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Abstract The quasi-conforming technique was introduced
in the 1980’s to meet the challenge of inter-elements con-
forming problems and give a unified treatment of both
conforming and nonconforming elements. While the lin-
ear formulation is well established, the nonlinear formu-
lation based on the quasi-conforming technique that in-
cludes geometric and material nonlinearity is presented in
this paper. The formulation is derived in the framework
of an updated Lagrangian stress resultant, co-rotational ap-
proach. The geometric nonlinear formulation provides so-
lutions to buckling and postbuckling behaviour while the
material nonlinear formulation considers the spread of plas-
ticity within the element while maintaining an explicit con-
struction of element matrices. Aside from the elasto-plastic
constitutive relation, formulations on laminate composites
and reinforced concrete are also presented.

The formulations of laminate composite and reinforced
concrete material are present based on the layer concept, the
material properties can vary throughout the thickness and
across the surface of a shell element. The various failure cri-
teria for laminate composite are included in the formulation
which makes it possible to analyses the progressive failure
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of fibre and matrix. For the reinforced concrete material, the
nonlinearities as a result of tensile cracking, tension stiff-
ening between cracks, the nonlinear response of concrete
in compression, and the yielding of the reinforcement are
considered. The steel reinforcement is modeled as a bilinear
material with strain hardening.

1 Introduction

1.1 Development of the Quasi-Conforming Technique

Tang et al. [149] introduced the quasi-conforming tech-
nique. The technique was developed to meet the challenge
of inter-elements conforming problems, give a unified treat-
ment of both conforming and nonconforming elements, and
to generate new elements. The element formulation involved
the string net function that is a generalized spline func-
tion on an arbitrary two-dimensional domain. They emerge
in the integration of the piecewise polynomials on the el-
ement boundaries. Similar to Pian’s [108] work on the as-
sumed stress formulation, polynomials are used to describe
the strain field. The displacement functions appear in the
derivation of the strain-displacement matrix with boundary
integrals. This means that the displacement function is only
explicitly expressed along the boundaries of the element.
In 1983, Tang et al. presented the quasi-conforming tech-
nique again, this time; the emphasis was made on the im-
provement of the displacement interpolation function. Dif-
ferent types of 2D elements, plane, plates and shells were
used to demonstrate how the quasi-conforming technique is
used. It is also mentioned that 3D cases are straightforward.
However, the examples are all limited to linear formulations.
Tang et al. [150] then showed that the quasi-conforming el-
ement technique is a multivariate finite element method that
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it includes the compatible, incompatible and hybrid stress
model as its special cases. They have also showed the con-
nection between this technique and Hu-Washizu principle.

The quasi-conforming technique has also been used to
employ penalty functions. In cases in which additional con-
straints have to be imposed on a variational function, penalty
function methods can be used to remove the constraint
equations. Tang and Liu [152] showed the implementation
of penalty finite element methods by utilizing the quasi-
conforming element technique.

The development of nonlinear quasi-conforming ele-
ments took some time. In 1993, Guan and Tang [54] pre-
sented a geometrically nonlinear quasi-conforming FEM
based on the quasi-conforming finite element. The incre-
mental principle of stationary potential energy was first dis-
cussed, then, the formulation process of the nonlinear quasi-
conforming FEM is given. In this case, only one form of
weighing functions is used in the enforcement of the equal-
ity of the actual full strain tensor with the approximate, as
opposed to the formulation presented in this thesis, which
proposes different weighing functions for the linear and non-
linear parts of the full Green strain tensor. Qin [112] also
presented a nonlinear formulation of the quasi-conforming
technique. It was presented using the Hu-Washizu varia-
tional principle. Similar to Guan and Tang’s formulation,
the complete strain tensor is approximated using a single set
of weighing functions.

Another method by which geometric nonlinearity is in-
corporated into the quasi-conforming formulations is by not
using the full nonlinear strains, i.e. by using the von Karman
assumption. This method was done in the works of Shi and
Voyiadjis [135] and Huang et al. [65].

Literature on material nonlinear formulations is quite
rare. It could be because the development of plasticity in
an element is generally observed at Gauss points, and quasi-
conforming elements are usually derived explicitly, without
using numerical integration. Shi and Voyiadjis [135] have
been able to successfully formulate an elasto-plastic quasi-
conforming formulation without the use of Gauss points, but
instead used plastic nodes.

Of late, Voyiadjis and Woelke [162] and Woelke et al.
[173] presented studies on elasto-plasticity of shells, where
the shells were formulated using the quasi-conforming tech-
nique. To incorporate the formulated elasto-plastic theo-
ries into the shell element formulation, a plastic node con-
cept was used. The plasticity is concentrated at the nodes,
the nodes become plastic while the interior of the ele-
ment remains elastic. The geometric nonlinearity is based
on the von Karman assumption. The first article discusses
thick shells, while the second has emphasis on damage due
to micro-voids for thin and thick shells. Also, based on
this study, Kim and Lomboy [82] presented a co-rotational
quasi-conforming an elasto-plastic formulation of a four-
node stress resultant shell element for non-linear analysis of

plate and shell structures. In this case, the spread of plastic-
ity within the element is considered by providing an explicit
function of the elasto-plastic stress field.

There is much more literature available on the quasi-
conforming technique, however, they have been written in
Chinese or simply inaccessible to the author. For the pur-
pose of reference for the reader and researchers who may
wish to continue studies on the quasi-conforming technique,
some of these literatures have been included in the refer-
ences. These literatures are important to be mentioned and
included in this report, because none of them seem to in-
dicate formulations of the quasi-conforming technique that
treats geometric and material nonlinearity.

1.2 Quasi-Conforming Elements

Since the quasi-conforming technique originated at the
Dalian Institute of Technology, the first and majority of lit-
erature are in Chinese, published in the local journal, e.g.
Chen and Tang [30] on isoparametric quasi-conforming fi-
nite element, Jiang [74] on a higher precision triangular plate
element and Tang et al. [151] on a multi-variable quasi-
conforming quadrilateral element. The early elements are,
naturally, linear formulations.

The most common application of the quasi-conforming
technique is to formulate plane, plate and shell elements.
Liu and Tang [88] constructed a three-node triangular ele-
ment for the solution of the equation of a type of inverse
problem of wave propagation after Laplace transformation
�u − A2u = 0. The strains in the element are approxi-
mated by an exponential function and the string-net func-
tion between neighboring elements is approximated by one-
dimensional general solution of the equation. The results
showed high precision for with course meshes. On plate el-
ements, Zhao and Chen [185] presented a new approach to
formulate thin plate bending elements. The strain energy of
the element is decomposed into two parts: an integral con-
cerning the first strain invariant and a line integral around
the elemental boundary. The former can be discretized by
quasi-conforming technique and the latter can be directly
calculated using the interpolation of the deflection and its
normal slope along the element boundary.

It is also possible to formulate axisymmetric quasi-
conforming elements. Guan and Zhang [56] constructed an
axisymmetric three node degenerated shell element by com-
bining the quasi-conforming FEM with the concept of the
degenerated shell element. The axisymmetric three-node
quasi-conforming degenerated shell element is formulated
with the Hu-Washizu generalized variational principle. The
stress and the strain are assumed by using the same isopara-
metric coordinate interpolation. To define the interpolation
forms of the stress and the strain, numerical trials and analy-
sis for eigenvalues of the element stiffness matrix were car-
ried out.
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The present author have also contributed to quasi-con-
forming shell element literature with Kim et al. [81]. Two
shell elements with drilling degrees of freedom, which im-
prove membrane behavior and allows the modeling of stiff-
ened plates and shells, were presented. The stiffness matri-
ces are explicitly expressed, and the stresses are accurately
obtained at the nodes.

The earliest literature in nonlinear quasi-conforming is
that of Jiang [75]. The next one is by Guan and Tang [54],
which also deals with geometric nonlinearity. In 1992, Guan
and Tang [53] initially developed a linear nine-node quasi-
conforming degenerate shell element, based on the Hu-
Washizu variational principle. This shell element is com-
pletely free from shear and membrane locking phenomena,
and spurious kinematic modes were globally suppressed.
Thereafter, Guan and Tang [55] constructed a geometrically
non-linear quasi-conforming nine-node quadrilateral degen-
erated solid shell element based upon the non-linear quasi-
conforming finite element method. The linear and nonlin-
ear strains are approximated with the same assumed strain
and weighing function. Various nonlinear benchmarks were
solved to verify the shell formulation. It was noted that the
results indicate that the shell element in the paper were
accurate and efficient, however, the results did not show
the snapback and snap-through behavior that are associated
with these benchmark problems. The result of the nonlin-
ear clamped plate also shows slight oscillations in the equi-
librium path. In both the linear and nonlinear formulations,
numerical integrations were used.

Qin [112] along with presenting a family of variational
principles developed an eight-node isoparametric quasi-
conforming element, also geometrically. The element has
five degrees of freedom at the corner nodes and three degrees
of freedom at the mid-side nodes. The examples presented
include only geometric stiffening and not the complete post-
buckling behaviour associated with the problems solved.

The works that are the main influence for this research
are those by Voyiadjis and Shi. Voyiadjis and Shi conducted
several studies on quasi-conforming plates and shells. In
1991, Shi and Voyiadjis [132–134] proposed a refined two
dimensional shell theory for the thick cylindrical shells and
developed a simple and efficient C0 cylindrical quadrilat-
eral shell element using the quasi-conforming technique.
Shi and Voyiadjis [133] have also developed the QCCP-
2 plate bending elements using the quasiconforming tech-
nique. By using an interrelated displacement-rotation func-
tion, the plate element was capable of automatically satisfy-
ing the Kirchhoff assumption for the case of thin plates. Shi
and Voyiadjis [135] have extended their work by present-
ing the non-layered elasto-plastic formulation of shear de-
formable plates. The on-layered plasticity is based on a plas-
tic hinge formulation and the modified Ilyushin’s yield func-
tion that accounts for the development of plastic deforma-
tions across the thickness and the effects of transverse shear

forces. After this, they continued their work by presenting
the geometrically nonlinear analysis on plates and shells in
Shi and Voyiadjis [133] and Voyiadjis and Shi [161]. Their
formulation involves large displacements but small strains
and a von Karman assumption. Large displacements meant
large translations and rigid rotations but moderately large
relative rotations. The plate and shell elements have five lo-
cal degrees of freedom per node, three translations and two
rotations. What should also be emphasized in their works is
that their plate and shell formulations are given explicitly,
whether linear or nonlinear.

Of late, Voyiadjis have continued to research on plastic-
ity using quasi-conforming elements. Voyiadjis and Woelke
[162] and Woelke et al. [173] presented studies on elasto-
plasticity of shells, where the shells were formulated using
the quasi-conforming technique. To incorporate the formu-
lated elasto-plastic theories into the shell element formula-
tion, a plastic node concept was used. The plasticity is con-
centrated at the nodes, the nodes become plastic while the
interior of the element remains elastic. The geometric non-
linearity is based on the von Karman assumption. The first
article discusses thick shells, while the second has emphasis
on damage due to micro-voids for thin and thick shells.

Another elastic-plastic quasi-conforming shell finite el-
ement is by Wang et al. [165]. The element is a thin shell
that is used for solving problems of finite deformation in
sheet metal forming. A nonlinear shell theory in a form of
an incremental variational principle and a quasi-conforming
element technique were employed in the Lagrangian formu-
lation. Kim and Lomboy [82], on the other hand, presented
a co-rotational quasi-conforming formulation of a four-node
stress resultant shell element for nonlinear analysis of plate
and shell structures. The formulation is based on the work
discussed in detail in this paper.

Searching for literature on laminate composite elements
formulated using the quasi-conforming technique, three for-
mulations had been found. The first is by Zhu and Wang
[186] on a quasi-conforming penalty FEM for large de-
flection of composite laminated plate, in Chinese. The sec-
ond is the one published by Park et al. [104], a quasi-
conforming formulation of a 4-node stress resultant shell
element for linear static and dynamic analysis of compos-
ite plates and shells. The element and its formulation is the
four-node quasi-conforming laminate composite in this pa-
per and the static case results are those reported in Lomboy
[89]. The third is that by Huang et al. [65]. They presented a
quasi-conforming triangular laminated shell element based
on a refined first-order shear deformation theory. The quasi-
conforming element is derived via the Hu-Washizu varia-
tional principle with the stresses as Lagrange multipliers.
The shell element has 7 degrees of freedom per node; three
displacements, two first derivatives in the in-plane directions
of the out-of-plane displacement, and two transverse shear
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strains. To consider the effect of transverse shear deforma-
tion on the global behavior of the laminated composite shell,
the Reissner-Mindlin first-order theory, with shear correc-
tion factors of Whitney [169], was adopted. The formulation
includes geometric nonlinearity and a von Karman assump-
tion is used. The constant strain field is assumed for the mid-
surface linear and nonlinear strains. In a later study, Huang
and Atluri [64] used the quasi-conforming shear flexible tri-
angular element in developing a simple method to follow
post-buckling paths in finite element analysis.

1.3 Mathematical Studies on the Quasi-Conforming
Technique

The quasi-conforming technique properties and elements
have also been studied on a purely mathematical back-
ground. Zhang and Wang [181, 183, 184] studied the quasi
conforming element by using a generalized patch test and
tried to establish here the mathematical foundation of quasi-
conforming element for plate bending elements. In 1986,
they also discussed the convergence of the quasi-conforming
method. They showed that the quasi-conforming element
method is convergent if the quasi-conforming element
spaces have the approximability and the strong continuity,
and satisfy the rank condition of element and pass the test
IPT.

In combination with the Monte-Carlo method, Lu et al.
[90] used the quasi-conforming technique to obtain the up-
per bound of collapse loads for plates. Using the developed
method, collapse velocity patterns were obtained along with
the collapse load of arbitrarily shaped plates.

On a more recent study, He and Tang [57] studied the
quasi-conforming technique by deriving displacement func-
tions from the strain formulation constructed using the
quasi-conforming technique. Using this method, it had been
concluded that the coefficients of the constant and the linear
strain are uniquely determined, and the quasi-conforming fi-
nite element method is convergent to constant strain. Also,
different methods to determine the rigid displacement corre-
spond to different displacement function and node error.

1.4 Shell Finite Elements

The formulation of shell elements is one of the most chal-
lenging tasks in finite elements. Its complicating factors in-
clude large displacements and rotations in 3D space, shear
and membrane locking and material nonlinearity. In trying
to solve these problems, an enormous amount of literature
is now available on shell element formulations. In the works
of Kanok-Nukulchai [77], the strategies of shell element for-
mulation had been grouped into a) 3D continuum, b) classi-
cal shell and c) degenerate shell. Ma [91] added a ‘super-
posed elements’ classification from the latter.

