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l’Enginyeria, Universitat Politécnica Catalunya, C/Gran Capitán s/n, Campus Nord UPC, Módulo C1,
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SUMMARY

In this paper, the aerodynamic shape optimization problems with uncertain operating conditions have
been addressed. After a review of robust control theory and the possible approaches to take into account
uncertainties, the use of Taguchi robust design methods in order to overcome single point design problems
in aerodynamics is proposed. Under the Taguchi concept, a design with uncertainties is converted into
an optimization problem with two objectives which are the mean performance and its variance, so that
the solutions are as less sensitive to the uncertainty of the input parameters as possible. Furthermore, the
modified non-dominated sorting genetic algorithms are used to capture a set of compromised solutions
(Pareto front) between these two objectives. The flow field is analyzed by Navier–Stokes computation
using an unstructured mesh. In order to reduce the number of expensive evaluations of the fitness function
a response surface modeling is employed to estimate the fitness value using the polynomial approximation
model. During the solution of the optimization problem, a semi-torsional spring analogy is used for the
adaption of the computational mesh to all the obtained geometrical configurations. The proposed approach
is applied to the robust optimization of the 2D high-lift devices of a business aircraft by maximizing the
mean and minimizing the variance of the lift coefficients with uncertain free-stream angle of attack at
landing flight condition. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In spite of the important effect of operating and manufacturing uncertainties on the performance,
traditional aerodynamic shape optimization has focused on obtaining the best design given a set of
deterministic flow conditions. Clearly, it is important to maintain near-optimal performance levels at
off-design operating conditions, and to ensure that performance does not degrade appreciably when
the component shape differs from the optimal one due to manufacturing tolerances and normal
wear and tear. These requirements naturally lead to the idea of robust optimal design wherein
the concept of robustness in front of different perturbations is built into the design optimization
procedure.

The recognition of the importance of incorporating the probabilistic nature of the variables
involved in designing and operating complex systems has led to several investigations in the recent
past. Some of the basic principles of robust optimal design are discussed by Egorov et al. [1].
They make the observations that (a) robust design optimization is in essence multi-objective design
optimization because of the presence of the additional objective (robustness) and (b) the addition
of the robustness criterion may result in an optimal solution that is substantially different from that
obtained without this criterion. Different approaches to robust optimal design are also mentioned
in this paper.

The main objective of this paper is to develop a robust aerodynamic optimization scheme for
achieving consistent improvements of the performance over a given range of uncertainty parameters.
This scheme has the following two major advantages: (a) it prevents severe degradation in the
off-design performance and (b) it is not sensitive to the number of design points.

The imposition of the additional requirement of robustness results in a multiple-objective opti-
mization problem requiring appropriate solution procedures. Typically, the costs associated with
multiple-objective optimization are relevant. Therefore, efficient multiple-objective optimization
procedures are crucial for the rapid deployment of the principles of robust design in industry. Here,
we focus on the applications of an evolutionary algorithm for multiple-objective optimization [2]
by using Pareto front concept. Applications of this evolutionary method to some difficult model
problems involving the complexities (convex, non-convex, discrete or discontinuous Pareto front)
are also presented in Reference [2]. The computed Pareto-optimal solutions closely approximate
the global Pareto front and exhibit good solution diversity. Many of these solutions were obtained
with relatively small population sizes.

The final goal of this study is to propose an algorithm to take into account the uncertainties
related with fluctuating operating conditions integrating them into an automatic shape optimization
problem in aerodynamics. We propose to use Taguchi robust design methods in order to overcome
single point design problems. The latter techniques produce solutions that perform well for the
selected design point but have poor off-design performance. Under the Taguchi concept, a design
with uncertainties is converted into an optimization problem with two objectives that are mean
performance and its variance, so that the solutions are as less insensitive to the uncertainty of
the input parameters as possible. Furthermore, the multi-criterion evolutionary algorithms are
used to capture a set of compromised solutions (Pareto front) between these two objectives. The
flow field is analyzed by Navier–Stokes (N-S) computation. In order to reduce the number of
expensive evaluations of fitness function, response surface modeling (RSM) is employed to estimate
fitness value using the approximate model. During the solution of the optimization problem a
Semi-torsional Spring Analogy is used to adapt a single computational mesh to all geometrical
configurations obtained during the optimization process. The proposed approach is applied to the
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LIFT MAXIMIZATION WITH UNCERTAINTIES 121

