .o =0 Vv (38)

where uy, vy, € V, are the discrete displacement field and its variations,
respectively.
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4.2 The mixed u/p formulation

The strong form of the mixed u/p formulation for the Jo plasticity continuum
mechanical problem can be stated as: given the elastic properties (G, K) and
prescribed body forces f, find the displacement u, pressure p, deviatoric strain
e, deviatoric plastic strain e? and deviatoric stress s, fields, such that:

V.s+Vp+f =0 (39a)
1

V-u %P = 0 (39b)

= 2G(e—¢€P) (39¢)

e = dev(Viu) (39d)

Note that in the mixed approach the pressure p is considered independent
from the displament field.

Substituting Eq. (39d) into Eq. (39c) and this into Eq. (39a), the weak
form of the problem (39a)-(39b) can be stated as:

(v,V-8)+(v,Vp)+(v,f) = 0 Vv (40a)
(¢, V-u) - (q, %p) =0 Vg (40b)

where u, v € V= H} (Q) and p, ¢ € Q =L*(Q) are the displacement and
pressure fields, respectively, and their variations. Integrating Eq. (40a) by
parts, the problem can be rewritten in the standard form as:

(Vev,8)+ (V- v, p)— (v,f) — (V,f)(99 = 0 Vv (41a)
@vw-(egr) =0 ve @

The discrete finite element form of the problem is obtained from Egs.
(41a)-(41Db), substituting the displacement and pressure fields and their vari-
ations by their standard finite element interpolations:

(sth, Sh) + (V -V, ph) — (Vh, f) — (Vh,f)89 =0 Vvy, (42&)

1
(Qhav'uh)_(qm?ph) =0 Vagn  (42b)

where u, , v, € V, and p, , qn € Qp are the discrete displacement and
pressure fields and their variations, defined onto the finite element spaces V,
and Qp,, respectively.
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4.3 The stabilized mixed u/p formulation

In mixed formulations, selection of the interpolating finite element spaces is
not a trivial question. A major difficulty when using the standard Galerkin
discrete form (42a)-(42b) is that the inf-sup condition (also known as Babuska-
Brezzi or BB-condition) for stability poses severe restrictions on the choice of
the spaces V, and Q), [22]. For instance, standard mixed elements with con-
tinuous equal order linear/linear interpolation for both fields are not stable,
and the lack of stability shows as uncontrollable oscillations in the pressure
field that usually, and very particularly in non linear problems, pollute the
solution entirely.

Fortunately, the strictness of the BB-condition can be circumvented by
modifying the discrete variational form appropriately, in order to attain the
necessary global stability with the desired choice of interpolation spaces ([23],
[24]). A particularly appealing consistent stabilization method is the orthog-
onal sub-grid scale method (OSGS), originally developed for computational
incompressible fluid mechanics problems ([25], [26]), and applied to the prob-
lem of incompressible elasto-plasticity, in small and finite strains, and con-
tinuum damage mechanics by the authors in previous works ([12], [13], [14],
[15], [16] , [17], [18]).

The basic idea of the orthogonal sub-grid scale approach is to consider
that the continuous displacement field can be split in two components, one
coarse and a finer one, corresponding to different scales or levels of resolu-
tion. For the solution of the discrete problem to be stable it is necessary to,
somehow, include the effect of both scales in the approximation. The coarse
scale can be appropriately solved by a standard finite element interpolation,
which however cannot solve the finer scale. Nevertheless, the effect of this
finer scale can be included, at least locally, to enhance the stability of the
pressure in the mixed formulation. It was argued in [26] that it is only nat-
ural to locate this unsolvable finer scale in the space orthogonal to the finite
element space, referred to hereafter as Vi-. Therefore, the displacement field
is approximated as

u=u,+u (43)

where u;, € V), is the displacement component of the (coarse) finite element
scale and 1 € Vit is the enhancement of the displacement field corresponding
to the (finer) sub-grid scale. Note that u € V ~ V, ® Vi-.

