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a b s t r a c t

In this paper, we present a precise definition of the numerical dissipation for the orthogonal projection
version of the variational multiscale method for incompressible flows. We show that, only if the space
of subscales is taken orthogonal to the finite element space, this definition is physically reasonable as
the coarse and fine scales are properly separated. Then we compare the diffusion introduced by the
numerical discretization of the problem with the diffusion introduced by a large eddy simulation model.
Results for the flow around a surface-mounted obstacle problem show that numerical dissipation is of the
same order as the subgrid dissipation introduced by the Smagorinsky model. Finally, when transient sub-
scales are considered, the model is able to predict backscatter, something that is only possible when
dynamic LES closures are used. Numerical evidence supporting this point is also presented.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Variational multiscale (VMS) finite element methods for large
eddy simulation (LES) of turbulence are promising. First attempts
to apply the VMS idea to incompressible flow problems were made
in [17,18], where both small and large scales were solved and the
classical LES filters were applied only to the small scales. The idea
of simply using the algebraic approximation of the subscales, with-
out any additional ingredient (e.g. without physical-based subgrid
modeling), was introduced in [7] and elaborated in [5,19]. Very
good results were obtained for fully developed and transitional
turbulent flows. For a complete presentation in the context of iso-
geometric analysis, including results of homogeneous turbulence
and turbulent channel flow, we refer the reader to [2]. It is impor-
tant to note, however, that the algebraic approximation to the sub-
scales in [7,5,19] and in this work includes terms additional to
those appearing in the classical GLS/SUPG methods [5,9].

Many comments have been and are usually made on the impor-
tance of the numerical scheme when a LES of a turbulent flow is
performed. Chapter 7 of [26] is devoted to the numerical solution
of the LES equations and several results are mentioned. The influ-
ence of the numerical scheme and its interaction with classical LES
models was analyzed in [12], where truncation errors are com-
pared with the amplitude of the subgrid terms and found to be
dominant in many cases. The solution suggested in [12] is either
to increase the accuracy of the scheme or to use the ‘‘pre-filtering”
technique (to keep the filter size constant while the mesh size is
ll rights reserved.
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reduced until h-convergence is achieved). As mentioned in [26],
numerical experiments presented in [21] show that ‘‘the effect of
subgrid models is completely or partially masked by the numerical
error when second-order accurate methods are employed”. The use
of high order accurate schemes in order to minimize numerical dis-
sipation is not an uncommon advice. It is also quite common to de-
scribe a numerical method according to how dissipative it is.
However, precise measures of this property have not been pre-
sented up to date.

The first attempt to estimate numerical and subgrid dissipation
was made in [11], where several schemes for LES of compressible
flows are compared. The numerical dissipation is linked to the
leading terms of the truncation error and an intuitive definition
is presented. This definition is based on the difference between
the discrete convective term and that given by a reference centered
scheme of one order of accuracy higher. A scheme is considered
suitable for LES if either the numerical dissipation is much lower
than the subgrid one (condition C1) or the numerical dissipation
is able to mimic the subgrid one (condition C2). The general sad
conclusion is that neither condition C1 nor condition C2 are satis-
fied for the schemes analyzed.

Further analyses have been made in [10], where a method to
compute the effective numerical dissipation is developed based
on a finite difference approximation of the energy balance equa-
tion. The method is used to evaluate the dissipation in the context
of the monotonically integrated LES approach, first proposed in [3],
in which the Navier–Stokes equations are directly discretized
without introducing neither the filtering operation nor the SGS
stress tensor. The objective in [10] is to link the properties of the
numerical method with the physics of turbulence by comparing
numerical dissipation with the predictions of turbulence theory.
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A Galerkin least squares multiscale formulation of compressible
flows was presented in [23]. In this reference the original multi-
scale formulation of LES introduced in [17] is advocated and the
small scales are computed and filtered. The numerical dissipation
introduced by the least squares terms, obtained multiplying the
stabilization terms in the final algebraic system by the unknown,
is greater than the subgrid dissipation for the closures analyzed.
A similar approach is followed in [28] and the global conservation
of energy is used to define the numerical dissipation introduced by
the SUPG scheme (even the SUPG stress, an analog to the subgrid
stress, is defined). A dynamic Smagorinsky model is used and the
interaction with the dissipation introduced by the SUPG scheme
is analyzed. Results of channel flow simulations show the numer-
ical dissipation to be smaller than the physical one but still impor-
tant. These results are used to propose a correction to the physical
model to take into account the numerical scheme. The basic idea is
that, ideally, the numerical scheme should not affect the physical
model and therefore the proposal of [28] is to modify the physical
model reducing the dissipation it introduces by the same amount
the SUPG dissipation provides. This approach is opposed to that
advocated in [3] and in the present work.

The global energy balance of the finite element component is
also the starting point in [4] where the interior penalty method
is analyzed and the quality of the solution is evaluated in terms
of the numerical dissipation. In [13] it is shown that the numeri-
cal dissipation provided by the orthogonal subgrid scale method
of Codina [7] provides a rate of transfer of subgrid kinetic energy
proportional to the molecular physical dissipation rate (for an
appropriate choice of the stabilization parameter), thus preclud-
ing in principle the need of introducing an extra LES physical
model.

In this article we introduce a local definition of the numerical
dissipation for the variational multiscale method based on the local
version of the finite element energy balance. We also consider the
energy balance of the subgrid scale component, which permits us
to clearly identify the energy transfer mechanisms. In this frame-
work we show that only the orthogonal subgrid scale method of
Codina [7] permits a proper separation of scales, in the sense that
if a non-orthogonal projection is used, temporal derivatives couple
the energy balance for the coarse and fine scale components. When
the time dependent subscales of [9] are used, the model is capable
of predicting backscatter (energy transfer from small to coarse
scales).