robust optimization of the 2D high-lift devices of a business aircraft, by maximizing the mean
and minimizing the variance of the lift coefficients under uncertain free-stream angle of attack at
landing flight condition.

2. ROBUST CONTROL AND TAGUCHI METHODOLOGY

Many products are now routinely designed with the aid of computer models. Given the inputs
designable engineering parameters and the parameters representing manufacturing process condi-
tions the model generates the product’s quality characteristics. The quality improvement problem is
to choose the designable engineering parameters such that the quality characteristics are uniformly
good in the presence of variability of different conditions.

We consider objective functions of the form f : X⊗B−→�, where x ∈ X represents decision
variables, inputs (designs) controlled by the engineer, b∈ B represents uncertainty, inputs not
controlled by the engineer and f (x,b) quantifies the loss suffered by design x under the uncertain
conditions b.

Our (unattainable) goal is to find x∗ ∈ X such that, for every b∈ B,

f (x∗,b)� f (x,b) ∀x ∈ X (1)

The unsolvable problem of finding x∗ ∈ X that simultaneously minimizes f (x,b) for each
b∈ B is the central problem of statistical decision theory: and a decision rule that simultaneously
minimizes risk for every possible state of nature. A standard way (e.g. Ferguson [3]) of negotiating
this problem is to replace each f (x, ·) with a real-valued attribute of it, e.g.

Minimax principle:

min
x∈X �(x) where �(x)= sup

b∈B
f (x;b) (2)

Bayes principle:

min
x∈X �(x) where �(x)=

∫
B
f (x,b)p(b)db (3)

where p denotes a probability density function (PDF) on B.
The minimax principle is extremely conservative. It seeks to protect the decision-maker against

the worst-case scenario. The Bayes principle seeks to minimize average loss in a way that can
be customized (via the choice of p) to the application. This formulation of the quality control
problem was first proposed by Welch et al. [4], although their suggestion appears to have had little
effect on engineering practice.

Although the above formulation and proposed solution of the quality improvement problem
is modern, the problem itself predates the engineering community’s use of computer models. To
motivate our own approach to this problem, and the more general robust design problem, we briefly
summarize the contributions of Taguchi. See Roy [5] for a broader context and a more detailed
discussion of Taguchi’s far-ranging contributions to quality engineering.

In the statistical approach, one considers the fluctuating operating conditions b=(bi )i=1,...,N as
samples of random variables B=(Bi )i=1,...,N , whose statistical characteristics are known (mean

lB=(�iB)i=1,...,N , variance r2B=(�2B
i
)i=1,...,N , etc.). One also suppose, for the sake of simplicity,
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122 Z. TANG ET AL.

that the random variables (Bi )i=1,...,N are independent. The statistical characteristics of operating
conditions can be determined by experimental measurements or engineering experience. Gaussian
PDFs or truncated Gaussian PDFs are often used in practice (see [6] for instance).

The main consequence of this assumption is that the cost function of the problem is also a
random variable f . According to the Von Neumann–Morgenstern decision theory, the best choice
is then to select the design that leads to the best expected fitness. This is known as the maximum
expected values (MEV) criterion. The decision or design that minimizes the risk is known as the
Bayes’ decision and is solution of the following problem:

Minimize � f =
∫

�(B)

f (x,b)�B(b)db, x ∈�n (4)

�(B) and �B are the range and the PDF of the random variable B. Then, the MEV criterion just
consists in minimizing the statistical mean � f of the cost function.