The 3D continuum elements are formulated using three-
dimensional field equations. The resulting elements, with-
out modification, gives poor performance when used with
one dimension much smaller the others. To improve the
element’s performance, Wilson et al. [172] recommended
the use of incompatible modes. The classical shell category
includes shell elements formulated by reducing the three-
dimensional field equations with shell assumptions and the
Kirchhoff-Love hypothesis. The degenerated approach is the
largest category and has dominated shell finite elements
since it was introduced in Ahmad et al. [2]. The 3D field
equations are discretized in terms of mid-surface nodal vari-
ables and the formulation also includes the transverse shear
effect. Its main drawback was the presence of shear and
membrane locking. The alleviation and removal of these
locking phenomena had been a focus of researchers for years
and is still considered in the evaluation of good shell ele-
ments.

Aside from literature reviews included in individual jour-
nal articles, journal articles dealing only with advances in
shell element formulations have also been published, Yang
et al. [177, 179]. Yang and co-workers’ review have focused
on recent shell finite element formulations. Their classifi-
cation of element formulations are a) degenerate shell, b)
resultant based formulation, c) reduced integration with sta-
bilization, d) incompatible modes approach, e) enhanced
strain approach, f) enhanced strain method for 3D type
elements, g) drilling degrees of freedom element, h) co-
rotational framework for shell analysis and i) composite
shell finite elements. It was noted that their classifications
are not rigid and that recent successful shell finite elements
use a combination of the above techniques.

The resultant shell formulation is based on replacing
the general set of three-dimensional governing equations
with equivalent equations by pre-integrating or analytically
integrating through the thickness of the shell. The pre-
integration gives an insight into the structure of the gov-
erning equations and leads to the formulation of effective
finite elements. One of the first works in resultant shell for-
mulation in the context of the ‘natural approach’ is by Ar-
gyris et al. [4–7]. They have formulated the SHEBA fam-
ily of shell elements using the classical matrix displacement
method with high order interpolations. Another significant
resultant shell formulation that has been followed and mod-
ified by other researchers is by Simo et al. [136–144]. Their
work proposed a stress-resultant-based geometrically exact
shell model that is essentially equivalent to a one director
inextensible Cosserat surface.

Reduced integration was originally proposed to treat
locking problems. Yang’s classification of reduced integra-
tion with stabilization focuses on the use of reduced integra-
tion to develop simple, efficient and robust elements. Simple
and efficient in mesh generation and computing and robust
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in solving complicated non-linear problems with multiple
contacting surfaces. Elements derived using purely reduced
integration techniques prove to be rank deficient. In some
cases, the rank deficiency resulted in singularities and oscil-
lations or spurious modes. The use of stabilization matrices
is one of the solutions that have been utilized to maintain a
computationally efficient element while controlling the spu-
rious modes. The ultimate reduced integration is the use of
only one integration-point. Belytschko and co-workers [15,
17–21] extensively studied the development of a four-node
quadrilateral using one integration point with stabilization.
Belytschko and Tsay [19] quadrilateral element used one in-
tegration point for linear analysis and a column of integra-
tion points for material nonlinear analysis. Its main draw-
back is its failure to solve problems with warped elements.
This element is widely used in the highly nonlinear crash-
worthiness studies. Liu et al. [87] presented a degenerated
non-linear shell element using stress resultants. The shell el-
ement has an explicit tangent stiffness and is rank sufficient.
The stabilization employed is based on a Taylor series ex-
pansion.

Incompatible modes have been introduced to overcome
overly stiff elements and incompressibility. Wilson et al.
[172] introduced the method of incompatible modes. It was
used to improve the bending deformation of lower order el-
ements. Taylor et al. [156] further improved the formulation
by enforcing a patch test satisfaction. Extending this further
are the works of Simo and Rifai [139] for the linear case and
Simo et al. [136] for the nonlinear case, developing a family
of elements based on the Hu-Washizu variational principle.
The elements perform well in bending, as well as for incom-
pressible cases. Wrigger et al. [175] have also proposed an
incompatible modes formulation for a large elastic deforma-
tion element.

In the work of Simo et al. [136], the enhanced strain ap-
proach was made developed. Instead of incompatible modes,
the enhanced strain field is constructed directly. It incorpo-
rates the method of incompatible modes as a particular case.
Elements having enhanced strains show very good coarse
mesh accuracy. Examples of enhanced strain elements in-
clude formulations by Reddy and Wriggers [66], Basar et
al. [10], Crisfield et al. [32] and Ish and Guttal [72]. The
enhanced strain method has also been applied to 3D type
elements, sometimes referred to as solid shells. Solid shells
with enhanced strains have been formulated via stabilization
methods, hybrid or mixed variational principles and mixed
Hu-Washizu variational principles.

The addition of drilling degrees of freedom allows conve-
nient analysis of folded and stiffened plates and shells. The
easiest way to incorporate a drilling stiffness is by adding
a fictitious spring. The most commons is by using a strain-
energy for the rotation of the shell normal, as introduced
by Kanok-Nukulchai [77]. Hughes et al. [67, 69, 70] had

extensively studied drilling degrees of freedom. They have
also presented a variational formulation for elasto-dynamics
with drilling degrees of freedom. Allman [3] presented the
‘vertex connectors’, one of the most successful formula-
tions on drilling degrees. Its derivation is simple and the re-
sults from the formulations are fairly accurate. Hughes and
Brezzi [69] investigated variational principles employing in-
dependent rotation fields and proposed several formulations.
They successfully developed modified principles of mixed
(i.e. Reissner and Hu-Washizu) and displacement type and
proved convergence for a variety of convenient interpola-
tory patterns. Hence, they argued that convenient interpo-
latory patterns require modifications of the classical vari-
ational framework. Simo [142] and Ibrahimbegovic et al.
[71] presented drilling rotations in a stress-resultant-based
geometrically nonlinear shell model.

Traditionally, the implementation of most large rotation
finite element formulations has been carried out in a single
module. The constitutive law and the element kinematic de-
scriptions are tightly coupled. This approach renders many
existing beam and shell finite elements, based on moderate
rotation assumptions, ineffective for large rotation problems.
Belytschko and Hsieh [16] proposed a method based on con-
vected coordinates to develop a small strain, large rotation
beam element. The use of convected co-ordinates, in ef-
fect, decomposes the motion into its deformational part and
rigid body component. Later, a procedure was developed
that uses the above decomposition in a co-rotational co-
ordinate frame to compute strains from arbitrarily large dis-
placements and rotations for any element. Peng and Crisfield
[106] described an alternate approach that involves a form
of co-rotational technique. In their work they showed that
once the co-rotational technique is extended to large-strain
plasticity, there are some advantages in considering the co-
rotational framework. Moita and Crisfield [94] developed
enhanced lower-order element formulations for large strains
where they showed that a more general procedure could be
devised with the aid of mixed assumed strain procedures.
While Gruttman et al. [52] and Wriggers and Gruttmann
[174] developed thin shell formulation with finite rotations
based on the concept of Biot stress. Recently, Felippa and
Haugen [48] presented a unified theoretical framework for
the element independent co-rotational formulation in geo-
metrical nonlinear analysis.

Laminated composite materials have often been mod-
elled as an equivalent single layer using classical laminate
theory (CLT), in which the thickness stress components are
ignored and the Kirchhoff-Love kinematic hypothesis is en-
forced. However, laminates are susceptible to thickness ef-
fects because their effective transverse modulii are signifi-
cantly small compared to the effective elastic modulus along
the fibre direction. As a result CLT under-predicts deflec-
tions and over predicts natural frequencies and buckling
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loads. Refined single layer theories have been proposed to
overcome these deficiencies, Kapania and Raciti [79]. Whit-
ney and Pagano [170] first developed a Mindlin-type first-
order transverse shear deformation theory (FSDT) for multi-
layered anisotropic plates, and Dong and Tso [40] for multi-
layered anisotropic shells. Modelling laminates with single
layer theories cannot account for cross-section warping, re-
sults in incompatible shearing stresses between layers and
are inadequate for accurate local stress analysis. A higher-
order theory overcoming some of these limitations was pre-
sented by Reddy [116] for laminated plates and by Reddy
and Liu [119] for laminated shells.

Variationally sound theories that accounts for the 3-D
effects, allows thickness variation, and permits the warp-
ing of the deformed normal for a refined analysis of thick
and thin composites have also been proposed. Two classes
of theories are available that can, short of a full-fledged
three-dimensional analysis of plates and shells, accurately
and efficiently predict the stress distribution: layerwise the-
ories and the individual layer plate theory. In the layerwise
plate theory, suggested by Reddy [115], the continuity of the
transverse normal and shear stresses is not enforced. In the
individual-layer plate models, for example Di Sciuva [37],
the transverse shear stress continuity is enforced a priori. A
review of the available theories is given in Reddy and Rob-
bins [120].

Recent attention has been given to through-the-thickness
stresses/strains in shells. The transverse stress and thick-
ness change become important in such applications involv-
ing contact, delamination and localized effects due to sur-
face loading. Accounting for thickness deformation is also
important for plasticity when incompressibility is to be ob-
served.

Basar and Ding [9] presented the theoretical and numer-
ical simulation of large strain rubber-like shells using shear
deformable models. The shell model includes two thickness-
stretching parameters in a quadratic displacement function.
Their formulation applies to compressible and incompress-
ible materials. Betsch and Gruttmann [22] formulated a
four-node shell using three-dimensional stress/strain and hy-
perelastic material laws. No shell specific approximations
of the three dimensional constitutive equations are incorpo-
rated. The discretization of the covariant Green-Lagrange
strains leads directly to the interpolation of the thickness
stretch. Accordingly, the thickness stretch is included within
the interpolation constants of the generalized finite element
displacement vector. El-Abbasi and Meguid [45] developed
a seven-parameter model. Two interpolation schemes for
the shell director were developed to avoid thickness lock-
ing. The formulation was test for both thin and thick shells.
Brank et al. [24] also tackled shell thickness deformation.
They studied three different formulation of incorporating
through-the-thickness stretching, a seven-parameter model,

a model that uses an additive decomposition of the strains
and the other an additive decomposition of the deformation
gradient. In a more recent research, Tan and Vu-Quoc [148]
presented a low-order solid-shell element formulation for
analyses of large deformable multilayer shell structures with
non-linear materials. The locking associated with nearly in-
compressible materials was avoided by the enhanced as-
sumed strain method (EAS). Shear locking and curvature
thickness locking are resolved effectively by using the as-
sumed natural strain (ANS) method.

1.5 Shear and Membrane Locking

The degenerated approach has dominated shell finite ele-
ments since it was introduced in Ahmad et al. [2]. Early
formulations using the degenerate concept on shear flexible
elements, however, sometimes suffer from two types of de-
ficiencies. The two deficiencies are shear locking and mem-
brane locking. While such elements are capable of dealing
with thick plates and shell problems, their performance may
deteriorate rapidly as the thickness becomes smaller. Shear
locking may possibly occur in both flat and curved shear de-
formable bending elements, while membrane locking occurs
only in curved thin shell.

Many of efforts of investigators have been directed at
overcoming the shear-locking problem in Mindlin-Reissner
type shell elements, rendering the element effective and reli-
able for thin plate and shell applications. Dvorkin and Bathe
[42] proposed a fournode assumed natural strain (ANS)
shell element for the linear and geometrically nonlinear
analysis, which avoids shear locking. The strain tensor was
expressed in terms of the covariant components and covari-
ant base vectors. The performance of this element was quite
satisfactory and suggested promising results in very com-
plex shell structures. Dvorkin et al. [43] presented a finite
strain elasto-plastic formulation of MITC4. Simo and Rifai
[139] developed a class of enhanced assumed strain (EAS)
element formulation using a three-field mixed finite element
framework. The assumed strain method does not only solve
the locking problems, but also improves the elements accu-
racy for coarse meshes and performs very well in the incom-
pressible limit. Combining the EAS and the assumed nat-
ural strain (ANS) in an efficient manner, Vu-Quoc and Tan
[163, 164] presented a solid-shell element formulation. In
their work, a modified EAS is used to improve the element
performance and pass the patch test, while ANS is used to
remove shear locking and membrane locking.

Another method, which has been adopted to solve lock-
ing problems, is the reduced integration or selective in-
tegration technique. Some of the early uses of the re-
duced/selective integration scheme were by Doherty et al.
[39], Zienkiewicz et al. [187] and Pawsey and Clough [105].
One of the researches that have explained the locking be-
haviour and its alleviation by selective integration, through
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a heuristic argument, was by Hughes et al. [68]. Their work
was applied to a plate element. This was then followed by
the application of the same type of integration to a 4-node
shell element by Kanok-Nukulchai [77]. Selective integra-
tion is a solution for shear locking problems; however, the
application of under-integration has been shown to result in
the appearance of spurious zero-energy modes. The spuri-
ous modes are due to rank deficiency resulting from under-
integration. A remedy to the rank deficiency, which is widely
used today, is the use of a stabilization matrix.

1.6 Laminate Composite Progressive Failure

Fibrous composite is a good material for structures because
of low weight, high stiffness, high strength, longer fatigue
life, and optimal or tailored design. Most of its applica-
tions have been in aerospace engineering and automotive de-
sign. Recently, composite materials are being used as bridge
decks and concrete reinforcement and repair.

Like most design methods, the ability to predict the be-
haviour of a structure during its stages of near failure to final
failure is important. Fibrous composite is not an exception.
To be able to predict its response during first layer damage
and last layer damage would give designers the idea how
to tailor fit their composite materials to avoid catastrophic
failures.

Because of the fast increase in computing capabilities,
finite element modelling of composite structures for design
has become common. The analysis of first ply failure and
last ply failure has also been considered in finite elements,
such as in the works of Engelstad et al. [47], Sandhu et al.
[128], Eason and Ochoa [44] and Reddy et al. [121], to name
a few. In the analysis and consideration for the effects of ply
failure, present methods considers the stresses at the gauss
points and weighs the effects of damage by using the weight
of the Gauss point.

Different authors had studied progressive damage using
macroscopic failure theories in finite elements extensively.
Ochoa and Engblom [99] used a higher-order displacement
element. The element had eight nodes with seven degrees of
freedom for the corner nodes and three degrees of freedom
for the side nodes. Toson and Zabaras [158] studied several
failure criteria using finite element method. The maximum
stress, Hoffman, Tsai-Wu, Lee and Hashin failure criteria
were considered. There results showed that the first ply fail-
ure and last ply failure using the Lee criterion gave the best
results. Engelstad et al. [47] used a nine-node quadratic shell
element based on a continuum formulation of a laminated 3-
D shell element to predict the post buckling behaviour and
progressive failure of composite panels in compression. The
failure in each layer was checked at the Gauss points of each
layer. When failure occurred, laminate properties were re-
duced at the Gauss point.

In more recent works, Banbury et al. [8] used the
maximum principal strain criterion to predict the progres-
sive failure of fastener pull-trough. Very good correlation
between experimental results and predicted pull-through
failure loads, failure location and failure sequence were
achieved. Padhi et al. [103] studied the progressive failure
and ultimate collapse of laminated composite plates sub-
ject to transverse pressure. Several failure criteria were used
including Hashin’s and Tsai-Wu’s and the stiffness reduc-
tion resulting from ply failure was evaluated at the gauss
points. Spottswood and Palazotto [146] studied the physical
response of a curved panel under transverse loading. Their
study showed that the physical response of the panel would
predict a more realistic response with the inclusion of pro-
gressive failure.

