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The fixed-mesh ALE approach applied to solid mechanics
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SUMMARY

In this paper we propose a method to solve Solid Mechanics and fluid–structure interaction problems
using always a fixed background mesh for the spatial discretization. The main feature of the method is
that it properly accounts for the advection of information as the domain boundary evolves. To achieve
this, we use an Arbitrary Lagrangian–Eulerian (ALE) framework, the distinctive characteristic being that
at each time step results are projected onto a fixed, background mesh. For solid mechanics problems
subject to large strains, the fixed-mesh (FM)-ALE method avoids the element stretching found in fully
Lagrangian approaches. For FSI problems, FM-ALE allows for the use of a single background mesh to
solve both the fluid and the structure. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The fixed-mesh arbitrary Lagrangian–Eulerian (ALE) method (FM-ALE from now on) is a fixed
grid method. Its main feature is that the domain movement is taken into account when computing
the temporal derivatives. The basic idea consists in using an ALE strategy and remeshing at each
time step in such a way that the original fixed mesh is recovered. This has two main advantages
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1530 J. BAIGES AND R. CODINA

when compared with other fixed grid methods:

1. As an ALE formulation is used, temporal derivatives can be correctly computed, including
the convective terms arising due to the domain movement.

2. The values of the variables in previous time steps are clearly defined in the so-called newly
created nodes, an issue of particular controversy in most fixed grid methods.

ALE formulations were initially developed for fluid dynamics problems, in which they were
necessary to cope with fluid–structure interaction (FSI) and free surface problems (see [1–3]). In
classical ALE methods, remeshing is often necessary after a certain number of time steps in order
to avoid element stretching. The FM-ALE method avoids this need by projecting the results from
the ALE deformed mesh onto a fixed background mesh at each time step, prior to solving the
flow equations. At the end all the calculations can be performed on the fixed mesh, and in fact the
ALE deformed mesh does not need to be explicitly built.

The FM-ALE method for flow problems in moving domains is extensively described in [4]: the
main algorithmic steps of the method are set and two applications in the field of flow problems are
presented. Here we take the same ideas and we apply them to problems in solid mechanics and FSI.

The most usual approach to solve solid mechanics problems is the use of Lagrangian formu-
lations. This means that equations are written for material points following the movement of
particles. This is a natural choice as in solid mechanics we are interested in tracking the behavior
of structures in time (contrary to many problems of fluid mechanics where one is interested on the
effect of the flow in a certain region, leading to Eulerian formulations). However, there are certain
problems in which fully Lagrangian formulations cannot be used or lead to numerical difficulties:
when a solid body is subject to large strains the shape of the elements that form the mesh can
change a lot, resulting in stretched elements. Stretched elements cause that the system of equations
to be solved is ill-conditioned, an inconvenience of particular importance if iterative methods are
to be used. In this case ALE formulations are used and the mesh is no longer deformed following
the particles, but is given an arbitrary movement that avoids the stretching of elements.

ALE methods for solid mechanics problems have been extensively developed (see [5–7]). The
main concern in these works is to correctly compute the stress and plastic history variable update,
as values of history variables at the previous time step are not available at the quadrature points
unless a fully Lagrangian approach is used. In the framework of ALE strategies for solid mechanics
problems, the FM-ALE method can be understood as an ALE method in which the mesh velocity
is set to zero in all the domain except in the region close to the body surface. In [8] an Eulerian
formulation for large deformation solid dynamics is presented. However, it is not clear how the
issue of newly created nodes near the boundary is treated.

Once the FM-ALE strategy has been applied to both flow and solid mechanics problems, it is
very natural to consider its use in the area of FSI. Several fixed grid strategies to solve FSI problems
have been developed in the past years. As a first example, the immersed boundary method [9–13]
consists in adding punctual penalty forces in the domain boundary so that the boundary conditions
are fulfilled. Another possible approach is the use of Lagrange multipliers to enforce boundary
conditions (see [14–16]). Both approaches are fictitious domain methods [17, 18] in the sense that
the fluid–structure interface divides the fluid domain in a physical flow field and a fictitious field,
which may be discretized and solved, but has no physical meaning to the FSI problem. Usually
the unknown fields in this fictitious domain are used to assign values to the newly created nodes
in the computation of time derivatives. In the extended finite element method, special functions
are used to enrich the finite element space near the interface. In [19] a fixed mesh is used to solve
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the fluid, while the solid is treated by a Lagrangian description. The description of the fluid–solid
interface is done by means of a level set function. In all these works, a fully Lagrangian approach
is used to deal with the solid.

An interesting feature of using the FM-ALE method to solve FSI problems is that as the regions
occupied by the fluid and the solid do not superimpose, a single mesh can be used, giving some of
the elements to the solid mechanics problem and the others to the flow problem. Special care has
to be given to the coupling conditions between fluid and structure: the usual partitioned methods
can be used with the FM-ALE method, although due to the fact that the same mesh is used to
solve both problems a monolithic approach seems more suitable.

The paper is organized as follows. A review of ALE methods applied to solid mechanics
problems is presented in Section 2. First the general ALE formulation is presented and particularized
to the solid mechanics conservation laws. Afterwards the two possible approaches to face the
equations are discussed: the monolithic approach deals with the arising equations in a classical
manner, while in fractional-step methods the equations are solved in two steps, namely, the
material and the convective phases. This allows for the use of specific numerical methods to solve
each of the phases. In Section 3 the FM-ALE method is described. As a detailed explanation
of the method can be found in [4], only the general algorithm and the particular features of its
application to solid mechanics problems are presented. Stress is put on critical issues such as the
imposition of boundary conditions or the tracking of the solid body surface. Section 4 deals with the
FM-ALE method applied to FSI problems. The equations for the coupled problem are presented. A
description of some of the most common coupling strategies and their particularization to FM-ALE
follows. Finally in Section 5 some numerical examples and validation tests are carried out, showing
the behavior of the proposed methodology. Some conclusions close the paper in Section 6.

2. ALE METHODS APPLIED TO SOLID MECHANICS

2.1. Problem statement

Let us consider a region �0⊂Rd (d=2,3) where a solid body moves through during a time
interval [0,T ]. The solid at time t occupies only a subdomain �(t)⊂�0. The boundary of �(t) is
defined by a part of ��0 and a moving boundary that we call �free=��(t)\��0∩��(t).