The paper is organized as follows. In Section 2 the problem is
stated, and in Section 3 its two scale approximation introduced.
The core of the paper is presented in Section 4, where the energy
budget in a region is discussed. Section 5 presents the numerical
simulation of the flow over a surface mounted obstacle, where
the different dissipation mechanisms can be observed. Some final
conclusions close the paper in Section 6.
2. Problem statement

Let us consider the flow of an incompressible fluid in a domain
X � Rdðd ¼ 2;3Þ with boundary C ¼ oX during the time interval
½0; T�. Let u : Q ! Rd be the velocity field and p : Q ! R the pres-
sure, with Q ¼ X� ð0; TÞ. The incompressible Navier–Stokes equa-
tions for u and p can be written as

otuþ u � $uþ $p� mr2u ¼ f ; ð1Þ
$ � u ¼ 0; ð2Þ

where f is the vector of external forces and m is the kinematic viscos-
ity. Eqs. (1) and (2) must be supplemented with appropriate bound-
ary and initial conditions. For simplicity in the presentation, only
homogeneous Dirichlet boundary conditions will be considered.
We will also consider the LES problem that is found by applying
a filter of the form

�vðxÞ ¼
Z

vðx0ÞGðx; x0Þdx0;

to the Navier–Stokes Eqs. (1) and (2) for an appropriate filter func-
tion G. This operation results in an extra term: the divergence of the
subgrid stress tensor. The LES problem consists in finding the fil-
tered velocity field �u and the pressure field �p such that

ot �uþ �u � $�uþ $�p� mr2 �uþ $ � s ¼ f ; ð3Þ
$ � �u ¼ 0; ð4Þ

where s is the residual stress tensor defined in components by

sij ¼ uiuj � �ui �uj

Let k ¼ 1
2 u � u be the pointwise kinetic energy. A kinetic energy

conservation statement for the Navier–Stokes problem can be
found by multiplying (1) by the velocity u. Using (2) one obtains

otkþ u � $kþ u � $p� mr2kþ m$u : $u ¼ u � f :

This equation integrated over an arbitrary volume x � X and
simplified by the use of (2) gives

d
dt

Z
x

k|fflfflfflffl{zfflfflfflffl}
I

þ
Z

ox
n � u kþ pð Þ � m$k½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

II

þ
Z

x
m$u : $u|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

III

¼
Z

x
u � f|fflfflfflffl{zfflfflfflffl}
IV

: ð5Þ

The total energy variation in volume x (term I) is balanced by
the flow of energy through its boundary (term II) plus the dissipa-
tion due to viscous effects (term III) and the work of external forces
(term IV).

For the LES problem the kinetic energy conservation of the fil-
tered velocity (�k ¼ 1

2
�u � �u) is found multiplying (3) by the filtered

velocity �u. In this case, the presence of the subgrid stresses gives
rise to a term that is responsible for an energy exchange between
large scales (represented by filtered variables) and small scales
(represented by subgrid variables), which are given by u0 ¼ u� �u
and p0 ¼ p� �p. The result reads

ot
�kþ �u �$�kþ �u �$�p�mr2�kþm$�u : $�uþ$ � �u �sð Þþ$�u : s¼ �u ��f :

This equation integrated over an arbitrary volume x and sim-
plified by the use of (4) gives

d
dt

Z
x

�k|fflfflfflffl{zfflfflfflffl}
I

þ
Z

ox
n � �u �kþ �p

� �
� m$�kþ �u � s

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

II

þ
Z

x
m$�u : $�u|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

III

þ
Z

x
$�u : s|fflfflfflfflfflffl{zfflfflfflfflfflffl}

V

¼
Z

x
�u � �f|fflfflfflffl{zfflfflfflffl}
IV

:

ð6Þ

The interpretation of the terms corresponds to the meaning
they had before, except for the new term V that represents the
transfer of energy between coarse and fine scales and for the last
term in II which now includes the flow of energy through the
boundary due to the work done by the mean velocity against
the residual stress tensor. Note that this term comes from the fil-
tering of the convective term and when the filter size tends to
zero the residual stresses vanish and we recover (5). It is also pos-
sible to obtain a transport equation (and its integral form) for the
subgrid kinetic energy k0 ¼ 1

2 u0 � u0 in which term V also appears
[26].

In the discussion below we will consider the standard Smago-
rinsky LES model, in which the subgrid closure is

s ¼ mt$s �u;



J. Principe et al. / Comput. Methods Appl. Mech. Engrg. 199 (2010) 791–801 793
where

mt ¼ cDð Þ2 $s �u : $s �uð Þ1=2
: ð7Þ

In this expression, c is a constant and D is the filter width. Let us
remember that in this case term V in (6) is positive (purely dissipa-
tive) and no backscatter of energy (transfer of energy from fine to
coarse scales) can be predicted by the model. If this backscatter has
to be simulated, constant c has to be replaced by a quantity com-
puted in terms of the flow variables, leading to the so called dy-
namic versions of Smagorinsky model (see [26]).