In order to ensure consistency of the stabilized mixed formulation, that
is, that the stabilized discrete solution converges to the continuous solution
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on mesh refinement , the sub-scale displacements are approximated in terms
of the residual of Eq. (42a), rj, =t (up, pr) =V - s, + Vp, + £, as:

ﬁ:TePff(I'h):Te (I‘h—Ph<I'h)) EV;JL_ (44)

where P, is the L,_projection (least square fitting) onto V}, and Pi- = [ —
P, is the corresponding orthogonal projection onto Vi-. The stabilization
parameter 7, = ch?/2G?% is defined as a function of the characteristic length
of the element h, and the current secant shear modulus 2G% = ||sp]| / ||exl|;
¢ is a constant ¢ = O (1).

Usually, the forces f can be assumed to belong to Vj, so that P (f) = 0.
Also, V - sp, = 0 when linear elements are used. In this case, expression (44)
transforms in

u= Te (Vph - Ph (Vph)) (45)

Eq. (45) gives the value of the displacement subscale, which is added to
the finite element displacement component as indicated in Eq. (43). This
value of u is used in the weak form of the mixed formulation, Eqs. (41a)-
(41b). The resulting stabilized mixed system of equations is :

(VSV;L, Sh) + (V . Vh,ph) — (Vh,f) — (Vh’E)BQt =0 VV}L (46&)

1
(qn, V- uy) — (Van, 7e [Vpy — Ii]) — (% ?Z%) = 0 Vg, (46b)

When using linear/linear displacement and pressure interpolations, the
only stabilization term appears in the incompressibility equation (46b), see
[12], [13]. Observe that in the Eqgs. (46a)-(46b) a third nodal variable ITj,
appears, but this is not other that the Ls_projection of the pressure gradient,
Hh = Ph (Vph).

An alternative stabilization method is the one known as Galerkin Least
Square (GLS), originally proposed in [27]. The corresponding stabilized dis-
crete problem reads:

(sth, Sh) + (V . Vhyph) — (Vh,f) — (Vh,f)agt =0 \V/Vh (47)

1
(qn, V -up) — (Van, 7eVpp) — <%;Eph) =0 Vg (48)

which has a format very similar to the OSGS method, but does not require
the computation of any extra nodal variable. Experience shows that the
GLS method is more diffusive that the OSGS stabilization. This means
that GLS is somewhat more “robust” than OSGS, but sometimes less sharp
localizations are obtained.

23



5 Approximability of localized solutions in ir-
reducible, mixed and enhanced formulations

In this Section we address the feasibility of modelling localized solutions
using finite element formulations. In particular, we will consider the ability
of irreducible and mixed formulations to reproduce in an adequate manner
localization bands that aim to represent a regularized strong discontinuity
and the necessity to enhance these formulations.

The very limited ability of standard finite elements to reproduce sep-
aration modes in general circumstances is well known [28]. Consider, for
instance, a mesh of linear P1 constant strain triangles, such as the one in
Figure 7, subjected to a separation motion in which the nodes located in
the QT part of the domain have a relative displacement of w with respect
the Q~ part of the domain. Consider also, as in Figure 3a, that ST and S~
are two lines that run parallel to S (with normal n), at a relative distance
b = h, this being the typical height of the triangular elements. Surfaces S*
and S~ delimit a localization band of width b inside which strain localization
may occur. In this case, w = ut —u~ is the difference between the displace-
ments at ST and S~ and B =0w /0¢ is a deformation vector defined by
differentiation with respect to the normal coordinate &.

With linear elements, the deformation vector 3 can only be approximated
satisfactorily as 3 = w / h. This will, in fact, be the result obtained by pro-
jecting the exact separation mode on the finite element mesh of Figure 3a.
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Figure 7: Finite element simulation of ocalized failure: (a) well-aligned and

(b) mis-aligned meshes
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However, projecting the exact separation mode onto the finite element mesh
of Figure 3b, in which lines of nodes S™ and S~ are not parallel to the in-
tended discontinuity line, will not yield the same (correct) results. This is
because P1 elements can only reproduce a constant deformation mode of the
form required by Maxwell’s compatibility condition € = (n ® B)S if n is par-
allel to one of the sides of the triangles. The bilinear quadrilateral element
(1 shows similar shortcomings.

