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Abstract A methodology for the geometrically nonlinear
analysis of orthotropic shells using a rotation-free shell tri-
angular element is developed. The method is based on the
computation of the strain and stress fields in the principal
fiber orientation of the material. Details of the definition of
the fiber orientation in a mesh of triangles and of the gen-
eral formulation of the orthotropic rotation-free element are
given. The accuracy of the formulation is demonstrated in
examples of application.

Keywords Rotation-free shell triangle · Thin shell ·
Orthotropic material · Principal fiber orientation

1 Introduction

Shells are used in many structural fields such as civil, mechan-
ical, naval and aerospace engineering. A formulation based
on thin-shell theory can be used to analyze many shell struc-
tures of practical interest. Thin-shell theory is also the basis
for developing rotation-free finite elements which use the
displacements as the only degrees of freedom (DOFs). This
allow us to compute structures with less DOF and therefore
less computational effort is required.

The idea of using the displacements as the only nodal vari-
ables for plate and shell analysis is not new and many attempts
to derive this class of elements are found in the finite differ-
ence literature, i.e. Ugural [1]. The well-known difficulties of
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finite difference analysis with boundary conditions and the
problems for dealing with non-orthogonal or unstructured
grids limited their progress. One of the first successes to use
finite elements was due to Nay and Utku [2] who proposed
a rotation-free thin plate triangle using a least-square qua-
dratic approximation to describe the deflection field within
the patch surrounding a node in terms of the deflections of
the patch nodes. Later, Barnes [3] presented a method for
deriving a three-noded triangle with the nodal deflections as
the only DOFs based on the computation of the curvatures
in terms of the nodal rotations at the middle-side points from
the nodal deflections of adjacent elements. This method was
exploited by Hampshire et al. [4] assuming that the elements
are hinged together at their common boundaries and the bend-
ing stiffness is represented by torsional springs resisting rota-
tions about the hinge line. Oñate and Cervera [5] presented a
general procedure based on finite volume concepts for deriv-
ing thin plate elements of triangular and quadrilateral shapes
with the nodal deflections as the only degree of freedom and
proposed the first version of the so-called rotation-free basic
plate triangle (BPT). Brunet and Sabourin [6] proposed a
different approach to compute the constant curvature field
within each triangle in terms of the six-node displacement
of a macro-element. This triangular element was success-
fully applied to nonlinear shell analysis using an explicit
dynamic approach. Oñate and Zárate [7] extended the rota-
tion-free plate elements of Oñate and Cervera [5] develop-
ing new triangular elements, including a rotation-free basic
shell triangle (BST). The BST element applied to large defor-
mations with an explicit dynamic procedure was presented
by Cendoya et al. [8]. Rojek et al. [9] applied the BST ele-
ment to metal forming processes. The formulation of the BST
element for large strain plasticity was introduced by Flores
and Oñate [10]. Improvements of the BST element using an
assumed strain approach were reported by Flores and Oñate
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[11]. A survey of recent developments of the BST element
are reported in [12]. An alternative method for developing
rotation-free shell elements using a subdivision of surfaces
for thin-shell analysis was introduced by Cirak et al. [13] for
small strains, and Cirak and Ortiz [14] for large deforma-
tions. Recent developments in the field including a survey of
the performance of rotation-free shell triangles are reported
in [15–18].

In this paper we present an extension of the BST element
for the geometrically nonlinear analysis of orthotropic shells.
The method is based on the principal fiber orientation of the
material. It is shown that the fiber orientation strategy also
allows to analyze pre-stressed shell structures. The accuracy
of the orthotropic BST element is demonstrated in two exam-
ples of application.

2 Thin shell formulation

A finite deformation shell formulation is presented. Here
Greek indices take on values of 1 and 2 while lower latin
indices take on values of 1, 2 and 3. The position vector ˜R in
the reference configuration �0 is defined by the independent
curvilinear coordinates ξ1, ξ2 and ζ as

˜R
(

ξ1, ξ2, ζ
)

= X
(

ξ1, ξ2
)

+ ζN
(

ξ1, ξ2
)

(1a)

where N is the normal to the middle surface on �0 and − h0
2 ≤

ζ ≤ h0
2 with h0 being the shell thickness in the reference con-

figuration (see Fig. 1).
The position vector r̃ on the current configuration � is

given by

r̃
(

ξ1, ξ2, ζ
)

= x
(

ξ1, ξ2
)

+ ζn
(

ξ1, ξ2
)

(1b)

1

2

h0

N

Fig. 1 Shell middle surface

where n is the normal to the middle surface on �. The rela-
tionship between the position vectors of the middle surface
is

x = X + u (2)

where u is the displacement vector of the points on the middle
surface.

Note that the finite thickness stretch parameter is not
included in Eq. (1b) to avoid Poisson locking. The finite
thickness stretch plays an important role in problems involv-
ing finite membrane strains or contact, as shown in [19–21].
In this work a Saint Venant–Kirchhoff material model is used
and small strains are assumed which allows neglecting the
thickness stretch effect.

