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Abstract In this paper we propose a new mesh-less method
based on a sub-domain collocation approach. By reducing
the size of the sub-domains the method becomes similar to
the well-known finite point method (FPM) and thus it can
be regarded as the generalized form of finite point method
(GFPM). However, unlike the FPM, the equilibrium equa-
tions are weakly satisfied on the sub-domains. It is shown
that the accuracy of the results is dependent on the sizes of
the sub-domains. To find an optimal size for a sub-domain
we propose a patch test procedure in which a set of poly-
nomials of higher order than those chosen for the approx-
imations/interpolations are used as the exact solution and
a suitable error norm is minimized through a size tuning
procedure. In this paper we have employed the GFPM in
elasto-static problems. We give the results of the size opti-
mization in a series of tables for further use. Also the results
of the integrations on a generic sub-domain are given as a
series of library functions for those who want to use GFPM
as a cheap and fast integral-based mesh-less method. The
performance of GFPM has been demonstrated by solving
several sample problems.
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1 Introduction

Along with the advances in mesh-based methods such as
finite element method, mesh-less methods are also growing
and developing fast. The aim is to make the numerical anal-
yses as cheap as possible and this, however, has some draw-
backs when compared with the well developed mash-based
approaches. The development history of the mesh-less meth-
ods can be found in many papers [1–4] and thus we avoid
mentioning it here.

Similar to other numerical methods, construction of a
mesh-less method requires making decision on two basic
parts, i.e. the form of the approximation/interpolation and
the formulation for approximately satisfying the governing
equations. Several approximation/interpolation schemes are
available in the literature; among them are the least squares
(LS), weighted least squares (WLS), moving least squares
(MLS), reproducing kernel particle method (RKPM) and
methods based on radial basis functions (RBF). The reader
may consult Refs. [5–9] for their definitions (in this paper
we prefer to use the term “interpolation” for all the schemes
although some of them do not have the Kronecker delta prop-
erty). Several techniques such as collocation [10], Galerkin
[7] or Petrov–Galerkin methods [11], etc., are also available
for formulation of mesh-less methods. Variety of mesh-less
methods are constructible by combining the available choices
of the two parts (considering the limitations). For instance
in the generalized finite difference (GFD) an LS together
with a collocation method are used [5], in the finite point
method (FPM) a WLS (or diffused MLS) is combined with a
collocation method [10], in the element free Galerkin
method (EFG) an MLS is used with a Galerkin type of
formulation [7], and in the mesh-less local Petrov–Galerkin
method (MLPG) again an MLS is combined with a
Petrov–Galerkin formulation [11]. Other combinations are
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still possible (see the use of RKPM in a collocation approach
in [12] for instance).

Regardless of the interpolation used, the mesh-less meth-
ods may be categorized in two main types, i.e. those which
use integration on sub-domains [3,7,8,11,13–17] and those
which do not [4,9,10,12,18–24]. The methods in the lat-
ter category are cheaper and faster for implementation when
compared with those in the former category. However, there
are some drawbacks such as loss of accuracy when using the
second type. Nevertheless, due to the growing need for cheap
and fast numerical methods, the second type is of interest of
many scientists.

In this paper we present a method which on the one hand
is based on using integration on sub-domains, and on the
other hand the integrals are so simple and cheap that one can
classify the method in the second category. Here we employ
a weighted residual approach in a similar fashion as the
sub-domain collocation method; however, the sub-domains
we use here do not necessarily cover the whole domain. The
sizes of the so defined sub-domains may be reduced, while the
weight values are increased, so that the method becomes sim-
ilar to a collocation method (similar to GFD and FPM). We
shall use WLS (or diffused MLS) scheme for the approxima-
tion and thus the method we propose here can be considered
as “generalized finite point method (GFPM)”.

By simplifying the integrals on the sub-domains, we shall
present a library for the final results for each monomial term
used in WLS. The final procedure thus becomes very simple
and fast without the need for integrating through defining
quadrature points. For sub-domains intersecting the bound-
aries the procedure is further modified to account for the
effect of the boundary tractions.

As we shall show later in this paper, the decision on
the sizes of the sub-domains plays an important role in the
approximation. Therefore, along with the introduction of the
method we shall propose a consistent procedure for finding
a suitable size for each sub-domain. The procedure we pro-
pose here is in fact a generalized form of the patch test which
is conventionally used for studies on the mesh-less methods.
But unlike the conventional patch test in which a special com-
bination of polynomial terms is used for the exact solution,
here we consider all possible combinations of the polyno-
mials which are of the same order with those used for the
interpolation. Having ensured that GFPM generally passes
the patch test, we shall proceed to find suitable sizes for the
sub-domains by re-employing the patch test with polynomi-
als of one order higher than those of the interpolation. This
is performed by finding a minimum value for a suitable error
norm through altering the sizes of the sub-domains in a fic-
titious domain defined as the patch test problem.

The content of the paper is arranged as follows. In Sect. 2
the procedure of WLS (or MLS) is revisited. In Sect. 3 we
shall present the GFPM details. The library functions

obtained from the final results of the integrals used in GFPM
will be presented in Sect. 3. Section 4 is devoted to explain-
ing the procedure of the patch test and its generalized form.
The results of the parameter tuning will be given in the same
section. We shall present some numerical results in Sect. 5.
Finally we summarize the conclusions in Sect. 6.

2 The WLS/MLS approximation

In this section we overview the procedure of the weighted
least square method (WLS). The procedure of MLS has much
in common with WLS, however, there are some differences
between them which will be briefly explained. A generic
function ûc(xc), with xc being a local coordinate system, is
to be written locally in terms of a set of polynomials as

ûc(xc) =
m∑

l=1

pl(xc)ac
l = pT (xc)ac (1)

where p(xc) is a vector of basis monomials and ac is a vec-
tor of coefficients. Superscript “c” is used to denote that the
approximation is performed locally on a “cloud” area (see
the cloud definition in Sect. 3.3). The coefficients ac are to
be evaluated by a least square fit of ûc(xc) over a set of data
as ūc

0k defined at N c
p nodes (k = 1, . . . , N c

p) through using
a suitable local weight function as wc(xc) while xc is mea-
sured form a master node. Here “master node” refers to the
node where the cloud is constructed and the local coordinate
system is set up to define the approximate displacement field
(see Sect. 3.3 for the cloud and the master node definitions).
The least square fit is performed by minimization of an error
norm as

J c =
N c

p∑

k=1

wc(xc
k)[ūc

0k − pT (xc
k)a

c]2 (2)

which leads to

ac = (Ac)−1Bcūc
0 (3)

with ūc
0 being the vector of data and

Ac =
N c

p∑

k=1

wc(xc
k)p(xc

k)p
T (xc

k),

(4)
Bc = [wc(xc

1)p
c(xc

1), . . . , w
c(xc

N c
p
)p(xc

N c
p
)]

Then ûc is evaluated as

ûc(xc) = pT (xc)(Ac)−1Bcūc
0 = Nc

0(x
c)ūc

0 (5)

In this paper we assume that Ac in (3) is an invertible matrix
and thus (Ac)−1 is available. Obviously, reproduction of the
data ūc

0 by ûc(xc) is not guaranteed since the shape functions
do not have the Kronecker delta property and thus expression
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(5) does not act as an interpolation. However, in this paper
we shall use the term “interpolation” for convenience.

