

CIMNE Verification of the validation analysis of Xfinas elements database

Antonia Larese Researcher at CIMNE

Eugenio Oñate CIMNE Director

Technical Report CIMNE IT 570, January 2009

International Center for Numerical Methods in Engineering Gran Capitán s/n, 08034 Barcelona, Spain

TABLE OF CONTENTS

1.	Introduction	3
2.	Verification of the validation	3
	2.1. SHELL ELEMENT	3
	2.1.1. Linear test2.1.2. Nonlinear test	4 12
	2.2. SOLID ELEMENT	14
	2.2.1. Linear test2.2.2. Geometrically nonlinear test	14 15
	2.3. FRAME ELEMENT	16
	2.3.1. Linear test2.3.2. Geometrically nonlinear static test2.3.3. Large displacement elasto-plastic test	16 17 18
	2.4. PLANE ELEMENT	18
	2.4.1. Patch test and cantilever beam2.4.2. Dynamic small displacement elastic-plastic response of a Simply supported I	18 beam 19
	2.4.3. Geometrically non linear dynamic response of a clamped beam under a concent step load	
3.	Conclusions	20

1. Introduction

In order to validate the Xfinas code a very comprehensive series of test examples were solved by Prof Ki-Du Kim and his co-workers. A collection of the more representative benchmarks were chosen at CIMNE for testing the good behavior of every element implemented in the software. The aim of the validation work carried out at CIMNE has been to asses the accuracy of the Xfinas program. This was done studying the whole validation process carried out by Prof Ki-Du Kim's team in detail. For this purpose we have chosen at CIMNE randomly the different benchmarks to be reproduced between those of the validation manual (VM from now on). In every example we checked the agreement of the results with the Xfinas validation data.

2. Verification of the validation

In the following sections the results of the different element examples are reported. The order of the sections follows that of the validation manual (VM). For each table or figure a reference to the correspondent section of the validation manual will be inserted into parenthesis such as "(table X, Sec.X, Ch.X of VM)".

A random criteria was adopted in the choice of the test examples in the Xfinas manual to be reproduced. In some cases all the test examples have been reproduced, in others only some.

For all the geometric data and the boundary conditions of the benchmarks, consulting of the Xfinas validation manual is recommended.

The tables presented in Section 2 and the correspondent Subsections correspond to the table they refer to in the validation manual. Also for each element analyzed there is a column with the results obtained by CIMNE, a column for the results that appear in the Xfinas validation manual and yet another column with the difference between the two values.

2.1. SHELL ELEMENT (Ch.1 VM)

Xfinas allows the choice of four different type of shell elements:

- The three noded element called X_shell 31A (or B depending from the considered mesh (see the validation manual for more explanations);
- The four noded element called X_shell 4QSI in the tables;
- The eight noded element called X_shell 8ANS in the tables;
- The nine noded element called X_shell 9 ANS in the tables;

All of them are tested for different mesh dimension in each example.

In the following sections both the linear static analysis and the non linear static analysis have been checked.

2.1.1. Linear test (Ch.1 Part A VM)

a) Hemispherical shell with 18° hole

The benchmark was reproduced completely with perfect agreement with the results of tables 1(a)-(b) of the VM as can be seen in table 2.1 and 2.2 were the results for the different element is tested for four meshes.

El per	X_shell 4	I QSI		X_shell 8	BANS		X_shell 9	ANS	
Side									
	CIMNE	VM		CIMNE	VM		CIMNE	VM	
2	1.035	1.035	0%	0.018	0.018	0%	0.526	0.526	0%
4	1.033	1.033	0%	0.414	0.414	0%	0.897	0.897	0%
8	1.011	1.011	0%	0.964	0.964	0%	0.997	0.997	0%
16	1.003	1.003	0%	1.003	1.003	0%	1.005	1.005	0%

Node	El per	X_shell 3	X_shell 31A			31B	
per	Side						
Side							
		CIMNE	VM		CIMNE	VM	
3	2	0.207	0.207	0%	0.217	0.216	0.1%
5	4	0.152	0.152	0%	0.157	0.157	0%
9	8	0.456	0.456	0%	0.461	0.461	0%
17	16	0.898	0.898	0%	0.898	0.898	0%
21	20	0.953	0.954	0.1%	0.953	0.953	0%

Table 2.2. (table 1(b), Ch.1 VM)

b) Hemispherical shell

Also in this case the whole example of the VM was checked with perfect agreement as shown in table 2.3.