The convected covariant base vectors of the curvilinear
coordinate system on �0 are defined by

˜Gα = ∂˜R
∂ξα

= ∂X
∂ξα

+ ζ
∂N
∂ξα

= Gα + ζN,α

(3)

˜G3 = ∂˜R
∂ζ

= N

where Gα are the middle surface basis vectors in the refer-
ence configuration. The convected covariant base vectors on
the current configuration � are

g̃α = ∂ r̃
∂ξα

= ∂x
∂ξα

+ ζ
∂n
∂ξα

= gα + ζn,α

(4)

g̃3 = ∂ r̃
∂ζ

= n

where gα are the middle surface basis vectors in the current
configuration. The basis vectors Gα and gα form the tangent
space TXB to the middle surface in the reference and current
configurations, respectively and in general they are neither
unit vectors nor orthogonal to each other, shown in Fig. 2.
For finite element problems, a tangent space is built at every
gauss point of the element. In this work, three-node trian-
gles are used and therefore the tangent space coincides with
the element plane, and only one gauss point is needed per
element.

Fig. 2 Covariant base vectors forming a tangent plane
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The convected contravariant base vectors follow from the
relations

˜G
i · ˜G j = δ i

j , g̃ i · g̃ j = δ i
j (5)

where δ i
j is the Kronecker delta. The covariant metric tensors

in both configurations are

˜Gi j = ˜Gi · ˜G j , g̃i j = g̃i · g̃ j (6)

The components of the Green–Lagrange strain tensor are
defined as the difference between the covariant metric ten-
sors on the current and reference configurations of the shell
yielding

Ei j = 1

2

(

g̃i j − ˜Gi j
)

(7)

The Green–Lagrange strain tensor can be written as

Ei j = εi j + ζκi j + ζ 2γi j (8)

where the non-zero components of the above expression are
given by

εαβ = 1

2

(

gα · gβ − Gα · Gβ

)

, εα3 = 1

2

(

gα · n − Gα · N
)

(9)

ε33 = 1

2
(n · n − N · N) , α, β = 1, 2

καβ = gα · n,β − Gα · N,β (10)

γαβ = 1

2

(

n,α · n,β − N,α · N,β

)

(11)

This work is intended for the Kirchhoff–Love theory of thin
shells. Consequently, the deformed director n coincides with
the unit normal to the current middle surface. Therefore the
values εα3 and ε33 vanish identically and values of ζ 2 can
be neglected for thin shells. This constraint yields the com-
ponents of the Green–Lagrange strain tensor to be deduced
from the deformation of the middle surface of the shell as

Eαβ = εαβ + ζκαβ = E
memb

αβ + ζ E
bend

αβ (12)

where εαβ measures membrane strains. For convenience of
the discretization explained ahead, the bending strains are
written as

καβ = Gα,β · N − gα,β · n = Kαβ − kαβ (13)

where Eq. 13 is derived from Eq. 10 and the following
equation is satisfied
(

gα · n
)

,β = gα · n,β + gα,β · n = 0 (14)

The same applies for (Gα ·N),β . The variation of the Green–
Lagrange strain tensor is given by the variation of Eq. 12
yielding

δEαβ = δE
memb

αβ + ζ δE
bend

αβ (15)

with an appropriate constitutive equation to relate stresses
and strains, the virtual internal work is expressed as

δW int =
∫

�0

+ h
2

∫

− h
2

δEαβ Sαβdζd�0 (16)

where �0 is the middle surface domain. The expression for
the virtual work of the external loads is the classical one for
shells [22].

3 Fiber orientation

The idea for the fiber orientation approach comes from the
manufacturing process of membrane structures manufactured
with orthotropic or composite materials. Here a reference
principal fiber direction is needed to perform an analysis
with finite elements. Even for isotropic materials, a reference
direction is needed if the membrane structure has an initial
prestressed field. With the methodology proposed here, a
prestressed field for orthotropic materials is also possible.

Another important aspect of the fiber orientation comes
when postprocessing the strain and stress fields on the mem-
brane surface, as the resultant stresses are needed in the fiber
directions.

To build the fiber orientation field for a membrane struc-
ture, first a finite element mesh is needed, then for each ele-
ment the following methodology is applied. A local Cartesian
base system is defined from the covariant base vectors as

eloc
1 = G1

‖G1‖ , eloc
3 = N = G1 × G2

‖G1 × G2‖ ,

(17)
eloc

2 = eloc
3 × eloc

1

If a curved membrane structure is meshed with finite ele-
ments, the local Cartesian axes of each element generally
have different orientations, even for structured meshes as
shown in Fig. 3.

e1

e2
loc

loc

ed
ed

ed

ed

ed

ed

ed

Fig. 3 Principal fiber direction and local base system
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Fig. 4 Principal fiber direction
for a finite element

e1
loc

ed
e2

loc

If dashed-lines ed are the reference principal fibers
orientation or the orthotropy direction for the material, then
an angle θ is needed to rotate each local Cartesian base sys-
tem eloc

i in order to apply the orthotropic constitutive equation
correctly (or the prestressed field). Suppose that ed is a given
vector that defines the principal fiber orientation for a finite
element and it lies on the tangent space of the element, as
shown in Fig. 4. For curved elements, vector ed is obtained
by taking the projection of the fiber direction onto the tangent
space of the element. This principal fiber direction is always
known at least for one finite element and it is given by the
manufacturing process of the structure.