In particular, if we consider the problem of representing a slip separation
mode, with w normal to n, an incorrect representation of shear deforma-
tion results in volumetric locking. Mixed P1P1 or Q1)1 elements display a
slightly better behaviour than their corresponding irreducible counterparts,
because incorporating an independent linear (or bilinear) interpolation of
the pressure alleviates this fact. However, they share with the irreducible
elements the same inherent problem with the deviatoric strain components.

The reason for this is that discrete solution spaces built from piecewise
continuous polynomials cannot represent displacement discontinuities with
arbitrary orientations inside the element, not even in a regularized fashion.
This is purely an approximability shortage of the discrete solution spaces
used, and does not show any disqualifying incapability of the formulation.
However, the discomfiting approximability error is not eliminated nor reduced
on mesh refinement.

The effective way of correcting this approrimability local discretization er-
ror is to enrich the approximation spaces with additional deformation modes
that enhance the desired capacities for representing embedded displacement
and/or strain discontinuities. On one hand, the E-FEM ([29], [8], [30], [31],
[32], [33], [34], [35], [36]) and the X-FEM ([37], [38], [39], [40], [41]) strate-
gies aim to represent strong discontinuities as such, via elemental or nodal
enhancements of the displacement solution space. On the other hand, in
practice both formulations are often applied in a regularized manner ([42],
[43], [44]), and in these regularized versions, the discrete solution considers
embedded strain localization bands rather than actual displacement discon-
tinuities. The width of the regularized band is regarded as a numerical
parameter of the implementation, chosen to be “small”. An obvious choice
for this width is the size of the element, which, on mesh refinement, can
be made as small as desired. This recovers the original idea of representing
strong discontinuities in a smeared framework ([45], [46]).

Both irreducible and mixed finite element formulations can be enhanced
with a suitable enrichment technique for the displacement and /or strain fields
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to reduce the above discussed approximability error associated to the strain
localization problem. In reference [47], the E-FEM approach is used together
with a mixed displacement-pressure formulations to show improved approx-
imation capabilities.

In any case, using an enhanced formulation, either with strain or displace-
ment modes, requires to specify the orientation of the modelled discontinuity.
This poses the question of when, along the deformation process, calculating
and fixing this orientation. If the bifurcation, localization and decohesion
conditions were fulfilled at the same time, that would be the instant to fix
the discontinuity as a material surface; but this does not always happen. In
general, a significant reorientation of the strain field may be needed until
the plastic flow tensor has a structure compatible with the localization and
decohesion conditions. Therefore, selecting the instant for the direction of
the discontinuity according to some ad hoc condition and fixing it afterwards
may be necessary in order to introduce the enhancing mode, but this must
not become a superimposed condition on the constitutive behaviour.

6 Benchmark problems and numerical results

The numerical solution of the problem of bifurcation and localization dis-
cussed in the preceding sections is illustrated below in two selected bench-
mark problems. In both examples, strain localization is induced by the local
Jo-plasticity model with exponential softening described in Section 2. Both
plane stress and plane strain conditions are investigated. However, all com-
putations are performed using a general 3D implementation, applied to a 3D
solid domain with appropriate boundary conditions for each case considered.
This ensures that the same implementation of the constitutive model is used
for both plane stress and plane strain cases.

Relative performance of the irreducible displacement formulation and
the stabilized mixed displacement /pressure formulation is tested considering
meshes of triangular and quadrilateral prisms elements. The elements used
will be: Q1Q1 (bilinear displacement /bilinear pressure, Q1 (bilinear displace-
ment), P1P1 (linear displacement/ linear pressure, P1 (linear displacement).
Only low order elements are considered because they are more effective in
problems involving sharp displacement and strain gradients. When the sta-
bilized mixed displacement /pressure formulation is used, a value ¢ = 0.1 is
taken for the evaluation of the stabilization parameter ..
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The following material properties are assumed: Young’s modulus £ = 10
MPa, Poisson’s ratio v = 0.3 (recall that G = E/2 (1 +v), K = E/3 (1 — 2v)),
uniaxial yield stress o, = E/1000 = 10 KPa and fracture energy G = 300
J/m?.