This approach is a significant improvement over previous methods. The robust design problem
is now considered with a rigorous statistical framework. This allows to take into account not only
the random fluctuations of the fitness in the optimization problem but also to take care about the
frequency of the occurrence of the events, thanks to PDFs. Then, the most probable events have
a larger influence in the decision than extreme and unlikely events.

However, problem (4) does not address the variability of the fitness. The mean value of the
fitness is the only criterion that is considered in the Bayes’ decision. For engineering problems,
one also would like to select a design for which the fitness is not subjected to large variations
when operating conditions fluctuate. Then, a second criterion is often joined to the MEV criterion
that relies on the minimization of the variance �2f of the fitness:

Minimize

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� f =
∫

�(B)

f (x,b)�B(b)db,

�2f =
∫

�(B)

( f (x,b)−� f )
2�B(b)db,

X ∈�n (5)

This approach aims at determining a tradeoff between the expected fitness and the expected
fitness variation as operating conditions randomly fluctuate. Although this approach is satisfactory
from theoretical and practical viewpoints, its application is not straightforward. Particularly, the
estimation of the mean and variance can be tedious for complex CFD applications. This issue is
detailed below.

To estimate the mean and variance of the random variable f , one can simply use statistical
estimators in a classical Monte-Carlo approach. A sample of operating conditions (bi )i=1,...,N if size
N is generated according to the PDF �B . Then, unbiased estimators of the mean and variance are:

M f = 1

N

N∑
i=1

f (x,bi )

S2f = 1

N−1

N∑
i=1

( f (x,bi )−M f )
2

(6)

This approach does not suffer from point-optimization effect since the sample (bi )i=1,...,N is
generated randomly according to the PDF �B .
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This approach drives to the solution of a multi-objective optimization problem. The test cases
presented in this work have been solved using a modification of a non-dominated sorting genetic
algorithm (NSGA) [7].

There exist several variants of GAs for multi-objective optimization problems; see, for example,
vector evaluated GAs (VEGAs) [8] and NSGAs [9]. For further information on GAs for multi-
objective optimization see References [10–14] and references therein.

3. 2D N-S SOLVER ON UNSTRUCTURED MESH

In the examples shown at the end of this paper we have solved the 2D N-S equations by using
a finite volume Galerkin method on unstructured meshes. A 2D unstructured mesh has been
generated by the pre/post-processing software GID of CIMNE. To solve the Euler part of the
equations, a Roe scheme has been used. To compute turbulent flows a k–ε model has been chosen.
Near-wall turbulence has been computed by a two-layer approach. Time-dependant problems have
been solved using a fourth-order Runge–Kutta scheme.

4. ADAPTIVE RESPONSE SURFACE MODELING (ARSM) METHODS

One of the most important advantages obtained by using RSMs [15] in optimization is a significant
reduction in the computational cost. This allows the user to perform global optimization and
reliability-based optimization, which are otherwise prohibitively computationally expensive. In
addition, the use of response surface models allows the design engineer to quickly perform a
variety of tradeoff studies that provide information about the sensitivity of the optimal aircraft
design with respect to changes in performance criteria and to off-design conditions.

The reduction in the computational cost of optimization provided by response surface models
motivates their use in the modeling of data, despite the fact that, under certain conditions, they
can produce some numerical noise.

4.1. RSM methods

In many RSM applications, either linear or quadratic polynomials are assumed to accurately model
the observed response values. If ns analysis are performed and p=1, . . . ,ns , then a quadratic
response surface (RS) model has the form

y(p) =c0+ ∑
1� j�nv

c j x
(p)
j + ∑

1� j�k�nv

c(nv−1+ j+k)x
(p)
j x (p)

k (7)

where y(p) is the response; x (p)
j and x (p)

k are the nv design variables; and c0, c j , and c(nv −1+ j+k)
are the unknown polynomial coefficients. Note that there are nt =(nv +1)(nv +2)/2 coefficients
(i.e. model terms) in the quadratic polynomial. This polynomial model may be written in matrix
notation as

y(p) =CT X̄ (p) (8)
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124 Z. TANG ET AL.

