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A review is given of advancing front techniques for filling space with arbitrary separated objects. Over
the last decade, these techniques have reached a considerable degree of maturity and are being used to
generate clouds of points for SPH and FPM simulations, as well as spheres, ellipsoids, objects defined by a
collection of spheres or polyhedral objects for DEM simulations. Algorithmic as well as implementational
aspects are discussed. Techniques to obtain maximum packing, such as closest object placement (during
generation) and move/enlarge (after generation) are also considered. Several examples are included that
demonstrate the capabilities developed.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Many simulation techniques in computational mechanics re-
quire a space-filling cloud of arbitrary, separated objects. For
continuum problems described by partial differential equations, so-
called `gridless', `mesh free', smooth particle hydrodynamics (SPH)
[13] or finite point method (FPM) solvers (see [1,2,7,13,16,22,26–28])
have been developed. These solvers need a space-filling cloud of
points. For discontinua so-called discrete element methods (DEMs)
(see, e.g. [3–6,15,30]) are used extensively to characterize and
compute granular media, soil, concrete, and other materials not
amenable to a characterization via classic continuum formulations.
Due to their simplicity, the objects most often considered for DEMs
are spheres, ellipsoids, or superquadrics of the form [4]
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In some cases, the objects are described via an agglomeration of
spheres of possibly different sizes [23]. However, in principle, they
could be polyhedra or, for that matter, any other arbitrary shape.

The task is therefore to fill a prescribed volume in an automatic
way with points or arbitrary separated objects. Given the maturity
of unstructured mesh generators [10–12,17–19,29,31,33,34], an ob-
vious way to generate clouds of points or objects would be via a
mesh: generate a mesh of tetrahedra, then remove the elements and
keep the points or objects desired. Such a scheme has been used
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in almost all FPM or meshless results published to date, and works
well for the generation of clouds of points. However, for the genera-
tion of spheres no-penetration may be difficult to enforce. Moreover,
for arbitrary objects of random, different sizes this technique will
not work. Therefore, alternative ways of filling space with arbitrary,
separated objects must be developed.

Several techniques have been used to place objects in space. The
so-called `fill and expand' or `popcorn' technique [30] starts by gen-
erating a coarse mesh for the volume to be filled. This subdivision of
the volume into large, simple polyhedra (elements), is, in most cases,
performed with hexahedra. The objects required (points, spheres,
ellipsoids, polyhedra, etc.) are then placed randomly in each of these
elements. These are then expanded in size until contact occurs or
the desired fill ratio has been achieved. An obvious drawback of this
technique is the requirement of a mesh generator to initiate the
process. A second class of techniques are the `advancing front' or
`depositional' methods [8,9,14,20,23]. Starting from the surface, ob-
jects are added where empty space still exists. In contrast to the `fill
and expand' procedures, the objects are packed as closely as required
during introduction. Depending on how the objects are introduced,
one can mimic gravitational or magnetic deposition, layer growing,
or size-based growth. Furthermore, so-called radius growing can
be achieved by first generating a coarse cloud of objects, and then
growing more objects around each of these [23]. In this way, one can
simulate granules or stone. In the sequel, it is assumed that any ob-
ject is defined either as a point, a sphere, a collection of spheres, or
by a coarse mesh of tetrahedra (allowing for a clear identification of
external faces). The consideration of arbitrary bodies described via
tetrahedra as compared to a collection of spheres opens the way to
completely general shapes and allows for strict penetration checks.
Starting from the boundary, i.e. the initial `front' of faces, new
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objects (and possibly their external faces) are added, until no further
objects can be introduced. In the same way as the advancing front
technique for the generation of volume grids removes one face at a
time to generate elements, the advancing front technique for filling
space with arbitrary separated objects removes one object (points,
spheres) or object face (general objects) at a time, attempting to in-
troduce as many objects as possible in its immediate neighbourhood.

As this class of scheme belongs to the family of advancing front
techniques, it is not surprising that major parts of the algorithms
used to fill space with arbitrary, separated objects are very similar
to those used to generate tetrahedral space-filling grids [17–19,29].

2. The algorithm

Assume as given:

• A specification of the desired object type(s) via points, spheres,
collection of spheres or tetrahedral grids.

• A specification of the desired object size in space (e.g. via a com-
bination of background grids and sources [19]).

• A specification of the desired mean distance between objects in
space.