To assign correctly the principal fiber direction from a
known source element to the whole mesh, first the adja-
cent elements of the source element must be identified (see
Fig. 5a). Next the tangent space TXBS for the source element
is built, together with its normal NS . For one adjacent ele-
ment its tangent space TXBN and its corresponding normal
NN are built. The intersection line to both tangent spaces
defines the common vector (see Fig. 6).

Then a new Cartesian base system for TXBS is constructed.
The cross product between the normal NS and vector XS ,
yields YS . This new vector YS must point towards inside of
the source element, as shown in Fig. 6.

Similarly, a new Cartesian base system for the adjacent
element is built. The cross product between the normal NN

and the vector given by the intersection line XN yields YN ,
where XN = −XS . Vector YN must point towards inside of
the adjacent element. Note that vectors XS and YS belong to
the tangent space of the source element, while vectors XN

and YN belong to the tangent space of the adjacent element.
Once both local Cartesian base systems are defined, the

next step is to choose an arbitrary point a on the axis XS .
Now over point a the principal fiber direction vector ed is
built and its intersection over the axis YS will be point b, as
shown in Fig. 7.

Finally, to transfer the principal fiber direction to the adja-
cent element, the distance from the origin o to point a must be

the same that the distance from the origin o to point c located
on the axis XN . Also the distance from the origin o to point
b must be the same as from the origin o to point d over the
axis YN . Then the vector from point c to point d is built.
This vector will be the reference principal fiber direction in
the neighbor element, as shown in Fig. 7.

This procedure of transferring the principal fiber direction
from a source element to an adjacent one is repeated for all the
elements adjacent to the source element, as shown in Fig. 5.
Once all adjacent elements have a principal fiber direction
defined, the procedure is repeated for the whole mesh until
every element has a principal fiber direction ed assigned to it.
A finite element mesh with all its elements with a principal
fiber direction assigned is shown in Fig. 8.

The next step is to define for each element an angle θ

needed to rotate each local Cartesian system to the fiber
system (Fig. 4). Angle θ is found from

sin θ = −ed · eloc
2 , cos θ = ed · eloc

1 (18)

and

θ = tan−1
(

sin θ

cos θ

)

(19)

The fiber orientation system for each element is named local
fiber system and it is found from the equation

efiber
i = R(θ, N) · eloc

i (20)

where R(θ, N) is the Rodrigues’ rotation formula that rotates
a vector an angle θ about a fixed axis specified by a unit
vector, in this case the unit normal vector to the surface ele-
ment N.

The finite element mesh for the analysis with the fiber ori-
entation is shown in Fig. 9. Details of the implementation
of the fiber orientation methodology can be found in Valdés
[23].

4 Finite element discretization for shells

The finite element discretization is given for the total
Lagrangian formulation. In this work the BST element
developed in [10–12] is extended to account for the prin-
cipal fiber direction and perform the analysis with initially
prestressed fields or orthotropic materials. We note that the
BST element is free of rotational DOFs. Therefore the only

Fig. 5 Assignment of principal
fiber direction to adjacent
elements

(a) (c)(b)
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Fig. 6 Local Cartesian systems for tangent spaces

Fig. 7 Transferring the reference principal fiber direction

Fig. 8 Principal fibers direction of a mesh

e1

e2
fiber

fiber

ed
ed

ed

ed

ed

ed

ed

Fig. 9 Local fiber system

1

2

3

4

5

6

n1

n2

n3

M
1

2

3

Fig. 10 Four element patch for computation of bending strains

Table 1 Patch connectivities for the BST element

Element Connectivities

Node 1 Node 2 Node 3

(M) 1 2 3

(1) 4 3 2

(2) 5 1 3

(3) 6 2 1

kinematic unknowns are the three displacements of each node
of the triangle.

Bending strains for the BST element M are defined by the
displacement field of the four element patch formed by the
central element and the three adjacent triangles (Fig. 10).

The patch description is as follows:

• Element number is inside a circle.
• Nodes of the main element (M) are numbered locally as

1, 2 and 3.
• Main element sides are defined by its local node opposite

to the side.
• Adjacent elements are numbered with the number asso-

ciated to the common side 1, 2 and 3.
• The remaining nodes of the patch are numbered locally as

4, 5, and 6 corresponding to nodes on adjacent elements
(1), (2) and (3) respectively.