where C is the vector of length nt of unknown coefficients to be estimated,

C=[c0,c1, . . . ,cnt−1] (9)

and X̄ ( p) is the vector of length nt corresponding to the form of the x (p)
j and x (p)

k terms in the
polynomial model (7). For the pth observation this is

X̄ (p) =[1, x (p)
1 , x (p)

2 , . . . , x (p)
nv

, (x (p)
1 )2, x (p)

1 x (p)
2 , . . . , (x (p)

nv
)2] (10)

Note that there is a difference between the pth vector of independent variables, X (p), and the pth
vector of independent variables mapped into the form of the polynomial model, X̄ (p).

Estimating the unknown coefficients requires ns analysis, where ns�nt . Under such conditions,
the estimation problem may be formulated in matrix notation as

Y ≈ XC (11)

where Y is the vector of ns observed response values,

Y =[y(1), y(2), . . . , y(ns)] (12)

and X is the matrix formed by the ns row vectors X̄ (p) which is assumed to have rank nt . Thus,
X may be expressed as

X =

⎡
⎢⎢⎢⎣
1 x (1)

1 x (1)
2 . . . (x (1)

nv
)2

...
...

...
. . .

...

1 x (ns)
1 x (ns)

2 . . . (x (ns)
nv

)2

⎤
⎥⎥⎥⎦ (13)

The unique least-squares solution to Equation (11) is

Ĉ=(XTX)−1XTY (14)

where (XTX)−1 exists if the rows of X are linearly independent. When C is substituted by Ĉ into
Equation (8), values of the response may be predicted at any location x by mapping x into X̄ (p).
In matrix notation this corresponds to

Ŷ = ĈT X̄ (p) (15)

Note that if ns>nt the system of equations is overdetermined. Thus, the predicted response values
(from the polynomial model) at the original sample locations may differ from the observed response
values at the sampled locations.

Polynomial RS models can be considered as globalmodels in which all of the ns observed values
of the response are equally weighted in the fitting of the polynomial surface. At an unsampled
location in design space, x, response observations that are near to x (in the sense of Euclidean
distance) have an equal influence on the predicted response, f̂ (x), as the response observations
that are far from x. It can be argued that such a global model may not be the best approximation
if the true unknown response has many real local optima (as opposed to the artificial local optima
created by numerical noise). In such a situation an approximation scheme having local modeling
properties may be more attractive, i.e. adaptive response methods (ARSM).
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4.2. ARSM methods

Given design variables, objectives, and the initial design space, experimental designs (points in
the design space) are generated according to a formal planning strategy, e.g. central composite
designs. Values of the objective function are evaluated through the computation intensive analysis
and simulation processes. The quadratic response surface model, or surrogate, is fitted to the
data using the usual least-square method. In the ARSM, a global optimization algorithm, GAs, is
used to find the global optimum. Following this step, the value of the actual objective function
at the optimum of the surrogate is calculated through an evaluation of the computation-intensive
objective function. If the value of the actual objective function at the surrogate optimum is better
than the values at all other experimental designs, the point is added to the set of experimental
designs for the following iteration because the point represents a promising search direction. All
experimental designs and the accepted model optimum are recorded in a design library. After each
design iteration, a threshold, or cutting plane, is used to reduce the design space. In this algorithm,
the second highest value of the objective function in the set of experimental designs is chosen as
the threshold. If this second highest value cannot help to reduce the design space, the next highest
value of the design function will be used, and so on.