In order to cope with the time-dependency of �(t), we use the ALE approach, with the particular
feature of considering a variable definition of the domain velocity. Let vt be a family of invertible
mappings, which for all t ∈[0,T ] map a point X∈�(0) to a point x=vt (X)∈�(t), with �0=I,
the identity. If vt is given by the motion of the particles, the resulting formulation would be
Lagrangian, whereas if vt =I for all t , �(t)=�(0) and the formulation would be Eulerian.

Let now t ′ ∈[0,T ], with t ′�t , and consider the mapping

�t,t ′ :�(t ′) −→ �(t)

x′ �→ x=�t ◦�−1
t ′ (x′)

Given a function f :�(t)×(0,T )−→R, we define

� f

�t

∣∣∣∣
x′

(x, t) := �( f ◦�t,t ′)

�t
(x′, t), x∈�(t), x′ ∈�(t ′)
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1532 J. BAIGES AND R. CODINA

In particular, the domain velocity taking as a reference the coordinates of �(t ′) is given by

udom := �x
�t

∣∣∣∣
x′

(x, t) (1)

Three conservation laws are fundamental in solid mechanics, namely mass, momentum and
energy balance. Let us make the assumption that mechanical effects are uncoupled from thermal
effects. In this case, equations for mass and momentum balance can be solved independently from
the energy balance equation. The solid mechanics problem formulated in �(t), accounting also
for the motion of this domain, can be written as follows:

��

�t

∣∣∣∣
x′

+(u− udom) ·∇� = −�∇ ·u (2)

�
�u
�t

∣∣∣∣
x′

+�(u− udom) ·∇u= ∇ ·r+�b (3)

where � is the solid density, u is the particle velocity, r is the Cauchy stress tensor and b is the
vector of body forces.

It is usual in the field of solid mechanics to use the following equation that relates the density
� in a given configuration with the density �0 at the undeformed configuration:

�J =�0 (4)

at each material point, where

F= �x
�X

, J =det(F)

As long as the material surfaces that compose the boundary of the solid are tracked with enough
accuracy, this allows to avoid solving (2) and solving only for (3). An additional constitutive
equation that relates r and u will be needed so that the problem is well posed.

If path dependent constitutive equations are to be used, material derivatives of the plastic internal
variables have to account for the advection effects, leading to an equation for them of the form:

�a
�t

∣∣∣∣
X

= �a
�t

∣∣∣∣
x′

+(u− udom) ·∇a=F(�) (5)

where a is the set of plastic internal variables and k is the set of variables of interest of the problem,
that would typically include the plastic internal variables plus the displacements, velocity and
acceleration fields. The right-hand-side of (5) denotes a problem-dependent operator F applied
to k.

Initial and boundary conditions have to be appended to problem (3). Usual boundary conditions
are used for both �free and ��0:

u = ū on �D

n·r = t̄ on �N
(6)

where n is the external normal to the boundary and t̄ are the given boundary data. �D and �N are,
respectively, the Dirichlet and the Neumann parts of the boundary ��(t).
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To shorten the notation, we will introduce the convection velocity

c=u−udom

in what follows.

2.2. The time-discrete problem

Let us introduce some notation. Consider a uniform partition of [0,T ] into N time intervals of
length �t . Let us denote by f n the approximation of a time dependent function f at time level
tn =n�t . We also denote

� f n+1 = f n+1− f n

�t f
n+1 = f n+1− f n

�t

f n+� = � f n+1+(1−�) f n, �∈[ 12 ,1]

� type schemes: Suppose we are given a computational domain at time tn , with spatial coordinates
labeled xn , and an equation of the form:

�v

�t
+c·∇v=G(v)

where v is the unknown function and G is an operator applied to it. If vn is known, vn+1 can now
be found as the solution of the problem:

�tv
n+1|xn +cn+� ·∇vn+� =G(vn+�) (7)

where now �tvn+1|xn =(vn+1(x)−vn(xn))/�t , being x=�tn+�,tn (x
n) the spatial coordinates in

�(tn+�). The domain velocity given by (1), with x′ =xn , is approximated as

un+�
dom = 1

��t
(�tn+�,tn (x

n)−xn) (8)

which allows us to compute cn+� =un+�−un+�
dom in (7).

Fractional-step methods for solid mechanics: There are basically two ways of dealing with the
ALE system of equations (2)–(6) (see [20] and the references therein):

(a) solving the fully coupled system of equations, accounting for the various terms simultane-
ously,

(b) using a fractional-step method to treat material and convective effects separately.

Although solving the coupled system of equations is more accurate, the fractional-step method
offers some very useful advantages. On one hand, each of the equations to be solved is simpler
than the ones arising from the coupled problem. On the other, difficulties on the computation of
the stress field gradient, which are due to the fact that stresses are usually discontinuous across
element edges, are more easily circumvented.
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1534 J. BAIGES AND R. CODINA

Remark 1
The FM-ALE method presented in this work has no dependence on the way the system of equations
(2)–(6) is dealt with. However, for ease of implementation, fractional-step schemes have been
chosen in the numerical examples presented in Section 5.

Let us consider the � type scheme in (7). For simplicity we will consider �=1. This equation
can be solved in a monolithic way, but it can also be divided in two phases:
Material phase (first-order splitting): In the first phase we solve:

vn+1(xmat)−vn(xn)
�t

=G(vn+1(xmat)) (9)

where xmat=Xtn+1,tn (x
n) is the mapping given by the motion of the particles. Note that this first

phase corresponds to udom=u (c=0), that is to say, to a fully Lagrangian approach.
Convective phase (first-order splitting): In the second phase we solve:

vn+1(x)−vn+1(xmat)

�t
+cn+1(x) ·∇vn+1(x)=0 (10)

where x=�tn+1,tn (x
n) are the spatial coordinates in �(tn+1).

If we add (9) and (10) we obtain:

vn+1(x)−vn(xn)
�t

+cn+1(x) ·∇vn+1(x)=G(vn+1(xmat)) (11)

which corresponds exactly to (7) except for the fact that instead of evaluating G(vn+1) at x we eval-
uate it at xmat. This introduces an error of O(�t): observe from (10) that ‖vn+1(x)−vn+1(xmat)‖=
O(�t), where ‖·‖ may be taken, for example, as the L2-norm.