3. Variational multiscale approximation

From the point of view of the discrete approximation, the
incompressible Navier–Stokes problem (1), (2) and the LES prob-
lem (3) and (4) are identical except for the term $ � s in Eq. (3),
and therefore the same discrete formulation is usually used. In this
section we consider the incompressible Navier–Stokes problem
that can be written in a weak form as follows: find ðu;pÞ 2 V � Q
such that

ðv; otuÞX þ Buðu;p; v; qÞ ¼ Lðv; qÞ 8ðv; qÞ 2 V st � Qst ; ð8Þ

where

Baðu;p; v; qÞ ¼ ð$t; m$uÞX þ hv;a � $uiX � ð$ � v; pÞX þ ð$ � u; qÞX
Lðv; qÞ ¼ v; fh iX:

The notation used here is as follows: a is a given vector field
(a ¼ u in (8)), V st ¼ ðH1

0ðXÞÞ
d
;Qst :¼ L2ðXÞ=R;V ¼ L2ð0; T; V stÞ;Q ¼

D0ð0; T; Q stÞ (D0 being the space of distributions), hf ; gix ¼
R
x fg

(so that in particular h�; �ix is the duality pairing between H�1ðxÞ
and H1

0ðxÞ) and ð�; �Þx is the L2ðxÞ inner product.
Let us consider a two-scale decomposition of spaces V st and Q st

given by

V st ¼ Vh � eV ; Q st ¼ Q h � eQ ;
where h is used to indicate finite element spaces in which the dis-
crete approximation will be performed and symbol ~ to indicate
subgrid spaces. The latter are any completion of the former in the
continuous spaces. Applied to the weak form of the problem, this
decomposition leads to

vh;otuhð ÞX þ Buðuh;ph; vh;qhÞ þ ðvh;ot ~uÞX þ Bu ~u; ~p; vh;qhð Þ ¼ L vh;qhð Þ
~v;otuhð ÞX þ Bu uh;ph; ~v; ~qð Þ þ ~v;ot ~uð ÞX þ Bu ~u; ~p; ~v; ~qð Þ ¼ L ~v; ~qð Þ;

which must hold for all ðvh; qhÞ 2 Vh � Qh and for all ð~v; ~qÞ 2 ~V � eQ .
The first equation governs the evolution of resolvable scales
(the functions of the spaces Vh and Qh) and has two terms on the
left hand side: the first one is the Galerkin contribution and the
second one takes into account the influence of the subgrid scale
on the finite element components. After integration by parts within
each element and neglecting interelement boundary terms we
arrive at

vh; otuhð ÞX þ $th; m$uhð ÞX þ hvh;a � $uhiX
� $ � vh; phð ÞX þ qh;$ � uhð ÞX þ vh; ot ~uð ÞX
þ
X

K

L�vh � $qh; ~uð ÞK �
X

K

$ � vh; ~pð ÞK ¼ vh; fh iX; ð9Þ

where L� is the adjoint of the convection diffusion operator L, de-
fined as

L ¼ �mr2 þ a � $; L� ¼ �mr2 � a � $

and a is the advection velocity that depends on the formulation
considered (it has been considered solenoidal to obtain the above
expressions).
Remark 1. The standard variational multiscale formulation for
stabilization purposes, originally proposed in [20] and analyzed in
[6], is motivated for the problem obtained with a ¼ uh. However, if
the nonlinear tracking of subscales proposed in [9] is considered,
we have a ¼ uh þ ~u. In this case we are considering all the terms
that result from the splitting of the convective term. As shown in
[9], analogous terms to the various stress types in the LES approach
are recovered in a ‘‘natural” way from our pure numerical
approach.

In [9] the subscale is considered a variable in its own right (sim-
ilar to internal variables in solid mechanics) and it is assumed to be
time dependent. It is found as the solution of the fine scale equa-
tion, which is approximated replacing the Navier–Stokes operator
by two parameters s�1

m and s�1
c motivated below. This leads to

the following fine scale problem posed on each element K [9]
(decoupling the problems is also part of the approximation):

ot ~uþ s�1
m

~u ¼ P f � otuh �Luh � $phð Þ ð10Þ
s�1

c ~p ¼ P �$ � uhð Þ ð11Þ

where P is the projection onto the space of subscales. The proper-
ties of the method depend strongly on the choice of the projection
P, that is, on the choice of the space of subscales. Two options are
commonly considered. The first one takes P ¼ I, what is called alge-
braic subgrid scale (ASGS) in [6] (in fact, P needs to be the identity
only when acting on functions of the form of the right-hand-side in
(10), (11)). The second one is the orthogonal subscales (OSS) meth-
od [7], in which eV ¼ V?h and P ¼ P?h . Note that in this case
ðvh; ot ~uÞX ¼ 0 and Potuh ¼ 0. We could also neglect the temporal
derivative of the subscales in (10), what is called quasi-static sub-
scales (QSS) in [9]. When the time dependence of the subscales is ac-
counted for, we will call them dynamic subscales (DS).

The expressions we use for the stabilization parameters sm and
sc appearing in (10) and (11) are

sm ¼
c1m
h2 þ

c2 aj j
h

� ��1

; sc ¼
h2

c1sm
; ð12Þ

where h is the mesh size and c1 and c2 are algorithmic constants
whose values are taken as 4 and 2, respectively, for linear elements.
This choice is based on numerical experience and one-dimensional
analysis. Note that when the nonlinear tracking of the subscales of
Codina et al. [9] is used (case in which a ¼ uh þ ~u), (10), (11) is non-
linear in ~u through sm and sc . We devote the rest of the section to
summarize the approach we follow to justify these expressions.