One of the early works on non-linear transient analysis
of composites were by Reddy [114] and Reddy and Chan-
drashekhara [118]. Other notable works on the subject were
those of Wu and Yang [176] and Kant and Mallikarjuna
[78]. Transient analyses with damage of composites in re-
cent studies are mostly focused on impact response, such as
works by Wiggenraand et al. [171] and Geubelle and Baylor
[50].

1.7 Reinforced Concrete Material

Strength or limit design for reinforced concrete structures
was introduced in the 1950’s. The basic idea is that the loads
are increased and the capacities are decreased by safety fac-
tors. For decades, because of the limitation of analysis tools,
the structure displacements and stresses are analyzed lin-
early, while the design is conducted assuming nonlinear ma-
terial behavior. Rarely is the structure analyzed for its in-
cremental nonlinear response after this point. However, re-
search on finite element analysis of reinforced concrete that
considers nonlinear materials and cracked cross-sections go
back to the 1960’s and 70’s, [14, 26, 76, 85, 96, 129, 130].
But since the use of finite elements as an analysis method
and design tool has been heavily dependent on the power
and availability of computers, these were slow to seep into
the workplace.

Concrete plate and shell structures vary from floor slabs,
tanks, and roofs to large cooling towers, hence, their nonlin-
ear analysis have been given much attention. With the ad-
vent of the performance based design method, analysis of
nonlinear reinforced concrete shells that includes large de-
formations and material failure is becoming more important
and with the growth of the power of the computer, more
common. In the nonlinear analysis of reinforced concrete
plates and shells, elements and constitutive models devel-
opment go hand-in-hand. There are two methods by which
reinforced concrete may be modeled: discrete and layered
modeling. In discrete models, concrete is modeled by three-
dimensional solid elements while the reinforcing steel is
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modeled by truss elements. This method is computation-
ally expensive because of the number of elements required
to model a simple shell structure. Because of its simplic-
ity in formulation, the degenerate approach combined with
a layered model is much more widely used. Scordelis and
Chan [131], Owen and Figueiras [102] and Polak and Vec-
chio [109, 110] are some examples that present formulations
based on a layer model applied to degenerate shell element.

Concrete is a non-homogeneous and anisotropic material
that behaves nonlinearly. The use of an experimental uni-
axial stress–strain curve for constitutive modeling to con-
crete is insufficient to describe the strength characteristics
of concrete under multi-axial stress states. Its compressive
strength increases as it is loaded in a biaxial compressive
state and decreases as the tensile stress is increased under bi-
axial compression–tension. Various constitutive models and
analysis procedures have been presented on this account [12,
13, 34, 35, 46, 63, 86, 93, 100, 101, 160]. These formula-
tions have been shown to provide reasonably accurate simu-
lation of response under a variety of complex structural con-
ditions and loading schemes.

This study was conducted to present an efficient for-
mulation of a material and a geometrically nonlinear shell
element using the quasi-conforming techniques. To han-
dle large displacements and rotations, the co-rotational ap-
proach was employed. The displacement field refers to a set
of local co-rotational coordinates. The polar-decomposition
theory was used to derive the co-rotational formulation,
where the motion is decomposed into either a rigid trans-
lation followed by rigid rotation, or a rigid rotation followed
by rigid translation. Thus, the deformation is determined by
removing the rigid-body rotation from the total nodal dis-
placements, where the remainders are referred to as “co-
rotational displacements.”

To improve the membrane behavior and the model-
stiffened plate and shell structures, the rotational degree of
freedom and rotational strain of the normal shell was in-
cluded in both the linear and nonlinear quasi-conforming
formulation. Instead of the von Karman assumption [135],
the present geometrically nonlinear formulation was derived
using the full definition of the Green strain tensor, which in-
cludes the membrane, bending, and transverse shear stresses
in the geometric stiffness.

Compared with the other Lagrangian element, the stresses
in the present formulation directly occur at the nodes instead
of the usual Gauss integration points. The element matrices
are explicitly integrated (not numerically), making the ele-
ment computationally efficient and less sensitive to distor-
tion, which are desirable for nonlinear analysis. Moreover,
since the stresses occur at the nodes, the onsets of the max-
imum stresses are obtained accurately, as opposed to those
taken within the interior of the element or Gauss points.

The formulations of the nonlinear material are present
based on the layer concept, and the material properties can

vary throughout the thickness and across the surface of a
shell element. The stress stations are equally spaced through
the thickness, two of which are at the top and bottom sur-
faces, making up the so-called “multilayered approach.” The
actual stress components are assumed to be the plane stress
components at any level of thickness. A modified trape-
zoidal rule is used for the numerical integration of the con-
stitutive relation in the plasticity part. Thus, the present shell
element is very efficient in capturing the nonlinear behavior
of a material.

For elastoplastic analysis, the von Mises yield condition
with linear strain-hardening and the Prandtl-Reuss flow rule
to discrete points, through the thickness, was used. For the
analysis of a laminate composite material, the various fail-
ure criteria for laminate composite materials were included
in the formulation, which made it possible to analyze the
progressive failure of the fiber and the matrix.

The material nonlinearities that were included in the for-
mulation of the reinforced concrete material were the crack-
ing of the concrete under tension, the nonlinear response of
the concrete in compression, and the yielding of the rein-
forcement. For the concrete in compression, the formula-
tion was based on two different approaches: the plasticity-
based model (perfect plasticity and strain hardening) [61]
and the elastoplastic-fracture model proposed by Maekawa
et al. [93]. Tension stiffening, aggregate interlocking, and
the dowel action were considered by modifying the post-
cracking strength and the shear stiffness. The bilinear stress-
strain relation was assumed for the reinforcing steel. The re-
inforced concrete section was modeled as a layered system
of concrete and of the equivalent smeared steel layer, assum-
ing a perfect bond between the concrete and the steel.

To validate the proposed quasi-conforming shell element,
several tests of linear, geometric, and nonlinear material
problems were performed, and their results were compared
with the data in the literature through the analytical and ex-
perimental procedures. The good performance of the pro-
posed shell element was also shown in the numerical exam-
ples presented.

2 Formulation of the Quasi-Conforming Technique

2.1 Basic Concept

The quasi-conforming technique was introduced by Tang et
al. [149, 153]. It was presented as a general method that
treats the conforming, non-conforming, and hybrid elements
in a unified way. This method was initially inspired by Pian’s
work [108] on the assumed stress formulation. Tang et al.’s
work however, had emphasis on the interpolation functions
for the improvement of finite elements.

Piecewise polynomial functions with variational con-
straint are commonly used to approximate solutions of the
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Fig. 1 Finite element mesh

finite element method. However, for cases where second
order derivatives are involved, inter-element compatibility
problems may arise when using piecewise polynomial func-
tions. It would be very difficult, if not impossible, to de-
scribe smooth surfaces of prescribed curvature by a series
of elements approximated with piecewise polynomials. In
the quasi conforming technique, the surface is described us-
ing one dimensional interpolation functions, coined ‘string
functions’, by forming, a ‘net’ within the surface. The one
dimensional interpolation functions are used to obtain the
strain discretization in the element by boundary integration.
By doing this, when elements are joined to form the mesh,
string functions along the boundary of each element would
be joined together and would form the net within the surface.

In Fig. 1, let the domain, on which the displacement sur-
face is defined; be divided into sub-domains or elements.
Most commonly in finite elements, the displacement surface
is defined within each the sub-domain or element with piece-
wise polynomial functions. The compatibility of the inter-
element boundaries is sometimes neglected. In the quasi-
conforming technique, the functions describing the surface
are defined only at the inter-element boundaries of the sub-
domains, and the functions inside the element are not de-
fined explicitly.

The first step in formulating quasi-conforming finite el-
ements is the discretization of the strains (surface/displace-
ment derivatives) in an element (sub-domain). The strains
may be

e =
[

∂u

∂r

∂u

∂s

∂2u

∂r2

∂2u

∂s2
2

∂2u

∂r∂s

]T

, (1)

depending on the problem to be solved. The stains are as-
sumed to be continuous within the element but discontinu-
ous across the inter-element boundaries, and may be approx-
imated by Taylor’s expansion. For the first term of (1),
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Fig. 2 Boundary line S, domain � and boundary normal n

The ∼ is to denote, the expansion approximate. Equation (2)
can also be expressed as a truncated polynomial expansion,

∂u

∂r
≈ ẽ = α1 + α2r + α3s + α4r

2 + · · ·

=
n∑

i=1

Piαi = Pα. (3)

The Pi ’s are the basis trial functions. Enforcing the above
approximation within the element,
∫

�

N(e − ẽ)drds = 0. (4)

N is a weighing function. It is conveniently defined as
PT, (Ni = P T

i ), which makes the resulting stiffness matrix,
symmetric. Substituting (1) and (3) into (4), and rearrang-
ing,
[∫

�

PTPdrds

]
α =

∫
�

PT ∂u

∂r
drds, (5)

Aα = Cu, (6)

A =
∫

�

PTPdrds and Cu =
∫

�

PT ∂u

∂r
drds. (7)

The integral on the left side of (5) are composed of polyno-
mials, and may be integrated easily. Using Green’s theorem,
the right hand side integral can be evaluated.

∫
�

PT ∂u

∂r
drds =

∮
S

uPTnrdS −
∫

�

u
∂PT

∂r
drds. (8)

S is the boundary line of the element, nr = cos(n, r) and n

is the outward normal of the element boundary, Fig. 2. For
the case of second order derivatives,
∫
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)
udS

+ 2
∫
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∂2PT

∂r∂s
drds

}
. (9)
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The line integrals in (8) and (9) are evaluated using string
functions, introducing what has been earlier mentioned as
string functions along the boundary of the element. Inter-
element compatibility is then achieved within the integral.
When area integrals remain, such as the last terms in (8) and
(9), they may be evaluated without concern for inter-element
compatibility. When both the line integral and the area inte-
gral are present, the displacement could be said to be com-
posed of compatible and incompatible modes. Both types
of integration, the line integrals and area integral, should be
integrated with sufficient accuracy and in terms of nodal dis-
placement values.

Equations (3) to (9) is done to all strain terms to obtain
the strain discretization matrix, B. Thus, the element strain
field is,

e = PA−1Cu = Bu. (10)

A, P and C are defined to contain all the parameters for each
strain term.

2.2 Element Displacements

In the quasi-conforming technique, the key part in defining
the displacements is the element boundary displacements.
The boundary displacements are one dimensional displace-
ment functions used in the integration of the strain approx-
imation, specifically the second of (7). This displacement
function is called the string function. When elements are
assembled, their boundaries form a ‘net’ in which the dis-
placement function forms as one of the strings in the net.
In choosing/defining the sting functions, it is recommended
that the string function should have a high order. It allows the
element to have a high order displacement function while re-
mains easily integrated.

Since string functions are 1D displacement functions, it
only defines the displacements of a reference line or plane.
This poses no concern for plane elements but for the case of
shells, string functions would refer only to displacements on
mid-surface. This limits the application to degenerate for-
mulations.

When area integrations remain in (8) and (9), a displace-
ment function that describes the displacement within the el-
ement reference surface has to be defined. This may be done
using isoparametric mapping. They may be evaluated with-
out concern for inter-element compatibility.

The displacement relations for parts of the element that
do not lie within the reference surface may be described
using any kinematic relations. These will affect the quasi-
conforming formulation when the element strains are de-
rived. Substitution of the kinematic relations to the defin-
ition of the strain terms, example Green Lagrange strains,
will provide an expression of strains that will be approxi-
mated using the quasi-conforming technique.

In the nonlinear formulation of quasi-conforming ele-
ments, a co-rotational approach is adopted. This allows the
analysis of problems involving large element rotations and
translations. It is easy to separate rigid body rotations and
translations from strain producing pure deformation. The as-
sumption is that rotations and translations can be large, but
strains remain small.

Since the element strains are interpolated in local coor-
dinates via Taylor’s expansion in (3), it is also convenient
to express the element formulation in a local co-rotational
coordinates.

The local coordinate origin is located at the geometric
center of the element. It is assumed that this point is un-
changed, relative to the element boundaries or nodes. Con-
sidering that the element would undergo large displace-
ments, the local corotational axes should displace with the
element while remaining independent of the element defor-
mation or strains. This is achieved by, first assigning two
lines of element fibers that are passing through the origin.
These lines do not need to be orthogonal. The direction of
these lines should be determinable in the undeformed and
deformed states. The vectors along these lines would be l1
and l2. The local orthogonal surface axes can then be placed
symmetrically with l1 and l2 so that even as the element, thus
the fibers/lines, strains, the local axes remain unaffected.

Vt = l1 × l2,

Vs = [(Vt × l1) + l2]
‖(Vt × l1) + l2‖ ,

Vr = Vs × Vt .

(11)

Given l1 and l2, Vt is the surface normal at the origin. Vr

and Vs are the base vectors of axes r and s that lie on the
reference surface. In (11), symmetric means angles Vs–l2
and Vr–l1 are always equal, as shown in Fig. 3.

2.3 Element Strains

The total strain at any point p is given by the linear co-
rotational strain tensor

εij = 1

2
(ûi,j + ûj,i ). (12)

The linear strain terms are expressed in terms of nodal
displacements using the quasi-conforming technique. The
strain function would take the form of (10). The first step
in deriving (10) is to assign the terms of P. The number of
polynomial terms to express the distribution of strain over
the element should be enough for the element to be rank suf-
ficient. To determine whether the element is rank sufficient,
the following equation should be satisfied

M − K ≥ N − G. (13)
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Fig. 3 Local co-rotational axes

M is the number of constants of strain and K is the num-
ber of dependent constants of strain due to the differential
compatibility relations, which are

2
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)
.

N is the number of parameters, i.e. the degrees of freedom of
displacements and G is the number of rigid body displace-
ments.

The next term to be evaluated is matrix A, the first of (7).
Because of its definition, it is a symmetric matrix composed
of polynomials. For elements without midside nodes, A may
be easily integrated. The integration formulas that could be
used are
∫

�

rmsndrds = 1

m + 1

∮
rm+1snnrdS or

(15)∫
�

rmsndrds = 1

n + 1

∮
rmsn+1nsdS.

Elements with mid-side nodes would require coordinate
transformation to be integrated, from local coordinates to
natural coordinates.

The size and terms in A are dependent on the form of P.
When each strain term is approximated independently, i.e.
each strain term has its own set of undetermined strain para-
meter α, A can be divided into sub-matrices and could sim-
plify inversion. The four-node plane element in the follow-
ing chapter has coupled strain terms, while the other element
formulations have independent functions.

Matrix C is obtained from integration of the second equa-
tion in (7). The integration involves transformation of the
integral into line integrals along the boundary. This transfor-
mation facilitates the use of string functions, the key to the
quasi-conforming formulation. This part of the formulation
is what requires most work.