If one wants a second order in time scheme, this could be achieved by modifying scheme
(9)–(10) in the following manner:
Material phase (second-order splitting):

vn+1(xmat)−vn(xn)
�t

+cn ·∇vn(x)=G(vn+1(xmat)) (12)

Convective phase (second-order splitting):

vn+1(x)−vn+1(xmat)

�t
+cn+1 ·∇vn+1(x)−cn ·∇vn(x)=0

Note that cn+1 ·∇vn+1(x)−cn ·∇vn(x) is expected to be, formally, of first order in �t , and therefore
‖vn+1(x)−vn+1(xmat)‖=O(�t2). Thus, when vn+1(xmat) is used in (12) instead of vn+1(x), the
resulting splitting error is expected to be O(�t2). If an overall second-order scheme is to be used,
�= 1

2 must be chosen.
These fractional-step schemes can be introduced to the system of equations (2)–(6) and also for

the plastic internal variables a whose evolution equation is given by (5).
Newmark’s method: If in the constitutive equation that relates the stress tensor r with the set

of variables of interest of the problem there is a dependence on the displacement field d, that is
to say, r=r(d,a), (3) becomes a second order in time equation. In [21], Newmark presented a
method to discretely approximate the velocity and acceleration (a) at time tn+1 as a function of
displacements (d), velocity and acceleration at time tn in a Lagrangian framework. These three
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fields can be related in the continuous case by means of the equations

�u
�t

∣∣∣∣
X

=a,
�d
�t

∣∣∣∣
X

=u

Newmark method reads:

an+1 = 1

��t2
[dn+1−dn−un�t]−

(
1

2�
−1

)
an

un+1 = �

��t
[dn+1−dn]+

(
1− 1

2�

)
�tan

(13)

where � and � are parameters to be chosen. Most usual values are �= 1
4 and �= 1

2 , which provide
a second-order stable and non-dissipative scheme. In the case of displacement-dependent stress
tensors, this method is to be used instead of � type schemes. For the sake of conciseness, we
will restrict what follows to � schemes, both in the monolithic and fractional-step versions. The
dependence of r on the rest of variables of the problem (including internal variables a) will be
simply indicated by r=r(�).
2.3. The fully discrete problem

The next step is to consider the spatial discretization of the time-discrete problem for both the
coupled and fractional-step methods. Here we present the discretization obtained if finite elements
are used.

Let {�e}n+1 be a finite element partition of the domain �(tn+1), with index e ranging from 1
to the number of elements nel. We denote with a subscript h the finite element approximation to
the unknown functions. The test functions for the velocity uh will be denoted by vh , whereas ch
will be the test functions for the discrete internal variables ah , the finite element approximation
to the solution of (5). All the unknowns and test functions are referred to the current configura-
tion of the solid.

The standard Galerkin method applied to the monolithic time-discretized problem reads: find
un+1
h and an+1

h such that

mn+�
s (�tu

n+1
h |xn ,vh)+an+�

s (kh,vh)+cn+�
s (ch;uh,vh) = ln+�

s (vh) (14)

(�ta
n+1
h |xn ,ch)+(cn+�

h ·∇an+�
h ,ch) = (Fn+�(kh),ch) (15)

for all appropriate test functions vh and ch . The different forms appearing in (14) are given by

ms(�tuh,vh) =
∫

�
vh ·��tuh d�

as(kh,vh) =
∫

�
∇vh :r(kh)d�

cs(ch;uh,vh) =
∫

�
vh ·(� ch ·∇uh)d�

ls(vh) =
∫

�N

vh · t̄d�+
∫

�
vh ·�bd�
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1536 J. BAIGES AND R. CODINA

where ch is the discrete convection velocity, defined as:

ch =uh−udom

The superscript n+� in the different terms of (14) indicates the time level where unknowns and
time-dependent functions need to be evaluated, as well as the spatial domain where integrals
need to be performed. In (15) the symbol (·, ·) denotes the L2-inner product in this spatial
domain.

The test functions vh in (14) must vanish at the Dirichlet part of the boundary �D. As F in
(15) is usually an algebraic operator, functions ch need to vanish only at points xn , at which the
temporal derivatives in (14)–(15) are referred.

Remark 2
When diffusion is small in a convection–diffusion process or, as in the case of (15), the process
is purely convective (which happens when F is an algebraic operator), the Galerkin method fails
and stabilized methods need to be used. The method we use is SUPG (see [22] for an overview
of stabilization methods), which applied, for example, to (15) leads to the modification of this
equation to

(�ta
n+1
h |xn ,ch+	cn+�

h ·∇ch)+(cn+�
h ·∇an+�

h ,ch+	cn+�
h ·∇ch)

=(Fn+�(kh),ch+	cn+�
h ·∇ch) (16)

where the so-called stabilization parameter 	 is computed elementwise as

	e=
(
c
|c|e
he

)−1

, e=1, . . . ,nel

where he is the element size for linear elements and half of it for quadratics and |c|e is a
characteristic value of |c| on element e. In the numerical experiments we have taken the algorithmic
constant c=2. Stabilization might also be necessary if the coupled method is used. However, it
is not needed in most solid mechanics simulations as the convective term is usually not dominant
in Equation (14). This method corresponds to the algebraic version of the subgrid scale approach
(see [23]) and circumvents the stability problems of the Galerkin method. In particular, in the case
of incompressible materials it is possible to use equal velocity pressure interpolations, that is, we
are not tight to the satisfaction of the inf–sup stability condition (see Section 4.1).