Connectivities for the path are defined in Table 1.
In this work, the local coordinate system is given by the

local fiber system, defined in Sect. 3. Then the local coordi-
nate system for each finite element is given by unit vectors
efib

1 , efib
2 and the normal efib

3 .

4.1 Computation of the membrane strains

The computation of the membrane strain follows the stan-
dard approach for the constant strain triangle as detailed in
Valdés [23].
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The covariant base vectors of the curvilinear coordinates
in the reference configuration �0 can be approximated by

Gα =
nnode
∑

I=1

NI,αXI (21)

where

NI,α = ∂ NI (ξ
1, ξ2)

∂ξα
(22)

being NI the element shape functions. Following the same
procedure, the covariant base vectors of the curvilinear coor-
dinates in the current configuration � reads

gα =
nnode
∑

I=1

NI,αxI (t) (23)

with these quantities known, the covariant components of the
metric tensors Gαβ and gαβ are found. Then the components
of the Green–Lagrange strain tensor for the membrane part
are computed with

εαβ = 1

2

(

gαβ − Gαβ

)

(24)

The variation of δεαβ becomes

δεαβ = 1

2
δ(gαβ − Gαβ) = 1

2
δgαβ (25)

and

δgαβ = δgα · gβ + gα · δgβ (26)

The variation of the Green–Lagrange strain tensor for the
membrane part becomes

2 δεαβ =
nnode
∑

I=1

NI,αδui I ·
nnode
∑

J=1

NJ,β xi J

+
nnode
∑

J=1

NJ,αxi J ·
nnode
∑

I=1

NI,βδui I (27)

where δui are the virtual displacements (i = 1, 3). The vir-
tual internal work due to membrane effects is (see Eq. 16)

2 δW int = h
∫

�0

[

nnode
∑

I=1

NI,αδui I ·
nnode
∑

J=1

NJ,β xi J Sαβ
memb

+
nnode
∑

J=1

NJ,αxi J ·
nnode
∑

I=1

NI,βδui I Sαβ
memb

]

d�0 (28)

Equation (28) can also be expressed as

δW int =
nnode
∑

I=1

δui I f
memb

i I , i = 1, 3 (29)

Substituting Eq. (28) into Eq. (29), the internal membrane
forces for a particular direction i and node I can be expressed
as

f
memb

i I = h
∫

�0

Bmemb

αβi I Sαβ
membd�0 (30)

where the strain–displacement tensor in curvilinear coordi-
nates is given by

Bmemb

αβi I = 1

2

(

NI,αxh
i,β + NI,β xh

i,α

)

(31)

where the isoparametric interpolation [22]

xh
i,α =

nnode
∑

J=1

NJ,αxi J (32)

has been used. The expression of the internal forces in cur-
vilinear coordinates using Voigt notation is

f
memb

a = h
∫

�0

[BT
ab]memb{Sb}memb

d�0 or

(33)

f
memb

I = h
∫

�0

[BBBT
I ]memb{S}memb

d�0

where the membrane strain matrix BBBmemb

I is

BBBmemb

I

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂ NI
∂ξ1

∂xh
1

∂ξ1
∂ NI
∂ξ1

∂xh
2

∂ξ1
∂ NI
∂ξ1

∂xh
3

∂ξ1

∂ NI
∂ξ2

∂xh
1

∂ξ2
∂ NI
∂ξ2

∂xh
2

∂ξ2
∂ NI
∂ξ2

∂xh
3

∂ξ2

∂ NI
∂ξ1

∂xh
1

∂ξ2 + ∂ NI
∂ξ2

∂xh
1

∂ξ1
∂ NI
∂ξ1

∂xh
2

∂ξ2 + ∂ NI
∂ξ2

∂xh
2

∂ξ1
∂ NI
∂ξ1

∂xh
3

∂ξ2 + ∂ NI
∂ξ2

∂xh
3

∂ξ1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(34)

Finally, the membrane strain matrix is rotated from curvilin-
ear to Cartesian coordinates. Then using the fiber orientation
methodology, it is rotated again to fiber direction yielding
B

memb

I .

4.2 Computation of the bending strains

The computation of the bending strains for the rotation-free
BST element requires a more detailed explanation which is
presented next. The main difference between the present BST
formulation and the BST formulation of Flores and Oñate
[10] is the local coordinate system definition. While Flores
and Oñate define direction ξ1 along nodes 1 and 2, in this
work ξ1 follows the principal fiber direction. This change is
what allow us to analyze prestressed shell structures and/or
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orthotropic shells, and for this reason the formulation is pre-
sented in detail. The bending part of Eq. (16) is given by,

δW int =
∫

�0

+ h
2

∫

− h
2

δE
bend

αβ Sαβ
bend dζd�0 (35)

and the values of E
bend

αβ and δE
bend

αβ are needed to evaluate the
internal forces. The bending strains at the current configura-
tion are expressed by (Eq. 13)

kαβ = gα,β · n (36)

which can be written in the form

kαβ = 1

A0

∫

�0

gα,βd�0 · n (37)

Applying the divergence theorem Eq. (37) yields

kαβ = 1

A0

∫

�0

n̄β gαd�0 · n (38)

where n̄β are the components of the normal to the boundary,
laying on the plane of element M (Fig. 10). Since the bound-
ary integral of the three-node triangular main element can be
computed explicitly, then Eq. (38) is expressed as

kαβ = 1

A0

nsides
∑

J=1

l J n̄ J
β gα · n (39)

where nsides = 3, J is the number of the side in the main ele-
ment, l J is the length of side J and n̄ J

β are the components
of the normal to the boundary of side J of the main element.