2.1 The difference between MLS and WLS

It is clear that the coefficients found in (3) are dependent on
the location of the cloud. More specifically, if a pair of coor-
dinates is assigned for the global location of the cloud, e.g.
x0 for the master node, the approximation used in (1) will
then be dependent on x0, i.e. ûc(xc, x0) and ac(x0). This is
essentially due to the fact that the weight function wc(xc)

used in (2) is defined locally and is a function of x0 (and thus
in a more precise form it should be written as wc(xc, x0)).
Note also that in this sense the master node will not neces-
sarily be a grid point (it can represent any chosen point in
the domain). Considering such an effect, the approximation
given in (5) will be a function of x0 and may be written as

ûc(xc, x0) = pT (xc)[Ac(x0)]−1Bc(x0)ūc
0 = Nc

0(x
c, x0)ūc

0

(6)

Expression (6) is sensitive to any movement of the cloud,
i.e. dx0, and thus differentiation of ûc(xc, x0) needs a
sensitivity analysis for ac(x0) which should be performed

by considering Eq. 3. Such a sensitivity analysis needs
sensitivity of the matrix [Ac(x0)]−1 which is a time consum-
ing procedure. In this sense expression (6) is regarded as an
MLS approximation. When MLS is to be used in a colloca-
tion method for the analysis of an elasticity problem, second
derivatives of shape functions are needed and thus the proce-
dure becomes even more complicated and time consuming.
On the other hand when MLS is to be used in an integral-
based mesh-less method, such as those introduced in [7,8,11]
which just need first derivatives of shape functions, the pro-
cedure of cloud construction should be repeated for each
integration point (again making the method expensive). In
this paper we shall use “diffused derivatives” of (5) which
means that we disregard the sensitivity of ac with respect to
the location of the cloud. In this respect, (5) may be viewed
as a simple WLS approximation/interpolation. Although we
aim at using WLS in an integral-based scheme, as will be
explained in the next sections, we shall just employ the cloud
constructed at the master node (the cloud construction will
not be repeated during the integration procedure). This makes
the procedure very fast and cheap especially when compared
with other integral-based mesh-less methods.

2.2 WLS in elasticity problems

In a two-dimensional elasticity problem the unknown field
is of a vector form, so we shall use the result of (5) for each
displacement component

ûc = Ncūc

=
N c

p∑

k=1

[
PT (xc)(Ac)−1(Bc)k 0

0 PT (xc)(Ac)−1(Bc)k

]

×
{

ūc
k

v̄c
k

}
(7)

in which (Bc)k is the kth column of Bc in (4). The above
equation can be written as

ûc = P̄cĀcB̄cūc, Nc = P̄cĀcB̄c (8)

where

P̄c =
[

p1(xc) p2(xc) . . . . . . 0 0 . . . . . .

0 0 . . . . . . p1(xc) p2(xc) . . . . . .

]
,

Āc =
[

(Ac)−1 0

0 (Ac)−1

]
(9)

and

B̄c =
⎡

⎣
w(xc

1)p(xc
1) 0 w(xc

2)p(xc
2) 0 . . . . . . w(xc

N c
p
)p(xc

N c
p
) 0

0 w(xc
1)p(xc

1) 0 w(xc
2)p(xc

2) . . . . . . 0 w(xc
N c

p
)p(xc

N c
p
)

⎤

⎦ (10)

We shall use (7) when a set of library functions are to be
constructed in the new method.

3 The original and the generalized finite point method
(FPM and GFPM)

We consider two-dimensional elasticity problems whose
generic governing equation, in a domain of �, is written
as

ST DSu + b = 0 in � (11)

in which u is a vector containing the displacement compo-
nents, b is the body force vector, D is the matrix of material
constants and S is the well known matrix operator for defin-
ing the strains, i.e. ε = Su. Equation 11 is to be solved with
the following boundary conditions

u = uB on �u (12)

ñDSu = t on �t (13)

The whole boundary of the domain is partitioned as ∂� =
�u ∪ �t . In (12) and (13), elements of uB are the prescribed
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Fig. 1 Schematic presentation
of the discretization used for
GFPM; a the main domain,
b the interior sub-domains,
c sub-domains intersecting
Neumann boundaries,
d sub-domains intersecting
Dirichlet boundaries
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displacements on boundary �u , and t is the vector of
tractions defined on boundary �t . Also ñ is an appropriate
matrix containing components of the outward unit vector nor-
mal to the boundary.

In a weighted residual approach, Eq. 11 and the boundary
conditions are written in a set of integral equations as
∫

�

vT
i (ST DSu + b) d� +

∫

�t

αT
i (ñDSu − t) d�

+
∫

�u

βT
i (u − uB) d� = 0 i = 1, 2, . . . (14)

where for 2D problems

vi = vi I, αi = αi I, β i = βi I (15)

in which I is a 2 × 2 identity matrix and, vi , αi and βi

are weight/test functions and two sets of penalty functions,
respectively. Next we discuss on the choices of the weight
functions.

3.1 Discretization and formulation in FPM

In collocation methods, the domain � and its boundary ∂�

are discretized into a set of points/nodes with coordinates as
xi , i = 1, . . . , Np. Then the weight and penalty parameters
are chosen as Dirac delta functions, i.e.

vi=Aδ(x − xi )δ(y − yi ), αi=Bδ(x − xi )δ(y − yi ),

βi=Cδ(x − xi )δ(y − yi )
(16)

with A, B and C being some appropriate parameters. Sub-
stitution of (16) in (14) while using the approximated field
of displacement in place of u, leads to

A[ST DSûc + b]x=xi + B[ñDSûc − t]x=xi

+ C[ûc − uB]x=xi = 0 (17)

In FPM formulation we take B = C = 0 for interior nodes,
A = B = 0 for nodes on �u , and A = C = 0 for nodes
on �t . In a modified form, for each node on �t one may take
just C = 0 and A.B < 0 where A and B are determined
through the influence area of the node (see [4]).