For the fractional-step approach, Equations (14)–(15) may be split into material and convective
phases. Using �=1 and a first-order splitting, the former would consist in finding uL ,n+1

h and

a
L ,n+1
h such that

1

�t
mL ,n+1

s (uL ,n+1
h −unh,vh)+aL ,n+1

s (kh,vh) = l L ,n+1
s (vh) ∀vh (17)

1

�t
(a

L ,n+1
h −anh,ch) = (FL ,n+1(kh),ch) ∀ch (18)

where superscript L is used to denote that all variables, including domain integrals, are evaluated
considering zero convection velocity. The convection step consists in finding un+1

h and an+1
h such
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that

1

�t
mn+1

s (un+1
h −uL ,n+1

h ,vh)+cn+1
s (ch;uh,vh) = 0 ∀vh (19)

1

�t
(an+1

h −aL ,n+1
h ,ch)+(cL ,n+1

h ·∇an+1
h ,ch) = 0 ∀ch (20)

In order to take the convective term linear, the convection velocity in this step may be taken as

cL ,n+1
h =uL ,n+1

h −un+1
dom

Remark 3
Note that whenF is an algebraic operator, (18) is in fact an approximation to an ordinary differential
equation, which corresponds to the time integration, usually at each numerical integration point,
of the evolution equation for the internal variables. Obviously, options better than the simplest
backward Euler scheme of (18) could be used. On the other hand, (20) simply represents the
transport of the internal variables from the material configuration to the final configuration at
tn+1. There are models in which also the stresses rh need to be transported. As these stresses are
discontinuous across the element edges for C0 shape functions, solving Equation (16) for r is not
straightforward. There are a certain number of strategies to deal with this problem, which can be
found, for example, in [20, 24, 25]. In the numerical examples of Section 5, there is no need to
update the stresses, as only elastic materials have been considered. In this case, we compute the
elastic strain from the displacement field, which is continuous for C0 shape functions, and thus
easily convected.

3. THE FM-ALE METHOD APPLIED TO SOLID MECHANICS

In this section we describe how the FM-ALE method can be applied to problems in solid mechanics.
An overview of the FM-ALE approach is presented, but major attention is given to the particular
characteristics of its application to solids. For a more detailed explanation of the FM-ALE method
in the general framework of moving domains, see [4].

In this section and the ones that follow it, the numerical schemes will be particularized for
�=1.

3.1. The general algorithm

Suppose �0 is meshed with a finite element mesh M0 and that at time level tn the domain �(tn)
is meshed with a finite element mesh Mn . Let unh be the velocity already computed on �(tn). The
purpose is to obtain the region the solid occupies at time tn+1, �(tn+1), and to compute the various
unknown fields. If the classical ALE method is used, Mn would deform to another mesh defined at
tn+1. In the FM-ALE approach, we do not use this mesh to compute the unknowns of the problem,
but instead we re-mesh in such a way that the new mesh is, essentially, M0 once again.

The steps of the algorithm to achieve the goal described are the following:

1. Define �n+1
free by updating the function that defines it.

2. Deform virtually the mesh Mn to Mn+1
ALE using the classical ALE concepts and compute the

mesh velocity un+1
dom.
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1538 J. BAIGES AND R. CODINA

Figure 1. Two dimensional FM-ALE schematic. Top-left: original finite element mesh M0 of �0. Top-right:
finite element mesh Mn of �(tn), with the elements represented by a thick line and the elements of M0

represented by thin line. The blue line represents �n
free and the red edges indicate the splitting of M0

to obtain Mn . Bottom-left: updating of Mn to Mn+1
ALE using the classical ALE strategy. The position of

�n+1
free is again shown using a solid blue line and the previous position �n

free using a dotted blue line.
Bottom-right: Mesh Mn+1 of �(tn+1), represented by a thick line. The edges that split elements of M0

are again indicated in red. Boundary nodes, where approximate boundary conditions need to be imposed,
are drawn in green, whereas newly created nodes are drawn in gray.

3. Write down the ALE solid mechanics equations on Mn+1
ALE.

4. Split the elements of M0 cut by �n+1
free to define a mesh on �(tn+1), Mn+1.

5. Project the ALE solid mechanics equations from Mn+1
ALE to Mn+1.

6. Solve the equations on Mn+1 to compute the unknowns.

A global idea of the meshes involved in the process is represented in Figure 1. Note in particular
that at each time step two sets of nodes have to be appropriately dealt with, namely, the newly
created nodes and the boundary nodes. Newly created nodes are those nodes that were exterior
to the computational domain in the previous time step, but are inside the domain at the current
time step, and thus they appear in the equations. Boundary nodes are the nodes resulting from
the intersection of the boundary function with the elements of the mesh. Contrary to other fixed
grid methods, newly created nodes are treated in a completely natural way using the FM-ALE
approach: the value of the velocity there is directly given by the projection step from Mn+1

ALE to
Mn+1. Boundary nodes require an appropriate imposition of boundary conditions.
An alternative algorithm that would lead to a very similar final result is:

1. Define �n+1
free by updating the function that defines it.

2. Deform the mesh Mn to Mn+1
ALE using the classical ALE concepts and compute the mesh

velocity un+1
dom.
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3. Write down the ALE solid mechanics equations on Mn+1
ALE.

4. Solve the equations on Mn+1
ALE to compute the unknowns in the deformed mesh.

5. Split the elements of M0 cut by �n+1
free to define a mesh on �(tn+1), Mn+1.

6. Project the results from Mn+1
ALE to Mn+1.

The conceptual idea of both algorithms is basically the same, the only difference being that in
the first algorithm the equations are solved on Mn+1 while in the second algorithm they are solved
on Mn+1

ALE. However, the second approach is more convenient if non-linear systems of equations
are to be solved. This is due to the fact that the projection from Mn+1

ALE to Mn+1 is done only at
the end of the time step, while in the first algorithm this projection has to be carried out at each
iteration.

3.2. Details on some of the steps

3.2.1. Tracking of �free. In the examples presented in Section 5, the body surface has been tracked
by means of a Lagrangian boundary mesh. The intersection between the finite element mesh and the
Lagrangian mesh is found at each time step. After the ALE solid equations have been solved, the
Lagrangian contour mesh is deformed. The transmission of information between the two meshes
is done by means of an L2 projection. There are two possible ways of updating the position of
the Lagrangian mesh nodes. The first approach consists in computing∫

�
vh ·�dn:n+1

L d� =
∫

�
vh ·�dn:n+1

FE d�

dn+1
L = dnL +�dn:n+1

L

(21)

while in the second approach we compute∫
�
vh ·dn+1

L d�=
∫

�
vh ·dn+1

FE d� (22)

where dFE are the displacements computed on the finite element mesh and dL are the displacements
of the Lagrangian surface mesh, �dn:n+1 are the incremental displacements from time step n to
time step n+1 and vh are now the test functions corresponding to the nodes of the Lagrangian
surface mesh.

Although (21) could seem a natural choice, as a usual approach in solid mechanics is to solve
for the incremental nodal displacements, (22) works better than (21). This is a consequence of
the fact that (22) preserves the information of the undeformed geometry, while the incremental
approach of (21) leads to the loss of this information.