• An initial triangulation of the surface, with the face normals point-
ing towards the interior of the domain to be filled with objects.

With reference to Fig. 1, which shows the filling of a simple
2-D domain with trapezoidal elements, the complete advancing front
space-filling algorithm may be summarized as follows:
- Determine the required object size and distance between objects
near the triangulation;

- while: there are active objects/faces in the front:
- Remove from the front the object ioout or face ifout
with the smallest specified object size;

Domain Boundary

Inactive Face
Active Face

Initial Discretization of Boundary Remove Active Face

Fig. 1. Advancing front space-filling with trapezoids.

- With the specified object size and mean object distance:
determine the coordinates of nposs possible new neigh-
bouring objects; this is done using a stencil, some of which
are shown in Fig. 2;

- Find all existing objects/faces in the neighbourhood of
ifout;

- do: For each one of the possible new neighbour objects
ionew:
- If there exists an object closer than a minimum distance
dminp from any point of
ionew, or if ionew is penetrating existing objects:
⇒ skip ionew;

- If the new object is outside the computational domain:
⇒ skip ionew;

- Determine the required object size and mean object dis-
tance for (the faces) of ionew;

- Increment the number of objects by one;
- Introduce the point(s) of ionew to the list of coordinates;
- For objects defined via tetrahedra:
- Introduce the faces of ionew to the list of active front
faces;

- Introduce the elements of ionew to the list of elements;
- For objects defined via points/spheres:
- Introduce ionew to the list of active objects;

- enddo
- endwhile

The main search operations required are:

• Finding the active object/face with the smallest mean distance to
neighbours;

• Finding the existing points/faces in the neighbourhood of ioout,
ifout;
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Symmetric

Fig. 2. Point stencils (a) Cartesian [6]; (b) Cartesian [18]; (c) Cartesian [26]; (d) Tetrahedral [17]; and (e) Random.
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Fig. 3. Arbitrary objects as a collection of spheres.

These search operations can be performed efficiently using
heap-lists, octrees and linked lists respectively (see [10–12,17–19,29,
31–34] for more details).

3. Point stencils

A number of different stencils may be contemplated (see
Fig. 2). Each one of these corresponds to a particular space-filling
object configuration. For the generation of points and spheres, it
was found that the 8-point stencil leads to the smallest amount of
rejections and unnecessary testing [20,23]. For arbitrary objects it
was found that the stencil that takes n randomly selected directions
yields the most densely packed `grids', i.e. the highest volume fill
ratios. In most instances, the orientation of the objects in space is
assumed to be random. In order to achieve this the `unit object' is
scaled to the required distance and then rotated randomly around its
centroid.

4. Front crossing checks

A crucial requirement for a general space-filling object generator
is the ability to generate objects in such a way that they do not cross
or interpenetrate each other. This requirement is the same as that for
advancing front grid generators. Therefore, the same techniques can
be employed in this context. For objects defined via points or spheres,
the penetration checks are based on the distance between points
and the associated radii. Specialized penetration/closeness checks are
available for ellipsoids [8], but for general polyhedra the faces have
to be triangulated and detailed face/face checks are unavoidable. A
possible recourse is to approximate arbitrary objects by a collection
of spheres (see Fig. 3).

When adding a new object in space, the penetration/closeness
checks are carried out for all spheres comprising the object. The new
object is only added if all spheres pass the required tests. Experience
indicates that such a definition of geometrically complex objects via
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Fig. 4. Hexahedron composed of 27 spheres.

Face 1

Face 2

Fig. 5. Face crossing checks.

spheres of different sizes has difficulties in guaranteeing strict non-
penetration. As an example, it was found that for hexahedra at least
27 spheres were required to achieve reliable object generation (see
Fig. 4).

This leads naturally to a definition of objects via a small mesh
of tetrahedra and defined external faces. Once a new object is in-
troduced, all new faces are tested against all current faces in order
to see if crossing occurs. Using octrees, linked lists, or other near-
optimal data structures as well as local bounding boxes and filtering
operations [25], the number of faces to be tested can be reduced
drastically. The overall complexity of the algorithm is thus reduced
to O(N lnN), where N is the number of objects.

Given the list of new object faces, and the list of current front
faces in the neighbourhood of the new object, each face from one list
is tested against all faces from the other list. For any given face pair,
crossing will occur if a side from one face pierces through another
face (see Fig. 5).