2.4 Stresses and Constitutive Relations

The prediction of stresses is of major importance, more so
in nonlinear analysis where the response is dependent on
the element internal stresses. It is essential that the adopted
stress measures are objective with respect to rigid body mo-
tion and that the stress and strain measures are work con-
jugate. For the present work, which adopts the updated La-
grangian form, the appropriate stress measure is the Cauchy
stress tensor. In the co-rotational approach, the incremental
Cauchy stresses are

�σij = Cijkl�εkl, (16)

Cijkl is the constitutive tensor. �εkl is the incremental form
of (12), taken as the difference between the co-rotational
strains in the current configuration and the co-rotational
strains in the last equilibrium configuration.

In formulating the quasi-conforming elements, a stress
resultant approach is adopted. Assuming small strain and
constant thickness, the stresses is integrated though the el-
ements cross-section. Stress resultants may be grouped into
in-plane and transverse shear forces and moments.

Sij =
∫

�

σij da

=
∫

�

Cijklεklda = Dijklεkl, (17)
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Sij is the stress resultant tensor. � represents the integration
domain; cross section or thickness, as applicable. Dijkl is
the rigidity matrix. In quasi-conforming and matrix form,
the stress resultants take the form

S = Dê,

S = DPA−1CTTÛ.
(18)

For an elasto-plasticity, laminate composite with damage or
concrete with cracks, D will not be constant throughout the
element. Some region of the element may become plastic or
become damaged first. Thus, to be able to form the element
stiffness matrices and force vectors, an expression for S and
D that considers different material conditions within the ele-
ment has to be defined. For elements integrated numerically,
this expression is not explicitly given. Correct integration is
still possible as long as the order of Gauss integration is suf-
ficient to that of the order of an actual D function.

As a result of performing explicit integration and use of
boundary integration, implementation of the elasto-plastic
formulation is not straightforward. An elasto-plastic formu-
lation for the above would either be, to use plastic nodes
similar to formulation of Voyiadjis and Shi [161] or to per-
form numerical integration. Here, the use of an explicit ex-
pression of the elasto-plastic stress field is explored.

Unlike elements integrated numerically, implementation
of the above formulation will not have predefined stress
points. Therefore, the first step will be to define stress points.
The chosen stress points are the nodal points. For most finite
element users, stresses of interest are at the nodal points. The
user can exactly define the location of these points during the
meshing stages. Thus, for both linear and non-linear analy-
ses, stresses are directly taken from the nodal points. Since
the nodal coordinates are known at any stage in the analysis,
whether linear or incremental analysis, the stresses are eas-
ily obtained by substituting the current local nodal coordi-
nates to (10) and computing for the corresponding stresses.
Choosing the stress points as the nodal points eliminates ex-
trapolation to the nodal points during post processing which
is required for stresses taken from Gauss points. This is also
convenient for models having initial stresses. Users do not
have to compute for the initial stress at the element Gauss
point or locate the Gauss point to the location of known
stress.

Since stresses are a function of strains, the order of the
stress function is the same as that of the strain. D also
appears in the equation of motion from the expression of
the stresses in terms of strains. A field expression for D
should also therefore be of the same order as the stresses
and strains. The explicit expressions for elasto-plastic S and
D are formed using interpolation functions that should be
consistent with the approximation of the strains.

S =
n∑

i=1

HiSi , (19)

D =
n∑

i=1

HiDi . (20)

Where n would depend on the number of stress points used
and Hi ’s is the interpolation function. For the material and
geometric nonlinear formulation of the quasi-conforming
technique, (20) is used to solve for the elasto-plastic stiff-
ness matrix, while (19) is used to solve for the geometric
stiffness and internal force vector.

2.5 Equation of Motion

In formulating the quasi-conforming elements, an updated
Lagrangian formulation is adopted. The linearized equation
of motion, is expresses as
∫

t V

tCijrs�ersδ�eij d
tV +

∫
t V

tσij δ�	ijd
tV

= t+�t� −
∫

t V

tσij δ�eij d
tV . (21)

Cijrs is the component of the constitutive tensor, t σij is
the component of the Cauchy stress tensor, t+�t� is the ex-
ternal virtual work expression, and �eij and �	ij are the
incremental linear and nonlinear part of the Green’s strain
tensor, respectively. Assuming a small strains and a constant
cross section during deformation, (21) may be expressed as
∫

�

(δ�êTD�ê)d� +
∫

�

(Sδ��̂)d�

= t+�t� −
∫

�

(δ�êTS)d�. (22)

D is the rigidity matrix. S is the stress resultant vector. All
the quantities are referred to the current configuration, ex-
cept for t+�t�, which is the external virtual work expres-
sion. The remaining integration is only along the length of
the element. �ê is the linear part of the Green’s strain tensor
and ��̂ is the nonlinear part.

2.6 Stiffness Matrix due to Linear Strains

The stiffness matrix due to linear strains is derived from the
first term of the LHS of the linearized equation of motion.
For the co-rotational resultant stress case∫

�

(δ�êTD�ê)d�. (23)

The incremental linear strains �ê are expressed in terms
of the nodal displacements using the quasi-conforming tech-
nique as discussed in Sect. 2.3. The rigidity matrix D is the
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stress-strain relation matrix that has been integrated about
the element cross-section. For the present case, it is either
elastic, elasto-plastic or laminate composite with layer fail-
ure.

Substituting the quasi-conforming expression of linear
strains, (10), and the rigidity matrix D, (20), into (23) gives
the element stiffness matrix due to linear strains, KL.∫

�

(δ�êTD�ê)d� = δ�û
[∫

�

(BTDB)d�

]
TT�û

= δ�ÛTT
[∫

�

(BTDB)d�

]
TT�Û

= δ�ÛTKL�Û (24)

and

KL = TCTA−T
[∫

�

PTDPdrds

]
A−1CTT. (25)

The formulation of KL may also be derived using the
Hu-Washizu variational principle. The equivalence of the
quasi-conforming technique and the Hu-Washizu derivation
was shown by Chen [27]. Using the Hu-Washizu variational
principle, the ‘generalized hybrid model’ is derived, and
(25) is obtained using the assumption N = Pσ

T = Pe
T = PT.

2.7 Geometric Stiffness Matrix

The geometric stiffness matrix is taken from the second term
of the LHS of (22).∫

�

(Sδ��̂)d�. (26)

��̂ is the incremental nonlinear part of the of the element
strains. This results from the nonlinear part of the Green
strain tensor and in cases when defined, the nonlinear parts
of the displacement functions.

Equation (26) can be written in matrix form so that the
quasi-conforming technique can be applied to derive the
geometric stiffness. The nonlinear strain vector is broken
down to its factors and defined as η and the stress vector
is rearranged to a matrix form Fg , the matrix integral is∫

�

(Sδ��̂)d� =
∫

�

δ�ηFg�ηd�. (27)

Similar to the derivation for the linear strains, the strain vec-
tor is

η = BTT�Û

= PA−1CTT�Û. (28)

Since element rank requirements have already been satis-
fied in the linear strain terms, in assigning values for P, (13)
does not have to be satisfied. In the formulation of the geo-
metric stiffness, it is sufficient to use a constant nonlinear

strain field distribution, i.e. P is a unit matrix. The solutions
obtained using this assumption are shown to be stable and
sufficient in linear and nonlinear buckling analysis and non-
linear material analysis with geometric nonlinearity.

A is then a diagonal matrix of the area of the reference
surface and its inverse is trivial. In determining matrix C,
the same string functions used in the linear strain approxi-
mation is applied. This results in most of its terms being the
same as its linear counterpart, which makes it convenient in
derivation and implementation.

The resulting geometric stiffness is

Kg = T
{

CTA−T
[∫

�

PTFgPd�

]
A−1C

}
TT. (29)

2.8 Internal Force Vector

In order to properly analyze the motion of a structure, the in-
ternal forces must be correctly computed. The internal force
vector is defined as the second term on the RHS of (22).
∫

�

(δ�êTS)d�. (30)

The quasi-conforming form of the resultant stresses are as
defined in (18) and the linear strain terms are in (10). Sub-
stituting these into (30) gives the expression for the internal
force vector.

F = T
{

CTA−T
[∫

�

PTDPd�

]
A−1C

}
TT�Û. (31)

The left and right A’s and C’s are the same. The evolution
of plasticity or damage will be included in matrix D.

2.9 Mass Matrices

There two formulations that are used to form mass matrices,
the lumped mass and consistent mass matrix formulation.
For the finite element formulations, the construction of the
lumped mass matrix is straightforward. The total mass of the
element is equally divided and lumped to the four nodes. Ro-
tary inertia may be neglected, which would make the diag-
onal elements associated with rotational degrees of freedom
zero. The lumped mass, m, for each translational degree of
freedom is computed as

m = 1

n

∫
V

ρdV = 1

n
Me, (32)

ρ is mass density and Me is the total mass of the elements.
When nodal forces are lumped, then it would be efficient

to use the lumped mass matrix. The drawback of lumping is
that if a coarse mesh is employed, the resulting solution may
be very inaccurate.
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Fig. 4 (a) Mid-surface geometry and local coordinates of 4-node shell element. (b) Plan of element with derivation of local coordinates

The consistent mass matrix formula is

M = ρ

∫
V

HTHdV. (33)

When consistent nodal loads are used, it is recommended
that a consistent mass matrix be used. In the derivation of
the consistent mass matrix, the interpolation functions in the
formula come from the interpolation of the displacements
and accelerations. This interpolation covers the entire el-
ement domain. In the quasi-conforming technique, the ex-
plicit definitions of displacements are only given along the
boundaries. Therefore, it should be noted that the interpo-
lation functions used in (33) should be compatible with the
‘string functions’. When this is not the case, very good re-
sults are still possible when the loads and the mass matrices
are consistent of finer meshes are used.

3 Application of Quasi-Conforming Technique to Shell
Element

3.1 Geometry of Shell Element

A local orthogonal coordinate system (r, s, t) is used to de-
scribe the geometry of the four-node shell element. Its ori-
gin is at the geometric center of the element. It is defined
by first determining the unit vectors passing through the op-
posite midpoints of the shell mid-surface sides, l1 and l2, as
shown in Fig. 4. The local coordinate base vectors Vr , Vs ,
Vt are then found by

Vt = l1 × l2, Vs = [(Vt × l1) + l2]
‖(Vt × l1) + l2‖ ,

(34)
Vr = Vs × Vt

and the local coordinates of node i, ri = (ri si ti )
T are

ri = [Vr Vs Vt ]T(xi − xc) = TT(xi − xc). (35)

xi and xc are the vectors of the global coordinates of node i

and the element mid-surface center, respectively. The posi-
tion vector of a point r(r, s, t) in the element is given by

xp = xc + Tr. (36)

Having defined the local coordinate base vectors, the trans-
formation of the incremental displacement parameters
�ūi ,�ϕi at node i from the element local coordinates, to
the global coordinates, is done by

{
�ū
�ϕ

}
i

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�ūi

�v̄i

�w̄i

�ϕri

�ϕsi

�ϕti

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
[

TT 0

0 TT

]
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�Ūi

�V̄i

�W̄i

�θxi

�θyi

�θzi

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= TT
gi

{
�Ū
�θ

}
i

. (37)

The bar denotes, measured from the mid-surface. Transfor-
mation matrix T is defined as

T = [Vr Vs Vt ]. (38)

It is important to note that Vt is normal to the mid-surface
of the element and it is independent of the top and the bottom
nodal coordinates. The approximation introduced by ignor-
ing variation of Jacobian through the thickness would not
violate rigid body rotation requirement if Vt is used in the
definition of the geometry of the elements instead of Vt i ,
which depends on the top and bottom nodal coordinates.
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As shown in Fig. 4a, the shell element geometry consid-
ers a flat surface. For concrete shell structures with cylindri-
cal or doubly curved geometries, the present element would
approximate the surface using a mesh of flat surfaces. For
the case of a warped or twisted geometry, the warping cor-
rection suggested in Taylor [154] can be applied. The trans-
formation matrix Tgi , for this case then becomes

Tgi =
[

Vr Vs Vt 0 0 0

−� · Vs � · Vr 0 Vr Vs Vt

]
(39)

where � is the distance from node to the shell mid-surface.

3.2 Co-rotational Displacements

The transformation from the initial local co-ordinate system
or , os and ot to the current local co-ordinate system state
t r , t s and t t is achieved by the orthogonal rotation matrix,

R(


ϕ), corresponding to the rigid body rotation in local coor-

dinates. R(


ϕ) can be considered as a transformation matrix

of any point with position vector in unconvected state to a
new position vector in the convected state. (In the follow-
ing, the notation ∧ will be used for the co-rotational value
attributed to pure deformation. And the superscript t denotes
current configuration will be ignored):

T = R(


ϕ) • 0T. (40)

0T and T are the standard transformation matrices that are
defined in (38), in the initial and current configuration re-
spectively.

The co-rotational (or convective) displacement for any
node i is defined as a residual displacement that removes the
rigid body motion that occurs at the center of the element,
and represent the motion of any node relative to the motion
of the point defined by r = s = 0. The co-rotational nodal
displacement (û) associated with pure deformation can be
expressed as follows:

û = (xi − xc) − R(


ϕ)(0xi − 0xc). (41)

The above equation (41) represents the co-rotational dis-
placements by the position vector of any node i relative to
the element center c in the current and initial configuration.
In accordance with polar decomposition theory, the total ro-

tation can be decomposed into rigid body rotation


ϕ fol-

lowed by a small transverse shear deformation ϕ̂, that is to
say

R(ϕ) = Rr(ϕ̂)R(


ϕ). (42)

The local components of ϕ̂ can be identified with the av-
erage shear deformation of the cross section, that is ϕ̂ =
{0 ϕ̂s ϕ̂t } = {0 ˆ̄εrt − ˆ̄εrs}.

When the residual rotations are small enough to be vector
quantity (ϕ̂i < 0.02), the convective nodal rotation ϕ̂i can be

obtained by removing the rigid body rotation (


ϕ) from the

total nodal rotation and approximated as follows:

ϕ̂i = ϕi− 

ϕ . (43)

The local kinematic relations based on the co-rotational dis-
placement can be expressed as follows:

�û = � ˆ̄u + t (�ϕ̂s + 1/2�ϕ̂r�ϕ̂t ),

�v̂ = � ˆ̄v − t (�ϕ̂r − 1/2�ϕ̂s�ϕ̂t ), (44)

�ŵ = � ˆ̄w(r, s).

Further detailed discussion about the co-rotational for-
mulation adopted is found in references [11, 80].

3.3 Strain-Displacement Relationships

In degenerated formulations based on continuum mechan-
ics theory, the geometrical non-linearity arises due to both
the quadratic terms of the Green strain tensor and the kine-
matic relation themselves. Following classical nonlinear thin
shell theory and substituting the co-rotational kinematic re-
lations given by (44), the incremental membrane � ˆ̄εm =
{� ˆ̄εr � ˆ̄εs � ˆ̄εrs }T, bending �ε̂b = {�χ̂r �χ̂s �χ̂rs }T and
transverse shear �ε̂q = {�ε̂rt �ε̂st }Tstrains on the mid-
surface are obtained as in Table 1.