Another possible approach that has not been exploited in this work would be to track the body
surface by means of a level set function. For more details on the use of level set functions in the
FM-ALE method, see [26]. A method to track initial position of the particles has been developed
in [27], which could also be applied to the present formulation.

3.2.2. Mesh velocity. Updating the boundary function defines the deformation of the domain from
�(tn) to �(tn+1). Consequently, the mesh Mn used at time step n has to be deformed to Mn+1

ALE.
The mesh velocity on the boundary points can be computed from their position xn+1

b and
xnb , where subscript b refers to points on �free. The mesh velocity on these boundary points is
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Figure 2. Mesh deformation. Left: Mn . Right: Mn+1
ALE. The dotted line represents the body surface at time

tn , the solid line corresponds to the body surface at time tn+1—Black elements remain undeformed while
the rest of elements are deformed from Mn to Mn+1

ALE.

un+1
dom,b=(xn+1

b −xnb)/�t . Once the velocity at the nodes of �free is known, it has to be extended
to the rest of the nodes. A classical possibility is to solve the Laplace problem �udom=0 using
un+1
dom,b as Dirichlet boundary conditions. However, it is also possible to restrict udom =0 to a region

of � close to �n+1
free , as in our approach mesh distortion does not accumulate from one time step

to another. The condition we use in order to choose which of the nodes of the mesh are allowed
to move is:

dist(x,�free)<K ·max |udom,b|·�t
where x is the node position and K >1 is a user-defined constant that adjusts the size of the region
of � in which the mesh is deformed. This ensures that the mesh deformation is smooth enough for
large values of (�t/h)max |udom,b|, where h is the element size. An example of mesh deformation
from Mn to Mn+1

ALE is represented in Figure 2.

Remark 4
As only nodes close to �n+1

free are displaced, the projection operations between meshes need only
to be carried out in the deformed region of the mesh.

Remark 5
If large time steps are taken, it might be convenient to deform the full mesh at each time step.
In this case, the projection operation needs to be carried out in the full �(t) region. When this
happens one should choose:

udom=uh and c=0

If fractional-step methods are used, this allows us to avoid the convective phase.

3.2.3. Splitting of elements. Mesh Mn+1 is obtained by splitting the elements of M0 cut by �n+1
free .

Meshes Mn+1 and M0 only differ in the subelements created after the splitting just mentioned.
Mesh Mn+1 could be thought as a local refinement of mesh M0 to make it conform to the
boundary �n+1

free . As in other fixed grid methods, this computational complication can be avoided
by prescribing boundary conditions on �n+1

free in an approximate way, although the local refinement
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Figure 3. Deformation of M0 for splitting purposes. Left: undeformed mesh. Right: deformed mesh.
Element stretch is barely appreciable.

from M0 to Mn+1 is needed also to perform the numerical integration of the different terms
appearing in (14)–(20).

However, depending on how �n+1
free intersects M0, the resulting subelements size could be very

small compared with the size of elements adjacent to �n+1
free . This results in an ill-conditioning of

the system of equations to be solved. In order to avoid this issue, we work with a slightly deformed
mesh Mn+1

ALE,def at each time step constructed as follows: exterior nodes very close to �n+1
free (closer

than 0.1h for example) are displaced in a direction orthogonal to �n+1
free until they match exactly

the body surface. The splitting of this mesh will avoid ill-conditioned elements.

Remark 6
Note that as only nodes very close to �n+1

free are displaced, the stretch of the elements is negligible,
as it can be seen in Figure 3.

3.2.4. Approximate imposition of boundary conditions. From the conceptual point of view, there
is no problem in imposing exactly the boundary conditions on �free. However, this requires the
dynamic addition of mesh nodes (see Figure 1, where these nodes are drawn in green). It is very
convenient from the implementation standpoint to avoid the explicit introduction of such nodes
and to prescribe boundary conditions approximately. We summarize next a strategy to prescribe
Dirichlet boundary conditions on a generic immersed boundary, that we denote by �. This strategy
provides optimal order of accuracy and proves to be suitable for both flow and FSI problems. See
[28] for more details.

Let uh be the unknown solution of a problem posed in �⊂�0 for which we want to prescribe a
condition on �. Let �� be the set of elements cut by �, which is split as �� =��,in∪��,out, where
��,in=�∩�� and ��,out is the interior of ��\��,in. Note that �=�in∪��,in. For simplicity,
we will assume that the intersection of � with the element domains can be exactly represented by
the classical isoparametric mapping. For the notation to be used, see Figure 4.

Suppose that the unknown uh is interpolated as

uh(x) =
nin∑
a=1

I ain(x)U
a
in+

nout∑
b=1

I bout(x)U
b
out

= Iin(x)U in+Iout(x)Uout
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Figure 4. Immersed boundary sketch in a 2D example.

where I ain(x) and I bout(x) are the standard interpolation functions, nin is the number of nodes in
�in, the domain where the problem needs to be solved (including layer L0) and nout the number
of nodes in layer L−1 (see Figure 4).

The objective is to compute Uout. Suppose that uh needs to be prescribed to a given function
ū on �. The main idea is to compute Uout by minimizing the functional

J2(U in,Uout)=
∫

�
(uh(x)− ū(x))2=

∫
�
(Iin(x)U in+ Iout(x)Uout− ū(x))2 (23)

Suppose now that the problem for uh in �in leads to an algebraic equation of the form

K in,inU in+K in,outUout= Fin (24)

The domain integrals in matrices K in,in and K in,out extend only over �. The nodal values Uout
are merely used as degrees of freedom to interpolate uh in the domain �. If (24) is supplemented
with the equation resulting from the minimization of functional (23), the system to be solved is
finally [

K in,in K in,out

N� M�

][
U in

Uout

]
=

[
Fin

f �

]
(25)

where

M� =
∫

�
Itout(x)Iout(x), f � =

∫
�
Itout(x)ū(x), N� =

∫
�
Itout(x)Iin(x)

It is important to note that this implementation maintains the connectivity of the background mesh.
As it is explained in detail in [28], this method works well if the boundary � is not too close

to layer L0 in Figure 4. In the case � is too close to L0, instabilities may appear in the solution
field and remedies have to be devised. In this work, however, if a node is too close to layer L0
it is moved in such a way that its final position is placed on �, as explained in Section 3.2.3.
After this displacement the node no longer belongs to L0 but to L−1, and the instability problem
disappears.
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4. THE FM-ALE METHOD APPLIED TO FSI PROBLEMS

In [4] the FM-ALE method for solving flow problems in moving domains was presented. In this
work we have seen how the FM-ALE approach can be used to solve problems in solid mechanics.
In this section we will show how to solve FSI problems using the FM-ALE approach for both the
fluid and the structure. In this case the same background fixed mesh can be used to solve both
the first and the second problem, leading to some advantageous features in the coupling between
them.