In order to avoid unnecessary tests, the faces of the new object
that are closest to the face being removed from the front are tested
first.

ifout ionew

Boundary

Side Tested
for Crossing

Fig. 6. Boundary consistency checks.

5. Boundary consistency checks

A second crucial requirement for a general space-filling object
generator is the ability to only generate objects in the computa-
tional domain desired. The penetration checks described before
do not guarantee the generation of objects that lie strictly inside
the desired domain. This can be seen from Fig. 6, which shows a
possible 2-D situation. While the faces of the new object ionew
do not cross any existing faces, the new object lies outside the
domain.

5.1. Objects defined via tetrahedra

Boundary crossings may be detected by constructing a `side' that
connects the centroid of the face being removed (ifout in Fig. 6)
to the centroid of the new object (ionew). If this side crosses any of
the close faces, the new object is rejected.

5.2. Objects defined via spheres

For objects defined via spheres, the penetration of spheres into
the boundary triangulation needs to be checked. If we assume that
the object to be removed from the list of active objects ionew lies
inside the domain, a new object ionew will cross the boundary tri-
angulation if it lies on the other side of the plane formed by any of
the faces that are in the proximity of ionew and can see ionew. This
criterion is made more stringent by introducing a tolerated closeness
or tolerated distance dt of new objects to the exterior faces of the
domain. Testing for boundary consistency is then carried out using
the following algorithm (see Fig. 7):

- Obtain all the faces close to ioout;
- Filter, from this list, the faces that are pointing away from ioout;
- do: For each of the close faces:

- Obtain the normal distance dn from ionew to this face;
if: dn <0: ionew lies outside the domain
⇒ reject ionew and exit;
elseif: dn >dt: ionew if far enough from the faces
⇒ proceed to the next close face;
elseif: 0�dn �dt: obtain the closest distance dmin of
ionew to this face;
if: dmin <dt: ionew is too close to the boundary
⇒ reject ionew and exit;

- endif
- enddo

Typical values for dt are 0.707d0 �dt �0.9d0, where d0 denotes
the desired mean average distance between points.
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Fig. 7. Boundary consistency checks.
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Fig. 8. Closest object placement.

6. Maximum compaction techniques

For SPH and FPM applications, the use of a stencil is sufficient to
ensure a proper space filling (discretization) of the computational
domain. However, many applications that consider not points but
volume-occupying objects such as spheres, ellipsoids and polyhe-
dra, require a preset volume fraction occupied by these objects,
and, if possible, a minimum number of contacts. The modelling
of discontinua via discrete element methods represents a typical
class of such applications. Experience indicates that the use of point
stencils does not yield the desired volume fractions and contact
neighbours. Two complementary techniques have proven useful
to achieve these goals: closest object placement and move/enlarge
post-processing.

6.1. Closest object placement

Closest object placement attempts to position new objects as
close as possible to existing ones (see Fig. 8). The initial position for
new objects is taken from a stencil as before. If this position passes
all the crossing checks, the new object is moved closer to the face
being removed from the active front, and the test is repeated. Should
the crossing tests fail for this location, the last acceptable position
is taken as the final position for the new object. One should note
that compared to the simple object placement, this `closest object
placement' does not represent a substantial increase in effort, as the
existing objects/faces in the vicinity of the face being removed can be
reused for the subsequent closeness/penetration tests, and in most
cases the original position already leads to a rejection as the number
of active faces is typically much larger than the available space for
new objects.

6.2. Move/enlarge post-processing

Whereas closest object placement is performed while space is
being filled with objects, post-processing attempts to enlarge and/or
move the objects in such away that a higher volume ratio of objects is
obtained, andmore contacts with nearest neighbours are established.
The procedure, shown schematically in Fig. 9, may be summarized
as follows:

- while: objects can be moved/enlarged:
- do: loop over the objects iomov:

- Find the closest existing faces of iomov;
- Move the object away from the closest existing faces/objects
so that:
- The minimum distance to the closest existing objects in-
creases;

- The faces of iomov do not penetrate faces from other
objects;

- Enlarge object iomov by a small percentage
- If the faces/spheres of the enlarged object iomov pene-
trate other faces/spheres: revert to original size;

- If the faces/spheres of the moved (and possibly enlarged)
object iomov penetrate other faces/spheres: ⇒ skip
iomov;

- enddo

The increase factors are progressively decreased for each new
loop over the objects. Typical initial increase ratios are 5%. As the
movement of objects is moderate (e.g. less than the size of the ob-
jects), the spatial search data structures (bins, octrees) required dur-
ing space filling can be reused without modification.
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Fig. 9. Movement and enlargement of objects.
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Fig. 10. Deposition patterns.