El per	X_shell 4QSI		X_shell 8	BANS		X_shell 9	ANS		
Side									
	CIMNE	VM		CIMNE	VM		CIMNE	VM	
2	1.0324	1.0324	0%	0.3394	0.3394	0%	0.8485	0.8485	0%
4	0.9998	0.9998	0%	0.9136	0.9136	0%	0.9655	0.9656	0%
8	0.9736	0.9800	0.7%	0.9811	0.9811	0%	0.9837	0.9838	0%

Table 2.3.	(table 2(a)	and 2(b).	Ch.1 VM)
1 4010 2.5.	(uuoio 2(u)	und 2(0),	

c) Pinched Cylinder

The triangular element were chosen to be tested in this example, chosing one of the two mesh configuration of the VM as can be seen in table 2.4.

Node per	El per Side	X_shell 31A		
Side				
		CIMNE	VM	
3	2	0.315	0.315	0%
5	4	0.643	0.643	0%
9	8	0.863	0.864	0.1%
17	16	0.960	0.960	0%
21	20	0.975	0.975	0%

Table 2.4. (table 4(b), Ch.1 VM)

d) Bending of Rombic Plate

Nearly all the quadrilateral test case have been reproduced as shown in table 2.5.

El per	X_shell 4QSI	X_shell 8ANS	X_shell 9ANS
Side			
	CIMNE VM	CIMNE VM	CIMNE VM
4	1.069 1.069 0%	0.544 0.544 0%	0.954 0.954 0%
8	1.034 1.034 0%	0.779 0.779 0%	
14	1.032 1.032 0%	0.893 0.893 0%	1.003 1.003 0%
16	1.032 1.032 0%	0.913 0.913 0%	

Table 2.5. (table 5, Ch.1 VM)

e) Tapered and swept beam

A random choice of a case for each element was performed for the rest of the shell benchmark tests to verify the validation results were done correctly.

F1	V -1 -11 /	1001	
El per	X_shell 4	iqsi	
Side			
	CIMNE	VM	
2	0.816	0.816	0%
	X_shell 8	BANS	
	CIMNE	VM	
4	0.991	0.992	0.1%
	X_shell 9	ANS	
	CIMNE	VM	
16	0.998	0.998	0%

Table 2.6. (table 6(a), Ch.1 VM)

Node per Side	El per Side	X_shell 31A
		CIMNE VM
3	2	0.827 0.827 0%
		X_shell 31B
		CIMNE VM
9	8	0.982 0.982 0%

Table 2.7. (table (b), Ch.1 VM)

f) Cantilever beam Straignt cantilever

	X_shell 4	4QSI	
Ref	CIMNE	VM	
W =0.4321	0.987	0.987	0%
Rx =0.03208	0.695	0.704	1.2%
	X_shell 8	BANS	
	CIMNE	VM	
V =0.1081	0.999	0.999	0%
	X_shell 9	9ANS	
	CIMNE	VM	
W =0.4321	1.020	1.019	0.1%

Table 2.8. (table 7(a), Ch.1 VM)

	X_shell 31A		
Ref	CIMNE VM		
U =3e-5	0.993 0.993 0%		

Table 2.9. (table 7(b), Ch.1 VM)

g) Cantilever beam Curved cantilever

	X_shell 4QSI						
	CIMNE VM						
In plane shear	0.833 0.833 0%						
	X_shell 9ANS						
	CIMNE VM						
Out of pl shear	0.982 0.982 0%						

Table 2.10 (table 7(c), Ch.1 VM)

	X_shell 31						
	CIMNE VM						
2x7	0.234	0.234	0%				
In plane shear							
2x31	0.915	0.915	0%				
Out of pl shear							

Table 2.11 (table 7(d), Ch.1 VM)

h) Cantilever beam Twist cantilever

t=0.32	X_shell 4	QSI	
	CIMNE	VM	
2x12	0.997	0.997	0%
In plane shear			
	X_shell 8	SANS	
	CIMNE	VM	
4x24	0.999	0.999	0%
Out of pl shear			