4.1. The FM-ALE method for flow problems in moving domains

In this section an incompressible Newtonian fluid will be considered. As in the solid case, the
domain movement has to be taken into account. The incompressible Navier–Stokes equations are:

Find a velocity u :�(t)×(0,T )−→Rd and a pressure p :�(t)×(0,T )−→R such that

�

[
�u
�t

∣∣∣∣
x′

+(u−udom) ·∇u
]
−∇ ·(2
∇Su)+∇ p = �f (26)

∇ ·u= 0 (27)

where ∇Su is the symmetrical part of the velocity gradient, � is the fluid density, 
 is the viscosity
and f is the vector of body forces. Initial and boundary conditions have to be appended to problem
(26)–(27).

If finite elements are used, the fully discrete stabilized counterpart of these equations is (see [4]
for details): find un+1

h and pn+1
h such that

mn+�
1 (�tu

n+1
h |xn ,vh)+an+�(uh,vh)+cn+�(ch;uh,vh)+bn+�

1 (ph,vh) = ln+�
1 (vh) (28)

mn+�
2 (qh,�tu

n+1
h |xn )+bn+�

2 (qh,uh)+sn+�(qh, ph) = ln+�
2 (qh) (29)

for all test functions vh and qh , the former vanishing on the Dirichlet part of the boundary �D.
The different forms appearing in these equations are given by

m1(�tuh,vh) =
∫

�
vh ·��tuh d�+

nel∑
e=1

∫
�e
fu1 ·��tuh d�

a(uh,vh) =
∫

�
2∇Svh :
∇Suh d�+

nel∑
e=1

∫
�e
fu1 ·(−2∇ ·(
∇Suh))d�+

nel∑
e=1

∫
�e

�u2∇ ·uh d�

c(ch;uh,vh) =
∫

�
vh ·(� ch ·∇uh)d�+

nel∑
e=1

∫
�e
fu1 ·(� ch ·∇uh)d�

b1(ph,vh) = −
∫

�
ph∇ ·vh d�+

nel∑
e=1

∫
�e
fu1 ·∇ ph d�
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m2(qh,�tuh) =
nel∑
e=1

∫
�e
fp ·��tuh d�

b2(qh,uh) =
∫

�
qh∇ ·uh d�+

nel∑
e=1

∫
�e
fp ·(� ch ·∇uh−2∇ ·(
∇Suh))d�

s(qh, ph) =
nel∑
e=1

∫
�e
fp ·∇ ph d�

l1(vh) =
∫

�
vh ·� f d�+

nel∑
e=1

∫
�e
fu1 ·� f d�+

∫
�N

vh · t̄

l2(qh) =
nel∑
e=1

∫
�e
fp ·� f

where the functions fu1, �u2 and fp are computed within each element as

fu1 = 	u[�ch ·∇vh+2∇ ·(
∇Svh)] (30)

�u2 = 	p∇ ·vh (31)

fp = 	u∇qh (32)

and the parameters 	u and 	p are also computed element-wise as (see [29])

	u =
[
4


�h2
+ 2|uh−udom|

h

]−1

, 	p =4�+2|uh−udom|h, �= 


�

where h is the element size for linear elements and half of it for quadratics.

4.2. Solving the coupled problem

When dealing with the coupled problem, the domain is divided into a solid part �s(t) and a fluid

part �f(t), where �̄
0= �̄s(t)∪�̄f(t) and �s(t)∩�f(t)=∅. The boundary of the coupled problem

can now be divided into the Dirichlet boundary for the fluid �f
D and for the solid �s

D, the Neumann
boundary for the fluid �f

N and for the solid �s
N, and the common interface boundary between the

fluid and the solid �free. The boundary of the coupled problem is now �=�D∪�N∪�free, where
�D=�f

D∪�s
D and �N=�f

N∪�s
N (Figure 5).

The problem now consists in solving (14) or (17)–(20) in �s(t) and (28)–(29) in �f(t). The
key point is obviously which are the boundary conditions to be applied. On �D and �N boundary
conditions are usually applied to solid and fluid mechanics problems:

us = ūs on �s
D

uf = ūf on �f
D

n ·rs = t̄s on �s
N

n·rf = t̄ f on�f
N
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Figure 5. Domain and domain boundary subdivision in FSI problems.

where superscript s has been introduced for the unknowns in the solid and superscript f for the
unknowns in the fluid. In �free conditions must be applied such that velocity and traction continuity
at all time steps is fulfilled:

us = uf on �free

n·rs = n·rf on �free

Satisfying the kinematic continuity leads to mass conservation, whereas satisfying the dynamic
continuity yields conservation of linear momentum.

Note that as �̄
0= �̄s(t)∪�̄f(t) and M0 is a mesh covering �0, it is possible at each time step

to divide M0 into Mt
s and Mt

f such that:

M0=Mt
s ∪Mt

f

where Mt
s and Mt

f are meshes covering �s(t) and �f(t), respectively, and not necessarily disjoint.
This allows us to use a single mesh M0 to solve both the fluid and the solid mechanics problems
for t ∈[0,T ]. However, if boundary conditions are prescribed in an approximate way, for example
following the strategy proposed in Section 3.2.4, there will be some nodes of M0 that will belong
to both Mt

s and Mt
f . At these nodes (L0 and L−1 nodes in Figure 4) degrees of freedom need to be

duplicated so that unknowns for both the fluid and the solid can be obtained. A strategy to avoid
the need of duplicating degrees of freedom is developed in [28], although it has not been used in
the present work.