At this point it is convenient to change from curvilin-
ear coordinates to the local fiber system, so the same local
coordinate system is used for the whole patch.

Discretization of gα can be written explicitly as

[

g1
g2

]

=
nnode
∑

I=1

⎡

⎢

⎣

∂ NI
∂ξ

∂ NI
∂η

⎤

⎥

⎦
xI (t) (40)

Since the formulation is derived in the local fiber system, the
derivatives of the shape functions need to be transformed.
The Jacobian transformation tensor Jξ in the current config-
uration is defined as

Jξ =
[

g1 · efib
1 g2 · efib

1
g1 · efib

2 g2 · efib
2

]

(41)

and the Cartesian derivatives of the shape functions are
obtained from
⎡

⎢

⎢

⎢

⎣

∂ NI

∂x

∂ NI

∂y

⎤

⎥

⎥

⎥

⎦

= J−T
ξ

⎡

⎢

⎢

⎢

⎣

∂ NI

∂ξ

∂ NI

∂η

⎤

⎥

⎥

⎥

⎦

(42)

Equation (40) can be written in Cartesian coordinates as

[

xh
,1

xh
,2

]

=
nnode
∑

I=1

⎡

⎢

⎣

∂ NI
∂x

∂ NI
∂y

⎤

⎥

⎦
xI (t) (43)

Using Voigt notation, the curvatures of Eq. (39) can be com-
puted in the local fiber system as
⎡

⎣

k11

k22

k12

⎤

⎦ = 1

A0

nsides
∑

J=1

l J

⎡

⎣

n̄ J
1 0
0 n̄ J

2
n̄ J

2 n̄ J
1

⎤

⎦

[

xh
,1 · n

xh
,2 · n

]

(44)

The constraints imposed by the Kirchhoff–Love theory of
thin shells make the product xh

,α · n = 0. This problem is
solved taking for xh

,α the average value between that of the
main triangle and each one of the adjacent elements yielding

⎡

⎣

k11

k22

k12

⎤

⎦ = 1

A0

nsides
∑

J=1

l J

⎡

⎣

n̄ J
1 0
0 n̄ J

2
n̄ J

2 n̄ J
1

⎤

⎦

⎡

⎢

⎢

⎣

1
2

(

xM
,1 + xJ

,1

)

· n

1
2

(

xM
,2 + xJ

,2

)

· n

⎤

⎥

⎥

⎦

(45)

which can be simplified to
⎡

⎣

k11

k22

k12

⎤

⎦ = 1

2A0

nsides
∑

J=1

l J

⎡

⎣

n̄ J
1 0
0 n̄ J

2
n̄ J

2 n̄ J
1

⎤

⎦

⎡

⎣

xJ
,1 · n

xJ
,2 · n

⎤

⎦ (46)

In the derivation of Eq. (46) xM
,α · n = 0 and xJ

,α is given by

⎡

⎣

xJ
,1

xJ
,2

⎤

⎦ =
nnode
∑

I=1

⎡

⎢

⎢

⎣

∂ N J
I

∂x

∂ N J
I

∂y

⎤

⎥

⎥

⎦

xJ
I (47)

The same methodology is used to obtain the bending strains
in the reference configuration. The bending strain tensor in
Voigt notation is given by

{E}bend =
⎡

⎣

κ11

κ22

κ12

⎤

⎦ =
⎡

⎣

K11

K22

K12

⎤

⎦ −
⎡

⎣

k11

k22

k12

⎤

⎦ (48)

The variation of the bending strain tensor yields

δ {E}bend =
⎡

⎣

δκ11

δκ22

δκ12

⎤

⎦ = −
⎡

⎣

δk11

δk22

δk12

⎤

⎦ (49)

From Eq. (45)

⎡

⎣

δk11

δk22

δk12

⎤

⎦ = 1

2A0

nsides
∑

J=1

l J

⎡

⎣

n̄ J
1 0

0 n̄ J
2

n̄ J
2 n̄ J

1

⎤

⎦

⎡

⎢

⎢

⎣

δ
(

xJ
,1 · n

)

δ
(

xJ
,2 · n

)

⎤

⎥

⎥

⎦

(50)

The last term of the right-hand side of Eq. (50) can be
expanded to become

δ
(

xJ
,α · n

)

= δxJ
,α · n + xJ

,α · δn (51)
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The variation δxJ
,α yields

