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Abstract – This work analyzes the influence of the discretization error contained in the Finite Element (FE) analyses of 
each design configuration proposed by structural shape optimization algorithms over the behaviour of the algorithm. If the 
FE analyses are not accurate enough, the final solution will neither be optimal nor satisfy the constraints. The need for the 
use of adaptive FE analysis techniques in shape optimum design will be shown. The paper also proposes the use of the al-
gorithm described in [1] in order to reduce the computational cost associated to the adaptive FE analysis of each geometri-
cal configuration when evolutive optimization algorithms are used. 
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1 Introduction 
From a mathematical point of view, the treatment of an 

optimization problem can be viewed as the minimization of 
a function f(x) depending on a set of variables x and sub-
jected to some constraints. The general form of such a prob-
lem is:  
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where f is the objective function (OF), xi are the design va-
riables and gj are inequality constraints which, for structural 
problems, are normally expressed in terms of stresses and/or 
displacements. The values ai and bi define lateral constraints. 
Each individual is characterized by a set of values of x that 
correspond to a specific structural design. The definition of 
each design in terms of the values of x is called the parame-
terization of the optimization problem. The resolution of the 
optimum design problem consists of finding the values of x 
defining the best design. 

The algorithms used to solve optimization problems are 
generally iterative. Whichever the algorithm used, it would 
be necessary to evaluate the values f and g for each of the 
different designs during the iterative optimization process. 
In this work we have considered structural shape optimiza-
tion. The values for f and g in this kind of problems are 
usually obtained by the use of the finite element method 
(FEM). Hence, one should create a specific mesh for each of 
the different designs to be considered and then use the FEM 
to obtain the structural response of each design and, if ne-
cessary, the corresponding sensitivities with respect to the 
design variables. Two main aspects relative to the evalua-

tion of f and g by means of the FEM, which have a great 
importance over the global behavior of the optimization 
process, must be taken into account: the computational ef-
fort required for the numerical evaluation of each individual 
(geometrical configuration) and the accuracy of the FEM 
results.  

The importance of the computational effort required for 
the evaluation of each geometrical configuration is evident. 
In optimization problems, like those under consideration, 
most of the computational cost is devoted to the analysis of 
individuals in order to obtain the values of the OF and the 
degree of satisfaction of the constraints.  

On the other hand, and related to the accuracy of the re-
sults, we have to be aware that this numerical analysis tech-
niques only provide approximate values for the data  re-
quired by the optimization algorithm (OF and constraints). 
If these values are not accurate enough, an excessive amount 
of noise can be introduced in the optimization process. This 
could decrease the rate of convergence of the optimization 
process to the optimal solution, produce the convergence of 
the process to a non-optimal solution or, simply, avoid con-
vergence. In the context of the FEM, the so called h-
adaptive techniques, the p-adaptive techniques and the hp-
adaptive techniques can be used to obtain solutions with the 
prescribed accuracy level. However, the use of these tech-
niques implies a big computational cost that reduces the 
computational efficiency of the optimization process. 

This paper shows that the correct behavior of the optimi-
zation process is only obtained if a minimum quality of the 
results of the analysis of each design, used to drive the op-
timization process, is ensured. To do this we will show the 
effect of the prescribed maximum error in energy norm over 
the final results obtained by means of a gradient-based de-
terministic algorithm and those obtained with an evolutio-
nary algorithm.  
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As previously commented, adaptive FEM techniques can 
be used to obtain solutions with a prescribed accuracy level. 
However, in the traditional adaptive techniques this implies 
the successive analysis of numerical models with increasing 
accuracy, automatically adapted to the characteristics of the 
solution of the problem. The computational cost related to 
the use of these traditional adaptive analysis techniques can 
be critical when evolutionary algorithms are used. To solve 
this problem, in this paper we propose the use of the 
h-adaptive analysis technique for the individuals of each 
generation described in [1], that avoids the full h-adaptive 
remeshing loop for the vast majority of them. We also pro-
pose to increase the required level of accuracy in the FE 
analyses during the evolution of the optimization process in 
order to decrease the computational cost at the early stages 
of the process while ensuring the quality of the final results 
of the optimization.  