There are basically two ways of dealing with the coupled FSI problem: the partitioned and the
monolithic approaches. In partitioned methods the solid and fluid problems are solved independently
and coupling between both is achieved iteratively by means of the so-called coupling algorithms.
The major advantage of this approach is that specific codes can be used for each of the two problems
to be solved. Its drawback is that convergence is difficult to achieve under certain circumstances.
In the monolithic approach, both problems are solved simultaneously and coupling between them
is imposed in an implicit manner, which avoids the need of coupling iterations. The dimension of
the system to be solved is larger in the monolithic case. However, if iterations within each time
step yield convergence of the partitioned solution to the monolithic one, the distinction between
both is blurred. In fact, those iterations can be understood as a certain preconditioner to solve
iteratively the monolithic problem.

Although both strategies can be used together with the FM-ALEmethod, the monolithic approach
is the one that suits it best. We have already seen how M0 can be divided into Mt

s and Mt
f .

Moreover, with the formulation we use to solve the incompressible Navier–Stokes equations, it
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is possible to use the same interpolation functions for the unknowns corresponding to the solid
problem and for the ones corresponding to the flow problem. It is very easy in this case to
implicitly write the coupling conditions between fluid and structure. To this purpose equations
corresponding to fluid velocity unknowns in nodes belonging to L f−1(L

s
0) are used to prescribe

implicitly us=uf. On the other hand, traction continuity is imposed in equations corresponding to
solid velocity/displacement in L0 and L−1 simply by adding the corresponding boundary terms
to the momentum conservation equations.

The final system to be solved is: find un+1,s
h , un+1, f

h and pn+1
h such that

mn+�
1 (�tufh,v

f
h)+an+�(ufh,v

f
h)+cn+�(ufh−udom;ufh,vfh)+bn+�

1 (ph,vfh) = ln+�
1 (vfh)

mn+�
2 (qh,�tufh)+bn+�

2 (qh,ufh)+sn+�(qh, ph) = ln+�
2 (qh)

mn+�
s (�tush,v

s
h)+an+�

s (kh,vsh)+cn+�
s (ush−udom;ush,vsh) = ln+�

s (vsh)

(33)

for all test functions vfh and vsh vanishing on the Dirichlet part of the boundary �D, and all test
functions qh . Obviously, integrals corresponding to forms defined on the fluid region are extended
over �f(t), whereas integrals corresponding to forms associated with the solid are extended
over �s(t).

Another point we want to stress is that if one wants to solve the FSI problem using a monolithic
scheme, but the solid is to be solved using a fractional-step method, the strategy to follow is simply
to solve the material phase of the solid coupled monolithically with the fluid problem. Once this
phase is solved, variables of interest in �s(t) can be transported in the convective phase (only for
the solid mechanics problem).

In the FSI examples in Section 5, the monolithic approach has been used. However, there is no
major drawback in using the FM-ALE approach altogether with the partitioned schemes.

Let us close this section summarizing the final algorithm for the FM-ALE method applied to
FSI problems, which is:

1. Define �n+1
free by updating the function that defines it.

2. Deform the mesh Mn to Mn+1
ALEusing the classical ALE concepts and compute the mesh

velocity un+1
dom.

3. Write down the ALE solid (Mt
s ) and fluid (Mt

f ) mechanics equations on Mn+1
ALE. If a fractional-

step method is used for the solid equations, this corresponds to the material phase.
4. Solve the equations on Mn+1

ALE to compute the unknowns in the deformed mesh.
5. If a fractional-step method is used for the solid, solve the convective phase.
6. Split the elements of M0 cut by �n+1

free to define a mesh on �(tn+1), Mn+1.
7. Project the results from Mn+1

ALE to Mn+1.

5. NUMERICAL EXAMPLES

In this section we present some numerical examples that illustrate the behavior of the methodology
proposed in this work.
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5.1. An example of FM-ALE applied to solid mechanics

In this example a cantilever subject to gravity forces will be simulated by means of the FM-ALE
method. As a fractional-step method is used, the equations to be solved are (17)–(19) (with the
additional terms coming from the stabilization). A Neo-Hookean material has been considered,
which takes into account large strains. The constitutive equation of this material is (see [30])

r= 1

J
[�0 ln J I+
0(B− I)] (34)

where B=F·FT, �0 and 
0 are material parameters and I is the identity tensor.
The hold-all domain is the rectangle B=[−1,5]×[0,11]. A background mesh of 3200 linear

triangles has been used. The considered solid is a rectangular cantilever situated at [0,1]×[0,10].
At each time step there will be mesh nodes outside the solid domain. These nodes are ‘deactivated’
nodes, and they do not appear in the equations: at each time step we solve only for nodal unknowns
in interior nodes and nodes belonging to the first exterior layer of nodes.

The material parameters are �0=2000 and 
0=5000. The solid density is �=1, which has been
considered to remain constant through the whole process. In this case the body is only under the
effect of (horizontal) body forces, given by bT=(1,0). Dirichlet boundary conditions are applied
at y=0, where displacements in any direction are prescribed to zero. On the rest of the solid
boundary, Neumann boundary conditions are applied:

n·r=0

Initial conditions correspond to the undeformed static configuration.
The time step size has been set to �t=0.2 and �=1 has been taken (first order scheme in time).

Figure 6 shows the mesh used to solve this problem. The boundary of the body does not match
the boundary of the mesh. Figure 7 shows horizontal and vertical displacements at time step 90.

0 2 4 6 8
0

2

4

6

8

10

Figure 6. Immersed mesh use to solve the solid mechanics example and body surface.
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Figure 7. Displacements after 90 time steps.

In order to validate the FM-ALE method, we have compared the results obtained from our
approach with those obtained if a classical Updated-Lagrangian method for boundary fitting meshes
is used. To this end we have used a boundary fitting mesh with the same element density to solve
the same problem. Figure 8 shows the horizontal displacement of a material point placed at the
top of the cantilever, whose coordinates are XT=(0.5,10).

The element density in both meshes is relatively coarse. This is so in order to show that the fact
that the mesh does not fit the domain does not introduce significative error in the solution. This
is better seen in coarse meshes than in very fine meshes, where the boundary error would be less
noticeable.

The simulation is carried out during 90 time steps. As it can be seen results are very similar to
the ones obtained in the classical Updated-Lagrangian approach.

Another issue that we were interested in is the effect of the use of a fractional-step method.
In Figure 9 we have plotted the results obtained if we take udom=uh (the convective phase is
avoided) versus the results obtained if we take udom =uh (a convective phase is needed). As we
can see, no difference can be appreciated between results, and we can conclude that the error
introduced by the use of a fractional-step method is small.