When the rotation ϕt due to the quadratic terms in the
nonlinear kinematic relations is dropped, the geometric stiff-
ness will be incomplete and certain forms of buckling behav-
iour will be precluded. The above expressions are consis-
tent with Novozhilov’s non-linear theory (1963) [98], which
states that the curvature terms are quadratic functions of the
rotational parameters. In addition, the non-linear terms in
transverse shear strains are also accounted for.

The incremental membrane, bending and transverse
shear strains represented in (45) to (47) can be separated into
linear and non-linear parts, �ε̂m = �êm + ��̂

m
,�ε̂b =

�êb + ��̂
b
, .�ε̂q = �êq + ��̂

q

Since a degenerated concept was adopted in the formula-
tion of the shell elements, the bar symbol over the displace-
ments, u, v and w, were placed to denote as being measured
from the mid-surface of the element (45).

3.4 Equation of Motion

In formulating the shell elements, an updated Lagrangian
formulation is adopted. The linearized equation of motion is
given in (21). Assuming constant thickness during deforma-
tion, (21) for the shell elements may be expressed as
∫

A

(δ�êT
mDm�êm + δ�êT

mDmb�êb + δ�êT
b Dmb�êm

+ δ�êT
b Db�êb + δ�êT

q Dq�êq)drds
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Table 1 Shell strain terms

Linear term (e) Non-linear term (	)

Membrane strains

� ˆ̄εr = ∂� ˆ̄u
∂r

+1

2

[(
∂� ˆ̄u
∂r

)2

+
(

∂� ˆ̄v
∂r

)2

+
(

∂� ˆ̄w
∂r

)2]
(45)

� ˆ̄εs = ∂� ˆ̄v
∂s

+1

2

[(
∂� ˆ̄u
∂s

)2

+
(

∂� ˆ̄v
∂s

)2

+
(

∂� ˆ̄w
∂s

)2]

� ˆ̄εrs = ∂� ˆ̄u
∂s

+ ∂� ˆ̄v
∂r

+ ∂� ˆ̄u
∂r

∂� ˆ̄u
∂s

+ ∂� ˆ̄v
∂r

∂� ˆ̄v
∂s

+ ∂� ˆ̄w
∂r

∂� ˆ̄w
∂s

Bending strains

�κ̂r = ∂�ϕ̂s

∂r
+ ∂� ˆ̄u

∂r

∂�ϕ̂s

∂r
− ∂� ˆ̄v

∂r

∂�ϕ̂r

∂r
+ 1

2

[
�ϕ̂r

∂�ϕ̂t

∂r
+ �ϕ̂t

∂�ϕ̂r

∂r

]

�κ̂s = − ∂�ϕ̂r

∂s
+ ∂� ˆ̄u

∂s

∂�ϕ̂s

∂s
− ∂� ˆ̄v

∂s

∂�ϕ̂r

∂s
+ 1

2

[
�ϕ̂s

∂�ϕ̂t

∂s
+ �ϕ̂t

∂�ϕ̂s

∂s

]
(46)

�κ̂rs = ∂�ϕ̂s

∂s
− ∂�ϕ̂r

∂r
+ ∂� ˆ̄u

∂r

∂�ϕ̂s

∂s
+ ∂� ˆ̄u

∂s

∂�ϕ̂s

∂r
− ∂� ˆ̄v

∂s

∂�ϕ̂r

∂r
− ∂� ˆ̄v

∂r

∂�ϕ̂r

∂s

+1

2

[
�ϕ̂r

∂�ϕ̂t

∂s
+ �ϕ̂s

∂�ϕ̂t

∂r
+ �ϕ̂t

∂�ϕ̂r

∂s
+ �ϕt

∂�ϕ̂s

∂r

]

Transverse shear strains

�ε̂rt = ∂� ˆ̄w
∂r

+ �ϕ̂s + ∂� ˆ̄u
∂r

�ϕ̂s − ∂� ˆ̄v
∂r

�ϕ̂r + 1

2
�ϕ̂r�ϕ̂t

(47)

�ε̂st = ∂� ˆ̄w
∂s

− �ϕ̂r + ∂� ˆ̄u
∂s

�ϕ̂s − ∂� ˆ̄v
∂s

�ϕ̂r + 1

2
�ϕ̂s�ϕ̂t

+
∫

A

(Nδ��̂m + Mδ��̂b + Qδ��̂q)drds

= t+�t� −
∫

A

(δ�êT
b M + δ�êT

mN + δ�êT
q Q)drds. (48)

Db, Dm, Dq and Dmb are flexural, extensile, transverse shear
and coupled membrane-bending rigidity matrices. M, N and
Q are the stress couple, in-plane stress and transverse shear
resultant vectors.

3.5 Stiffness Matrix Due to Linear Strains

The first term on the LHS, where the stiffness matrix due to
linear strains is derived, is

δ�êT
mDm�êm + δ�êT

mDmb�êb + δ�êT
b Dmb�êm

+ δ�êT
b Db�êb + δ�êT

q Dq�êq . (49)

The three linear strains �êm,�êb and �êq are defined
independently with the quasi-conforming technique. The

bending and transverse shear strain for the two shell ele-
ments use the same string functions. The membrane strains
of the three-node shell are defined with the Allman (1984)
[3] string function. The Allman string function directly in-
corporates the drilling dof into the striffness formulation.
For the four-node shell element the membrane strains use
simple purely translation boundary displacement function.
The drilling dof is added using a strain energy function.

As discussed in Sects. 2.1 and 2.3, the strains may be
defined in terms of displacements.

ε̂ = B
{ ˆ̄u

ϕ̂

}
= PA−1C

{ ˆ̄u
ϕ̂

}
, (50)

A =
∫

�

[PTP]d� and C
[

ū
ϕ

]
=
∫

�

[PTε]d�. (51)

In terms of the global displacement vector, (50) is written as

ε̂ = BTT
g

{ ˆ̄U
θ̂

}
= PA−1CTT

g

{ ˆ̄U
θ̂

}
. (52)
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For the four-node shell, the bending strains require eleven
strain parameters.

êb =

⎧⎪⎪⎨
⎪⎪⎩

∂ϕ̂s

∂r

− ∂ϕ̂r

∂s

∂ϕ̂s

∂r
− ∂ϕ̂r

∂s

⎫⎪⎪⎬
⎪⎪⎭

= Pbαb

=
⎡
⎣ 1 r s rs 0 0

0 1 r s rs 0
0 0 1 r s

⎤
⎦
⎧⎨
⎩

α1

:
α11

⎫⎬
⎭ . (53)

By using the Green’s theorem and the direction cosines

shown in Fig. 2, the first four integrals of Cb

{ ˆ̄u
ϕ̂

} =∫
A

PT
b êbdrds can be solved as

Cb(1, j)

{ ˆ̄u
ϕ̂

}

=
∫

A

∂ϕ̂s

∂r
drds =

∮
ϕ̂snrdL (j = 1,2, . . . ,18)

=
∮

[ϕ̂nns + ϕ̂t nr ]nrdL

=
4∑

k=1

[nrknsk

∫
Lk

ϕ̂ndL + n2
rk

∫
Lk

ϕ̂t dL],

Cb(2, j)

{ ˆ̄u
ϕ̂

}

=
∫

A

∂ϕ̂s

∂r
rdrds =

∮
ϕ̂srnrdL −

∫
A

ϕ̂sdrds

=
∮

[ϕ̂nnrns + ϕ̂t n
2
r ]rdL −

∫
A

ϕ̂sdrds,

Cb(3, j)

{ ˆ̄u
ϕ̂

}

=
∫

A

∂ϕ̂s

∂r
sdrds =

∮
[ϕ̂nnrns + ϕ̂t n

2
r ]sdL,

Cb(4, j)

{ ˆ̄u
ϕ̂

}

=
∫

A

∂ϕ̂s

∂r
rsdrds (j = 1,2, . . . ,24)

=
∮

[ϕ̂nnrns + ϕ̂t n
2
r ]rsdL −

∫
A

ϕ̂ssdrds. (54)

k indicates the side number where the line integral is being
taken.

Noting that, nr and ns in (54) are the side normal and
tangent as defined in (55) and Fig. 2, which are different
from the base vector components in (38).
[
ϕ̂r

ϕ̂s

]
=
[
nr −ns

ns nr

][
ϕ̂n

ϕ̂t

]
. (55)

The line integrals are made along each side, i.e. from node
to node. They are directly solved using the string functions
introduced by Shi and Voyiadjis [132–134]. The string func-
tions defined based on nodal values of displacement w and
normal rotation ϕ̂n are

ϕ̂n(ξ) = − 3

2l
λ(1 − ξ2) ˆ̄wi + 1

4
[2 − 2ξ − 3λ(1 − ξ2)]ϕ̂ni

+ 3

2l
λ(1 − ξ2) ˆ̄wj + 1

4
[2 + 2ξ − 3λ(1 − ξ2)]ϕ̂nj ,

(56)

ˆ̄w(ξ) = 1

2

[
1 − ξ + λ

2
(ξ3 − ξ)

]
ˆ̄wi

+ 1

4
[1 − ξ2 + λ(ξ3 − ξ)] l

2
ϕ̂ni

+ 1

2

[
1 + ξ − λ

2
(ξ3 − ξ)

]
ˆ̄wj

+ 1

4
[−1 + ξ2 + λ(ξ3 − ξ)] l

2
ϕ̂nj (57)

where l is the distance from node i to node j and

ξ = 1

l
(2S − l) for 0 ≤ S ≤ l,−1 ≤ ξ ≤ 1, (58)

λ = 1

1 + 12 Db11
Dq11L

2

, (59)

ϕ̂t (ξ) = 1

2
(1 − ξ)ϕ̂ti + 1

2
(1 + ξ)ϕ̂tj . (60)

Db11,Dq11 and L are, respectively, the first component of
the flexural rigidity, the first component of the transverse
shear rigidity and side length. S is the side local coordinate,
0 at node i and l at node j .

Area integrals still present in (54) can be approximated
as:∫

A

ϕ̂s( ˆ̄wi, ϕ̂ri , ϕ̂si )drds

∼=
∫

A

[
−λr

∂ ˆ̄w
∂r

+ (1 − λr)ϕ̂s(ϕ̂si )

]
drds

= −λr

∮
ˆ̄wnrds + (1 − λr)

∫
A

ϕ̂s(ϕ̂si)drds, (61)

∫
A

ϕ̂s( ˆ̄wi, ϕ̂ri , ϕ̂si )drds

= λs

∮
ˆ̄wnsds + (1 − λs)

∫
A

ϕ̂r (ϕ̂ri)drds

in which w is integrated using the definition in (57). This
approximation is applicable for thick shells and also satis-
fies the Kirchhoff assumption for the case of thin shells. The
remaining area integral is integrated by isoparametric map-
ping.
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The transverse shear strains in (47) are approximated as:

êq =
⎡
⎣ ∂ ˆ̄w

∂r
+ ϕ̂s

∂ ˆ̄w
∂s

− ϕ̂r

⎤
⎦= Pqαq =

[
1

1

][
α10

α11

]
. (62)

The integrals involved in determining Cq are

Cs1j

{ ˆ̄u
ϕ̂

}
=
∫

A

[
∂ ˆ̄w
∂r

+ ϕ̂s

]
drds

=
∮

ˆ̄wnrdL − λr

∮
ˆ̄wnrdL

+ (1 − λr)

∫
A

ϕ̂sdrds, (63)

Cs2j

{ ˆ̄u
ϕ̂

}
=
∫

�

[
∂ ˆ̄w
∂s

+ ϕ̂r

]
drds

=
∮

ˆ̄wnsdL − λs

∮
ˆ̄wnsdL

− (1 − λs)

∫
�

ϕ̂rdrds. (64)

The A matrices for the bending, transverse shear and
membrane strains are composed only of polynomials. For
example, using the definition of Pb in (53), matrix Ab has
the form

Ab =
⎡
⎣A11 0

A11

0 A11

⎤
⎦ , where

A11 =
∫

A

⎡
⎣ 1 r s

r2 rs

Sym. s2

⎤
⎦drds. (65)

The area integrals can be evaluated by line integrals by (15).
For the membrane component of the linear stiffness

matrix, the Allman (1984) [3] membrane formulation is
adopted. The membrane strains are approximated with

êm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ ˆ̄u
∂r

∂ ˆ̄v
∂s

∂ ˆ̄u
∂s

+ ∂ ˆ̄v
∂r

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= Pmαm =
⎡
⎣1 s 0 0 0

0 0 1 r 0
0 0 0 0 1

⎤
⎦
⎧⎪⎨
⎪⎩

α14
...

α18

⎫⎪⎬
⎪⎭

(66)

and the string functions used for the displacements are

ˆ̄u = 1

2
(1 − ξ) ˆ̄ui + 1

2
(1 + ξ) ˆ̄uj ,

ˆ̄v = 1

2
(1 − ξ) ˆ̄vi + 1

2
(1 + ξ) ˆ̄vj .

(67)

To model stiffened plates and shells, the need for six de-
grees of freedom arises because the process of stiffness ac-
cumulation at any node lying on the junction must be carried

out in a single reference frame. However, it is well known
that this creates problems associated with rotation about the
normal to the shell mid-surface. Initially, this torsional de-
gree of freedom is specified in global co-ordinates but this
leads to singularity problems when adjacent elements are
exactly co-planar. The difficulty is overcome by providing a
fictitious torsional spring along the local normal direction at
each node of the element. However, this technique has the
drawback that it interferes with the ability of the element
to undergo strain free rigid body motions. Kanok-Nukulchai
[77] used an additional constraint to link the torsional rota-
tion (ϕt ) to the average in-plane rotation of the mid-surface.
Adopting the continuum mechanics definition, the constraint
equation can be written as

Ed = ϕ̂t − 1

2

(
∂ ˆ̄v
∂r

− ∂ ˆ̄u
∂s

)
= 0. (68)

The rotation of the normal to the mid-surface is assumed to
have the governing strain energy

πt = ktA33h

∫
A

[
ϕ̂t − 1

2

(
∂ ˆ̄v
∂r

− ∂ ˆ̄u
∂s

)]2

drds. (69)

In applying the QCT, the drilling strain is taken as ε̂d = ϕt −
1
2 ( ∂ ˆ̄v

∂r
− ∂ ˆ̄u

∂s
) and a constant strain field is assumed, Pd = 1.

This would result in

Cd1j

{ ˆ̄u
ϕ̂

}
=
∫

A

P T
d ε̂ddrds

=
∫

A

1 ×
[
ϕ̂t − 1

2

(
∂ ˆ̄v
∂r

− ∂ ˆ̄u
∂s

)]
drds

=
∫ 1

−1

∫ 1

−1
ϕ̂t (ξ, η)|J |dξdη

− 1

2

∮
( ˆ̄vnr − ˆ̄uns)dL. (70)

Taking the first expression in (48) and augmenting it with
(69) obtains the stiffness matrix due to linear strains.