Table 2.12 (table 7(e), Ch.1 VM)

t=0.05	X_shell 4	4QSI	
	CIMNE	VM	
1x6	1.018	1.018	0%
Out of pl shear			
	X_shell 8	BANS	
	CIMNE	VM	
2x12	0.982	0.982	0%
In plane shear			
	X_shell 9	PANS	
	CIMNE	VM	
4x24	0.997	0.997	0%
In plane shear			

Table 2.13 (table 7(f), Ch.1 VM)

t=0.32	X_shell 3	31	
	CIMNE		
Out of pl shear	0.965	0.994	4%

Table 2.14 (table 7(g), Ch.1 VM)

i) Plate bending problem with Clamped Boundary condition

a/b=1	X_shell 4QSI						
	CIMNE VM						
6x6	0.998 0.998 0%						
	X_shell 9ANS						
	CIMNE VM						
2x2	1.002 1.002 0%						

Table 2.15 (table 8(b), Ch.1 VM)

a/b=5	X_shell 8QSI						
	CIMNE VM						
6x6	0.209 0.209 0%						
	X_shell 9ANS						
	CIMNE VM						
4x4	0.987 0.987 0%						

Table 2.16 (table 8(c), Ch.1 VM)

In the case of the triangular element an error could occur in typing the results because the results corresponding with mesh A were written in column of mesh B in the VM and viceversa.

a/b=1	X_shell 31A				
	CIMNE	VMmeshA		VMmesh B	
9	0.991	0.996	0.5%	0.991	0%
a/b=5	X_shell 31 B				
	CIMNE	VMmesh B		VMmeshA	
3	0.951	0.924	2.8%	0.951	0%
4	0.972	0.955	1.7%	0.972	0%

Table 2.17 (table 8(e), Ch.1 VM)

a/b=5	X_shell 31A					
Nodes per side	CIMNE VM					
5	0.811 0.811 0%					
	X_shell 31B					
	CIMNE VM					
5	0.767 0.767 0%					

Table 2.18 (table 7(f), Ch.1 VM)

j) Square plate with distorted mesh

Regular mesh	X_shell 4	QSI	
4x4			
	CIMNE	VM	
Uniform load	0.997	0.998	0%
	X_shell 8	ANS	
	CIMNE	VM	
Point load	0.123	0.123	0%
Distorted mesh 4x4	X_shell 9	ANS	
	CIMNE	VM	
Uniform load	1.001	1.001	0%

Table 2.19 (table 9, Ch.1 VM)

2.1.2. Non linear test (Part C, Ch.1 VM)

Three examples were chosen between the many benchmarks of the non linear test and one shell element was controlled for each case.

In the following figures the very good matching of the results of the validation manual and the cimne verification is shown for different cases.

a) Square Clamped Plate Subjected to Uniform Pressure

The 4 node shell element was verified in this case as shown in Fig. 2.1.

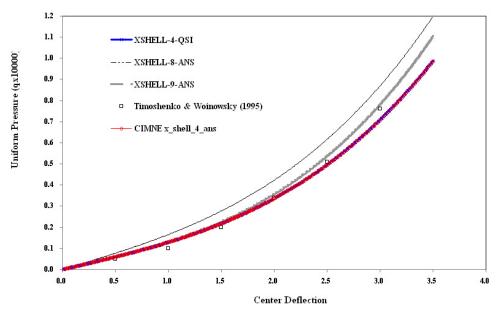
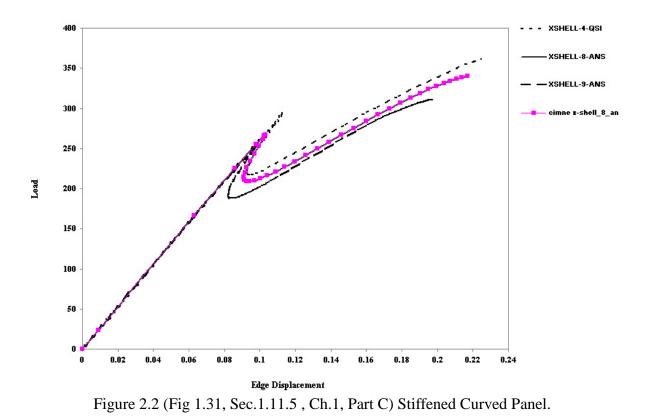



Figure 2.1 (Fig. 1.27(b), Sec. 1.11.1, Ch.1, Part C) Plot of Uniform Pressure and Central Deflection.

b) Buckling of Stiffened Curved Panel

The 8 node quadrilateral element was verified in this case as shown in Fig. 2.2.

c) Pinched Elasto-Plastic Cylinder with Isotropic Hardening

Both the 8 and the 9 node quadrilateral element were verified in this case as shown in Fig. 2.3.