The geometry considered for the benchmark problems is depicted in Fig-
ure 8. It consists of a square plate subjected to an imposed field of uniform
horizontal (o, = o1) and vertical (0, = 03) normal stresses applied at the
lateral boundaries. In-plane dimensions of the plate are 20 x 20 m x m and
its thickness is 0.125 m. In order to induce bifurcation and localization of
the solution in a controlled fashion, a small imperfection is introduced in the
form of a square opening of 0.25 x 0.25 m X m in the center of the plate.
Because of the double symmetry, only one quarter of the domain (the top
right quarter) needs to be considered, with appropriate symmetry boundary
conditions at the left and bottom boundaries.

In all of the analyses performed the square domain is discretized into a
regular grid of h = 0.125 m. The width of the localization band required
for the softening regularization procedure described in Section 2 has been
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Figure 8: Geometry and dimensions for benchmark problems
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(a) (b)
Figure 9: (a) Q1Q1 and (b) P1P1 FE meshes used for benchmark problem

taken equal to this grid resolution b = h = 0.125 m. The resulting 3D
meshes are shown in Figures 9a and b, composed of a uniform 80 x 80
mesh of quadrilateral prisms and a uniform 80 x 80 x 2 mesh of rectangular
triangular prisms, respectively. Notice that both meshes are structured: all
of the element sides in the quadrilateral mesh are at 0° or 90° with the
horizontal axis, all of the element sides in the triangular mesh are at 0°, 45°
or 90° with the horizontal axis.

The discrete problem is solved incrementally, in a (pseudo)time step-by-
step manner. Analyses are performed under displacement control in order to
trace the complete post-peak behavior. An automatic time incrementation
procedure is used to reduce the size of the time steps when convergence due to
the nonlinear effects is more difficult. About 200 steps are necessary to com-
plete the analyses. Within each step, a modified Newton-Raphson method,
together with a line search procedure, is used to solve the corresponding
non-linear system of equations. Convergence of a time step is attained when
the ratio between the norm of the iterative and the incremental norm of the
residual arrays is lower than 1073, It has to be remarked that no tracking al-
gorithm of any sort has been used in any of the computations. Likewise, the
analytical results obtained in Section 3 are not used in any way in the numer-
ical computations; they are only referred to in this Section for benchmarking
purposes.

Calculations are performed with an enhanced version of the finite element
program COMET [48], developed at the International Center for Numerical
Methods in Engineering (CIMNE). Pre and post-processing is done with GiD,
also developed at CIMNE [49].
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6.1 Plane stress conditions

In the first place, bifurcation and localization under plane stress conditions
are investigated. To this end, displacements in the direction transversal to
the plate are left free, save for one which is fixed in order to avoid rigid body
motions.

6.1.1 Quadrilateral prisms elements

Firstly, the performance of mixed QQ1Q)1 and irreducible ()1 quadrilateral
prisms is examined. Figures 10 and 11 report results for the mixed and
the standard elements, respectively. In both figures, the four different rows
correspond to the four different stress combinations investigated, which are
the same ones depicted in Figure 5 and the corresponding Table 2 , namely:
(a) P1: 01/0y = 1.0 /-1.0, 6 = 45°, (b) P2: 01/05 = 1.0 / 0.0, 6 = 35.26°,
(c) P3: 01/02 =1.0 / 0.25, 0 = 28.12°, (d) P4: 01/02 = 1.0 / 0.50, 6 = 0°.
The right hand side column in both Figures shows contours for horizontal
displacements once the localization band in fully developed, while the right
hand side column displays corresponding contours for the equivalent plastic
strain.