2 Case study and motivation. Pipe cross 
section 

Here we present the results of the solution of an optimi-
zation problem, with a known analytical solution, using 
different levels of the controlled discretization error, as a 
motivation for the developments presented in this paper. 
Both, evolutionary and deterministic optimization algo-
rithms have been considered. The part to be optimized cor-
responds to the cross-section of a pipe subjected to an in-
ternal pressure. Two perpendicular planes of symmetry 
have been considered; therefore, only one quarter of the 
section has been modeled, as shown in Figure 1. The shape 
is defined by a total of 8 points, 5 of these points describe a 
circular internal shape and 3 describe the external boundary 
of the pipe. The optimization problem consists of finding 
the shape for the external boundary keeping the internal one 
fixed and minimizing the total area. The 4 design variables 
Vi, i = 1…4, shown in Figure 1 correspond with the coordi-
nates of the points that define the external boundary.  

The maximum von-Mises stresses along the boundary of 
the model have been restricted to 2,0x106.  

The area of the analytical solution for this optimization 
problem (1/4 of cross section) is Aopt = 69,725903. This 
corresponds to an external radius Ro = 10,666666. 

 

 
Fig. 1. Pipe cross section. Analysis data, original model, 

optimal analytical solution and design variables 

2.1 Evolutive algorithm 

For these numerical analyses we have used the Diffe-
rential Evolution (DE) algorithm. DE is an evolutionary 
algorithm that has shown a robust performance yielding 
good results, even when applied to very different types 
of problems. DE was developed by Storn and Price in 
1995 (see [2]). Its key idea is the differential operator, 
which serves the same purpose as the crossover parame-
ter in a standard genetic algorithm, namely to exchange 
information between parents when creating offspring. 
We have used the DE1 classical version of the Differen-
tial Evolution proposed by Storn and Price. 

The initial values of the design variables and their al-
lowed data range and constraints for the Pipe cross sec-
tion problem are shown in Table  I.  

 
Table 1. Pipe cross section. Values of design variables 

Design 
variable 

Initial 
value 

Range Constraints 

V1 20 [5.2 − 50.0]  
V2 19 [4.0 − 50.0]  
V3 19 [4.0 − 50.0] V3 < V1 − 0.5 
V4 20 [5.2 − 50.0] V4 < V2 + 0.5 

Observe that we have used constraint equations between 
the values of the design variables in order to minimize the 
production of geometrically unfeasible individuals. 

2.2 Gradient-based algorithm 

The deterministic optimization algorithm considered in 
this work defines the new values of the design variables for 
a new design using the results of the numerical analyses 
associated to the behavior of the existing design, and their 
sensitivity analysis. The methodology used in this paper 
corresponds to the algorithm developed by Navarrina [3]. 
Once the k-th design has been analyzed, the values for the 
design variables for the next design are defined as: 

  (2) kkkk sxx θ1 +=+

where xk is the vector containing the values of the design 
variables for the k-th geometry, xk+1 is the vector corres-
ponding to the next geometry, sk is a unit vector defining the 
direction of change in the space of the design variables and 
θk is a scaling factor in this direction. 

The algorithm computes the direction of change sk by us-
ing a SIMPLEX method with information coming from an 
exact first order sensitivity analysis of the OF and the con-
straints. Next, the scaling factor θk is computed by perform-
ing a line search minimization using second order direction-
al sensitivity analysis.  

2.3 H-Adaptive Finite Element Analysis 

We have used an h-adaptive finite element analysis code 
to obtain the values of the objective function and the degree 
of satisfaction of the constraints for each of the different 
geometrical configurations proposed by the optimization 
algorithms. The use of the h-adaptive strategy ensures the 

V3 V 1 Original 
geometry 

Plane strainV2 6

x

y
P

Optimal 
analytical
geometry 

 = 10.1·10
 = 0.3

E
ν

6P = 0.9·10
R  = 5 i 

R i V4 



International Journal for Simulation and Multidisciplinary Design Optimization                            365 

quality of the analysis providing FE solutions with a relative 
estimated discretization error in energy norm γ lower than 
that specified by the analyst. The program uses the Zienkie-
wicz-Zhu error estimator in energy norm [4] to guide the 
h-adaptive analysis. Hence, the following expression is used 
to evaluate the error estimation in energy norm for each 
element, ηe:  

  (3) ( ) ( )∫Ω

− Ω−−=η
e

dh
T

he σσDσσ *1*2

where σh is the stress field directly obtained from the FE 
analysis, σ* is a recovered stress field, D relates strains with 
stresses as σ = Dε and Ωe is the domain of element e. 