Displacement at Loaded Point

Figure2.3 (Fig.1.42, Sec 1.11.9, Ch1, Part C VM) Pinched elasto-plastic cylinder – displacement under force. 2.2. SOLID ELEMENT (Ch.2 VM)

Two kind of solid element are implemented inside Xfinas:

- XSOLID_8_EAS that is an element with 24 EAS terms
- XSOLID_8_ANS a solid shell element
- XSOLID_4T a four node tetrahedra element
- XSOLID_10T a 10 node tetrahedra.

Some examples of validation are checked in the following sections and the graph of the non linear analysis are qualitatevely compared with the results of the VM.

2.2.1. Linear test (Sec 2.2, Ch.2 VM)

a) Beams problem curved beam under in plane load (Sec.2.2.2)

El Side	XSOLID_8_EA			XSOLID_8_AN		XSOLID_4T			XSOLID_10T			
	S			S								
	CIMNE	VM		CIMNE	VM		CIMN	VM		CIMN	VM	
							E			E		
6x1x1		0.880	0	0.8874	0.8875	0				0.8976	0.898	0
	0.8802	2	%			%					3	%
8x1x1		0.963	0	0.9682	0.9683	0	0.0898	0.089	0	0.9666	0.966	0
	0.9633	6	%			%		8	%		7	%
12x1x		0.999	0	1.0026	1.0026	0	0.1868	0.186	0	0.9980	0.998	0
1	0.9995	4	%			%		8	%		1	%
					r	Γ						

Table 2.20 (table 2.2.1, Ch.2 VM)

b) Beams problem curved beam under out of plane load

El Side	XSOLID	_8_EA	B_EA XSOLID_8_AN Z			XSOLID	_4T		XSOLID	_10T		
	S			S								
	CIMNE	VM		CIMNE	VM		CIMN	VM		CIMN	VM	
							E			E		
6x1x1		0.824	0	0.9426	0.9426	0	0.0157	0.015		0.8902	0.890	0
	0.8244	4	%			%		7			2	%
8x1x1		0.919	0	0.9494	0.9494	0	0.0277	0.027	0			
	0.9196	6	%			%		7	%			
12x1x		0.952	0	0.9551	0.9551	0	0.0605	0.060	0	0.9334	0.933	0
1	0.9527	7	%			%		5	%		4	%

Table 2.21 (table 2.2.2, Ch.2 VM)

c) Bending of rhombic plate

In the VM the results of the test cases are not the normalized one, also if in the title there is written "Normalized Solution".

In the following table the results are normalized with respect to the reference value of displacement (W = 0.04455).

El Side	XSOLID_8_EA			XSOLID_8_AN			XSOLID_4T			XSOLID_10T		
	S			S								
	CIMN	VM		CIMNE	VM		CIMN	VM		CIMN	VM	
	E						E			E		
4x4x1		0.946	0		0.885	0		0.001	0		0.071	0
	0.9466	6	%	0.8855	5	%	0.0015	5	%	0.0713	3	%
8x8x1		0.953	0		0.906	0		0.004	0			0
	0.9536	6	%	0.9063	3	%	0.0049	9	%	0.189	0.189	%
16x16x		0.989	0		0.974	0		0.013	0		0.460	0
1	0.9894	4	%	0.9741	1	%	0.0132	2	%	0.4604	4	%
20x20x		0.999	0		0.990	0		0.022	0			
1	0.9992	2	%	0.9906	6	%	0.0229	9	%			
32x32x		1.015	0		1.015	0		0.072	0			
1	1.0153	3	%	1.0151	1	%	0.0729	9	%			

Table 2.22 (table 2.7, Ch.2 VM)