⎡

⎣

δxJ
,1

δxJ
,2

⎤

⎦ =
nnode
∑

I=1

⎡

⎢

⎢

⎣

∂ N J
I

∂x

∂ N J
I

∂y

⎤

⎥

⎥

⎦

δuJ
I (52)

On the other hand, the variation δn becomes

δn = −
nnode
∑

I=1

(

∂ NI

∂x
x̃h
,1 + ∂ NI

∂y
x̃h
,2

)

n · δuI (53)

as detailed in Flores and Oñate [10] and Valdés [23]. Substi-
tuting Eqs. (52) and (53) into Eq. (51) leads to
⎡

⎢

⎢

⎣

δ
(

xJ
,1 · n

)

δ
(

xJ
,2 · n

)

⎤

⎥

⎥

⎦

=
nnode
∑

I=1

⎡

⎢

⎢

⎣

∂ N J
I

∂x

∂ N J
I

∂y

⎤

⎥

⎥

⎦

n · δuJ
I

−
nnode
∑

I=1

⎡

⎢

⎣

∂ NI
∂x xJ

,1 · x̃h
,1 + ∂ NI

∂y xJ
,1 · x̃h

,2

∂ NI
∂x xJ

,2 · x̃h
,1 + ∂ NI

∂y xJ
,2 · x̃h

,2

⎤

⎥

⎦
n · δuI (54)

Now substituting Eq. (54) into Eq. (50), and the resulting
equation into Eq. (49), the variation of the bending strain
tensor can be written explicitly in Voigt notation as

δ {E}bend = 1

2A0

nsides
∑

J=1

l J

⎡

⎣

n̄ J
1 0

0 n̄ J
2

n̄ J
2 n̄ J

1

⎤
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×
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⎡

⎢

⎣
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∂y xJ
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⎤

⎥

⎦
n · δuI

− 1

2A0
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l J
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1 0
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nnode
∑

I=1

⎡

⎢

⎢

⎣

∂ N J
I
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∂ N J
I
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⎤

⎥

⎥

⎦

n · δuJ
I

(55)

The variation of the bending strain tensor can be expressed
in compact form as

δ {E}bend = [B]main δuI + [B]adj δuJ
I (56)

where the expression of the bending matrix [B]main for the
main element and [B]adj for the adjacent element is deduced
from Eq. (55). The complete strain–displacement matrix for
bending is given by

[B]bend = [B]main + [B]adj (57)

4.3 Stress resultants and internal forces

The constitutive equation can be written for shell elements
as

{S} = [C] · {E} = [C] ·
(

{E}memb + ζ {E}bend
)

(58)

The virtual internal work Eq. (16) is expressed by

δW int =
∫

�0

h
2

∫

− h
2

(

δ {E}memb + ζ δ {E}bend
)

· [C]
(

{E}memb + ζ {E}bend
)

dζd�0 (59)

In our work we have used a simplified form of Eq. (59) ade-
quate for material linearity problems, where the virtual work
of membrane and bending effects is decoupled as

δW int =
∫

�0

h
2

∫

− h
2

δ {E}memb · [C] {E}memb dζd�0

+
∫

�0

h
2

∫

− h
2

ζ 2δ {E}bend · [C] {E}bend dζd�0 (60)

The decoupled form of Eq. (60) has been applied to wide
range of geometrically nonlinear problems with excellent
results, as compared with other existing shell formulations.

In the following a linear material model is used. Integra-
tion of the virtual internal work gives

δW int = A0hδ {E}memb · [C] {E}memb

(61)

+ A0
h3

12
δ {E}bend · [C] {E}bend

where the axial forces a and the bending moments b are
obtained from

a = h [C] {E}memb

b = h3

12
[C] {E}bend

(62)

Finally the internal forces for the BST element are computed
by

f int = A0

[

BT
]memb

a + A0

[

BT
]bend

b (63)

The semi-discrete dynamics equations of motion to be solved
are given by

f int(un+1) + Mün+1 = fext(un+1) (64)

where M is the mass matrix [22].
The acceleration vector ün+1 has to be integrated in time

to solve the algebraic equations for un+1 from the second-
order differential equations. Among the several numerical
integration methods available to integrate second order equa-
tions, the most popular in structural dynamics is the Newmark
scheme. A drawback of the Newmark integrator is the ten-
dency for high noise to persist in the solution. Therefore other
integration schemes are utilized with minor modifications as
the Generalized-α technique, which is used in this work.
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Fig. 11 Finite element meshes
used for the analysis

The solution for each external load increment is found
using an implicit scheme and the Newton–Raphson iterative
method, as described in [11,12]. Details of the solution algo-
rithm used in this work can be found in [23].

We finally recall that the results triangular element has the
three displacements for each node as the only unknowns.

4.4 Boundary conditions

The main difference between the classical formulation for
shells and the rotation-free formulation here presented is that
the boundary conditions for rotation-free elements become
a part of the formulation and has to be implemented into the
finite element code when building up the bending matrix. In
this work, the boundary conditions are treated as described
in Flores and Oñate [11].