Let U ¼ ðu; pÞ and consider the stationary Navier–Stokes
operator

NðUÞ :¼
LðuÞ $p

$ � u 0

	 

;

where LðuÞ is the convection-diffusion operator introduced earlier.
Our proposal is to approximate the operator N by an algebraic oper-
ator s�1 so that kNkM 6 ks�1kM , where k � kM is the operator norm in-
duced by the L2-norm scaled by a matrix M. This matrix must be such
that NðUÞtMNðUÞ is dimensionally well defined. Different choices
are possible, and a particularly suited one is introduced later. The
condition kNkM 6 ks�1kM means that the energy of the exact sub-
scales does not exceed the energy of the approximated subscales,
as shown in [8] in the context of shallow waters. The closer kNkM

is to ks�1kM , the closer these energies are. In the scalar convection
diffusion problem [7], it is possible to show that the norm of the
approximated and the exact subscales are approximately equal. In
can be shown using an approximate Fourier analysis [8] that condi-
tion kNkM 6 ks�1kM can be satisfied if s�1 is chosen such that

ks�1kM ¼ kcNðk0ÞkM; ð13Þ
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where cNðk0Þ is the Fourier transform of the operator N computed
with a fixed velocity and evaluated at an unknown wavenumber k0

whose existence is guaranteed by the mean value theorem.
In practice we impose condition (13) by computing the spec-

trum with respect to M�1 of s�1Ms�1 and of cN�ðk0ÞMcNðk0Þ and
imposing the equality of the largest eigenvalues. Actually, the ideal
situation is found when both matrices have the same spectrum, so
that s�1 is a better approximation to cNðk0Þ. We omit the subscript
in k0 in what follows.

In our case, when d ¼ 2 we have

cN kð Þ ¼
mj2 þ ijjaj 0 ij1

0 mj2 þ ijjaj ij2

ij1 ij2 0

24 35;
where jj ¼ kj=h;j ¼ jkj=h and i ¼

ffiffiffiffiffiffiffi
�1
p

. Taking a scaling matrix
M ¼ diagðlu;lu;lpÞ the eigenvalues of cN�ðkÞMcNðkÞ with respect
to M�1 are

k1 ¼ A; k2 ¼
1
2

Aþ Bþ C; k3 ¼
1
2

Aþ B� C;

A :¼ l2
u m2j4 þ j � að Þ2
� 

;

B :¼ j2lplu;

C :¼ 1
2
lu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4j2lplu m2j4 þ j � að Þ2

� 
þ l2

u m2j4 þ j � að Þ2
� 2

� �s
;

and assuming s ¼ diagðsm; sm; scÞ those of s�1Ms�1 are l2
u=s2

m;l2
u=s2

m,
and l2

p=s2
c . It can be easily shown that taking the scaling

lu ¼ ðm2j4 þ ðj � aÞ2Þ�1 and lp ¼ 2j�2 the spectrum of both matri-
ces is identical, a condition stronger than (13) which implies that
the energy of the exact and the approximated subscales are approx-
imately the same. In this case

sm ¼ m2j4 þ j � að Þ2
� �1=2

; sc ¼
j�2

sm
;

which behave in terms of h;a and m as the expressions given in (12).
In principle, the expression of the parameters in (12) changes

from point to point. In order to simplify the notation, we shall con-
sider them constant within each element. This can be accom-
plished, for example, taking as advection velocity the mean value
of a within each element.

4. Local energy conservation

Following [15] we can write local conservation statements in
domains x � X formed by arbitrary patches of elements introduc-
ing a discrete approximation of the fluxes hx

: ox! Rd, denoted as
hx

h , that satisfies

vh; otuhð Þx þ $th; m$uhð Þx þ hvh;a � $uhix � $ � vh;phð Þx
þ qh;$ � uhð Þx þ Pvh; ot ~uð Þx þ

X
K�x

P L�vh � $qhð Þ; ~uð ÞK

�
X
K�x

P$ � vh; ~pð ÞK ¼ vh; fh ix þ hvh;h
x
h iox: ð14Þ

Note that we have introduced the projection P in the terms
coming from the subgrid scales. The formulation of the discrete
problem (9) is unaffected by this addition because ðv; ~uÞX ¼
ðPv; ~uÞX 8v 2 V . However this is not the case in a subdomain x
of the domain X because the introduction of the projection will
change the recovered fluxes hx

h .
Taking vh ¼ uh and qh ¼ ph in (14) we arrive at a local energy

conservation statement

1
2

dt uhk k2
x þ m $uhk k2

x þ huh;a � $uhix þ Puh; ot ~uð Þx

þ
X
K�x

P L�uh � $phð Þ; ~uð ÞK �
X
K�x

P$ � uh; ~pð ÞK

¼ uh; fh ix þ uh;h
x
h

� �
ox; ð15Þ
where dt ¼ d=dt. As done with Eqs. (5) and (6), a physical interpre-
tation of the different terms in equation (15) can be made. The first
term on the left-hand-side represents the temporal variation of the
total kinetic energy of the finite element scales in the volume x,
which occurs because of the viscous dissipation represented by
the second term on the left-hand-side and the work done against
external forces represented by the first term of the right-hand-side.
They represent the same effects as terms I, III and IV in (6). The sec-
ond term on the right-hand-side represents (part of) the work done
on the control surface ox. The fluxes hx

h are the variationally consis-
tent tractions [15]: if the continuous problem is considered we have

hx ¼ �pnþ mn � $u;

and then

u;hx� �
ox ¼

Z
ox

n � up� m$k½ �;

which corresponds to part of term II in (6). Term II in (6) also con-
tains the flux due to convective effects. In the non-conservative
form of the convective term considered so far we have

huh;a � $uhix ¼
1
2

Z
ox

n � au2
h �

1
2

Z
x

u2
h$ � a;

whereas in conservative form we have

huh;$ � auhð Þix ¼
1
2

Z
ox

n � au2
h þ

1
2

Z
x

u2
h$ � a:

The second term vanishes when a ¼ u (the solution to the con-
tinuous problem) and is not present in (6). Note that only if the
convective term is written in skew-symmetric form this term van-
ishes when a ¼ uh þ ~u.