KL = Tg

∫
A

(BT
mDmBm + BT

mDmbBb

+ BT
b DmbBm + BT

b DbBb

+ BT
q DqBq + BT

dDm33hBd)drdsTT
g

KL = Tg

{
CT

mA−T
m

[∫
A

PT
mDmPmdrds

]
A−1

m Cm

+ CT
mA−T

m

[∫
A

PT
mDmbPbdrds

]
A−1

b Cb

(71)

+ CT
b A−T

b

[∫
A

PT
b DmbPmdrds

]
A−1

m Cm
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+ CT
b A−T

b

[∫
A

PT
b DbPbdrds

]
A−1

b Cb

+ CT
q A−T

q

[∫
A

PT
q DqPqdrds

]
A−1

q Cq

}
TT

g

+ ktDm33hTg

{
CT

dAd

[∫
A

PdPddrds

]
A−1

d Cd

}
TT

g .

3.6 Geometric Stiffness Matrix

Shi and Voyiadjis [134, 135] presented a geometrically non-
linear formulation of the QCT for four-node and three node
shell elements. Although their work and the present are sim-
ilar that both have an explicit tangent stiffness, Shi and Voyi-
adjis used a von Karman assumption. The present formula-
tion uses the full expression of the Green strain tensor. Aside
from membrane stress resultants, the bending and transverse
shear stress resultants are included in the geometric stiffness
formulation, which make the present formulation more suit-
able for buckling analysis of shell structures.

Another geometrical nonlinear formulation of the QCT is
by Guan and Tang [53], on a nine-node element. The geo-
metrical stiffness matrix uses all the nonlinear strain terms,

however, numerical integration is required. The work of
Guam and Tang does not include material nonlinearity. On
a purely geometrical nonlinear analysis, the present formu-
lation has the advantage of being more computationally ef-
ficient as the tangent is given explicitly.

The geometric stiffness matrix is taken from the second
term on the LHS of (48).
∫

�

(Nδ��m + Mδ��b + Qδ��q)drds. (72)

The nonlinear strains are defined in (45) to (47). Equa-
tion (72) can be written in matrix form so that the quasi-
conforming technique can be applied. Defining the strain
vector as η and the resultant force matrix as Fg , the matrix
integral form of (72) is
∫

�

(Nδ��m + Mδ��b + Qδ��q)drds

=
∫

�

δ�ηFg�ηdrds. (73)

The strain vector as �η and the resultant force matrix as Fg

are

�η =
[

∂� ˆ̄u
∂r

∂� ˆ̄u
∂s

∂� ˆ̄v
∂r

∂� ˆ̄v
∂s

∂� ˆ̄w
∂r

∂� ˆ̄w
∂s

∂�ϕ̂r

∂r
∂�ϕ̂r

∂s
∂�ϕ̂s

∂r
∂�ϕ̂s

∂s
∂�ϕ̂t

∂r
∂�ϕ̂t

∂s
�ϕ̂r �ϕ̂s �ϕ̂t

]T
(74)

Fg =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nr Nrs Mr Mrs Qr

Nrs Ns Mrs Ms Qs

Nr Nrs Mr Mrs −Qr

Nrs Ns Mrs Ms −Qs

Nr Nrs

Nrs Ns

Mr Mrs
Mr

2

Mrs Ms
Mrs

2

Mr Mrs
Mrs

2

Mrs Ms
Ms

2
Mr

2
Mrs

2
Mrs

2
Ms

2

−Qr −Qs
Mr

2
Mrs

2
Qr

2

Qr Qs
Mrs

2
Ms

2
Qs

2
Mr

2
Mrs

2
Mrs

2
Ms

2
Qr

2
Qs

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(75)
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A constant strain field is assumed for the nonlinear
strains.

η = Pgαg =

⎡
⎢⎢⎢⎢⎣

1
· · ·

· · ·
· · ·

1

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

αg1
...
...
...

αg15

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (76)

Similar to the derivation for the linear strains, the strain vec-
tor is

η = BgTT
g

{
� ˆ̄U
�θ̂

}
= PgA−1

g CgTT
g

{
� ˆ̄U
�θ̂

}
. (77)

Ag is a 15 × 15 diagonal matrix of the mid-surface area
and Cg is derived using the previously given string func-
tions. Since only a constant approximation is assumed for
the strain vector, the components of Ag and Cg would
be the same as some of the components of A and C for
the linear strain terms. These components do not have
to be re-derived or re-computed during implementation,
e.g. Cg(1, j) = Cm(1, j) (j = 1,7,13,19) and Cg(8, j) =
−Cb(5, j) (j = 3 − 5,9 − 11,15 − 17,21 − 23).

Rows Cg(5, j) to Cg(7, j), Cg(10, j) are solved by con-
verting the area integral to line integrals and using (56) and
(57).

Gg(5, j)

{
� ˆ̄u
�ϕ̂

}
=
∫

�

∂� ˆ̄w
∂r

drds

=
∮

� ˆ̄wnrdL (j = 1,2, . . . ,24),

Gg(6, j)

{
� ˆ̄u
�ϕ̂

}
=
∫

�

∂� ˆ̄w
∂s

drds =
∮

� ˆ̄wnsdL,

(78)

Gg(7, j)

{
� ˆ̄u
�ϕ̂

}
=
∫

�

∂�ϕ̂r

∂r
drds =

∮
�ϕ̂rnrdL

=
∮

[�ϕnnr − �ϕtns]nrdL,

Gg(10, j)

{
� ˆ̄u
�ϕ̂

}
=
∫

�

∂�ϕ̂s

∂s
drds =

∮
�ϕ̂snsdL.

k indicates the side number where the line integral is being
taken. nr and ns are the side normal and tangent as shown
in Fig. 2. Rows 13 to 15 of Gg are determined with the fol-
lowing:

Gg(13, j)

{
� ˆ̄u
�ϕ̂

}
=
∫

�

�ϕ̂rdrds

∼=
∫

�

[
λs

∂� ˆ̄w
∂s

+ (1 − λs)�ϕ̂r

]
drds

= λs

∮
� ˆ̄wnsdL + (1 − λs)

∫
�

�ϕ̂rdrds,

(79)

Gg(14, j)

{
� ˆ̄u
�ϕ̂

}
=
∫

�

�ϕ̂sdrds = −λr

∮
� ˆ̄wnrdL

+ (1 − λr)

∫
�

�ϕ̂sdrds,

Gg(15, j)

{
� ˆ̄u
�ϕ̂

}
=
∫

�

�ϕ̂tdrds.

The remaining area integral is integrated by isoparametric
mapping.

For a linear material analysis, the stress resultants in ma-
trix Fg are defined as

N = Dmêm + Dmbêb = DmPmA−1
m GmTT

g

{ ˆ̄U
θ̂

}

+ DmbPbA−1
b GbTT

g

{ ˆ̄U
θ̂

}
, (80)

M = Dmbêm + Dbêb = DmbPmA−1
m GmTT

g

{ ˆ̄U
θ̂

}

+ DbPbA−1
b GbTT

g

{ ˆ̄U
θ̂

}
, (81)

Q = Dq êq = DqPqA−1
q GqTT

g

{ ˆ̄U
θ̂

}
. (82)

The resulting geometric stiffness is

Kg = Tg

{
CT

gA−T
g

[∫
A

PT
gFgPgdrds

]
A−1

g Cg

}
TT

g

= 1

A2
Tg

{
CT

g

[∫
A

Fgdrds

]
Cg

}
TT

g . (83)

The integral term is composed of polynomial and can be
analytically solved with (15).

3.7 Internal Force Vector

The internal force vector is defined as the second term on
the right hand side of (48).
∫

A

(δ�eT
b M + δ�eT

mN + δ�eT
q Q)drds. (84)

The resultant stresses are as defined in (80) to (82) and the
linear strain terms are as previously derived. Substituting
these into (84) gives the expression for the internal force
vector.

F = Tg

{
CT

mA−T
m

[∫
�

PT
mDmPmdrds

]
A−1

m Cm
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Fig. 5 Stress resultants of shell element

+ CT
mA−T

m

[∫
�

PT
mDmbPbdrds

]
A−1

b Cb

+ CT
b A−T

b

[∫
�

PT
b DmbPmdrds

]
A−1

m Cm

+ CT
b A−T

b

[∫
�

PT
b DbPbdrds

]
A−1

b Cb

+ CT
q A−T

q

[∫
�

PT
q DqPqdrds

]
A−1

q Cq

}
TT

g

{
� ˆ̄U
�θ̂

}
.

(85)

3.8 Constitutive Relation

The shell element is acted on by resultant membrane forces
N, moments M and transverse shear forces Q, which are
obtained by integration of stresses through the thickness.

The rigidity matrix of the reinforced concrete shell can
be written in the following form:

⎧⎨
⎩

�N
�M
�Q

⎫⎬
⎭=

⎡
⎣ Dm Dmb 0

Dmb Db 0
0 0 Dq

⎤
⎦
⎧⎨
⎩

�êm

�êb

�êq

⎫⎬
⎭= D

⎧⎨
⎩

�êm

�êb

�êq

⎫⎬
⎭
(86)

where Dm, Db, Dmb and Dq are extensile, flexural, extensile-
flexural and transverse shear rigidity matrices. M, N and Q
are the stress couple, in-plane stress and transverse shear re-
sultant vectors in configuration t .

M = [Mr Ms Mrs ]T, N = [Nr Ns Nrs ]T,

(87)
Q = [Qr Qs ]T.

4 Material Model for Shell Element

4.1 Isotropic & Elasto-Plastic Material

When the entire cross section is isotropic elastic, then the
rigidity matrix has the following form:

Dm = Eh

1 − v2

⎡
⎣1 v 0

v 1 0
0 0 1−v

2

⎤
⎦ ,

Dq = 5Eh

12(1 + v)

[
1 0
0 1

]
, (88)

Db = Eh3

12(1 − v2)

⎡
⎣1 v 0

v 1 0
0 0 1−v

2

⎤
⎦ .

The incremental constitutive law for elasto-plastic material
is expressed as follows:
⎧⎨
⎩

�σr

�σs

�σrs

⎫⎬
⎭=

⎡
⎣C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤
⎦
⎧⎨
⎩

�êr

�ês

�êrs

⎫⎬
⎭= Cep�êmb

(89)

In this co-rotational approach the membrane-bending
strain �êmb is taken as the difference between the co-
rotational strains in the current configuration and the co-
rotational strain in the next configuration. This definition al-
lows a path independent, Euler forward integration scheme,
to be used. The co-rotational strain increments can be di-
rectly transformed to Cauchy stress increments without re-
course to expensive transformation. The constitutive law
will be based on the von Mises yield function and Prandtl-
Reuss flow rule. For the general three-dimensional case, the
Von miss yield criteria can be written in the following form:

F = σ̄e − k

∫
dε

p
e = 0. (90)

f is the yield function value, σ̄e =
√

(3/2)σ ′
ij σ

′
ij is effective

stress, dε
p
e is effective incremental plastic strain and k

∫
dε

p
e

is the curvature of the yield surface.
Considering the increment of a specific plastic work, ef-

fective plastic strain can be shown as:

dε
p
e = [(2/3)dε

p
ij dε

p
ij ]1/2.

The present model is assumed to be limited to linear
isotropic hardening.

In application to metal plasticity, it is often assumed that
isotopic hardening is linear to the form when the yield func-
tion changes as material hardens. Letting H be the harden-
ing modulus,

k

∫
dε

p
e = σo + Hε

p
e . (91)
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At present time, the following hypothesis to calculate plastic
green Lagrange strain appears to be generally accepted as
the associated flow:

dε
p
ij = λ

∂f

∂σ ′
ij

. (92)

The incremental form of elastic stress and strain can be pre-
sented in following relation:

dσij = Ce
ijkl(dεkl − dε

p
kl). (93)

Where,

Cijkl = μe(δikδjl + δilδjk) + λeδij δkl,

μe = E

2(1 + ν)
, λe = Eν

(1 + ν)(1 − 2ν)
.

(94)

From the constitutive law of elasticity and concept of devia-
toric and volumetric, the following can be formulated:

dσij = λeδij dεkk + 2μedεij ,

dσ ′
ij = 2μedεij .

(95)

Since, there is no contribution from volumetric stress for
the plastic strain, the plastic stress itself is deviatoric. There-
fore, the incremental plastic stress can be written in the fol-
lowing form: Ce

ijkldε
p
kl = 2μedε

p
kl , thus, substituting it in

the flow rule equation (92) into incremental form of consti-
tutive relation (93).

dσij = Ce
ijkldεkl − 2μeλ

∂σ e

∂σ ′
ij

. (96)

When plasticity is occurring, stress direction must be satis-
fied. Using chain rule and consistency condition

df = ∂f

∂σ ′
ij

dσ ′
ij + ∂f

∂ε
p
e

dε
p
e , (97)

df = 0,
(98)

∂σ e

∂σ ′
ij

dσ ′
ij − ∂k

∂ε
p
e

dε
p
e = 0.

Substituting dε
p
e = [(2/3)dε

p
ij dε

p
ij ]1/2, dσ ′

ij = 2μedεe
ij and

the flow rule equation (92) into consistency condition, (98).

∂σ e

∂σ ′
ij

2μe(dεij − dε
p
ij ) − ∂k

∂ε
p
e

(
2

3
dε

p
ij dε

p
ij

) 1
2 = 0,

∂σ e

∂σ ′
ij

2μe

(
dεij − λ

∂f

∂σ ′
ij

)
− λ

∂k

∂ε
p
e

(
2

3

∂f

∂σ ′
ij

∂f

∂σ ′
ij

) 1
2 = 0,

(99)

H = dk

dε
p
e

(
2

3

∂f

∂σ ′
ij

∂f

∂σ ′
ij

) 1
2 = dk

dε
p
e

,

∂σ e

∂σ ′
ij

2μe

(
dεij − λ

∂f

∂σ ′
ij

)
− Hλ = 0.

Substituting the following relation ∂f

∂σ ′
ij

= ∂σ e

∂σ ′
ij

= 3σ ′
ij

2σe
into

(99), the factor in flow equation can be calculated as follow:

λ = 3μ

σe(H + 3μ)
σ ′

ij dεij . (100)

Then, substituting λ into elastic stress strain relation (96)

dσij =
⎛
⎝Ce

ijkl −
6μe2σkl

∂σ e

∂σ ′
ij

σ e(H + 3μe)

⎞
⎠dεkl = C

ef
ijkldεkl . (101)

Elasto-plastic tangent modules can be formulated as follow:

Cep = Ce − 9μ2

(3μ + H)σ 2
e

σ ′ ⊗ σ ′. (102)

Where, σ ′ ⊗ σ ′ = σ ′
IJ σ ′

KL.