5 Examples

5.1 Nonlinear clamped plate

Isotropic and orthotropic clamped plates with uniform load
are analyzed. The analysis is assumed to be geometrically
nonlinear, as presented in Zienkiewicz and Taylor [22] and
Clemente [24]. For the isotropic case, the same geometry
and material properties of [24] are used here in order to com-
pare the solutions. The only difference is that in [24] 8-noded
three-dimensional brick elements are used while in this work
BST elements are employed. Orthotropic material proper-
ties are Ex = 12 Pa, Ey = 6 Pa, νxy = 0.34 and G =
3.26 Pa, with Exνyx = Eyνxy . The side length of the plate is
L = 2a = 20 m with a thickness h = 1 m. For the isotropic
case, E = Ex and ν = 0.0. Because of the symmetry, only
a quarter of the plate is modeled.

The two meshes used for the isotropic analysis are shown
in Fig. 11. The structured mesh has 800 elements and 441

nodes, while the unstructured mesh has 816 elements and
447 nodes. A variable uniform load q is applied, with values
from 0.00 to 0.04 Pa. The solution obtained with both meshes
was basically identical. The non-dimensional solution of the
problem for the structured mesh is plotted in Fig. 12. The
transversal displacement w at the central point of the plate is
normalized by the thickness h, while the load q is normalized
by Dh/a4, with D = Eh3/12.

We note that the BST element gives the same solution
that using three-dimensional brick elements. Less compu-
tational effort is however required in our analysis as the
DOFs are drastically reduced in comparison of those used
by Clemente [24], who employed 1,600 elements and 2,205
nodes with four layers over the thickness. Figure 12 also
shows the importance of accounting for geometrically non-
linear effects for moderate/large displacements.

BST structured

BST unstructured

Zienkiewicz/Taylor [16]

Clemente [18]

Linear Analysis

w/h

4

0.0 0.5 1.0 1.5 2.0 2.5
0

50

100

150

200

250

300

350

400

h
D/

aq

Fig. 12 Central plate displacement versus the uniform load for
isotropic material
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Fig. 13 Vertical displacement contours plotted on the deformed shape
for w/h = −2.27
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Fig. 14 Control points used for the analysis
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Fig. 15 Displacements of control points A, B and C in the plate of
Fig. 13

Figure 13 shows the vertical displacement contours plot-
ted on the deformed shape for a negative value of q and
w/h = −2.27.

For the orthotropic analysis, a structured mesh with 800
BST elements and 441 nodes is used for the analysis.
Figure 14 shows the control points for computing the trans-
versal displacement.

Again, a variable uniform load q is applied to the plate
with values from 0.00 to 0.04 Pa, as in the isotropic problem.
The non-dimensional solution for the structured mesh is plot-
ted in Fig. 15. The transversal displacements at control points
of the plate wA, wB and wC are normalized by the thickness

h in the horizontal axis, while the load q is normalized as
described previously.

As expected, the displacement of point B is different from
that of point C due to the material orthotropy. For isotropic
material the displacements of the control points B and C
are identical. The maximum deflections are 2.40, 1.61 and
1.77 m for control points A, B and C respectively in the ortho-
tropic case and q = 0.04 Pa.

5.2 Hemispherical shell with 18◦ hole

In this example we study an isotropic and orthotropic pinched
hemispherical shell based on a popular benchmark problem
for linear shell analysis. This problem serves to check the
nearly inextensional deformation of a hemispherical shell
with an 18◦ hole at the top under the action of two inward
and two outward forces 90◦ apart. Symmetry conditions are
used and only one-quarter of the geometry is modeled as
shown in Fig. 16.

To illustrate the large deformation capabilities of the BST
element, the forces of the linear problem are incremented
100 times to obtain deflections of nearly 60% of the initial
radius for the isotropic case and deflections of nearly 90%
of the initial radius for the orthotropic case. Results for this
problem are compared with the solution obtained by Simo
et al. [25]. The sphere has a radius R = 10 with an 18◦ hole
and thickness h = 0.04. The isotropic material properties
are E = 6.825 × 107 and ν = 0.30. The structure is also
analyzed using three different orthotropic materials with the
following properties. OM1, orthotropic material 1 properties:
Ex = 6.825 × 107, Ey = 6.825 × 106, νxy = 0.30 and G =
5.884×106, with Exνyx = Eyνxy . OM2: Ex = 6.825×107,
Ey = 3.413 × 107, νxy = 0.30 and G = 1.896 × 107 and
OM3: Ex = 6.825 × 107, Ey = 6.143 × 107, νxy = 0.30
and G = 2.518 × 107. Note that OM3 is nearly an isotropic
material and the expected solution should be similar as for the
isotropic problem. The forces and boundary conditions are
shown in Fig. 16, where principal fibers direction are drawn.