5. SEMI-TORSIONAL SPRING ANALOGY FOR MESH MOVEMENT

During any shape optimization process there is a need for a simple, robust, and computationally
efficient scheme for maintaining element quality during mesh deformation. This can be provided
by a spring analogy approach. This scheme must work in both 2D and 3D, be able to handle
large deformations, and work well for fully unstructured meshes. Paper [16] presented such a
scheme, developed as an extension of the 2D semi-torsional approach. We have used it in our
optimization approach to perform 2D multi-element unstructured mesh movement due to slat/flap
position modifications. This has allowed to use the same computational mesh for all the different
computational geometries obtained during the solution of the optimization problem.

5.1. Lineal spring analogy

Spring analogy models consist in considering the mesh as an assembly of springs with a given
stiffness for each one. Each of the edges of the mesh is considered as a spring. Then, after the
modification of the geometry of the boundary, the new resulting mesh is obtained as the new
equilibrated position of the springs network.

The lineal spring stiffness ki j for a given element edge i− j takes the following general form:

kni j =
�

[(yn1,i − yn1, j )
2+(yn2,i − yn2, j )

2+(yn3,i − yn3, j )
2]� (16)

where the superscript n denotes time step, (yn1,i , y
n
2,i , y

n
3,i ) and (yn1, j , y

n
2, j , y

n
3, j ) are the spatial

coordinates of the two nodes connected by the edge i− j at time step n, and � and � are coefficients.
The fictitious spring force Fn

i j acting on node i from edge i− j is

Fn
i j =kni j (d

n
j −dni ) (17)

where dnj and d
n
i are nodal displacements of node j and i at step n, respectively.
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126 Z. TANG ET AL.

The static equilibrium equation for node i at time step n is

NEi∑
j=1

kni j (d
n
j −dni )=0 (18)

where Nei is the number of nodes directly connected to node i through fictitious springs. A system
of equations is derived by applying the equilibrium equation to all nodes in the mesh.

Nodal coordinates are updated by adding the nodal displacements to the old coordinates:

yni =yn−1
i +dni (19)

The coefficient � is often taken to be 0.5, which means that the stiffness is inversely proportional
to the length of the edge, and �=1.

5.2. Semi-torsional spring analogy

A semi-torsional spring analogy model is similar to the lineal formulation, with angle information
incorporated into the spring stiffness. Neither displacement formulation nor force transformation
is needed, and this approach is therefore easy to implement [16]. For 2D triangular elements, a
semi-torsional stiffness of an edge i− j was proposed by Blom [17]

ksemi-torsional
i j = klineali j

�
(20)

where � is the angle facing the edge on an element. However, this semi-torsional model is not
directly applicable to 3D elements. Moreover, an internal edge in a 2D triangular mesh is attached
to two elements, and faces two angles that are usually different in magnitude. The above definition
gives different stiffness values to a single edge when it is considered on each of its two attached
elements.

To deform 2D/3D unstructured meshes for solving moving boundary problems, we propose a
semi-torsional spring analogy model based on Zeng’s previous work [16], in which the stiffness
of an edge is defined as the sum of its linear stiffness and its semi-torsional stiffness, with the
semi-torsional stiffness depending on the angle facing the edge, i.e.

ki j = klineali j +ksemi-torsional
i j

ksemi-torsional
i j = k

NEi j∑
m=1

1

sin2 �i jm

(21)

where the lineal stiffness is defined as in Equation (16), NEi j is the number of elements sharing
edge i− j , and �i jm is the facing angle, defined as the angle that faces the edge i− j on the mth
element attached to the edge. k is a coefficient having the dimension of the stiffness. In all our
numerical experiments, we set the value of the coefficient to be 1.0. On a tetrahedron with vertices
i, j, k, and l, the angle that faces the edge i− j is taken as the angle formed between triangle
�ikl and triangle � jkl .