In the numerical examples, triangular elements have been 
used due to their big flexibility when generating adapted 
unstructured meshes. Quadratic (6 noded) instead of linear 
(3 noded) triangular elements have been used in order to 
improve accuracy. We have used the global least squares 
smoothing technique [4] to obtain the recovered stress field 
σ* required by the Zienkiewicz-Zhu error estimator. Other 
recovery techniques like the Superconvergent Patch Recov-
ery technique (SPR) by Zienkiewicz and Zhu[5] or any oth-
er improvement of this recovery technique could also be 
used [6-8].  

Cubic B-splines [9] have been used to define each of the 
geometrical configurations in terms of the coordinates of 
some definition points (parameterization). 

In order to see the effect of the amount of discretization 
error over the behavior of the optimization algorithms (both 
evolutionary and deterministic) 6 different situations corres-
ponding to different prescribed error levels have been stu-
died. The maximum error values prescribed for the first 5 
analyses were 1%, 2.5%, 5%, 10% and 20%. In the 6th case 
a γ<100% tolerance has been specified, which in practical 
terms implies that the accuracy of the solution is not con-
trolled and the number of elements is only depending on 
geometrical criteria (see examples in Figure 2).  

  

 
Fig. 2. Examples of initial meshes 

2.4 Solution using the evolutionary algorithm. 
Influence of the discretization error 

Figure 3 shows the effect of the prescribed maximum es-
timated relative error in energy norm γ over the evolution of 
the area of the pipe cross section. It can be observed that, at 
least for this problem, the global aspect of the results for all 
the situations is quite similar. 
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Fig. 3. Influence of γ over the evolution of the objective 

function 

However, as shown in Figure 4, the effect of γ over the 
evolution of the optimization process is especially signifi-
cant if we compare the final results obtained with each dif-
ferent degree of the discretization error. Figure 4 shows, in 
relative terms, the evolution of the difference between the 
area provided by the best individual obtained up to each 
generation and the area of the optimal analytical solution. 
The graph shows that the final solution associated to each 
analysis is significantly different to the analytical solution 
for the cases with higher values of the prescribed error γ, but 
approaches to the exact solution for the lower values of γ. 

Figure 5 represents the effect of γ over the final solution 
provided by the optimization algorithm. It can be clearly 
observed that for high values of γ the algorithm converges to 
shapes that are quite different to the optimal analytical solu-
tion. However, the final solution provided by the optimiza-
tion process approaches to the analytical solution for de-
creasing values of γ. Observe that the difference between the 
exact solution and that obtained for γ = 1% is only 0.46%. In 
any case, one should take into account that the optimal ana-
lytical external boundary (circular shape) cannot be exactly 
obtained because the B-splines used to define de boundary 
are unable to exactly reproduce an exact circular shape. 

The finite element method usually underestimates the 
maximum stress value. The level of this underestimation of 
stresses increases with the size of the elements used in the 
analysis. In order to quantify the quality of the solutions 
obtained with the different degrees of discretization error, 
we have performed a full h-adaptive analysis requiring a 
final estimated error in energy norm γ < 0.3% over each of 
the geometries displayed in Figure 5. This has produced 
much more accurate approximations of the stress distribu-
tions and, therefore, a much more accurate evaluation of the 
degree of satisfaction of the stress constraints. Figure 6 dis-
plays the difference between the maximum von Mises 
stresses finally obtained for each design and the maximum 
allowed value for this magnitude. It is clearly shown that the 
obtained optimal solutions underestimate the maximum val-
ue of the von Mises stress. Hence, the accurate evaluation of 
these designs reveals that they would severely exceed this 
magnitude. The same figure also shows the difference be-
tween the final area obtained for each value of γ and the area 
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of the analytical solution. It can be clearly observed that 
both graphs are closely related. Basically, due to the unde-
restimation of the maximum von Mises stress the optimiza-
tion algorithm reduces the area until this value reaches the 
specified limit. Hence, the optimization algorithm provides 
solutions with a lower area than those that would be ob-
tained with an accurate evaluation of the maximum von 
Mises stress. Observe that the solution obtained with  γ ≤ 
1% is almost identical to the analytical solution, with a dif-
ference in areas of only +0.46% and exceeding the allowa-
ble stresses by only 0.68%. 
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Fig. 4. Influence of γ over the evolution of the error in the 
objective function with respect to the analytical solution 