Cep = E

1 + υ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−υ
1−2υ

− 3κσ
′2
x

2σ 2
y

υ
1−2υ

− 3κσ ′
xσ ′

y

2σ 2
y

− 3κσ ′
xσ ′

xy

2σ 2
y

. . . . . . υ
1−2υ

− 3κσ ′
xσ ′

z

2σ 2
y

υ
1−2υ

− 3κσ ′
yσ ′

x

2σ 2
y

1−υ
1−2υ

− 3κσ
′2
y

2σ 2
y

− 3κσ ′
yσ ′

xy

2σ 2
y

. . . . . . υ
1−2υ

− 3κσ ′
yσ ′

z

2σ 2
y

− 3κσ ′
xyσ ′

x

2σ 2
y

− 3κσ ′
xyσ ′

y

2σ 2
y

1
2 − 3κσ

′2
xy

2σ 2
y

. . . . . . − 3κσ ′
xyσ ′

z

2σ 2
y

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

υ
1−2υ

− 3κσ ′
zσ

′
x

2σ 2
y

υ
1−2υ

− 3κσ ′
zσ

′
y

2σ 2
y

− 3κσ ′
zσ

′
xy

2σ 2
y

. . . . . . 1−υ
1−2υ

− 3κσ
′2
z

2σ 2
y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (103)
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Fig. 6 Laminate geometry: (a)
NL layered laminate; (b)
Lamina orientation; r1 and s1
are rotated axes

Where, κ = 3μe

3μe+H
.

All above modifications are valid for 3D and 2D plane
strain condition; therefore, it is necessary to convert all
above constitutive relations to plane stress conditions in or-
der to use them in shell analysis. For plane stress analysis,
the following formula can be used:

Cep =

⎡
⎢⎢⎢⎣

C1 − C31
C31
C36

C7 − C31
C32
C36

C13 − C31
C33
C36

C2 − C32
C31
C36

C8 − C32
C32
C36

C14 − C32
C33
C36

C3 − C33
C31
C36

C9 − C33
C32
C36

C15 − C33
C33
C36

⎤
⎥⎥⎥⎦ .

(104)

Ci in (104) is the column wise representation of matrix in
(103), where i varies from 1 to 36.

Since the elasto-plastic strain increments �ε are finite,
the calculated stress state at the end of the current step will
not lie on the yield surface. However, by dividing �e into a
suitable number of sub increments, and applying incremen-
tal stress strain relationship, the error can be greatly reduced.
During this process, there will be a tendency for the stress
state to drift away from the yield surface, but this effect can
easily be eliminated by moving back to the yield surface at
the end of each sub incremental step. For this purpose, the
so called “normal return” method can be used, i.e.

σij = ασij . (105)

Coefficient α can be calculated using yield function and re-
turning to yield surface tangentially from the current state,
α = 1 − (3μf )/[(3μ + K)σ̄e].

Because sub incremental calculation is expensive, it is
recommended that the number of sub increments to be used
in any given case, should be calculated automatically. In this
respect, it is worth to calculate the number of sub increments
n purely on the excess stress.

n = 20
√

f trial
n+1

/σy + 1. (106)

Here, yield function f has been calculated using square of
effective stress σ̄ 2

e .

γ = (1 − r)/n. (107)

The incremental strain in sub increments �εtotal
ijs = γ�εtotal

ij .
Here, r represents the amount of elastic strain undergone
when stress state at the transition of elastic to plastic. The in-
cremental stress resultants (�N,�M) and strains�êm,�êb

are related by elasto-plastic rigidity in the membrane-
bending matrix Dep .

{
�N
�M

}
=
⎡
⎣
∫ 2/h

−2/h
Cepdt

∫ 2/h

−2/h
tCepdt

∫ 2/h

−2/h
tCepdt

∫ 2/h

−2/h
t2Cepdt

⎤
⎦
{

�êm

�êb

}

=
[

Dm Dmb

Dmb Db

]
= Dep

{
�êm

�êb

}
. (108)

4.2 Laminate Composite Constitutive Relation

The anisotropic stress-strain relationship of orthotropic lam-
inated composites for the kth layer, shown in Fig. 6a, follows
expressions found in most composite texts. The orientation
of the principal material coordinates is referred from the el-
ement local coordinates (r, s), shown in Fig. 6b.

By integrating the stresses through the thickness, the re-
sultant forces N = [Nr Ns Nrs ]T, moments M =
[Mr Ms Mrs ]T and transverse shear forces Q = [Qr Qs ]T

are obtained. The compact incremental constitutive relations
of the composite laminate is

⎧⎨
⎩

�N
�M
�Q

⎫⎬
⎭=

⎡
⎣ Dm Dmb

Dmb Db

Dq

⎤
⎦
⎧⎨
⎩

�em

�eb

�eq

⎫⎬
⎭ (109)

where

Dm =
NL∑
k=1

C̄k
ij (tk−1 − tk),

Dmb = 1

2

NL∑
k=1

C̄k
ij (t

2
k−1 − t2

k ), (110)

Db = 1

3

NL∑
k=1

C̄k
ij (t

3
k−1 − t3

k ) for i, j = 1,2,3.
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C̄k
ij is the membrane-bending stiffness and NL is the total

number of layers.
In the case of composite materials, there is a need to ad-

equately define the effective transverse shear stiffness for a
wide range of material properties and laminate geometry.
In conventional formulation, the transverse shear forces are
obtained by integration through the laminate thickness. The
integration expression is

Q = κq

NL∑
k=1

C̄k
ij (tk−1 − tk)eq = κqDqeq for i, j = 4,5.

(111)

In this case, the shear stiffness Dq is too large to deal with
the transverse shear response. Reissner’s value of κq = 5/6
is used as the transverse shear correction factor in finite ele-
ment formulations. Using κq would give reasonable results.
However, stresses in equivalent-single layer theory are dis-
continuous at each layer interface. Then, thick laminated
plates and shells based on the Mindlin-Reissner theory will
give inaccurate solutions for stresses. For this reason, an
improved transverse shear stiffness that also gives accurate
shear stresses is required.

The basic idea in calculating the transverse shear stresses
is to obtain it from the transverse shear forces, by neglect-
ing the influence of the membrane forces and assuming two
cylindrical bending modes, Rolfes and Rohwer [123]. The
equilibrium forces in r and s direction, solved with respect
to the transverse shear stresses, is

σ t =
{

σrt

σst

}k

= −
∫ h/2

−h/2

{
σk

r,r + σk
rs,s

σ k
s,s + σk

rs,r

}
dt. (112)

Using the material law for the kth lamina,

σm =
⎧⎨
⎩

σr

σs

τrs

⎫⎬
⎭= C̄k(ε0 + tκ) (113)

where C̄k is the reduced stiffness of the kth lamina, and ε0

and κ denote the laminate strains and curvatures, respec-
tively, yields

σ t = −
∫ −h/2+t

−h/2

⎧⎨
⎩
[

C̄11 C̄12 C̄16

C̄16 C̄26 C̄66

]k

(ε0
,r + tκ ,r )

+
[

C̄16 C̄26 C̄66

C̄12 C̄22 C̄26

]k

(ε0
,s + tκ ,s)

⎫⎬
⎭dt. (114)

The laminate membrane strain can be expressed by the mo-
ments if the membrane forces N are neglected. This assump-
tion may be applicable since the influence of the membrane

forces on the transverse shear stresses is very small. Then,
by the laminate elastic relation for N,

N = 0 = Dmε0 + Dmbκ,

ε0 = −D−1
m Dmbκ . (115)

Substitution of ε0 in (115) into the laminate elastic relation
for M solves for κ .

M = DT
mbε

0 + Dbκ = DT
mb

[
−D−1

m Dmbκ
]
+ Dbκ,

κ = [Db − DT
mbD−1

m Dmb]M = 


D
−1

M. (116)

Substituting (115) and (116) into the equilibrium condition
in (114), provides transverse shear stresses depending only
on the moment derivatives with respect to r and s.

σ t = −
∫ −h/2+t

−h/2

[
C̄11 C̄12 C̄16

C̄16 C̄26 C̄66

]k

[ABD]M,rdt

−
∫ −h/2+t

−h/2

[
C̄16 C̄26 C̄66

C̄12 C̄22 C̄26

]k

[ABD]M,sdt (117)

where

ABD = [−D−1
m Dmb + t]
D

−1
. (118)

By using a cylindrical bending assumption, (117) can be re-
duced further as seen in the following equations. Assuming
cylindrical bending about the r-axis and s-axis yields, re-
spectively,

M,r =
⎧⎨
⎩

Mr,r

0
0

⎫⎬
⎭ and M,s =

⎧⎨
⎩

0
Ms,s

0

⎫⎬
⎭ . (119)

The derivative of the moments can be related to the shear
forces via

Qr = Mr,r and Qs = Ms,s. (120)

Which finally results in a simpler expression for the trans-
verse shear stresses

σ t = −
∫ −h/2+t

−h/2

[
C̄11 C̄12 C̄16

C̄16 C̄26 C̄66

]k

[ABD]
⎧⎨
⎩

Qr

0
0

⎫⎬
⎭dt

−
∫ +h/2+t

−h/2

[
C̄16 C̄26 C̄66

C̄12 C̄22 C̄26

](k)

[ABD]
⎧⎨
⎩

0
Qs

0

⎫⎬
⎭dt,

σ t =
[
H11 H12

H21 H22

][
Qr

Qs

]
or σ t = h(t)Q. (121)
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The effective laminate stiffness matrix can be obtained
through the transverse shear strain energy and is expressed
as follow:

Dq =
[∫ +h/2

−h/2
hTG−1hdt

]−1

(122)

where G is the matrix of transverse shear modulus.

4.3 Laminate Composite Progressive Failure Analysis

4.3.1 Failure Criteria

Four failure criteria for single fiber reinforced composite
layer under in-plane loading are considered, (1) Maximum
Stress Criterion, (2) Tsai-Hill Criterion, (3) Tsai-Wu Crite-
rion and (4) Modified Puck Criterion. These criteria may be
used to check for first ply failure of composite structures or
in determining ultimate loads for complete laminate failure.

The maximum stress failure criterion assumes that fail-
ure occurs whenever any one component of stress attains its
limiting value, independent of the values of all other compo-
nents of stress. The “safe” condition for the maximum stress
failure criterion can be written mathematically in the form

Xc < σ1 < Xt, |τ23| < QA,

Yc < σ2 < Yt , |τ31| < RA, (123)

Zc < σ3 < Zt, |τ12| < SA.

The Tsai-Hill theory (1968) [159] represents an attempt
to apply Hill’s [60] anisotropic plasticity theory to failure of
homogeneous, anisotropic materials. For the case of plane
stress in the 1–2 plane (i.e. σ3 = τ13 = τ23 = 0) of a trans-
versely isotropic material (Y = Z), the Tsai-Hill failure cri-
terion is

σ 2
1

X2
− σ1σ2

X2
+ σ 2

2

Y 2
+ τ 2

12

S2
A

= 1. (124)

In the Tsai-Wu criterion a complete quadratic tensor
polynomial with linear terms is included. It incorporates
tensile and compressive strengths in one expression and
provides more comprehensive interaction terms. For planar
states of stress, the tensor polynomial failure criteria is

F(σi) = F1σ1 + F2σ2 + F11σ12 + F22σ22 + F66σ62

= 1 (125)

with

F1 = 1

XT

+ 1

XC

, F2 = 1

YT

+ 1

YC

,

F11 = − 1

XT XC

, F22 = − 1

YT YC

, F66 = 1

S2
A

.

In the Modified Puck Criterion, it is assumed that fiber
failures are determined by σ1 and matrix failures are deter-
mined by σ2 and σ6. This criterion combines simple com-
putation with simple testing allowing interaction of stresses
in both tension and compression, although it allows fewer
interactions than the Tsai-Wu criterion.

σ1 = Xt or Xc, (126)

σ 2
2

YtYc

+ σ2

(
1

Yt

+ 1

Yc

)
+ σ 2

6

Q2
A

= 1. (127)

4.3.2 General Procedure of Composite Failure Analysis

In general, an anisotropic laminate may be subjected to
a combination of different types of loading. Because of
this, many experiments and mathematical formulations have
been done to develop different failure criteria, but due to
the complex stress inter actions within the wide range of
fiber and matrix material configurations; none may be ap-
plied universally with complete confidence. The choice of
criterion will usually be based on what strength data are
available. A general procedure of composite failure analy-
sis, reference may also be made in Reddy et al. [117, 121] is
as follows:

1. After nonlinear iterative displacement convergence is
achieved, stresses in each layer of each element are com-
puted.

2. The stresses are then transformed to the principal ma-
terial coordinates and checked against a chosen failure
criterion.

3. When layer failure occurs, the laminate stiffness is re-
computed and nonlinear analysis is again performed with
the same load magnitude.

4. When no failure occurs, the load is incremented.
5. Steps 1 to 4 are repeated until complete failure has oc-

curred or the maximum number of iterations has been
reached.

A single layer criterion may be used to perform step-by-step
analysis of the whole laminate. These criteria may be used
in checking for first ply failure of composite structures or
in determining ultimate loads of complete laminate failure.
The following assumptions are made during layer failure in
a load step:

1. Elements in a structure have independent stiffness. When
failure in an element occurs, only the stiffness of this el-
ement is updated.

2. When failure has occurred based on the Tsai-Wu, Tsai-
Hill or maximum stress criterion, only the property that
relates to the dominant failure mode is reduced to zero.
Thus, σ1 corresponds to E1, σ2 to E2, and σ6 to G12.
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3. For the modified Puck criterion, fiber direction failure
would correspond to complete layer failure because the
fiber strength is assumed to be much greater than the ma-
trix strength. Matrix failure however would reduce only
E2 and G12.

4. Since the improved transverse shear stiffness based on
FSDT is used, the transverse shear stiffness is only up-
dated when a layer completely fails. This assumption
is acceptable and consistent with the second assump-
tion since transverse shear stresses are relatively much
smaller compared to the other in-plane stresses and thus
would not be dominating failure. This would only be lim-
ited, if the loads were direct transverse shear loads.

5. When a layer fails, it is assumed that the thickness of the
failed layer is unchanged.

4.4 Reinforced Concrete Material

The shell thickness is divided into a series of plain (un-
reinforced) concrete layers and of reinforcing steel layers.
Plain concrete layers can either be elastic, (singly or doubly)
cracked, and yielded or crushed. An appropriate stress-strain
relation is used for each of these states of behaviour. On the
other hand, the reinforcing steel is replaced by an equivalent
smeared uniformly distributed steel layer with stiffness only
in the direction of the reinforcement and the bilinear stress-
strain relationship is assumed. The equivalent thickness of
the steel layer is determined such that the corresponding
area of reinforcement in the layer remains unchanged. Or-
dinarily, a concrete shell is reinforced by at least two sets of
reinforcing bars. It is also assumed that the reinforcing steel
is arranged in layers forming grids intersecting each other
at arbitrary angles. Any number of such layers can be ac-
counted for and each layer is to be located exactly in space
for the purpose of generating its stiffness properties. Perfect
bond is assumed to exist between the reinforcing steel and
the surrounding concrete. The tension stiffening and dowel
action are included to take into account the interaction be-
tween concrete and steel.

4.4.1 Elasto-Plasticity-Based Model in Compressive
Behavior of Concrete

Based on the flow theory of plasticity, the nonlinear com-
pressive behavior of concrete is characterized by a yield
condition, i.e. the flow and hardening rules and the crush-
ing condition.