The isotropic problem was solved by Simo et al. [25] using
a structured mesh of 256 quadrilateral elements with 1,632
DOFs. In this work two meshes are studied for the isotropic
problem, a structured mesh of 640 BST elements with 1,036
DOFs, and an unstructured mesh of 640 BST elements with
1,032 DOFs. A summary of the maximum displacements in
the x- and y-direction is given in Table 2. A plot of the load–
displacement values is given in Fig. 17.

The complete deformed structured mesh without magni-
fication factor is given in Fig. 18, where the contours of the
displacement vector modulus are shown.

The rotation-free BST element has an excellent behavior
for this problem involving large displacements. Note the
accuracy of the solution with both structured and unstruc-
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Fig. 16 Structured
hemispherical shell fiber
orientation

Free

Free

100

100

Sym.

Sym.

x

y

z

Table 2 Hemispherical shell (maximum displacements)

Elements DOFs Mesh u Disp v Disp

Simo et al. [25] 256 1,632 Structured 3.380 −5.875

Present work 640 1,036 Structured 3.319 −5.878

Present work 640 1,032 Unstructured 3.324 −5.929

Valdés unstructured u

Valdés unstructured v

Valdés structured u

Valdés structured v

Simou [19]

Simov [19]

Load
0 20 40 60 80 100

0

1

2

3

4

5

6

tne
mecalpsi

D

BST unstructured u

BST unstructured v
BST structured u
BST structured v

Fig. 17 Load–displacement modulus plot

tured meshes, the former with a uniform element size distri-
bution.

The orthotropic problem is analyzed using a structured
mesh of 640 BST elements and 1,036 DOFs. A summary
of the maximum displacements in x- and y-direction for the
different materials is given in Table 3. A plot of the load–dis-
placement curves is shown in Fig. 19.

0.00 5.87
x

y

z

Fig. 18 Deformation without magnification factor. Colors indicate the
values of the displacement vector modulus

Table 3 Maximum displacements

OM1 OM2 OM3

u-Direction 3.981 3.593 3.365

v-Direction −8.913 −6.999 −6.054

We recall that OM3 has properties similar to the isotropic
case since only one direction of the orthotropic material is
10% softer in its weakest direction than the isotropic material.
The maximum displacements for OM3 are: u = 3.365 and
v = −6.054, while the maximum displacements for the
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Fig. 19 Orthotropic
hemispherical shell.
Load–displacement plots
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Fig. 20 Geometry for orthotropic clamped cylinder

isotropic material are: u = 3.319 and v = −5.878. There-
fore, we can conclude that our analysis for the orthotropic
material OM3 is correct, as both solutions are comparable
with a maximum difference of 3%.

Orthotropic materials 1 and 2 are 90 and 50% softer in
their weakest direction respectively than the isotropic mate-
rial, yielding larger displacements than the isotropic case, as
shown in Fig. 19.

For OM1, a maximum displacement of v = −8.913 is
found, yielding a deformation of nearly 90% of the initial
radius. This allow us to conclude that the large deforma-
tions capabilities of the BST element are good for orthotropic
material.

5.3 Clamped orthotropic cylinder

This example is taken from the work of Kreja et al. [26]
and Reddy [27]. The problem deals with the nonlinear bend-
ing of an orthotropic cylinder clamped at both ends, which
geometry is shown in Fig. 20. The cylinder has a radius
R = 20.0 in, length L = 20.0 in and a thickness h = 1.0 in

0.0 2.0 4.0 6.0 8.0 10.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Internal pressure ( )ksi

(
noitcelfedlaidarlartne

C
)

in

BST

Reddy [21]

Krejaetal. [20]

Fig. 21 Center deflection versus internal pressure for orthotropic
cylinder

with an internal pressure q = 10.0 ksi. The material prop-
erties are to those of glass-epoxy fiber-reinforced composite
material and are E1 = 7,500 ksi, E2 = 2,000 ksi, ν12 = 0.25
and G12 = 1,250 ksi with E1ν21 = E2ν12.

In Fig. 21 the central radial deflection versus the applied
internal pressure is plotted for various steps. A comparison of
these values obtained for the rotation-free orthotropic shell
triangle show good agreement with those of Kreja et al. [26]
and Reddy [27].
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6 Conclusions

We have presented a rotation-free shell formulation for the
geometrically nonlinear analysis of orthotropic thin shell
structures using triangular elements. Improvements to the
already existing formulation for the rotation-free BST for
analysis of orthotropic shell structures have been made using
a principal fiber orientation approach.

The idea to use the fiber orientation of the material for
the analysis comes from the manufacturing process where a
direction for the principal fiber of the material is needed to
manufacture the membrane structure. The fiber orientation
is mesh dependent and allows the analysis of both isotro-
pic and orthotropic materials. Besides, the fiber orientation
allows an adequate postprocessing of the problem as any
number of patches that conform the structure can be postpro-
cessed with different local fiber orientations. Another advan-
tage of the fiber orientation approach is that it allows us to
perform analysis with orthotropic and composite materials
including structural elements having an initial out-of-plane
configuration.
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