3.2 Discretization and formulation in GFPM

As mentioned before, in GFPM we use a set of sub-domains,
schematically shown in Fig. 1a, to discretize the �. The
sub-domains, �s

i , are constructed around nodes xi ,

i = 1, . . . , Np. The union of such sub-domains does not
necessarily cover the whole domain ∪i�

s
i �= �. The reader

may note that the idea resembles that of FPM where the equi-
librium equations are satisfied at a finite number of points
rather than all points of the system (see also [11]). For each
sub-domain we define a function as

Wi (x, y) = H
(a

2
− (x − xi )

)
H
(a

2
+ (x − xi )

)

×H

(
b

2
− (y − yi )

)
H

(
b

2
+ (y − yi )

)
(18)

where H(·) is a Heaviside function and, a and b denote the
sizes of the sub-domain (rectangular) along x and y axes.
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Case (a) Sub-domains with no intersection with boundaries.
In (14) and (15) we take vi = AWi and αi = 0, βi = 0,

A
∫

�s
i

(ST DSûc + b)d� = 0

xi ∈ � ∧ �s
i ⊂ � ∧ �s

i ∩ ∂� = ∅ (19)

with A being an arbitrary coefficient, we have
∫

�s
i

(ST DSûc + b)d� = 0 (20)

which can be simplified with the use of integration by parts as
∫

�s
i

ñDSûcd� +
∫

�s
i

bd� = 0 or

∫

�s
i

ñDSûcd� = −
∫

�s
i

bd� (21)

where �s
i is the boundary of the i th sub-domain. Equation 21

represents the equilibrium state of the sub-domain when the
approximate tractions together with body forces are present
(see Fig. 1b). Now substitution of (8) in (21) leads to
∫

�s
i

ñDSP̄cĀcB̄cūcd� = −
∫

�s
i

b d� (22)

or

Hi ūc = fi , Hi =
∫

�s
i

ñDSP̄cĀcB̄cd� = ḠcĀcB̄c,

(23)
Ḡc =

∫

�s
i

ñDSP̄cd�, fi = −
∫

�s
i

bd�

The so defined matrix Ḡc can be explicitly evaluated when
the sub-domain is of a regular shape, like a rectangle, etc.
The dimension of the matrix is dependent on the number of
polynomial terms. The explicit form of Ḡc is given in the
“Appendix”. Another point to note is that the order of dif-
ferentiation of shape functions needed in GFPM is less than
that of FPM [compare (17) with (22)]. Moreover, in the case
of presence of point loads Eq. 22 takes the load into account
while it is not the case for Eq. 17.

Remark The reader may note that the weighted form written
as (19) has much in common with the well known Petrov–
Galerkin method using weight functions as defined in (18).
It can be shown that the collocation approach used in FPM
is in fact a special case of (19). To this end one may rewrite
(19) as
∫

�

(ST DSûc + b)(AWi )d� = 0 (24)

while requiring that
∫

�

(AWi )d� = 1 or A
∫

�s
i

d� = 1 (25)

which leads to

A = 1

�s
i
, �s

i = ab (26)

Now by inserting (26) in (24) and reducing the sub-domain
size so that �s

i → 0, the following equation is resulted
∫

�s
i

(ST DSûc + b)δ(x − xi )d� = 0,

δ(x − xi ) = δ(x − xi )δ(y − yi )

(27)

Which is equivalent to

[ST DSûc + b]x=xi = 0 (28)

The above equation is exactly the same as the one used in
FPM formulation for interior points. Therefore, the method
we present here in this paper may be regarded as the general-
ized form of FPM. Similar discussion may be made for other
cases of point locations, Cases (b) and (c) coming next. The
final expressions for such cases will be similar to those given
in Ref. [4] for FPM.

Case (b) Sub-domains intersecting boundaries with their
master node not falling on �u . In this case we take vi = AWi

and αi = BWi , βi = 0

A
∫

�s
i

(ST DSûc + b)d� + B
∫

�s
i ∩�t

(ñDSûc − t)d� = 0

xi /∈ �u ∧ �s
i ∩ ∂� �= ∅ (29)

Considering B = −A [4] with A being an arbitrary coeffi-
cient we have
∫

�s
i

(ST DSûc + b)d� −
∫

�s
i ∩�t

(ñDSûc − t)d� = 0 (30)

or
∫

�s
i

ñDSûcd� +
∫

�s
i

bd� −
∫

�s
i ∩�t

(ñDSûc)d� +
∫

�s
i ∩�t

td� = 0

(31)

which can be rewritten as

(Hi − H′
i )ū

c = fi , H′
i =

∫

�s
i ∩�t

ñDSNcd�,

(32)
fi = −

∫

�s
i ∩�t

td� −
∫

�s
i

bd�
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Equation 31 represents the equilibrium state of the sub
-domain with approximate tractions in one part and true trac-
tions at another part (see Fig. 1c). Here the reader may note
that near corners with tractions prescribed at two faces with
different unit normal vectors, no ambiguity is made for the
user while working with (32), but it is not the case for (17).

In evaluation of H′
i in (32) the integration is performed

on the segments of the boundary. When the sub-domain is
of regular shape, the segments are of the form of small lines.
The integrals are then taken along the lines defined by their
two end points (a numerical integration may be needed if
the boundary of the sub-domain is a curve but when the sub
-domain is very small the boundaries can be approximated by
lines). By the two end points one can define the unit normal
to the boundary needed in the matrix ñ. The final results of
such integrations, in terms of the coordinates of the two end
points, are given in the “Appendix”.