Finally, we can identify terms involving the subgrid scale as the
ones responsible for energy transfer between coarse and fine
scales. In order to analyze this transfer, let us consider the energy
balance of the subgrid component. Multiplying (10) by ~u and (11)
by ~p and integrating in the domain x we have

1
2

dt ~uk k2
x þ s�1

m
~uk k2

x þ s�1
c

~pk k2
x þ Potuh; ~uð Þx

þ
X
K�x

P Luh þ $phð Þ; ~uð ÞK þ
X
K�x

P$ � uh; ~pð ÞK ¼
X
K�x

Pf ; ~uð ÞK :

ð16Þ

In this case the first term on the left-hand-side represents the
temporal variation of the subgrid kinetic energy in the volume x,
which occurs because of the dissipation represented by the second
and third terms on the left-hand-side and the work done against
external forces represented by the term of the right-hand-side.
Again, as in (15) we can identify the terms involving the finite ele-
ment components of the velocity and pressure as the ones respon-
sible for energy transfers between fine and coarse scales.

The first important conclusion we can draw from the inspection
of (15) and (16) is that only if the orthogonal subscales are considered
a proper separation of scales is achieved, because only in this case
the finite element energy budget is independent of the subscale
temporal derivative, and likewise the subscale energy budget is
independent of the finite element temporal derivative. Adding up
(15) and (16) we observe that the variation of the total kinetic energy
is equal to the variation of the kinetic energy of the finite element
scales plus the variation of the kinetic energy of the subgrid scales,
and likewise the dissipation is equal to the dissipation of the finite ele-
ment scales plus the dissipation of the subgrid scales.

Therefore, if we consider orthogonal subscales we can define
the numerical dissipation of the finite element kinetic energy as

eh ¼
X
K�x

P L�uh � $phð Þ; ~uð ÞK �
X
K�x

P$ � uh; ~pð ÞK ; ð17Þ
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and the production of subgrid energy as

Ps ¼
X
K�x

P Luh þ $phð Þ; ~uð ÞK þ
X
K�x

P$ � uh; ~pð ÞK : ð18Þ

Let us postpone for a moment the justifications of the names of
dissipation and production and let us concentrate on their relation
first. Definitions (17) and (18) immediately imply

eh þ Ps ¼
X
K�x

P L�uh þLuhð Þ; ~uð ÞK

Therefore, independently of the space of subscales considered
(and therefore independently of the choice of projection P), adding
up Eqs. (15) and (16) we have

1
2

dt uh þ ~uk k2
x þ huh;a � $uhix þ m $uhk k2

x þ s�1
m

~uk k2
x þ s�1

c ~pk k2
x

þ
X
K�x

P L�uh þLuhð Þ; ~uð ÞK

¼
X
K�x

Pf ; ~uð ÞK þ uh; fh ix þ uh;h
x
h

� �
ox;

that is an equation for the total kinetic energy. Energy transfer be-
tween finite element components and subscales vanish when (15)
and (16) are added up, since one transfer term is equal to minus
the other, as it should, except for the viscous term, which could
be either neglected in the orthogonal projection (see the comments
in [7]) or easily controlled by the viscous dissipation of the finite
element component.

It is seen here that when the mesh is fine enough the dissipation of
the total energy depends only on the viscosity. By fine enough we mean

aj jh
m
	 1;

so that the stabilization parameter s�1
m becomes c1m=h2 and sc be-

comes proportional to m. This means that the dissipation structure
in the case of laminar flows (or when the discretization is fine en-
ough to resolve all scales in the flow) is correctly predicted.

Let us now justify the names of dissipation and production.
From the expressions of the subscales we have that

~u ¼ smP �Luh � $phð Þ þ smPf � smot ~u; ð19Þ
~p ¼ �scPð$ � uhÞ; ð20Þ

and therefore

eh ¼
X

K�x
sm P �L�uhþ$phð Þ;P Luhþ$phð Þð ÞK þ

X
K�x

sc P$ �uhk k2
K|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

þ
X

K�x
sm P L�uh�$phð Þ;Pfð ÞK|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

II

þ
X

K�x
sm P �L�uhþ$phð Þ;ot ~uð ÞK|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

III

:

Let us discuss the implications of the three terms underbraced:


 Term I provides numerical stability and, from a more physical
standpoint, dissipation strictly speaking. For linear elements it
is given byX
K�x

sm P a � $uh þ $phð Þk k2
K þ

X
K�x

sc P$ � uhk k2
K :

When higher order elements are used the first term in I could con-
tain a negative contribution due to the viscous differential operator,
but this contribution is known to be smaller than the viscous dissi-
pation mk$uhk2

K on each element provided the constant c1 in the def-
inition of the stabilization parameters (12) is big enough [7]. That
the first term in I provides physical dissipation is more than a con-
jecture. Let us write
sm P a � $uh þ $phð Þk k2
K ¼

Z
K
enum

Let us consider a statistical treatment of the flow and let h�i be now
the ensemble average (or time average, for fully developed turbu-
lent flows). If 1=h is assumed to lie in the inertial range of the
Kolmogorov energy cascade and the classical assumptions of statis-
tical fluid mechanics apply, it is shown in [13] that when m! 0

henumi / hmj$uj2i;

where u is the solution of the continuous problem (reference [13]
deals with the global energy balance but the same arguments can
be applied to the local definition presented here). Therefore, the
numerical dissipation enum is statistically proportional to the molecular
dissipation of the flow. This is precisely the requirement posed by
Lilly for LES models [24] to show that

helesi / hmj$uj2i;

where

eles ¼ mt j$�uj2:

The introduction of the local definition of numerical dissipation per-
mits to develop a strategy for comparing LES and numerical based
approaches to turbulence simulation. If we have a sufficiently accu-
rate solution of a given flow (obtained by performing a direct
numerical simulation) we could construct a discretization of size
h such that h�1 lies in the inertial range and then compute henumi
and helesi using the projection of the accurate solution onto the coar-
ser mesh. We should observe that the ratio between the LES dissi-
pation and the numerical one is constant. Also the viscous
dissipation computed with the projection of the accurate velocity
onto the coarse mesh should be much smaller than either henumi
and helesi, as the arguments in [24] and in [13] suggest. Further, if
the mesh is locally refined the dissipation introduced by LES models
will be inaccurate in these ‘‘resolved regions” leading to an exces-
sive dissipation and a deterioration of the convergence rate [16].
Further research in this direction will be performed in the future.
The previous argument suggests that LES modeling is completely
redundant in our pure numerical approach because the numerical
dissipation already presents the correct structure if the discretiza-
tion is such that h�1 lies in the inertial range. Moreover, it also pre-
sents the correct structure when the mesh is refined. In particular,
laminar flows are correctly predicted by this approach provided
the LES modeling is not considered, as shown before. However,
we would like to stress that these conclusions are only valid when
the hypothesis made in [24] and in [13] are satisfied, and this ex-
cludes many flow regimes where strong anisotropies are important,
such as shear or boundary layers (and in this case it is known that a
dumping of the Smagorinsky eddy viscosity is necessary). Therefore,
the question of whether it is necessary or not to use a LES model to-
gether with the formulation we have presented is hard and requires
the analysis of the predictions of both models in several different
flows. Nevertheless, as shown in the numerical experiment of Sec-
tion 5, our formulation is able to capture turbulent features of the
flow, at least regarding mean values (see also [2,14,27] and the dis-
cussion in [26]).

 Term II could be negative and provide transfer of energy to the

finite element scales if the projection of the external force on
the space of subscales does not vanish. It is the mechanism by
which the flow could be excited by a highly spatially oscillating
force.


 Term III, only present when the time dependent subscales intro-
duced in [9] are used, could provide a backscatter of energy, that is
to say, transfer of energy from the subgrid scales to the finite
element scales. Note that the dependence of the dissipation on
the temporal derivatives is only apparent. It comes from (19),



Fig. 1. Geometry of the surface-mounted obstacle problem (top: top view; bottom:
front view).

Fig. 2. Boundary conditions of the surface-mounted obstacle problem.

Fig. 3. Closeup view of the mesh around the obstacle.

Fig. 4. Averaged velocity field obtained with LES (t
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where ~u is expressed in terms of the residual of the finite ele-
ment component and of ot ~u. So, at the end, expression (17)
depends on the subscales at each time instant. It is important
to note that more advanced physical-based subgrid models such
as the dynamic Smagorinsky model are also able to predict back-
scatter. Again, as mentioned in the analysis of term I, the only
definitive test would be a direct numerical simulation (DNS) to
decide if the spatial structure of this contribution correctly rep-
resents the physical phenomena.

As a summary of the developments presented in this section, we
have introduced a local definition of numerical dissipation and we
have identified the mechanism of energy transfer between coarse
and fine scales. The first point permits to develop a strategy to
evaluate the potential use of purely numerical approaches to the
simulation of turbulence and gives rise to the second point, the
description of the energy transfer. The subgrid scale problem is dri-
ven by the (projection of the) residual of the mean flow, and the
work done by the subscales against this ‘‘external” force is the
source of energy (of the fine scale problem). This energy given to
the fine scale is spent by the mean flow to drive the subgrid scale.
The part of this energy transfer that depends on the pressure (and
the viscosity if higher order elements are used) could be consid-
ered as ‘‘numerical” and the part that depends on the nonlinear
term as ‘‘physical”, as explained by the Kolmogorov theory. Never-
theless, we are strongly opposed to this artificial separation.

5. Flow over a surface mounted obstacle

In this section we present results of a large eddy simulation of
the flow around a surface mounted obstacle. There are many ver-
sions of this problem in the literature in what respects flow regime
(laminar, transitional or turbulent), geometry and boundary condi-
tions. Here we adopt the configuration presented in [1] in which a
cuboid-shaped obstacle with a square cross-profile (of side h) is
placed on a surface, spanning the entire width as shown in Fig. 1.
The transitional case of Reynolds number (Re) 4500 based on the
inflow velocity and obstacle height is considered.

Boundary conditions are illustrated in (Fig. 2) (there and in
what follows lengths are always specified in terms of h). The fluid
op), with QSS (middle) and with DS (bottom).
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enters the domain on the left side at x ¼ �5 in the positive x-direc-
tion which is subsequently referred to as the streamwise direction.
No-slip boundary conditions are applied on the bottom surface at
y ¼ �1 and on the remaining three surfaces of the obstacle. The
top of the domain at y ¼ 7 is modeled as impermeable, meaning
that the velocity component normal to the surface is set to zero.
Periodic boundary conditions are prescribed for the lateral sides
at z ¼ 0 and z ¼ 4. The outflow at x ¼ 30 is modeled with the free
outflow boundary condition.

The spatial discretization is performed using a structured mesh
near the walls (except around the obstacle) in combination with an
unstructured mesh elsewhere on each x-y plane. Since the flow is
homogeneous in the z-direction, the domain width is divided in
32 elements, resulting in a rather coarse mesh of around 2.2M ele-
Fig. 5. Instantaneous velocity field obtained with LES

Fig. 6. Instantaneous pressures obtained with LES (
ments. Near the obstacle the resolution achieved is almost that of a
DNS [29] and near the walls it is also very good, being rather coarse
in the shear layer region (see below). A detail of the mesh around
the obstacle is shown in Fig. 3.