By substituting (21) into (17), the spring forces on nodes i and j are expressed as

[Fi j ]=
(

�

li j
+k

NEi j∑
m=1

1

sin2 �i jm

)
[B][ui j ] (22)
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where [Fi j ]=[Fix ,Fiy,Fiz,Fjx ,Fjy,Fjz]T, [ui j ]=[ui ,vi ,wi ,u j ,v j ,w j ]T are vectors of spring
forces and displacements at nodes i and j, [B] is a 6×6 matrix whose elements are given by
Bpq =−	pq +	p,q+3+	p+3,q , with 	pq =1 if p=q and 	pq =0 if p 	=q .
For a 2D triangular mesh one edge within the mesh shares two elements and Equation (21)

simplifies to

ksemi-torsional
i j =k

(
1

sin2 �1
+ 1

sin2 �2

)
(23)

where �1 is the angle facing edge i− j on the triangle �i jl , �2 is the angle facing edge i− j on
�i jk , and k, l, i , and j are the vertices of the elements.

In a 2D triangular mesh, spring forces on the edge i− j are

[Fi j ]=
(

�

li j
+k

(
1

sin2 �1
+ 1

sin2 �2

))
[B∗][ui j ] (24)

where [Fi j ]=[Fix ,Fiy,Fjx ,Fjy]T, [ui j ]=[ui ,vi ,u j ,v j ]T, and [B∗] is a 4×4 matrix whose
elements are given by B∗

pq =−	pq +	p,q+2+	p+2,q .
With the above definition for semi-torsional stiffness, an angle approaching 0 or 
 makes the

edge facing this angle very stiff, which prevents further change in the angle and thus avoids element
inversion.

5.3. Boundary improvement

Since the static equilibrium equations for the mesh are elliptic, the principle of Saint Venant holds
for deformation of the mesh. Therefore, boundary displacement does not spread far into the mesh.
A boundary-improvement technique was suggested to handle this localization of deformation [18].
The stiffness of springs adjacent to the boundary was increased so that surface displacement could
be spread further into the mesh. To implement this, the coefficient � is magnified by a constant
factor for springs adjacent to the boundary.

Several layers of elements near the boundary can be made stiffer by this boundary improve-
ment technique. In our experiments, we imposed one layer of boundary stiffness modification by
increasing � from 1.0 to 3.5.

Some additional techniques to improve this situation can be seen in [19].
5.4. Mesh testing results

We have implemented the semi-torsional model for 2D multi element airfoil geometries with slat
and flap movement, see Figure 1. In this example, the main body of an airfoil is fixed and the
position and the orientation of slat and flap are modified. Then, the interior mesh is modified by
using above analogy methods according to the boundary displacement. Figure 1 shows the mesh
movement provided for different positions of slat and flat.

6. APPLICATION TO HIGH-LIFT DEVICE OPTIMIZATION

In order to test the proposed approach the robust optimization of a high-lift device has been faced.
The goal of the optimization is to maximize Cl at landing fly condition by modifying the positions
and orientations of slat and flap. The aerodynamic coefficients are computed using N-S flow solver.
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128 Z. TANG ET AL.

Figure 1. Example of 2D springs methods for unstructured mesh movement. Mesh movement provided
for different positions of slat and flat.

Here the design variables are the positions (2 coordinates for each one) and angles of slat and
flap, so that we have six design variables in total.

6.1. Single-point lift maximization at landing flight condition

For landing configurations, we only concern about the maximum lift, because in this situation drag
is considered as convenient. So that the optimization problem is defined as

maxCl (25)
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LIFT MAXIMIZATION WITH UNCERTAINTIES 129

Figure 2. Convergence history of lift coefficient.

Figure 3. Optimized multielement airfoil configuration for landing. Optimized flap located below the
original position. Optimized slat located on top of the original position.

The nominal operating condition is defined for landing conditions by the free-stream incidence
�=15◦, Mach number M∞ =0.15, and Reynolds number Re=1.8×106.

Figure 2 shows the convergence history of lift coefficient obtained during the optimization
process. The optimized airfoil slat and flap positions are shown in Figure 3 compared with the
baseline multi element airfoil. The optimized flap is located below the original position whereas
the optimized slat is located on top of the original position. The optimized pressure distribution
is shown in Figure 4. Table I gives the detailed evolution of the lift coefficient value during the
optimization process.
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Figure 4. Comparison of pressure distributions between optimized and baseline for landing.