Case (c) Sub-domains intersecting boundaries with their
master node falling on �u . In this case we take vi = AWi ,

αi = BWi , βi = Cδ(x − xi )δ(y − yi )

A
∫

�s
i

(ST DSûc + b)d�

+B
∫

�s
i ∩�u

(ñDSûc − t̃)d� + C[ûc − uB]x=xi = 0

xi ∈ �u ∧ �s
i ∩ ∂� �= ∅ (33)

Considering B = −A and (A, C) as a pair of arbitrary
coefficients, we have
∫

�s
i

(ST DSûc + b)d� −
∫

�s
i ∩�u

(ñDSûc − t̃)d� = 0 (34)

[ûc − uB]x=xi = 0 (35)

which leads to

(Hi − H′
i )ū

c = fi , fi = −f t̃
i −
∫

�s
i

bd�, f t̃
i =

∫

�s
i ∩�u

t̃d�

(36)

[ûc]x=xi = [uB]x=xi (37)

with H′
i defined in (32) and t̃ being the unknown tractions at

the boundary�u . The coefficient matrix for the whole domain
can now be arranged by considering (23), (32) and (36) for
i = 1, . . . , Np as

Kū = F (38)

where K is 2Np × 2Np matrix. Note that f t̃
i is a set of

unknowns while [uB]x=xi is a set of known values. There-
fore, the solution procedure of (38) becomes similar to its
counterpart in FEM solution for instance.

3.3 The cloud and sub-domain definitions

To illustrate the essential features of the main formulation, in
this paper we shall follow a simple cloud definition for both
FPM and GFPM. Having selected a grid node, here known
as the master node, the cloud is constructed by sequential
enlargement of a square, with edges parallel to the global
axes and centered at the master node, so that a minimum
number nodes fall in the square. The distances between the
master node and the most remote nodes along the global axes
are determined by calculating |�x |max and |�y|max.

In order to perform the WLS procedure, one may use a
local normalized coordinates as ξ = (x−xi )|�x |max

, η = (y−yi )
|�y|max

,
with (xi , yi ) being the coordinates of the master node. Such a
normalization affects the regularity of the matrix A in (3) and
(4), see [4] for instance. Having evaluated the shape functions
in terms of the normalized coordinates, an inverse mapping
can be used to express the shape functions in term of the
global coordinates (also for derivatives of them).

For sub-domain definition, we first define the circum-
scribing rectangle of the nodes falling in the cloud. The
edge sizes of such circumscribing rectangle are found from
the distances of the most remote nodes at either sides of
the master node along each axes, say L1 = |L+

x | + |L−
x |

and L2 = |L+
y | + |L−

y | (see Fig. 2). The sub-domain is
defined by considering a rectangle containing the master
node with its edges being proportional to those of the cir-
cumscribing rectangle, a = āL1, b = b̄L2 with 0 ≤ ā ≤ 1
and 0 ≤ b̄ ≤ 1.

4 The patch test and its generalized form

It is important to show that the GFPM can pass some stan-
dard patch tests. The patch test is usually designed by select-
ing a small domain and choosing an exact field expressed in
terms of polynomials with the same order as (or smaller order
than) those used in the interpolation (in this case those used
in WLS). The boundary conditions are determined from the
exact solution (either in the form of Dirichlet or Neumann
form). It is expected that the numerical solution fully repro-
duce the exact field.

In this paper we generalize the patch test procedure to
consider all possible polynomial sets, with arbitrary coeffi-
cients. This will be performed in two forms. The first one is
a form in which the order of the monomials is chosen similar
to that of the interpolation functions. We recognize this form
as “the conventional patch test in its extended form”. The
second one is designed so that the order of the monomials is
chosen to be of one order higher than that of the interpola-
tion. This latter form is recognized as “the generalized patch
test” and is to be used for optimizing the size of the sub-
domain.
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Fig. 2 The definition of the
cloud and the sub-domain used
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4.1 Conventional patch test in its extended form

Suppose that the polynomial used in the WLS are of m order,
a displacement field is assumed as a summation of monomi-
als with highest order equal to m as

uex = P̃ã =
∑

i. j
i+ j≤m

P̃u
i, j ã

u
i, j +

∑

k.l
k+l≤m

P̃v
k,l ã

v
k,l ,

(39)

P̃u
i, j =

{
xi y j

0

}
, P̃v

k.l =
{

0
xk yl

}

In (39) P̃u
i, j and P̃v

k,l represent the columns of P̃, containing
monomials for u and v displacements, and ãu

i, j (ã
v
k,l) are the

associated coefficients arranged in ã. Now a set of new exact
fields are considered as

uex
n̄ = P̃n̄, n̄ = 1, . . . , 2m (40)

and a set of problems with so defined exact solutions are
solved on a patch domain as �p [in (40) P̃n̄ is a generic
column of P̃]. To this end, for each numerical solution the
information from the associated exact solution is used as the
tractions or the prescribed boundary conditions on ∂�p . Note
that whenever is needed we evaluate the body forces due to
the exact solution as bn̄ = −ST DSuex

n̄ . Therefore, a set of
solutions, according to Sect. 4, are performed on �p to find
nodal values of the displacements as

ūn̄ = K−1Fn̄ (41)

In above ūn̄ contains the nodal displacement values when P̃n̄

(i.e. P̃u
i, j or P̃v

k,l) plays the role of the exact solution. In that
case Fn̄ is a vector similar to the right hand side of (38) and
is associated with the tractions and the body forces induced
by P̃n̄ .

The point-wise errors can now be evaluated as

en̄ = ūex
n̄ − ūn̄ = ūex

n̄ − K−1Fn̄ (42)

Here ūex
n̄ is the exact nodal displacement values evaluated

from P̃n̄(P̃u
i, j or P̃v

k,l) and arranged with the same order as

the ones in ū. Now considering the unknown coefficients,
one may write

e =
2m∑

n̄=1

en̄ ãn̄ = Eã E = [ e1 e2 · · · e2m
]

(43)

An Euclidean norm of displacement errors (conveniently in
a squared form) can now be evaluated

(e)2 = 1

Np
(e)T e = 1

Np
ãT Qã, Q = (E)T E (44)

The error analysis may be performed by finding the maxi-
mum eigenvalue of Q, which represents the L2 norm of the
matrix, so that

|Q − λmaxI| = 0 (45)

Note that Q is a positive semi-definite matrix. In the case
that the maximum eigenvalue vanishes, the error norm will
be zero for all possible coefficients ã and thus the patch test
will be passed. One of the advantages of the so defined patch
test is that when the patch test is not fully passed, to obtain an
insight to the problem, the user can determine the combina-
tion of the polynomial terms which gives λmax by evaluating
the associated eigenvector of Q.