It is clear in Figure 10, that the mixed quadrilateral elements are capable
of solving the bifurcation and localization problem under plane stress con-
ditions rather satisfactorily. For load case P1, pure shear, an exact angle
of & = 45° is obtained, and the simulated slip line bifurcates near the top
right corner because of the perfectly symmetric boundary conditions. For
load cases P2 and P3, the obtained direction for the localization differ from
the analytical values in less that 1°. Only a slight deviation from this occurs
in the vicinity of the central opening; this can be partly attributed to the
effect of the disturbed field and partly to a minor mesh bias. For load case
P4, the localization direction is again exact.

It is remarkable that with the same constitutive behaviour, namely a
purely isochoric plastic model, it is possible to obtain from a pure mode II
response (relative displacement across the localization band w orthogonal to
the normal to the band n), like in the P1 case, to a pure mode I response
(relative displacement across the localization band w parallel to the normal
to the band n), like in the P4 case; and, naturally, mixed mode responses in
between.

Note the resolution of the discontinuity surfaces achieved by the finite
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Figure 10: Results for plane stress conditions with Q1Q1 mixed quadri-
lateral prism elements. Contours for: (a) horizontal displacement and (b)
equivalent plastic strain
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Figure 11: Results for plane stress conditions with Q1 irreducible quadri-
lateral prism elements. Contours for: (a) horizontal displacement and (b)
equivalent plastic strain
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Figure 12: Horizontal stress versus horizontal displacement for plane stress
conditions with mixed and irreducible quadrilateral prism elements
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element solution is optimal for the displacement and strain interpolations
used: the strong discontinuity is regularized into a band which is only one
element across.

Figure 11 shows results obtained with the irreducible quadrilateral prisms
@1. The standard formulation is able to solve correctly the bifurcation and
discontinuous bifurcation conditions, but clearly unable to comply with the
decohesion condition. For the four depicted situations strain localization
bands form at the angles predicted by the analytical results in Section 3.
This is not surprising because, in this benchmark setting, the far field stress
state is exactly provided by the applied boundary conditions. However, the
volumetric locking that accompanies (plastic) strain localization makes it
impossible for the band to collapse into a regularized strong discontinuity
that approaches the decohesive limit asymptotically.

Figures 12a and 12b render plots of applied o, versus horizontal displace-
ment at the right bottom point of the studies quarter plate for the mixed
and irreducible quadrilateral elements, respectively. As commented in Sec-
tion 3.1.1, under plane stress situations, the onset of yielding, bifurcation
and localization occur at the same instant. Also, from the same moment
at which plastic flow is initiated this manifests in a direction that is com-
patible with the decohesion condition. On one hand, these facts are clear
in the top Figure, which shows curves corresponding to well developed fail-
ure mechanisms. The limit cases: P1 for mode II and P4 for mode I are
particularly interesting. On the other hand, the bottom Figure 12b clearly
shows the locking volumetric effect inherent to irreducible low order elements
in quasi-incompressible situations. The bifurcation and localization points
are reached correctly, because they depend only on the elastic regime, and
this is well resolved by the mesh. However, volumetric locking induced by
the isochoric character of the plastic flow distorts the strain field in such a
manner than the decohesion condition cannot be fulfilled.

6.1.2 Triangular prisms elements

Secondly, the performance of mixed P1P1 and irreducible P1 triangular
prisms is examined. Figures 13 and 14 report results for the mixed and
the standard elements, respectively. The same stress combinations as in the
previous Section are investigated.

Figure 13 shows that the mixed triangular elements solve the bifurcation
and localization problem under plane stress conditions in the same adequate
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manner than their quadrilateral counterparts. Their respective results are
indistinguishable. On its part, Figure 14 shows that the irreducible trian-
gular elements have similar shortcoming as their quadrilateral companions.
However, some differences may be found between Figures 11 and 14. For the
pure shear case, 01/09 = 1.0 /-1.0, the irreducible triangles do manage to
yield the correct solution. This befalls because the used finite element mesh
happens to be perfectly aligned with the correct localization direction. For
uniaxial tension, o;/02 = 1.0 / 0.0, another interesting feature can be ob-
served, the mesh initiates smeared localization in the correct direction, but
eventually mesh-bias takes over and a sharp localization happens, but at the
wrong direction. For the other two cases, results are indistinguishable from
those of the quadrilaterals, strongly affected by volumetric strain locking.