2.2.2. Geometric non linear test

a) Clamped Plate under Uniform Pressure

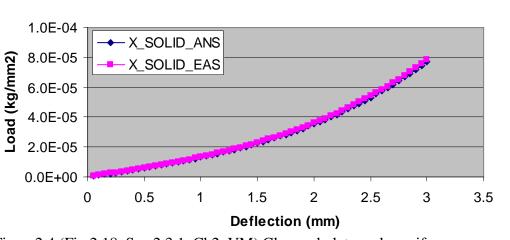
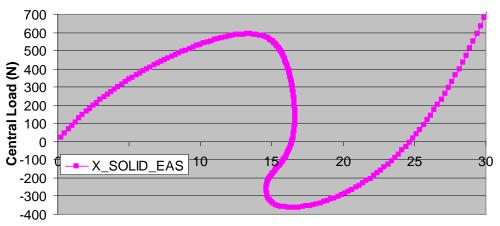



Figure 2.4 (Fig. 2.18, Sec 2.3.1, Ch2, VM) Clamped plate under uniform pressure.

b) Hinged Cylindrical Shell

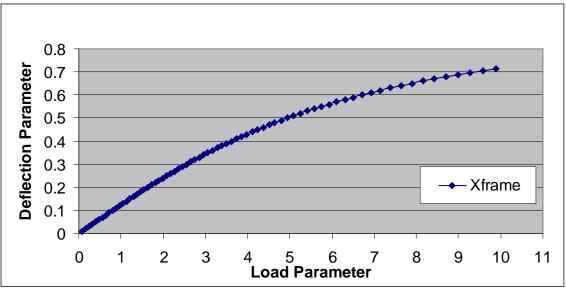
The hinged cylindrical shell is another case of geometrical nonlinear analysis checked. In this case a good matching of the results is recover for the XSOLID_8_EAS.

Central Deflection (mm) Figure 2.5 (Fig. 2.20, Sec 2.3.2, Ch2, VM) Hinged cylindrical shell

2.3. FRAME ELEMENT (Ch.3 VM)

Many different types of analysis were carried out for the validation of the frame element. The frame element is XFRAME in the following tables At least one example for each type of analysis was checked as shown in the following sections.

2.3.1. Linear test


	Tip load direction	Displ in direction of load			
Problem		XFRAME			
		CIMNE	VM		
	Extension	0.00003	0.00003		
Straight	In plane shear	0.108094	0.1081		
beam	Out of plane shear	0.432094	0.4321		
	Torsion	0.01872	0.01872		
Curved					
beam	In plane shear	0.087347	0.08735		

a) Straight cantilever beam and curved cantilever beam (Sec.3.2.1, Ch. 3 VM)

Table 2.23 (table 3.2, Ch.3 VM)

2.3.2. Geometrically non linear test

a) Cantilever beam under uniformly distributed load (Sec.3.3.1, Ch. 3 VM)

Figure2.6 (Fig.3.6, Sec 3.3.1, Ch3, VM) Cantilever beam

b) William toggle frame (Sec. 3.3.3, Ch. 3 VM)

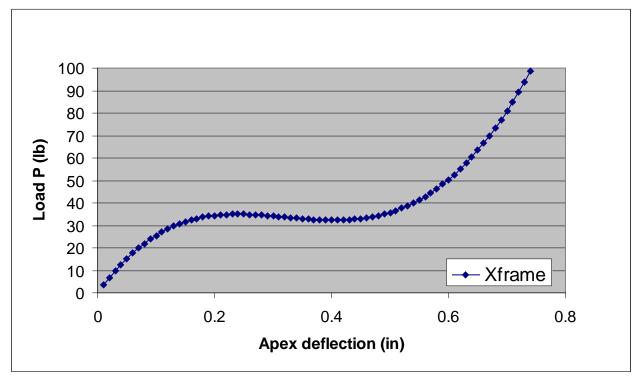
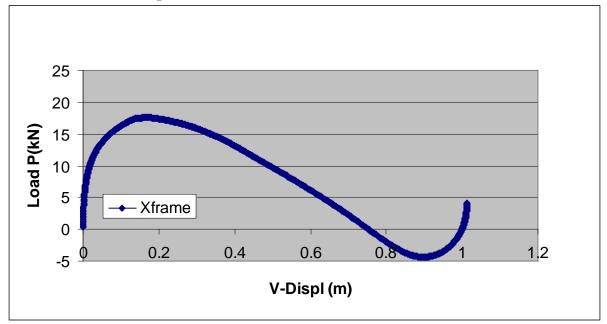