Table I. Lift coefficient values during optimization.

Generations 0 10 20 30 40 50

Cl 4073 4805 4816 4822 4825 4827

6.2. Lift maximization with uncertain angle of attack at landing flight condition

In this case we assume that the free-stream angle of attack is subject to random fluctuations. For
simplicity, we assume that its PDF is uniform in the interval [15−2◦,15+2◦]. The mean angle
of attack corresponds to the nominal incidence 15◦. Free-stream Mach number is M∞ =0.15 and
Reynolds number Re=1.8×106.

Uncertainties in the free-stream Mach number and the Reynolds number could also be
taken into account. Nevertheless, there is very few information available about the values
and statistical distributions of this uncertainties that can be considered for realistic cases. The
NODESIM project (see [20]) has developed different actions in order to obtain this type of
information.

The mathematical formulation of the resulting optimization problem is defined as

maxCl at M∞ =0.15, �=[15−2◦,15+2◦] (26)

According to the Taguchi robust control theory, the above design problem with uncertainties can be
converted into the following two-objective optimization problem, one objective is the mean value
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Figure 5. Pareto front between mean lift and its variance.

of the lift coefficient, and the other is the variance of lift coefficient over the range of uncertainty

max f1 = �Cl
= 1

N

N∑
i=1

Cli

min f2 = �Cl =
1

N−1

N∑
i=1

(Cli −�Cl
)2

(27)

where N =5, M∞ =0.15, and �i =[13,14,15,16,17◦].
The above two-objective optimization problem drives to the solution of a multi-objective opti-

mization problem. There exist several variants of GAs for multi-objective optimization problems;
see for example VEGAs [8] and NSGAs [9]. For further information on GAs for multi-objective
optimization, see References [10, 11] and references therein.

The test case presented in this work has been solved using a modification of an NSGA. More
recent algorithm such as SPEA2 [11], epsilon-MOEA [21], or NSGA-II [22] (the improvement of
NSGA) could also have been chosen. Nevertheless, the main objective of this work is the integration
of different tools for the solution of robust design problems. Obviously, any improvement in any
of the integrated tools should produce a global improvement of the whole process.

Figure 5 shows the compromised Pareto front of the above two-objective optimization problem.
Figure 6 illustrates the optimized airfoil slat and flap positions of one solution on Pareto front
(with f1=4.72) compared with the baseline and traditional one-point optimized shape. The robust
optimized flap position is located below the original and the traditional designed (Section 6.1) posi-
tions, whereas the robust optimized slat position is located between the original and the traditional
designed (Section 6.1) positions. Streamlines over optimized airfoil are shown in Figure 7. Two
clear vortices appear behind the slat and the flap. The optimized pressure distribution is shown
in Figure 8.
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Figure 6. Robust optimized multi element airfoil configuration for Landing with f1=4.72. Robust opti-
mized flap located below the original and the traditional designed positions. Robust optimized slat located

between the original and the traditional designed positions.

Figure 7. Stream lines over the robust optimized airfoil obtained with f1=4.72.

Figure 9 shows a comparison between different robust optimized designs corresponding to
f1=4.62, 4.72, 4.78, and 4.83, the traditional single-point optimized design, and the baseline
airfoil. We can see how the lift coefficient of the robust optimized airfoils are not as sensitive to
the fluctuation of the angle of attack as the single-point optimized one. This is also illustrated by
the value of Cl for the optimized and baseline airfoils in Table II. Nevertheless, the cost to be
paid for this behavior is that the lift coefficient of the robust design is generally below than the
single-point optimized one. On the other side, it is possible to obtain designs with mean values
of lift coefficient even higher than the single-point optimized one, like the points placed more to
the right in Figure 7, but then its behavior is, in fact, more sensitive with respect to the angle of
attack. In these last cases, the value of Cl for M∞ =0.15 is not higher than for the single-case
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Figure 8. Comparison of pressure distributions between baseline, robust optimized with f1=4.72, and
baseline airfoils for landing.