Figures 15a and 15b portray plots of applied o, versus horizontal displace-
ment at the right bottom point of the studies quarter plate for the mixed
and irreducible quadrilateral elements, respectively. They can be easily in-
terpreted with regard to those corresponding to quadrilateral elements and
the already mentioned differences. The fact that the softening branches in
Figures 12a and 15a are not identical reflects that we have used an identical
localization width b = h, equal to the grid step, for all cases. A more precise
definition of the localization width, depending on the actual projection of
the considered element on the direction of strain localization, would render
better correspondence between the different elements [20].

6.2 Plane strain conditions

In the second place, bifurcation and localization under plane strain conditions
are investigated. To this end, displacements in the direction transversal to
the plate are all fixed equal to zero; this ensures that normal strain in that
direction is exactly equal to zero.

6.2.1 Quadrilateral prisms elements

The performance of mixed Q1Q1 and irreducible Q1 quadrilateral prisms
is examined first. Figures 16 and 17 report results for the mixed and the
standard elements, respectively. In both figures, the four different rows cor-
respond to the four different stress combinations investigated, which are the
same ones depicted in Figure 6 and the corresponding Table 3 , namely: (a)
P1: 0,/02 =1.0 /-1.0, (b) P2: 01/02=1.0 /0.0, (c) P3: 01/052=1.0/0.25,
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Figure 13: Results for plane stress conditions with P1P1 mixed triangular
prism elements. Contours for: (a) horizontal displacement and (b) equivalent
plastic strain
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Figure 14: Results for plane stress conditions with P1 irreducible triangular
prism elements. Contours for: (a) horizontal displacement and (b) equivalent
plastic strain
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Figure 15: Horizontal stress versus horizontal displacement for plane stress
conditions with mixed and irreducible triangular prism elements
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(d) P4: 01/02 = 1.0 / 0.50. In all cases, the localization angle is identical, 6
= 45°. The right hand side column in both Figures shows contours for hori-
zontal displacements once the localization band in fully developed, while the
right hand side column displays corresponding contours for the equivalent
plastic strain.

Figures 16 and 17 show that the bifurcation and localization problem is
more demanding on finite elements under plane strain conditions than in a
plane stress situation. This is because for the decohesion condition to be
met and a regularized strong discontinuity to develop, a significant amount
of strain reorientation has to occur through the growth of plastic flow.

Figure 16 proves that the mixed quadrilateral elements are capable of
reproducing the necessary reorientation of the strain flow in all but the most
difficult case, P4. In the first three cases, the (regularized) strong disconti-
nuity is correctly formed, but in the last fourth case, the mesh is too rigid
to allow for the collapse of the localization band, which forms at the correct
direction, into a discontinuity with no traction cohesion. The situation is
far worse in Figure 17, which shows that the irreducible quadrilateral ele-
ments cannot properly localize strains in any of the tested cases. In the last
case, not even a smeared localization band is visible in the displacement and
plastic strain contour plots.

Figures 18a and 18b are consistent with these explanations.

6.2.2 Triangular prisms elements

Finally, the performance of mixed P1P1 and irreducible P1 triangular prisms
is examined. Figures 19 and 20 report the corresponding results.

Figure 19 shows that the mixed triangular elements solve the demanding
bifurcation and localization problem under plane strain conditions slightly
better than their quadrilateral counterparts. Comparing these with results in
19, it is immediately perceived that triangular elements solve satisfactorily all
the cases considered. This is because the triangular mesh is more flexible than
the quadrilateral one, and particularly for the deformation mode called for in
these tests. Figure 20 depicts an impeccable performance by the irreducible
triangular elements for this problem. This is because the used finite element
mesh happens to be perfectly aligned with the correct localization direction.