4.1.1 The results of the conventional patch
test in its extended form

In this section we present the results of the tests for a generic
problem with specific properties. Consider a generic 2D plane
stress elasticity problem; it can be observed that the patch test
formulation is not sensitive to the Young’s modulus of the
material. However, this is not the case for Poisson’s ratio.
Therefore we consider a problem with Young’s modulus
E=1 and a set of Poisson’s ratios as ν∈ {0.05 0.15 0.3 0.45

}

for instance. To begin the test, we choose a complete second
order polynomial for interpolation and a Gaussian weight
function as
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Fig. 3 Effect of round-off
errors in patch tests
(ν = 0.3, Np = 81) with
irregular grids; a variation of
λmax/Np in logarithmic scale
versus ā, b the grid used
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w(r) =
⎧
⎨

⎩

exp(−r2/r2
c ) − exp(−r2

m/r2
c )

1 − exp(−r2
m/r2

c )
0 ≤ r ≤ rm

0 r > rm

(46)

In (46), r = √
ξ2 + η2 with ξ and η being the normalized

coordinates (see Sect. 3.3 for the cloud definition) also rc

and rm denote two distances proportional to the sizes of the
cloud. In this paper we have used rc = 0.35 and rm = 1.4
noting that in the normalized coordinates the cloud is a 2 ×2
square. The size of the sub-domain may be expressed by a
non-dimensional parameter as ā = a

L1
and b̄ = b

L2
, with L1

and L2 being the sizes of the circumscribing rectangle (see
Fig. 2). In the tests we consider ā = b̄.

We consider a set of 2×2 domains with 5×5, 9×9, 11×11
and 21×21 grids of nodes with regular distribution. The result
of the patch test, for all the grids, is as

λmax = 0 ∀ν ∈ { 0.05 0.15 0.3 0.45
} ∧

∀ā ∈ { 0.1 0.2 · · · 0.9 1.0
}

(47)

for second and third order complete polynomials (and for
different numbers of nodes in each cloud chosen as 9, 16, 25
and 36). The above result is valid for both types of boundary
conditions, i.e. Dirichlet and Neumann types. For the latter
type we have used information from the exact displacement
field to provide minimum essential boundary conditions. The
same result is obtained for irregular grids, constructed by
perturbation of the grid points (see also Sect. 4.3.1 for irreg-
ularity index and the grid used). It may be expected that the
use of irregular grids introduce some round-off errors in the
computations. However, our experience for this case shows
that such errors are at the level of machine precision. To give
an insight to such an effect, here we report the values obtained
for Log(λmax/Np) in Fig. 3a for an irregular grid shown in
Fig. 3b. In the tests a complete second order polynomial has
been used for the interpolation. Similar results are obtained
when a third order polynomial is employed.

4.2 Generalized patch test and parameter tuning

In this section we generalize the patch test presented in the
preceding section. Here we use a polynomial displacement
field with one order higher than the one employed in WLS,
assuming that asymptotically, i.e. when the grid of nodes
becomes very fine, the error of computation pertains to the
corresponding terms in the Taylor’s series of the exact solu-
tion (see [25,26] for patch tests in error analyses in finite
element method).

Obviously it is not expected that the GFPM reproduce the
exact field. The aim is to optimize the size of the sub-domains
so that the errors become as small as possible. The procedure
of error evaluation is similar to what explained in (39)–(44).
The statement of the optimization procedure may be given
as follows

Find (ā, b̄) ā = a

L1
, b̄ = b

L2

To minimize λmax

so that |Q − λmaxI| = 0 (48)

with side constraints

{
0 < ā ≤ 1
0 < b̄ ≤ 1

The minimization is simple to perform and there is no need
for using sophisticated mathematical programming. Here we
find the optimal values of (ā, b̄) by evaluation of λmax on a
fine grid defined on the feasible domain 0 < ā ≤ 1, 0 <

b̄ ≤ 1.

4.2.1 The optimization procedure in its step by step form

The step by step procedure is as follows:

1. Choose a patch domain with a number of points/nodes
(as the solution domain).

2. Choose a complete polynomial for construction of shape
functions (with order of m for instance).

3. Consider another complete polynomial with one order
(or more) higher than that of shape functions (with m +1
order for instance).
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4. Choose a pair of (ā, b̄) from a series selected so that
0 < ā ≤ 1, 0 < b̄ ≤ 1.

5. Construct K matrix, as defined in (38), for the numerical
solution.

6. Choose a vector of P̃n̄(P̃u
i, j or P̃v

k,l) from the series as
defined in (39) considering the polynomial chosen in
step 3, i.e. i + j ≤ m + 1 or k + l ≤ m + 1.

7. Define the right hand side vector Fn̄ from the boundary
tractions/displacements associated with P̃n̄ as the exact
solution (find the associated bn̄ if needed).

8. Solve Eq. 41 for ūn̄ .
9. Find the nodal values of the exact solution.

10. Construct the error vector en̄ as defined in (42).
11. Repeat from step 6 to construct E as defined in (43).
12. Construct Q as defined in (44) .
13. Perform an eigenvalue solution |Q − λI| = 0 to find

the maximum eigenvalue λmax (λmax may be stored in a
vector as λ for further use).

14. Repeat form step 4.
15. Find the minimum element of λ associate with the opti-

mal pair (āopt, b̄opt).

The reader may note that the above procedure is followed
for a generic problem with specific polynomial order, cloud
definition, etc. The optimization may be performed for a set
of problems and the results can be tabulated for general use.

4.3 The results of the optimization

In this section we present the results of the optimization pro-
cedure for some generic problems with specific properties.
As before we consider a problem with Young’s modulus E =
1, and to begin with, we choose Poisson’s ratio ν = 0.3 (the
effects of considering other values for Poisson’s ratio will be
given later). Also in the optimization procedure we consider
ā = b̄.

We shall give the results of the optimization for domains
with regular node distribution and then take into account the
irregularity effects by a correction factor obtained for a set
of domains with irregular node distribution.

4.3.1 Domains with regular node distribution

Here again we consider a set of 2 × 2 domains with grid of
5×5, 9×9, 11×11 and 21×21 equally spaced nodes along
the two global axes x and y. Figure 4 depicts the variation of
the λmax with respect to the size of the sub-domain, ā (note
that ā = b̄ in this paper). In this figure the minimum number
of nodes in each cloud is 9. As is seen in the figure an optimal
value can be found for each series of patch tests. It may be
observed that an interval of 0.1 ≤ āopt ≤ 0.3 contains all
optimal values. This clearly shows that it is not necessary
to consider sub-domains covering the whole domain and in
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Fig. 4 Variation of λmax/Np versus ā, for problems with ν = 0.3
and with minimum 9 nodes in each cloud. A complete second order
polynomial has been used for the interpolation
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Fig. 5 Variation of λmax/Np versus ā, for problems with ν = 0.3
and with minimum 25 nodes in each cloud. A complete second order
polynomial has been used for the interpolation

fact non-overlapping sub-domains are more appropriate. The
effect of the minimum number of nodes in each cloud can be
seen in Fig. 5. The figure shows that the optimal values of ā
are slightly less than those in Fig. 4. The interval of 0.05 ≤
āopt ≤ 0.15 is recognized for optimal values in the figure.