 
Fig. 5. Influence of γ over the optimal solution found (black 

contour) and comparison with optimal analytical solution 
(shaded area) 

2.5 Solution using the gradient-based determi-
nistic algorithm. Influence of the discretization 
error 

Figure 7 shows a comparison between the convergence 
curves obtained with the different levels of prescribed dis-
cretization error for the case of the gradient-based determi-
nistic algorithm. First, it can be seen that in all cases the 

convergence is much faster than with the evolutionary algo-
rithm. Nevertheless, it can also been seen that after an initial 
quick drop of the OF, its evolution is different depending on 
the amount of the allowed discretization error. 

During the first 10 iterations the convergence is not de-
pending on the level of discretization error. This is because 
in these initial iterations the obtained designs are far away 
from the optimal one and the corresponding stress values are 
still far away from the restricted ones. Therefore, the con-
straints are not yet active and thus the process is still inde-
pendent of the degree of accuracy in the evaluation of the 
constraints.  

Effect of discretization error over 
OF and constraints

-20

-15

-10

-5

0

5

10

15

0.00 5.00 10.00 15.00 20.00 25.00
Relative estimated error %

Exceeded%  max 
von Misses stress
Error% in Area

 
Fig. 6. Influence of γ over the accuracy of the objective 

function and the degree of satisfaction of stress constraint 
equations 
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Fig. 7. Deterministic algorithm. Influence of γ over the evo-

lution of the objective function 

Fig. 8 shows the detailed evolution of the OF after the ini-
tial iterations. In this case, the evolution of the relative dif-
ferences between the cross sectional area obtained at each 
iteration and the optimal analytical one is represented. It can 
be seen how a quick convergence to a practically exact val-
ue is obtained when γ is fixed to 1%. On the other hand, 
when higher values of γ are employed, the evolution of the 
OF shows big oscillations and the process stops with final 
designs that, in fact, are not feasible because a more accu-
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rate analysis also shows too high values of the von Mises 
stress. The main reason of all this behavior is the lack of 
reliability of the obtained values for the von Mises stress 
that drive all the optimization process. These values change 
every time the mesh is modified, introducing a lot of “noise” 
in the convergence of the process and in the lack of reliabili-
ty of the final design. This noise would not appear if a single 
mesh, conveniently adapted to each geometry, had been 
used. In this case, this noise wouldn’t be present and 
wouldn’t produce oscillations, but the final optimum design 
wouldn’t be reliable because the degree of reliability of the 
computed von Mises stress would be very low. 
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Fig. 8. Deterministic algorithm. Influence of γ over the evo-

lution of the difference between the obtained objective 
function and the analytical solution 

 
Fig. 9. Deterministic algorithm. Influence of γ over the op-
timal solution found (black contour) and comparison with 

optimal analytical solution (shaded area). 

As in the case of the evolutionary algorithm, and in order 
to quantify the quality of the solutions obtained with the 
different degrees of discretization error, a full h-adaptive 
analysis requiring a final estimated error in energy norm 
γ < 0.3% was performed over each of the geometries dis-
played in Fig. 9. These analyses produced much more accu-
rate approximations of the stress distributions and, thus, 
much more accurate evaluation of the degree of satisfaction 
of the stress constraints. Fig.10 displays the difference be-
tween the maximum von Mises stresses finally obtained for 

each design and the maximum allowed value for this magni-
tude. The results are similar to those previously shown for 
the evolutionary algorithm: the optimal solutions provided 
by the optimization process underestimate the maximum 
value of the von Mises stress that would be obtained with 
more accurate FE models. Solutions with a lower area than 
those that would be obtained with an accurate evaluation of 
the maximum von Mises stress are, thus, obtained. Howev-
er, the results obtained in this case are more accurate than 
those obtained with the evolutionary algorithm. The solution 
obtained with γ ≤ 1% is again quite close to the analytical 
solution, with a difference in areas of only +0.061% and 
exceeding the allowable stresses by only 0.33%. 