5.2. Two examples of FM-ALE applied to FSI problems

In the first example the same cantilever as in Section 5.1 is simulated. However, the forces acting
on the cantilever are due to the interaction with a fluid in this case. The hold-all domain is the
rectangle B=[−10,70]×[0,20]. An unstructured background mesh of 4655 linear triangles is
used. This mesh is much coarser than the one used in the previous example, if we consider the
element density in the solid body area.

The material parameters for the solid body are the ones used in the previous example. For the
fluid we have considered �=2 and 
=0.2. The velocity at x=0 is prescribed to (1,0), whereas
at y=0 and y=20 the y-velocity component is prescribed to 0 and the x-component is left free.
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Figure 8. Horizontal displacement at a point placed at the top of the cantilever. Comparison between
FM-ALE and Updated-Lagrangian formulations.
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Figure 9. Horizontal displacement at a point placed at the top of the cantilever. Comparison between
FM-ALE udom=uh and FM-ALE udom =uh formulations.
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Figure 10. Mesh used to solve the first fluid–structure interaction example. Left: full mesh. Right: detail
of the area surrounding the solid body.

The outflow (where both the x- and y-components are free) is x=70. The Reynolds number is
100, based on the cantilever height and the prescribed inflow velocity. The time step size has been
set to �t=1 and �=1.

A monolithic approach has been used to couple fluid and structure. Both the fluid and
the structure have been solved using the FM-ALE method with the same background mesh
(see Figure 10). The deformed configuration of the beam at time step 100 is shown in
Figure 11.

In Figure 12 the horizontal displacement at a point placed on the top of the cantilever is plotted.
This figure shows how the movement of the cantilever is damped by the action of the fluid. After
a certain number of time steps, the movement becomes stationary. Figures 13 and 14 show
the cantilever displacements and the fluid velocities and pressures at time step 100. The irregular
boundaries in Figure 13 are due to the fact that for ease of post processing, we have plotted the
solution in the elements cut by the boundary without taking into account that the boundary of the
domain does not fit the boundary of the elements.

In the second example we consider a thin elastic non-linear beam (Neo-Hookean material)
attached to a fixed square rigid body, which is submerged in an incompressible fluid flow. Vortices
separating from the corners of the rigid body generate oscillating forces on the beam. Geometry
is given in Figure 15, while Figure 16 shows the mesh used to solve the problem. Again, a higher
element density has been used in the region that will be occupied by the solid. The mesh is as
coarse as possible, with the requirement that there are at least three elements to cover the beam
width, and it is composed of 9388 triangular elements and 4812 nodes. The setting of the problem
is similar to that proposed in [31], although we have considered a thicker beam in order to be
able to use the rather coarse mesh described. It is clear that thin structures are not the most
favorable situation for fixed-mesh methods, and in particular for FM-ALE (an alternative would
be to represent these structures by a zero width solid, which is not a situation considered in this
work).

The fluid material properties are �=1×10−2 and 
=1.7×10−3. The solid material properties
are �=2, �0=1.72×106 and 
0=7.4×105. The horizontal inflow velocity at x=0 is set to 40,
yielding a Reynolds number of Re=235 referred to the length of the square rigid body. Slip
boundary conditions are set at the walls of the channel. The beam and the square rigid body are
assigned non-slip boundary conditions. The time step is set to �t=0.002 and �=1. A monolithic
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Figure 11. The same mesh is used to solve both the fluid and the structure. Elements in the fluid domain
are used to obtain the fluid mechanics problem unknowns, while elements in the solid domain are used
to obtain the solid mechanics problem unknowns. Elements in the interface need to be solved for both

fluid and solid mechanics problems unknowns.
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Figure 12. Horizontal displacement at a point placed at the top of the cantilever.

approach has been used to solve the FSI problem, although the fractional-step scheme has been
used to deal with the solid. Both the fluid and the structure have been solved using the fixed
background mesh.
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Figure 13. Solution for the solid body at t=100.

Figure 14. Solution for the fluid at t=100.

Contours of pressure and velocity components at t=5 are shown in Figure 17, when the vortex
shedding behind the square cylinder has appeared but is not yet fully developed. It can be observed
that even in this transient stage results are smooth and boundary conditions on the elastic beam
perfectly accounted for. The evolution of the vertical displacement at the edge of the beam is
plotted in Figure 18, where it can be observed that the dynamics of the system are fully developed
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Figure 15. Geometry.
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Figure 16. Mesh used to solve the second fluid–structure interaction example.

at about t=7. Then, a perfectly harmonic flow pattern sets in, with a single frequency in the time
response, as it can be observed from Figure 19.

6. CONCLUSIONS

In this paper the FM-ALE approach has been applied to solid mechanics and FSI problems. The
main feature of the method is its capability of using a fixed background mesh, but at the same time
correctly taking into account the domain movement in the computation of the time derivatives.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 81:1529–1557
DOI: 10.1002/nme



1554 J. BAIGES AND R. CODINA

Figure 17. Velocity and pressure at time t=5.0.

Moreover, values of the unknowns for the so-called newly created nodes are clearly and uniquely
defined with the FM-ALE approach.

For solid mechanics problems, the FM-ALE method is of interest when the solid body is subject
to very large strains. In this case Lagrangian formulations cannot be used due to the ill-conditioning
caused by the large element stretch, and, if strains are large enough, even ALE formulations would
require remeshing. The FM-ALE method, on the other hand, avoids element stretching by using
a fixed mesh. A validation test has been carried out comparing results obtained with a classical
Updated-Lagrangian formulation and the method proposed in this work. Results show that the
method is robust and accurate.

The FM-ALE concept can be applied together with any time integration scheme. In the case
of solid mechanics, we have shown how to use it in combination with classical � schemes and
fractional-step methods that have a certain popularity in this context.

In the case of FSI problems, the FM-ALE method can be applied to solve the flow and the
solid mechanics problems. The main feature of this approach is the possibility of using a single
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Figure 18. Vertical displacement at the edge of the beam.
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Figure 19. Fourier transform of the maximum vertical displacement. The frequency
of the main vibration mode is 2.4.

background mesh to solve both mechanical problems. We have presented two numerical examples
showing this particular capability. Even though monolithic solid–fluid coupling schemes have been
employed, the possibility of using iteration-by-subdomain techniques is open.
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