Three different numerical simulations were carried out. The
first one was performed using the standard Smagorinsky model
and the stabilized finite element formulation of Codina et al. [9]
considering the subscales quasi-static, that is to say, dropping their
time derivative in the formulation presented above. It is referred to
as LES in the following. The second one was performed using just
the stabilized formulation of Codina et al. [9] considering quasi-
static subscales without additional LES modeling. Below, it is re-
ferred to as QSS. The last one was performed using the stabilized
finite element formulation of Codina et al. [9] considering time
(top), with QSS (middle) and with DS (bottom).

top), with QSS (middle) and with DS (bottom).



Table 1
Reattachment lengths for different methods

Method Separation bubble Reattachment

½dx=h� ½dy=h� ½XR=h�

LES 2.46 0.723 14.32
QSS 2.71 0.724 10.63
DS 2.70 0.725 12.75
LES [1] 2.5 0.75 15.42
LES [25] 1.9 12.8
DNS [25] 2.0 13.2

Fig. 8. Averaged viscous m j $uhj2 (top) and numerical enum (bottom) dissipation
fields obtained using QSS (in the scale of Fig. 7).
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dependent subscales without additional LES modeling. It is the one
labeled DS in the following.

Starting from a lower Reynolds number solution the flow is
evolved until a statistically steady state is reached. This occurs at
approximately 10 residence times (the time a fluid particle stays
inside the domain) and statistical data is accumulated for another
10 residence times. Averaging for velocities is performed both in
the z-direction and in time, whereas for the dissipations to be dis-
cussed later it is only performed in time and plotted at z ¼ 4. In
both cases, though, it is denoted by h�i.

The physics of the problem has much in common with that of
the backward facing step problem [22], the main difference being
the separation zone upstream of the obstacle. Due to this separa-
tion bubble, the flow does not separate at the rear edge of the
obstacle, where the separation line of the backward-facing step is
located, but at the front edge. The separated shear layer is not hor-
izontal, but includes an angle with the top surface of the obstacle
enclosing a recirculation region.

The free separated shear layer expands, becomes wavy and
eventually reattaches at the bottom wall of the domain. However,
this reattachment process is very unsteady. The shear layer flaps
Fig. 7. Averaged viscous mj$uhj2 (top), turbulent mt j$uhj2 (middle) an
and large vortical structures shed from it, which swirl the recircu-
lation zone and the fluid they pass on their way to the outflow.
These structures are associated with large velocity fluctuations in
the z-direction. This pattern is observed in more or less periodic
time intervals. Only time averaging of the flow field reveals the pic-
ture of an arc-shaped shear layer with a quiet recirculation zone
and a stable reattachment point as it is seen in Fig. 4. Instantaneous
velocities are shown in Fig. 5 and instantaneous pressures in Fig. 6.
d numerical enum (bottom) dissipation fields obtained using LES.



Fig. 9. Averaged viscous m j $uhj2 (top) and numerical enum (bottom) dissipation
fields obtained using DS (in the scale of Fig. 7).
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The structure of the recirculation zone actually consists of a sys-
tem of three recirculations. First there is the big one, bounded by
the shear layer and the reattachment point. Close to the obstacle,
a secondary recirculation forms. Its instantaneous shape is unstea-
dy and determined by the processes occurring in the primary recir-
culation region.
Fig. 10. Instantaneous viscous m j $uhj2 (top), turbulent mt j $uhj2 (middle) and
numerical enum (bottom) dissipation fields obtained using LES (in the scale of Fig. 7).
The most important parameter inherent to separated-reat-
tached flows is the reattachment length, denoted by Xr. In case of
the flow over a surface-mounted obstacle Xr is defined as the
length of the recirculation zone downstream of the obstacle. In
Table 1 the reattachment length is shown together with the size
of the separation bubble upstream the obstacle (dx being the
length and dy the height). As pointed out in [1], the values obtained
are within the range of published experimental results. The reat-
tachment length obtained using LES is in good agreement with that
obtained in [1], whereas the one obtained using DS is closer to the
LES and DNS of [25]. The reattachment length obtained using QSS
is the lowest one.

It is not our intention here to present a complete description of
the flow field (see [1]) but rather to highlight the influence the
turbulent and numerical dissipation have on it, particularly in
the reattachment length. Future work will be devoted to a
detailed comparison of the results obtained with the different
Fig. 12. Instantaneous viscous m j $uhj2 (top) and numerical enum (bottom) dissi-
pation fields obtained using DS (in the scale of Fig. 7).

Fig. 11. Instantaneous viscous m j $uhj2 (top) and numerical enum (bottom) dissipa-
tion fields obtained using QSS (in the scale of Fig. 7).



Fig. 13. Points with negative numerical dissipation using DS.
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methods used here and the influence of dissipation on turbulence
statistics.

Averaged values of viscous, turbulent and numerical dissipation
obtained using LES are shown in Fig. 7, whereas averaged viscous
and numerical dissipations obtained using QSS and DS are shown
in Figs. 8 and 9, respectively. The beginning of the shear layer,
near the front edge of the obstacle where the flow separates, is
the zone of higher velocity gradients as can be seen in these fig-
ures. The viscous dissipation is comparable to the numerical or
the turbulent one in the shear layer and in the boundary layer
and it is noticeably smaller in the rest of the domain. As discussed
in the previous section, the shear and the boundary layer are zones
of strong anisotropy in which the arguments of [24] and [13] are
not valid. Therefore, we cannot expect the turbulent or the numer-
ical dissipation to replicate the structure of the exact molecular
dissipation in these zones and therefore we cannot expect them
to be similar.