It may be interesting to know what happens if one chooses
a polynomial of two-order higher than that used in the inter-
polation. For instance in this case we examine the use of a
fourth order polynomial in the optimization procedure. The
results are shown in Fig. 6 when at least 16 nodes are selected
in each cloud. It can be seen that the optimal intervals are
nearly the same as those obtained for a third order polyno-
mial. We do not consider it necessary to use such polynomial
in this study.

As mentioned earlier, Poisson’s ratio might still play a
prominent role in the optimization. To study the effects, we
have repeated the procedure for different Poisson’s ratios.
Figure 7 depicts a set of results obtained for ν = 0.45 and
when 16 nodes are considered in each cloud. Based on the
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observations on several optimization processes, we suggest
the optimal values for sub-domain sizes in Table 1.

In order to use the table for other cases not shown, an inter-
polation/extrapolation may be used. The whole procedure
may be repeated for when a complete third order polynomial
is employed for interpolation. In that case a complete fourth
order polynomial is used for parameter tuning. The results,
identical to the first set, are reported in the same table.

The reader may note that the suggested optimal sub-
domain sizes are essentially useful for problems with smooth
solutions since in the optimization procedure just polynomial
terms are used as the exact solution. However, as will be seen
in the section of numerical examples, the method works rea-
sonably well for the case in which a reentrant corner exists
(fourth example). Nevertheless, a similar optimization pro-
cedure may be followed by the use of singular functions, as
the exact solution, to find optimal sub-domain sizes around
points where singularity is expected in the solution. Such a
study is beyond the scopes of this paper and will be presented
in forthcoming papers.

Table 1 Suggested values for sub-domain size in clouds with different
number of nodes and with a complete quadratic/cubic polynomial for
interpolation

The number of nodes in the cloud ν ∈ {0.05 0.15 0.3 0.45}
9 nodes (Quad. only) 16 nodes 25 nodes 36 nodes

0.12 0.12 0.12 0.35

4.3.2 The effect of irregularity of the node distribution

The results we have presented so far are mainly suitable for
regular node distributions. In this section we study the effect
of irregularity. However, we should make a tool for measur-
ing the irregularity. To this end we first define an irregularity
index as

S =
√√√√ I 0

ξη

N c
p

I 0
ξη =

N c
p∑

k=1

(ξk − ξ0)(ηk − η0)

(49)

ξ0 = 1

N c
p

N c
p∑

k=1

ξk, η0 = 1

N c
p

N c
p∑

k=1

ηk

In above I 0
ξη represents the product inertia of the nodes about

the local normalized axes passing through the mass center
of the nodes. In the second step we have constructed some
patches with irregular node distribution. To construct each
patch, the coordinates of the nodes in a 9 × 9 regular patch
have been randomly perturbed. The magnitude of the pertur-
bation has been altered to obtain patches with different irreg-
ularity (see Fig. 8a, b for two sample patches constructed) . It
has been assumed that the behavior of the patch is dependent
on the maximum irregularity index calculated in all clouds of
the patch. Therefore, a unique irregularity index can be allo-
cated to each patch of nodes. The optimization procedure
is then repeated for different irregularity index. Figure 8c
depicts the variation of λmax/Np in terms of ā for some sam-
pling index.

The figure shows that the location of optimal values has
shifted forward (compare the curve with 81 nodes in Fig. 4).
This means that the more irregularity index, the larger sub-
domain is needed. Such an effect can be taken into account
by defining an irregularity factor which is to be multiplied to
the optimal values given in Table 1. We have performed such
a study for several patches with different irregularity indices
and Poisson’s ratios. The results are summarized in Table 2.

4.4 The step by step GFPM procedure with optimal
parameters

In this section we summarize the GFPM procedure for gen-
eral 2D elasticity problems:
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cloud, c variation of λmax/Np versus ā, for a some sampling irregularity
indices (ν = 0.3)

– A grid of points/nodes is considered on the solution
domain.

– Decision is made on the order of the polynomial to be
used for the interpolation and accordingly the minimum
number of nodes needed in the clouds.

– On each node of the domain a cloud of nodes with the
minimum number of nodes is constructed. In this paper
we have followed the simple cloud construction explained
in Sect. 3.3.

– The procedure of WLS explained in Sect. 2, is followed
to evaluate matrices Āc and B̄c defined in relations (9)
and (10).

– Based on the total number of nodes present in the cloud, a
preliminary sub-domain size is chosen from Table 1 (pos-
sibly with interpolation/extrapolation between the val-
ues).

– The irregularity index is computed as (49).
– From the content of Table 2, an appropriate factor is cho-

sen (use interpolation if needed). The sub-domain size
chosen in the previous step is then multiplied by the eval-
uated factor to obtain the final optimal sub-domain size.

– With the sub-domain size in hand, the matrix Ḡc defined
in (23) is constructed for the evaluation of the correspond-
ing rows of K matrix in (38). The explicit form of the Ḡc

matrix is given in the “Appendix” (for clouds intersecting
the boundaries with tractions, an equivalent formulation
given in (32), using appropriate matrices in the “Appen-
dix”, may be used).

– Having accomplished steps 3 to 8 for all nodes, the coef-
ficient matrix K is evaluated.

– The essential boundary conditions, as (35), are applied to
the system of equations.

– The nodal displacements are evaluated by solving the
matrix equation in (38).

The results of the above procedure are shown in the next
section.

5 Numerical results

Here we present the results of the GFPM applied to some
well-known benchmark problems. In the examples we shall
present convergence graphs of errors defined as

eu =
√√√√
∑Np

k=1 (uk − uexact
k )T (uk − uexact

k )

Np
,

eσ =
√√√√
∑Np

k=1 (εk − εexact
k )T (σ k − σ exact

k )

Np
, (50)

ε = Su, σ = Dε

In above, the superscript “exact” has been used to denote the
exact quantities.