Figures 21a and 21b present plots of applied o, versus horizontal dis-
placement at the right bottom point of the studies quarter plate for the
mixed and irreducible triangular elements, respectively. The top and bot-
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Figure 16: Results for plane strain conditions with Q1Q1 mixed quadri-
lateral prism elements. Contours for: (a) horizontal displacement and (b)

equivalent plastic strain
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Figure 17: Results for plane strain conditions with Q1 irreducible quadri-
lateral prism elements. Contours for: (a) horizontal displacement and (b)
equivalent plastic strain

40



25000 r r r r
Q1Q1s ¥/s y=100/000  ——
QHGHS XISy =100/025  weereeee
QIQ1 s ¥/sy=100/050  ——
20000
T 15000
o
X
N
[}
i
£ 10000
[
5000 T
\\\\ ___________
‘\5___: ___________________
0 i
0 002 004 006 008 0.1 012 014
DISPLACEMENT-X [m]
(a) Q1Q1 mixed elements
25000 r r r r
Qls x/s y=100/000
e QTS XS y=100/025  -rerom
Qlsxsy=100/050  ——
20000
T 15000
O I O s .
S N £ T S S S S SO
(7, N N 2 S S S st
17 (N /S S i
i —————
£ 10000
[
5000
0
0 002 004 006 008 0.1 012 014

DISPLACEMENT-X [m]
(b) Q1 irreducible elements

Figure 18: Horizontal stress versus horizontal displacement for plane strain
conditions with mixed and irreducible quadrilateral prism elements
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Figure 19: Results for plane strain conditions with P1P1 with mixed tri-
angular prism elements. Contours for: (a) horizontal displacement and (b)
equivalent plastic strain
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Figure 20: Results for plane strain conditions with P1 with irreducible
triangular prism elements. Contours for: (a) horizontal displacement and

(b) equivalent plastic strain
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Figure 21: Horizontal stress versus horizontal displacement for plane strain
conditions mixed and irreducible triangular prism elements
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tom graphs are remarkably similar. This is not surprising as the predicted
failure mechanisms are correctly computed in all cases. It is observed that
the computed dissipated energy is marginally larger in the mixed case; this
may be attributed to the very minor variations observable between Figures
19 and 20. Differences between these results and those in Figures 18a reflect
again that we have used an identical localization width b = h, equal to the
grid step, for all cases.

7 Conclusions

This paper considers the problem of strain bifurcation and localization in J,
plasticity under plane stress and plane strain conditions.

First, distinction is made among the analytical necessary bifurcation, lo-
calization and decohesion conditions. On one hand, this shows that results
from classical localization analysis do not in general guarantee that the de-
cohesion limit may be reached; on the other hand, localization angles can be
obtained by directly imposing this condition.

Second, the mixed (displacement/pressure) formulation are considered
for the solution of the associated discrete problem, characterized by the iso-
choric nature of the purely deviatoric plastic flow. Stabilization is necessary
for the case or using equal order interpolating spaces for displacements and
pressure. Even if not specifically designed for this purpose, the mixed formu-
lation reduces the approximability error that low order elements display when
reproducing (regularized) discontinuous displacement fields, if the direction
of the discontinuity is not parallel to one of the element sides.

Numerical examples demonstrate the relative performance of the mixed
and irreducible quadrilateral and triangular (prisms) elements subjected to
plane stress and plane strain conditions. It can be concluded that the mixed
displacement /pressure formulation shows a tremendous superiority over the
irreducible one to predict correct failure mechanisms with localized patterns
of plastic deformation, which are practically free from dependence of the mesh
directional bias in all but the most demanding cases. Irreducible elements
suffer strongly from volumetric strain locking as soon as plastic behaviour ap-
pears and this precludes strain localization to reach its ultimate consequences
and therefore, localization bands fails to collapse in true failure mechanisms.
In the limited cases in which the failure mechanism actually forms, it is very
much affected by the mesh bias. Only when the mesh is well aligned with
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the correct failure mechanism satisfactory results are obtained.
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