Figure 9. Comparison of the lift coefficient between different robust optimized designs corresponding to
f1=4.62, 4.72, 4.78, and 4.83, the traditional single-point optimized design, and the baseline airfoil.
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Table II. Comparison of performances corresponding to robust optimized ( f1=4.72), traditional
single-point optimized, and baseline airfoils.

� 13◦ 14◦ 15◦ 16◦ 17◦

Baseline airfoil Cl
Cd

4.2461
0.1742

4.3220
0.1837

4.3757
0.1939

4.4161
0.2041

4.4427
0.2147

Optimized (Landing) Cl
Cd

4.6762
0.2130

4.7596
0.2224

4.8271
0.2328

4.8753
0.2458

4.9015
0.2602

Robust optimized (Landing) Cl
Cd

4.7129
0.2440

4.7302
0.2540

4.7358
0.2642

4.7307
0.2751

4.7155
0.2870

optimized design, but it can be higher for the rest of values of M∞ producing a mean value better
than the single-point case but with a bigger amount of sensitivity.

In conclusion, the Pareto front shown in Figure 7 allows to select designs with a small sensitivity
than in the single-point one, but also with a smaller mean value of Cl , but we also obtain designs
with a bigger mean value of Cl but with also a bigger sensitivity than in the single-point case.

7. CONCLUSION

The problem of aerodynamic shape optimization with uncertain operating conditions is addressed
in this paper. It is solved by using the Taguchi concept converting design with uncertainties into a
two-objective optimization problem: one objective is the mean performance, the other one is the
variance of the performance. To overcome the difficulty related to the high computational cost
required by robust design and GAs, a response surface modeling strategy is proposed that relies
on the polynomial approximation, to estimate the fitness value. In addition, a semi-torsional spring
analogy is used for the deformation of the computational mesh in order to fit it to the different
geometries obtained during the shape optimization process.

This methodology is demonstrated for a realistic high-lift device’s lift maximization in subsonic
flow with fluctuation on free stream incidence angle. This optimization problem is solved using
the proposed Taguchi robust control method successfully.
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10. Mäkinen RA, Toivanen J, Périaux J. Multidisciplinary shape optimization in aerodynamics and electromagnetics
using genetic algorithms. International Journal for Numerical Methods in Fluids 1999; 30(2):149–159.

11. Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength pareto
approach. IEEE Transactions on Evolutionary Computation 1999; 3:257–271.

12. Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs. Springer: Berlin, 1992.
13. Deb K, Mohan M, Mishra S. Evaluating the epsilon-domination based multi-objective evolutionary algorithm for

a quick computation of pareto-optimal solutions. Evolutionary Computation 2005; 13(4):501–525.
14. Schutze O, Laumanns M, Coello CAC et al. Convergence of stochastic search algorithms to finite size pareto

set approximations. Journal of Global Optimization 2008; 41:559–577.
15. Giunta AA, Narducci R, Burgee S, Grossman B, Mason WH, Watson LT, Haftka RT. Variable-complexity

response surface aerodynamic design of an HSCT wing. AIAA Paper 95-1886, Proceedings of the 13th AIAA
Applied Aerodynamics Conference, San Diego, CA, June 1995; 994–1002.

16. Zeng D, Ethiera CR. A semi-torsional spring analogy model for updating unstructured meshes in 3D moving
domains. Finite Elements in Analysis and Design 2005; 41:1118–1139.

17. Blom FJ. Considerations on the spring analogy. International Journal for Numerical Methods in Fluids 2000;
32:647.

18. Blom FJ, Leyland P. Analysis of fluid–structure interaction by means of dynamic unstructured meshes. Journal
of Fluid Engineering—Transactions of the ASME 1998; 120:792.
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