Example 1 The Timoshenko cantilever beam is revisited
here. The exact solution can be found in [27]

u = P

6E I

(
y − h

2

)[(
6Lx − 3x2

)
+ (2 + ν)

(
y2 − hy

)

−4 + 5ν

4
h2
]

, (51)

v = − P

6E I

[(
3Lx2 − x3

)
+ 3ν (L − x)

(
y − h

2

)2
]

(52)

where u and v are displacement components along x and y, ν

is Poisson’s ratio, E is Young’s modulus, h and L are height
and length of the beam and I = h3

12 . In this example we use
E = 1,000, ν = 0.3, h = 1, L = 5 and P = 1. The end load
is the resultant of a parabolic distribution of shear stresses.
Figure 9a shows the beam configuration and the grid of nodes
used. For the numerical solution all horizontal displacements
are restrained at the fixed end and the prescribed values are
obtained from the exact solution.
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Table 2 Irregularity factors for
different Poisson’s ratios Poisson’s ratio S = 0 S = 0.01 S = 0.1 S = 0.2 S = 0.3 S = 0.5

ν = 0.05 1 1.02 1.2 1.4 1.6 2

ν = 0.15 1 1.12 1.3 1.5 1.7 2.1

ν = 0.30 1 1.12 1.31 1.52 1.73 2.15

ν = 0.45 1 1.02 1.21 1.42 1.63 2.05

Suggested for all ν 1 1.1 1.3 1.5 1.7 2.1

As is seen, the exact solution is a third order polynomial
and, therefore, the application of FPM and GFPM with third
order polynomial for interpolation leads to reproduction of
the exact solution (not shown here). We attempt to solve the
problem with second order polynomials. The results are pre-
sented in Fig. 9b. In the figure we have included the results of
a non-optimized sub-domain size, e.g. ā = 0.5. The figure
clearly shows the superiority of GFPM to FPM especially
when optimal sub-domain sizes have been employed.

The results of the convergence study are given in Figs. 10
and 11. Figure 10a and b depict the results for error norms
defined in (50) for displacements and strains/stresses when
regular node distributions are used. It can be seen that the
use of GFPM leads to better accuracy. In Fig. 11, however, it
can be seen that both methods perform equally when irreg-
ular node distributions are employed for the solutions. The
overall conclusion is that GFPM performs equally or better
than FPM in this example.

Example 2 A plane stress elasticity problem on a square
domain of 2 × 2 is considered with following exact
solution;

uex = sinh(x) sin(y), vex = cosh(x) cos(y) (53)

A set of regular grids with 4 × 4, 19 × 19, 34 × 34 nodes
and irregular grids with 16, 361, and 1,156 nodes are con-
sidered for the numerical solutions. The problem is solved
under Dirichlet boundary conditions. Convergence plots of
the norms defined in (50) are given in Fig. 12. In Fig. 12a
it can be seen that both GFPM and FPM perform equally in
regular grids when the norm of strains/stress is of concern.
However, Fig. 12b shows that the accuracy of displacements
in FPM is better than that of the GFPM although the conver-
gence rates are similar. For the irregular grids the results of
GFPM are superior to those of FPM as Fig. 12c and d depict.
Here again the overall conclusion is the same as that in the
first example.

Fig. 9 The results obtained for
Timoshenko beam problem. The
numbers in the parentheses
indicate the minimum number
of nodes per cloud; a the grid of
nodes used, b vertical
displacement component v

along y = 0. The results of
non-optimized form of GFPM
are taken for ā = 0.5
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Fig. 13 The results obtained for the perforated plate; a the geometry
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Example 3 A perforated plate under tension is considered
with plane stress condition. A quarter of the plate is solved
using the tractions evaluated from the exact stress field
(Fig. 13). The exact solution of the problem is given as

σx = tx

{
1− r2

0

r2

[
3

2
cos(2θ)+cos(4θ)

]
+ 3r4

0

2r4 cos(4θ)

}

(54)

σy =−tx

{
r2

0

r2

[
1

2
cos(2θ) −cos(4θ)

]
+ 3r4

0

2r4 cos(4θ)

}

(55)

σxy= − tx

{
r2

0

r2

[
1

2
sin(2θ) + sin(4θ)

]
− 3r4

0

2r4 sin(4θ)

}

(56)
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Fig. 14 The geometry and the grids of nodes used for Example 4; a the grid of 156 node used for FPM and GFPM, b the mesh of linear quadrilaterals
with 156 nodes (312 DOF) used for FE solution, c the mesh of quadratic quadrilaterals with 1,742 nodes (3484 DOF) used for FE solution

ur = tx
4G

{
r

[
(κ − 1)

2
+ cos(2θ)

]

+r2
0

r
[1 + (1 + κ) cos(2θ)] − r4

0

r3 cos(2θ)

}
(57)

uθ = tx
4G

[
(1 − κ)

r2
0

r
− r − r4

0

r3

]
sin(2θ) (58)

where

G = E

2(1 + ν)
, κ = 3 − ν

1 + ν
(59)

In above equations, r0 is the radius of the hole and (r, θ) are
the polar coordinates of the points with origin at the center of
the hole. In this example we use E = 1,000, ν = 0.3, tx =
100. Figure 13b–g show some of the results obtained from
the solution of the problem by the application of GFPM and
FPM. In this example the minimum number of nodes per
cloud is 24. Contour plot of σx is given in Fig. 13c–e for the
three solutions (the grid used consists of 298 nodes). It can
be seen that the accuracy of the results in the new method is
significantly more than that of the original FPM. This effect
can also be understood from the convergence plots for the
errors given in Fig. 13f and g. This example also shows that
the GFPM results are better than those of FPM.

Example 4 The final example is of an L-shape domain with
tractions at the top (see Fig. 14a). The bottom edge is restrai-
ned against movement in all directions. The material prop-
erties are the same as those in example 1. Since the exact
solution is not known, here the problem has been solved
with FEM, FPM and GFPM. Prior to analyze the results it
is worthwhile to compare the CPU times used for the three
methods. The codes are written in Visual C++ environment.

Table 3 The CPU time used for solution of Example 4

Method FEM FPM GFPM
(linear quads) (9 node/cloud) (9 node/cloud)

CPU time (ms) 734 687 656

The processor is of AMD Athlon (tm) type equipped with a
64 Processor 3700+. The computation times are calculated
after reading the data for the geometry and the node coordi-
nates (for grids with 156 nodes shown in Fig. 14a, b). The
CPU times are listed in Table 3.

It can be seen that the order of CPU times are similar.
It should also be mentioned that although in Fig. 14b the
elements are of regular shape, to make a fair comparison
we have solved the problem as a general FE one with an
irregular mesh (i.e. for each element we have performed the
integrations needed for the evaluation of the element stiff-
ness). The reason lies in the fact that generally the CPU time
for FPM and GFPM does not significantly differ for regular
and irregular grids. We have also used minimum 9 nodes in
each cloud in both FPM and GFPM so that the bandwidths of
the coefficient matrices in the three methods become nearly
equal (note that, regardless of the nodes at boundaries, in FE
solution with square linear elements each of the hat shape-
functions covers 9 nodes approximately). Table 3 shows that
GFPM is as cheap as FPM.