Figure 2.7 (Fig. 3.10, Sec 3.3.3, Ch3, VM) William toggle frame

2.3.3. Large displacement elasto-plastic test

a) Lee's elasto-plastc frame

Figure2.8 (Fig.3.17, Sec 3.4.1, Ch3, VM) Lee's elasto-plastic frame

2.4. PLANE ELEMENT (Ch.4 VM)

Two plane elements are available in Xfinas database:

- Xplane 4EAS a 4-noded plane element with enhanced assumed strain;
- Xplane8 8 noded plane element;

2.4.1. Patch test and cantilever beam

a) Cantilever beam (Sec.4.1, Ch. 4 VM)

	Case 1			Case 2			Case 3			Case 4		
Element	u _A			VA			VA			VA		
	CIMNE	VM		CIMNE	VM		CIMNE	VM		CIMNE	VM	
Xplane 4	6	6	0%	17.6358	17.64	0%	96.1838	96.18	0%	98.1881	98.19	0%
eas												
Xplane 8	5.97	6	0%	17.6358	17.64	0%	99.7028	99.70	0%	101.444	101.44	0%

Table 2.24 (table 4.1, Ch.4 VM)

b) **Tapered and swept beam** (Sec.4.3, Ch. 4 VM)

Element	2x2			4x4			
	CIMNE	VM		CIMNE	VM		
4-EAS	21.94	21.94	0%	23.01	23.01	0%	
XPlane8	23.02	23.02	0%	23.68	23.68	0%	

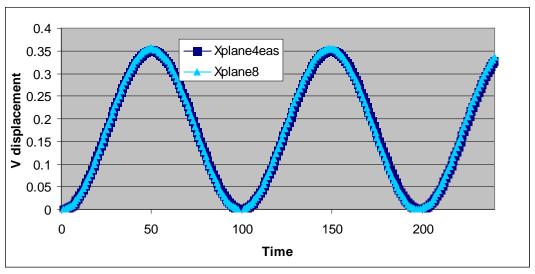


Table 2.25 (table 4.3, Ch.4 VM) 2.4.2. Dynamic small displacement elastic-plastic response of a Simply supported beam

Figure 2.9 (Fig. 4.7(a), Sec 4.5, Ch4, VM) Non linear dynamic problem.

2.4.3. Geometrically non linear dynamic response of a clamped beam under a concentrated step load (sec. 4.6, ch. 4 VM)

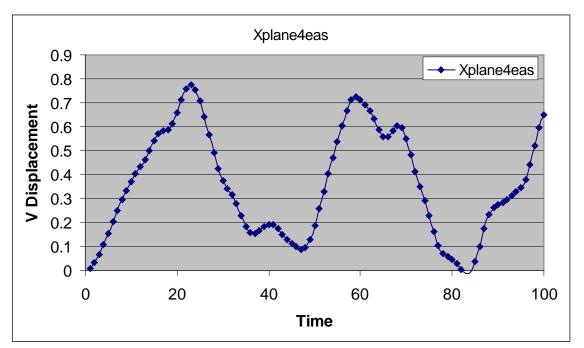


Figure2.10 (Fig.4.8, Sec 4.6, Ch4, VM) Geometrically nonlinear dynamic response of a clamped beam..

3. Conclusions

After a very accurate study of the validation analysis the following conclusions can be stated.

- 1) Xfinas element database offers a wide range of choices together with multiple possibilities in the method of analysis.
- 2) Every element have been accurately tested and validated considering the convergence analysis while increasing the quality of the mesh;
- 3) A wide range of benchmarks have been chosen to confirm the good behavior of each element and the matching between Xfina results and those obtained in literature is clearly shown in the validation manual;

The validation work was then randomly tested, as shown in the present paper, to confirm the results with the following conclusions:

- 1) The results that appears in the validation manual are acceptable and can be easily recovered using Xfinas as shown in all the previous sections;
- 2) Some mistakes are present in the validation manual but can be easily explained as editing errors, like for instance the one pointed out in section 2.1 (see table 2.17), or in section 2.2.