Effect of discretization error over 
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Fig. 10. Deterministic algorithm. Influence of γ over the 

accuracy of the objective function and the degree of satis-
faction of stress constraint equations. 

3 Error-control strategies for evolutionary 
algorithms 

The numerical results previously exposed have clearly 
shown the importance of the accuracy of the FE analysis on 
the final results of both types of optimization algorithms. 
Mesh refinement in FE analyses is directly associated to 
error control techniques. In fact, to minimize the total 
amount of calculations one should preferably use some kind 
of adaptive analysis technique such us the automatic 
h-adaptive mesh refinement technique previously mentioned 
as they tend to produce the solution with the prescribed ac-
curacy at the lowest computational cost. The use of such 
techniques is especially critical when evolutionary algo-
rithms are used due to the large amount of different geome-
trical configurations to be analyzed. In this case, and in or-
der to reduce the computational cost associated to the crea-
tion of an adapted mesh for each of the individuals to be 
analyzed, we propose the use of the h-adaptive strategy for 
the analysis of generations of individuals described in [1]. 
This technique has been used in the numerical example pre-
sented in the following section. The origin of this technique, 
and its application to deterministic optimization algorithms, 
can be seen in references [10-12]. The work in [1] presents a 
strategy that allows generating an adapted mesh for each 
individual of a generation without the necessity of perform-
ing a full adaptive remeshing procedure for each of them. It 
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makes use of sensitivity analysis of all magnitudes related 
with adaptive remeshing (location of nodes, error estimation, 
etc.) in a reference geometry with respect to the design va-
riables. This sensitivity analysis is then used to project the 
results from the reference geometry to all other geometrical 
configurations. This information allows generating an ap-
propriate h-adapted mesh for each geometry, thus avoiding 
the full h-adaptive loop over each individual. 

However, the results previously presented have also 
shown that the accuracy of the analyses, prescribed by γ, 
does not significantly modify the early stages of the optimi-
zation process. This suggests the use of a very simple error 
control technique to reduce the total amount of calculations 
involved in the optimization process. The error control tech-
nique consists of using high values of γ at the early stages of 
the optimization process and to successively decrease this 
value with the advance of the optimization process.  

4 Numerical example: Gravity dam 
The gravity dam represented in Figure 9 was analyzed. 

Both dead weight and water hydrostatic pressure were con-
sidered in the analysis. The model does not include any 
sharp reentrant corners. The shape optimization problem 
consists of finding the best shape for the internal boundary, 
keeping fixed the external one. This minimizes the cross 
sectional area of the gravity dam. A total of 7 points were 
used to define the internal boundary. As indicated in Fig. 10, 
the coordinates of 5 of these points were considered as the 
design variables for this problem. The maximum von-Mises 
stresses along the boundary of the model have been re-
stricted to 2,75·106 Pa.  
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30 individuals per generation were used in the analysis. 
The analysis ran for a total of 100 generations. A maximum 
estimated relative error in energy norm γ = 2.5% was re-
quired for the analysis of the final solution. We specified a 
geometrical variation of the estimated error in energy norm 
from γ = 20% in the first generation to γ = 2.5% in the last 
one (see  Fig. 11) to reduce the computational cost asso-
ciated to the early stages of the optimization process.  
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Fig. 11. Evolution of the prescribed value of γ. 

In this test case, the use of the error projection technique 
previously described [ 1] provided the appropriate mesh for 
the FE analysis of 95% of the individuals considered in the 
optimization process, further reducing the computational 
cost of the optimization. 

Fig. 12 shows the evolution of the objective function 
(area) during the optimization process. Fig. 13 clearly shows 
the difference between the original and the optimized de-
signs. After the analysis of 100 generations, a previous test, 
where the maximum estimated relative error in energy norm 
was prescribed as γ = 3% for the whole optimization process, 
provided an area whose difference with respect to the final 
result shown in Fig. 12 is only 0.7%. As expected, the use of 
the previously described strategy where a variable value γ is 
prescribed, does not put the accuracy of the optimization 
process at risk. 
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