The results of the numerical solutions are shown in
Fig. 15a and b. Due to the presence of singularity at the
reentrant corner, all the numerical solutions are prone to
pollution error [28]. In order to alleviate the effect of the
singularity in our reference solution, here the FE results, and
also to improve the performance of the elements in bending,
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Fig. 15 The results obtained for the L shape domain; a variation of
horizontal displacement along y-axis, b variation of vertical displace-
ment along y-axis

we have also included the results obtained from a mesh of
quadratic elements refined at the reentrant corner as shown
in Fig. 15c. As is seen the results of GFPM are very close
to those of FEM. Although it is not possible to measure the
errors in this example, it seems that the results of FPM are
more erroneous than those of FEM and GFPM. The reason
for such a conclusion is that in FPM a set of equations, either
in the form of equilibrium or traction conditions as in (17),
must be satisfied at the reentrant corner where the exact gra-
dients of displacements are not defined.

6 Conclusions

A new mesh-less method has been presented. The method is
based on the equilibration of sub-domains, and in this respect
may be regarded as the generalized form of the finite point
method (GFPM). The formulation of the method is based on
a weak form of a weighted residual approach with Heaviside
step functions as the weights. The use of such weight func-
tions leads to simple boundary integral equations which can
be evaluated explicitly without the need for numerical inte-
gration when WLS is employed for interpolation. The order
of differentiation of the shape-functions needed in GFPM is
less than that in FPM and this may be regarded as one of
the advantages of GFPM. Other advantages of GFPM are; its
capability to model point loads and having a unique formu-

lation at corners where tractions are present at two faces of
the boundary.

The sub-domains used in GFPM do not necessarily cover
the whole solution domain. The optimal sizes of the sub-
domains are determined through a generalized form of patch
test. The final results for generic elasticity problems (with dif-
ferent Poisson’s ratios) have been given in a series of tables.
The content of the tables can be used for general problems as
long as the cloud definition, including the weight and poly-
nomial used, etc., are similar to the present work. For other
cases, not included in this study, the step by step procedure of
the patch test has been explained in details. Several sample
problems have been solved to compare the performance of
GFPM with those of FPM and FEM. One of the problems
solved includes reentrant point which is the sources of singu-
larity in the problems. The numerical experiments show that
GFPM is capable of giving comparable results to those of
FE solution. It has been found that GFPM performs equally
or, in many cases, better than FPM while the costs of the
computations in the two methods are similar.

Appendix

In this appendix we present the closed forms of the integrals
needed for equilibration of a sub-domain. Suppose that the
sub-domain is of a polygon shape and the boundary integral
(23) is to be evaluated by a summation of some integrals on
lines as

∫

�s
i

ñσ̂
cd� =

∑

m

1∫

0

ñm σ̂
c Lmdξ σ̂

c = DSûc (A-1)

where Lm is the length of the mth boundary segment and ξ

is a local normalized coordinate. Also ñm contains the com-
ponents of unit normal to the boundary segment which is
written as

ñm =
[

nmx 0 nmy

0 nmy nmx

]
nmx = �ym

Lm
,

nmy = −�xm

Lm
, Lm =

√
(�xm)2 + (�ym)2

(A-2)

In above �ym = ym2 − ym1,�xm = xm2 − xm1 with
(xmi , ymi ) i = 1, 2 being the coordinates of the two end
points. Substitution of (A-2) in (A-1) leads to the following
sets of equations for one segment

1∫

0

ñm σ̂
c Lmdξ =

1∫

0

{
σ̂ c

x �ym − τ̂ c
xy�xm

τ̂ c
xy�xm − σ̂ c

y �ym

}
dξ (A-3)
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From the second relation in (A-1) one may write

⎧
⎨

⎩

σ̂ c
x

σ̂ c
y

τ̂ c
xy

⎫
⎬

⎭ =
⎡

⎣
D11 D12 0
D21 D22 0
0 0 D33

⎤

⎦

⎡

⎢⎢⎢⎢⎢⎣

∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x

⎤

⎥⎥⎥⎥⎥⎦
P̄cĀcB̄cūc

(A-4)

Now supposing that the polynomial used is of second
order, i.e.

P(x)= { 1 x y x2 xy y2
}

x = (1 − ξ)xm1 + ξ xm2,

y = (1 − ξ)ym1 + ξ ym2 (A-5)

then the final integrations required are written as

1∫

0

ñm σ̂
c Lmdξ =

[
C11 C12

C21 C22

]
ĀcB̄cūc (A-6)

where

C11 =
{

0 �ym D11 −�xm D33 �ym D11 Xm

1

2
(�ym D11Ym − �xm D33 Xm) −�xm D33Ym

}

(A-7)

C12 =
{

0 −�xm D33 �ym D12 −�xm D33 Xm

1

2
(�ym D12 Xm − �xm D33Ym) �ym D12Ym

}

(A-8)

C21 =
{

0 −�xm D21 �ym D33 −�xm D21 Xm

1

2
(−�xm D21Ym + �ym D33Ym) �ym D33Ym

}

(A-9)

C22 =
{

0 �ym D33 −�xm D22 �ym D33 Xm

1

2
(−�xm D22 Xm + �ym D33Ym) −�xm D22Ym

}

(A-10)

Xm = xm1 + xm2, Ym = ym1 + ym2 (A-11)

For a rectangular domain the final result of the summation in
(A-1) may be given as

∫

�s
i

ñDSûcd�=
4∑

m=1

1∫

0

ñm σ̂
c Lmdξ =

[
Ḡc

11 Ḡc
12

Ḡc
21 Ḡc

22

]

︸ ︷︷ ︸
Ḡc

ĀcB̄cūc

(A-12)

in which

Ḡc
11 = { 0 0 0 2abD11 0 2abD33

}
(A-13)

Ḡc
12 = { 0 0 0 0 ab(D12 + D33) 0

}
(A-14)

Ḡc
21 = { 0 0 0 0 ab(D21 + D33) 0

}
(A-15)

Ḡc
22 = { 0 0 0 2abD33 0 2abD22

}
(A-16)

with a = āL1 and b = b̄L2 being the sizes of the rectangle
along x and y axes, respectively.
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