7. Deposition patterns

Depending on how the objects are removed from the active front,
different deposition patterns can be achieved. The advancing front
technique always removes the object with the smallest average dis-
tance (size) to new neighbours from the active front. Different size
distributions will therefore lead to different deposition patterns (see
Fig. 10). Gravitational deposition can be achieved by specifying a size
distribution that decreases slightly in the direction of the gravity
vector. The objects that are at the `bottom' will then be removed first
from the active front and surrounded by new objects. The same tech-
nique can be applied if magnetic fields are present. Layered growth
can be obtained be assigning a slight increase in size based on the
object number:

� = (1 + �nobj)�0, (2)

where �,�0,nobj, � denote the size used, original size, object number
and a very small number (e.g. � = 10−10). So-called radius growing,
used to simulate granules or stone [30], can be achieved by first
generating a coarse cloud of objects, and then using layered growth
around each of these.

8. Examples

The proposed advancing front object generation algorithm has
been used to fill space with points, spheres, ellipsoids and arbitrary
polyhedral objects for many applications: FPM simulations for con-
tinua, DEM/DPM simulations for discontinua, granular media, etc. Of
these, we show a representative cross-section.

8.1. Point cloud for F117

The first case considers the generation of a cloud of points for
the aerodynamic simulation of inviscid, transonic flow past (half) an
F117 fighter via FPM [22]. The point density (i.e. the average close-
ness of points) was specified through the combination of a back-
ground grid and background sources [25]. The surface triangula-
tion consisted of approximately 50Kpts and 100Ktria. The advancing
front point generator added another 200Kpts using simple stencil
placement. Fig. 11 shows the CAD definition of the computational
domain, the global cloud of points, a close-up of the surface mesh,
the cloud of points close to the plane, as well as some slices through
the volume. The spatial variation of point density is clearly visible.
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Fig. 11. (a) and (b) F117: CAD definition and global cloud of points. (c) and (d) F117: close-up of surface mesh and cloud of points. (e) and (f) F117: cuts at x = 0, 120. (g)
and (h) F117: cut at x = 120 (Detail) and x = 190.
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Fig. 12. (a) and (b) Hopper filled with beans. (c) and (d) Hopper filled with ellipsoids.

Fig. 13. Cube filled with spheres of different sizes.
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Fig. 14. (a) and (b) Cube filled with tetrahedra. (c) and (d) Cube filled with hexahedra. (e) and (f) Cube filled with prisms. (g) and (h) Cube filled with octahedra. (i) and (j)
Cube filled with a mix of objects. (k) and (l) Cube filled with tetrapods (type I). (m,n): Cube Filled With Tetrapods (type II).

The complete generation process (boundary triangulation, volume
fill, output of files, etc.) took 44 s on a PC with Intel P4 chip running
at 3.2Ghz, 1Gbyte Ram, Linux OS and Intel Compiler.

8.2. Hopper filled with beans/ellipsoids

Granular materials that require simulation include grains, ground
stone, woodchips, and many other materials [3,5]. Bridging in silos
and hoppers can cause severe structural damage, and has always
been a concern. Fig. 12a and b show a hopper configuration with

Table 1
Grid statistics for cube.

Type nelem vol-bef vol-aft

tet 744 0.2055 0.3131
hex 157 0.3679 0.4610
pri 302 0.3064 0.4132
oct 340 0.3756 0.5089
mix 292 0.3515 0.4499
tetrp-1 1021 0.2425 0.3014
tetrp-2 1478 0.1598 0.2250
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Fig. 15. (a) and (b) Breakwater: domain definition and resulting mesh. (c) and (d) Breakwater: results for a typical simulation.

bean-like objects composed of four spheres each. The total number
of beans is 2124, i.e. 8496 spheres, and took 7 s to generate. Fig. 12c
and d show the same configuration filled with ellipsoidal objects
composed of five spheres each. The total number of ellipsoids is
2794, i.e. 13,970 spheres, and took 10 s to generate.