As can be clearly seen in Fig. 7, the dissipation introduced by the
Smagorinsky model is similar to the numerical dissipation, except
in the shear and boundary layers. In the shear layer zone the tur-
bulent dissipation is more important than the numerical one. That
could be explained by the dependence of the eddy viscosity with
the velocity gradients, which are very high there. As a conse-
quence, the shear layer is stabilized and unsteady motions gener-
ated by the flapping start further downstream. The effect of
stabilization of the shear layer can be seen comparing the mean
velocities in Fig. 4 and the instantaneous velocities in Fig. 5 ob-
tained with and without LES. This explains why the reattachment
length obtained using LES is greater than the ones obtained using
QSS and DS. In the boundary layer the turbulent dissipation is
higher than the numerical one, which is almost negligible, as seen
in Fig. 7. This is a well known misbehavior that is corrected using a
dumping function (not used in this work). It is not easy to deter-
mine how important is the influence of this dissipation in the reat-
tachment length although it is reasonable to think that it will
influence the shear stress at the wall.

In the rest of the domain, both the turbulent and the numerical
dissipation have a similar spatial structure, the latter showing a
slightly more pronounced dependence on the mesh size in the zone
where bigger elements are observed. We recall that a similar spa-
tial structure should be observed only when h�1 lies in the inertial
range. In any case, numerical values are similar and this can be
seen as an indication of the statistical equivalence between the tur-
bulent and the numerical dissipations to the physical dissipation.
As it has been mentioned in the previous section we should have

hmj$uj2i ðexact physical dissipationÞ

� hmt j$uhj2i ðLES dissipationÞ
� henumi ðnumerical dissipationÞ;
where the symbol � has to be understood as an approximation up
to constants. Of course, this is only an indication as we do not know
the exact solution u, which can only be obtained by DNS.

When the Smagorinsky model is not used the total dissipation
in the shear layer is smaller and therefore unsteady flapping and
vortex generation is observed closer to the obstacle. The spatial
structure of the numerical dissipation is now more spread than
in the LES simulation, as it can be observed in Fig. 8 and in Fig. 9,
producing smaller reattachment lengths, as discussed above. It is
difficult to analyze why the reattachment length obtained when
the quasistatic subscales are used is smaller than the one obtained
using dynamic subscales. It seems that numerical dissipation is
slightly higher in the second case but the difference is really small.
The point could be related to the last aspect we would like to ana-
lyze: the capability of predicting backscatter. Before considering
this aspect, let us mention that although the results of Lilly [24]
and Guasch and Codina [13] are valid for averaged quantities, sim-
ilar trends are observed when instantaneous distributions of dissi-
pation are observed. Figs. 10–12 display the viscous and numerical
dissipations for the three approaches analyzed at a certain time in-
stant (the turbulent dissipation is also plotted in the case of the LES
model).

Finally, we have mentioned the possibility to predict backscat-
ter. We have numerically checked that there are element domains
in which the dissipation given by (17) is negative, demonstrating
that our method has the potential for exhibiting backscatter. When
averaging in time or space, the result becomes always positive, but
at some points and at some time instants the values of eh may be
negative. A snapshot of this situation is shown in Fig. 13. As it
can be observed there, these points are mainly located close to
the boundary layer and the shear layer. Again, a DNS would be
the only way to check that the spatial distribution observed in
Fig. 13 actually represents the physical situation.

6. Conclusions

In this paper we have discussed the dissipative structure of a
two-scale finite element approximation for incompressible flow
problems. A discussion of what is dissipation in our formulation,
which terms account for it and their physical meaning has been
the main contribution of this paper.

As particular features of our approach, we have considered the
subgrid scales time dependent (dynamic) and orthogonal to the finite
element space. These features have proved to be essential to draw
the main conclusions of the paper:


 Only when the space of subscales is orthogonal to the finite ele-
ment space there is a proper scale separation between finite ele-
ment scales and subgrid scales in the energy balance equation.
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We have used the term ‘‘proper scale separation” meaning that
the variation of the total kinetic energy is the sum of the varia-
tions of the kinetic energy of the two scales, and also the total
dissipation is the sum of the dissipations of the two scales.


 The structure of the numerical dissipation, and in particular of
the transfer of energy from the finite element scales to the sub-
scales, has been examined in a numerical experiment. This
numerical dissipation, and also the turbulent one, are known
to be statistically proportional to the (exact) molecular dissipa-
tion when the flow is locally isotropic. It is observed in the
numerical experiment that these dissipations have a similar spa-
tial structure except in the zones of strong anisotropy. In the
boundary and shear layers the dissipation coming from a LES
model (the simplest Smagorinsky model, in our case) is higher
than the numerical one.


 The possibility of having backscatter has been effectively
checked in the numerical experiments presented. This backscat-
ter appears temporarily where it is known it could appear,
namely, close to boundary and shear layers and in rather iso-
lated spots. Noteworthy, backscatter is a feature possible only
when dynamic subgrid scales are considered.

All these conclusions point to the direction we currently favor,
and it is that the two scale numerical approach presented herein,
splitting the unknown into the finite element component and a
subscale, is able to model turbulence. This does not imply at all
that our formulation cannot be improved, and in particular ‘‘clo-
sures” for the subgrid scale other than the one followed here can
be certainly devised. Nevertheless, the clean dissipative structure
of the formulation described is one additional argument in favor
of the position to consider turbulence modeling a numerical issue.
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