8.3. Cube filled with spheres of different sizes

Concrete and other aggregate materials often exhibit spherical or
ellipsoidal objects of different sizes. The number of objects can be
recorded in a statistical distribution of size vs. number of particles.
Fig. 13 shows a case for concrete: three different average sphere
sizes, each on average half the size of the previous one and each
with a standard (Gaussian) variation of 10%, are used to fill the cube
shown. The total number of spheres is 3958.

8.4. Cube filled with different objects

This configuration is used to illustrate the variety of elements that
may be generated, as well as the effectiveness of the optimal pack-
ing procedures described. The prescribed object size was � = 0.112,
and a uniformly random variation of the orientation was allowed.
Fig. 14a–n show the object distributions obtained for tetrahedra, hex-
ahedra, prisms, octahedra, a uniform mix of the former, as well two
tetrapod-like objects with different thinness-ratios. The left figures

show the meshes before the move and enlarge option is invoked,
the right figures after. Some mesh statistics have been compiled in
Table 1.

The generation times vary considerably depending on the ele-
ment type and the amount of effort spent for optimum packing.
For simple objects, like tetrahedra, hexahedra, prisms and octahe-
dra, several tens of thousands may be generated per minute. For a
more complex object like the tetrapod, CPU times can be 2–3 times
as high. The post-processing (post-packing), on the other hand, is
considerably more expensive: in some cases, it takes more than five
times more CPU time to post-process a cloud of objects than to
generate it.

8.5. Breakwater

The next configuration considered is a breakwater. The stones
or concrete blocks that are laid down on the surface in order to
attenuate wave impact are often strewn in a random way.

The domain considered is shown in Fig. 15a. The concrete blocks
were assumed to be cubes of size h = O(2.5m). The surface of the
resulting mesh, which consists of 23,030 elements, is shown in
Fig. 15b. The generated blocks were then used to generate a body-
fitted, unstructured mesh for a flow simulation. The results of a typ-
ical simulation of the complete configuration using a volume of fluid
method [24] are shown in Fig. 15c and d.
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Fig. 16. Truckload of bricks.

8.6. Truckload of bricks

A question often raised is how much volume is wasted by load-
ing materials or objects in a random as opposed to an ordered
way. A typical case is a truckload of bricks. Packing them orderly
would increase labour costs, while loading them in a random way
may lead to higher transportation costs. Fig. 16 shows the domain
considered as well as its characteristic dimensions. The volume
comprised is of 43.81m3, allowing theoretically for 37,119 bricks of
standard US size (0.203×0.102×0.057 (m)). Fig. 16 shows the distri-
bution obtained (7893 bricks), which leads to a volume-fill ratio of
(only) 21%.

9. Conclusions and outlook

Advancing front techniques for filling space with arbitrary sepa-
rated objects have reached a considerable degree of maturity. These
techniques are being used to generate clouds of points for SPH and
FPM simulations, as well as spheres, ellipsoids, objects defined by a
collection of spheres or polyhedral objects for DEM simulations. The
input required consists of the specification of the desired object type,
size and mean distance between objects in space together with an
initial triangulation of the surface. As with ordinary advancing front
techniques for the generation of grids, one point, sphere, object or
face at a time is considered and, if possible, surrounded by admissi-
ble new objects. This operation is repeated until no further objects
can be introduced. Two techniques to obtain maximum packing have
been used extensively: closest object placement (during generation)
and move/enlarge (after generation).

Several deposition or layering patterns can be achieved by se-
lecting the order in which objects are eliminated from the active
front.

Like any other class of techniques, these advancing front
techniques for filling space with arbitrary separated objects
may be improved further. Options currently under consideration
include:

• Generation of clouds of points that exhibit a high degree of spa-
tial anisotropy, such as those required for Reynolds-Averaged
Navier–Stokes simulations.

• Alignment of objects, in order to model crystal growth, deposition
patterns, or external forces.

• Extension of the library of objects in order to include more com-
plex, yet `standard' shapes.

• Parallel object generation along the lines of unstructured grid gen-
erators with the advancing front technique [21], i.e. via domain
decomposition.
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[19] R. Löhner, Automatic unstructured grid generators, Finite Elem. Anal. Des. 25
(1997) 111–134.
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[23] R. Löhner, E. Oñate, A general advancing front technique for filling space with
arbitrary objects, Int. J. Numer. Methods Eng. 61 (2004) 1977–1991.
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