The Yield Condition In the present study of reinforced con-
crete plates and shells, the following yield condition in terms
of the first two stress invariants is employed [61].

f (I1, J2) = [β(3J2) + αI1]1/2 = σ0. (128)

Fig. 7 Flow chart of non-linear dynamic analysis with progressive ply
failure

In terms of principal stresses, the expression for yielding can
be written as

β[(σ 2
1 + σ 2

2 + σ 2
3 ) − (σ1σ2 + σ1σ3 + σ1σ3)]

+ α(σ1 + σ2 + σ3)

= (σ0)
2, (129)

α and β are material parameters. σ0 is the equivalent effec-
tive stress, taken as the compressive stress f ′

c from a uniax-
ial test. f ′

c can be considered as the most reliable constant to
characterize the concrete behaviour and is easily obtainable.
The yield condition is then a function of only one material
parameter (σ0 = f ′

c). For practical proposes, a relation can
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Fig. 8 The layered model of
reinforced concrete shell
element

Fig. 9 Biaxial compressive and tensile cracking criterion for concrete

be assumed between the equal biaxial yield strength, fcb ,
and the uniaxial yield strength, f ′

c .

fcb = 1.16 to 1.20f ′
c. (130)

If Kupfer’s results [150] are employed (fcb = 1.16f ′
c), the

material constants are

α = 0.355σ0,

β = 1.355
(131)

and the yield condition can be written in term of the stress
component as:

[1.355[(σ 2
r + σ 2

s − σrσs) + 3(τ 2
rs + τ 2

rt + τ 2
st )]

+ 0.355σ0(σr + σs)]1/2

= σ0. (132)

This expression is compared with the experimental results
of Kupfer et al. [83] in the biaxial stress space, Fig. 9. Both
perfect plastic and strain-hardening plasticity approaches
are employed, which are illustrated for one-dimension in
Fig. 10.

The Flow Rule Since reliable data for concrete under biax-
ial loading is not available, except the data from Kupfer et
al. [83], the normality of the plasticity deformation rate vec-
tor to the yield surface is assumed. This only requires the

derivative of the yield surface. The plastic strain increment
is defined as

dε
p
ij = dκ

∂f (σ )

∂σij

. (133)

dκ is a proportionality constant which determines the mag-
nitude of the plastic strain increment, and the gradient
df (σ )/dσij defines its direction to be perpendicular to the
yield surface. The current stress function f (σ ) is the yield
condition; or the subsequent loading functions in the strain-
hardening model.

The yield function derivatives, which define the flow vec-
tor (a), take the following explicit expressions for the yield
surface:

aT = [a1, a2, a3, a4, a5]T =
[

∂f

∂σr

,
∂f

∂σs

,
∂f

∂τrs

,
∂f

∂τrt

,
∂f

∂τst

]T

,

a1 = [2(c2 + β)σr + (2c2 − β)σs]
C̄

+ c,

(134)

a2 = [2(c2 + β)σs + (2c2 − β)σr ]
C̄

+ c

a3 = 6βτrs

C̄
, a4 = 6βτrt

C̄
, a5 = 6βτst

C̄

where c = α/(2σ0), α and β are material constants previ-
ously defined, and

C̄ = 2[(c2 + β)σ 2
r + (c2 + β)σ 2

s + (2c2 − β)σrσs

+ 3β(τ 2
rs + τ 2

rt + τ 2
st )]1/2. (135)

The Hardening Rule The hardening rule defines the mo-
tion of the subsequent yield surface (the loading surface)
during plastic deformation. It determines the relation be-
tween the loading surface (or effective stress) and the accu-
mulated plastic strain (or effective plastic strain). The con-
cept of effective stress and effective plastic strain makes it
possible to extrapolate from a simple uniaxial test to the
multiaxial condition. In the present work the relation be-
tween effective stress and effective plastic strain is extrap-
olated from the uniaxial stress-strain relationship using the
conventional “Madrid Parabola”.

σ = E0ε − 1

2

E0

ε0
ε2, 0.3f ′

c < σ < f ′
c (136)
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Fig. 10 One-dimension
representation of the concrete
constitutive model

where E0 is an initial elasticity modulus, ε is the total strain,
ε0 is the total strain at peak stress f ′

c .
Substituting the elastic strain component εe = σ/E0 into

(136) obtains,

σ = −E0ε̄p +
√

2E2
0ε0ε̄p, 0.3f ′

c < σ < f ′
c (137)

where ε̄p is the effective plastic strain component, and ε0

can be taken as equal to 2f ′
c/E0 for normal concrete. Using

the current effective plastic strain in (137) gives the effec-
tive stress level σ = σ0, defining the current loading surface
position.

The Crushing Condition The crushing of concrete is a
strain-controlled phenomenon. However, there is a lack in
the availability of experimental data on concrete ultimate-
deformation capacity under multiaxial stress states. This has
resulted in the development of an appropriate strain criterion
by simply converting the yield criterion described in terms
of stresses directly into strains. Thus

β(3J ′
2) + αI ′

1 = ε2
u. (138)

I ′
1 and J ′

2 are strain invariants and εu is an ultimate to-
tal strain extrapolated from uniaxial test results. The pre-
vious values of material parameter α and β obtained from
Kupfer’s results can be adopted.

Stress-Strain Relation Based on classical theory of plastic-
ity, the elasto-plastic stress-strain relation can be written as
follow.

dσ =
(

[Ce] − [Ce]aaT[Ce]
(A + aT[Ce]a)

)
dε = Ccdε (139)

where Ce is an elastic constitutive matrix defined by:

Ce =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E0
(1−υ2

0 )

υ0E0
(1−υ2

0 )
0 0 0

υ0E0
(1−υ2

0 )

E0
(1−υ2

0 )
0 0 0

0 0 G0 0 0

0 0 0 5
6G0 0

0 0 0 0 5
6G0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (140)

E0,G0 and υ0 are the initial Young’s modulus, shear mod-
ulus and Poison’s ratio of concrete, respectively. The strain
hardening parameter (A) can be determined by differentiat-
ing (137) with respect to ε̄p .

A = −E0 + E2
0ε0√

2E2
0ε0ε̄p

, ε̄p > 0. (141)

4.4.2 Elasto-Plastic Fracture (EPF) Model in Compressive
Behavior of Concrete

In the elasto-plastic fracture model (EPF), the sources of
nonlinearity can generally be classified into continuum frac-
ture and plasticity. Continuum fracture is defined as the elas-
ticity damage caused by dispersed defects with no clear lo-
calization. This principally results in a reduced absorbing
capacity of the elastic strain energy as damages accumu-
late. Plasticity is defined as the unrecoverable deformation
of concrete after all loads are removed. In general, contin-
uum fracture affects ultimate strength while plasticity in-
fluences deformation of concrete. A schematic outline of
an elasto-plasticity and fracturing system is illustrated in
Fig. 11. Concrete is idealized as a set of infinitesimal elasto-
plastic components. Elasticity is modeled by parallel springs
while plasticity is modeled by serially connected slider. If no
springs are damaged during loading, it would have perfect
elasto-plasticity, i.e. all spring would be effective in resist-
ing stresses. However, fracture damage occurs under loading
due to micro cracks and other defects. Thus, at any loading
state, some springs may be broken and lose their load resist-
ing capability. In Fig. 11, the parameter K̄ is defined as frac-
ture parameter representing the ratio of undamaged springs.
The total stress in concrete is obtained as the summation of
the internal stress carried by undamaged elements. As a re-
sult, effective stiffness is reduced by factor K̄ as shown in
Fig. 11.

The main task in describing the nonlinear behavior of
concrete is the identification of continuum fracture from the
overall nonlinearity. Continuum fracture would be the re-
duction of elastic energy absorption capability in terms of
energy dissipation due to nonlinear irreversible processes.
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Fig. 11 Schematic outline of elasto-plastic fracture model

First, volumetric and deviatoric components of damaged
elasticity will be discussed.

Volumetric Elasticity and Fracture The stiffness of the ex-
tracted elastic strain versus stress relation varies with load-
ing paths. However, if the purely volumetric component of
elasticity is extracted from the total response, it can be found
that the volumetric fracturing is essentially non-existent.
Maekawa et al. [93] showed that no continuum fracture is
present in the volumetric elastic mode for any confinement
level (I1) below 0.5f ′

c . This means that the entire volume
of concrete is effective in absorbing and releasing the elastic
strain energy under the hydrostatic component. Since con-
crete in practice does not have such high confinement and
the stress deviator is more dominant, it acceptable to assume
that there is no fracture in the volumetric mode for the con-
tinuum fracture model. Then we have the volumetric elastic
constitutive law as

I1 = 3K0I1e (142)

where I1 and I1e are the first stress and elastic strain invari-
ant express by

I1 = 1

3
σii, I1e = 1

3
εeii

(143)

where

εeij
= εij − εpij

. (144)

The strain parameters εij , εeij
, εpij

are the total, elastic and
plastic strains, respectively. The parameter K0 is the volu-
metric elastic constant equal to,

K0 = E0

3(1 − 2υ0)
. (145)

Elastic Deviators and Fracture
a) Deteriorated shear elasticity

Maekawa et al. [93] studied the relation of the stress and
elastic strain deviator invariants in the extracted elastic mode
for loading paths with different levels of confinement. When
unloaded, the stress and elastic strains have to return to the
origin. For different confinement levels, the unloading stiff-
ness decreases with the progress in loading. This indicates
the degradation of elasticity in the deviatoric mode. It is also
shown that greater stress deviator invariant can be sustained
by the damaged concrete with higher lateral confinement.

Unlike the fracture in the volumetric elastic mode, the
confinement has a significant influence on the deviatoric
(shear) elastic mode. Then, the fracture parameter K̄ can be
introduced into the relation between elastic stress and strain
deviator invariant:

J2 = 2G0K̄J2e. (146)

J2 and J2e are the second stress and elastic strain deviatoric
invariant express by

J2 =
√

1
2SijSij , (147)

J2e =
√

1
2eeij

eeij
, (148)

where,

Sij = σij − δij I1 and eeij
= εeij

− δij I1e. (149)

The value K̄ indicates the ratio of the effective volume
of concrete, which can absorb and release the shear elastic
strain energy. It is positive-definite and less than unity.

b) Fracture parameter
The relation between the progress of continuum fracture

(denoted by fracture parameter K̄) as a function of the elas-
tic deviator invariant is given in [93]. Higher confinement is
shown to restrain the progressive fracturing to a greater de-
gree and results in an increased deviator invariant that con-
crete can sustain. While the internal shear intensity advances
the progress of fracture, the confinement restrains it. Thus
there will be potential on the I1e–J2e plane that will give the
same value of the fracture parameter K̄ . Maekawa et al. [93]
proposed a formulation for the fracture potential function F̄

as a function of elastic strain invariants I1e, J2e .

F̄ = 1

5
·

√
2J2e

0.23ε0 + √
3|I1e|

[
6 + 3

√
3

2

(
J3e

J2e

)3]
. (150)

F̄ is considered as the three dimensional equivalent fracture
evolution parameter and a unique relationship between K̄

and F̄ is obtained [93].

K̄ = exp

[
− F̄

3.25

{
1 − exp

(
− F̄

0.80

)}]
. (151)
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When the fracture parameter K̄ falls below 0.25, com-
pressive strain localization is observed in the concrete. Here,
the strain field is no longer uniform and stress-strain relation
becomes dependent on size of the control volume. Thus, this
value is tentatively defined as the applicability limit of the
model for continuum.

Plasticity in Shear Plasticity in shear means distorted
residual deformation. Plastic flow is an irreversible path-
dependent process. This means the shear plastic work ad-
sorbed by the undamaged component varies with load-
ing paths. Thus, the indicator of plasticity has to be path-
dependent. First, we evaluate the specific shear plastic work
per unit volume of active undamaged components:

dWps = 2G0eeij
depij

(152)

where

depij
= dεpij

− δij (dεpkk
/3). (153)

The relation between plastic work and plastic deviator in-
variant can be written as

dJ2p = dWps

2(2G0J2e)
= eeij

depij

2J2e

(154)

where eeij
and epij

are the elastic and plastic strain deviator
tensor, respectively.

In order to formulate the plastic constitutive law, it is
assumed that the internal stress intensity, which is propor-
tional to elastic strain, would govern the evolution of plastic-
ity. Maekawa et al. [93] proposed the empirical polynomial
equation that related the J2p and J2e.

J2p = H(J2e) = 9

10
ε0

(
J2e

ε0

)3

. (155)

Equation (155) is applicable to normal aggregate concrete
with strengths from 15 to 50 MPa.

Volumetric Plasticity The volumetric plasticity I1p is
closely related with J2p and is also affected by the degree
of confinement. The relation between I1p and J2p obtained
from experimental work is provided in [93]. The change
in volumetric plasticity associated with shear plasticity is
known as dilatancy. The dilatancy derivative may be defined
as

D̄ = ∂I1p

∂J2p

. (156)

Experimentally, Maekawa et al. [93] proposed an equation
of D as

D̄ = P(X)D̃ (157)

where

X =
√

3I1e

J2e

, (158)

P(X) =

⎧⎪⎨
⎪⎩

−0.5 sin(X π
2 ) + 0.5 (−1 < X < 1),

1 (X ≤ −1),

0 (X ≥ 1),

(159)

D̃ =
{

D̃0, K̄ ≥ 0.5,

D̃0(2K̄2) + D̃1(1 − 4K̄2), K̄ < 0.5,
(160)

D̃0 = − 1 − 2υ0√
3(1 + υ0)

, (161)

D̃1 =
√

2I1e + 0.38ε0

0.28ε0
. (162)

Flow Rule for Elasto-Plastic Fracture Model Previous
sections only established the scalar relationship between in-
variants. To finalize the tensorial expression of plasticity,
the flow rule, which specifies the direction of plasticity, is
needed. Maekawa et al. [93] assumed non-associate plastic-
ity, where the direction of the plastic strains coincides with
the elastic strains and can be written as follows:

depij
= eeij

dg (163)

where dg is the plastic strain multiplier. From (154) and
(163) we can write,

depij
= eeij

J2e

dJ2p. (164)

The incremental plastic strain can be written in the term of
the deviatoric and volumetric.

dεpij
= depij

+ δij dI1p. (165)

Using (155), (156) and (164), (165) can be written as fol-
lows:

dεpij
= eeij

dJ2p

J2e

+ δij D̄dJ2p

=
(

eeij

J2e

+ δij D̄

)
dH

dJ2e

UpdJ2e (166)

where, Up = 1 when J2e > 0 and J2e = J2e max, Up = 0 oth-
erwise.

The differentiation of J2e can be expressed in terms of
the elastic strain increment as follows:

dJ2e = eekl
deekl

2J2e

= eekl

2J2e

d

(
εekl

− 1

3
δklεemm

)

= eekl
dεekl

2J2e

. (167)
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Substitute (167) into (166), finally, we obtain the plastic con-
stitutive equation.

dεpij
= Lijkldεekl

(168)

where,

Lijkl =
(

eeij

J2e

+ δij D̄

)
dH

dJ2e

Up

eekl

2J2e

. (169)

Stress-Strain Relationship for Concrete in Compression by
EPF Model The generalized expression of the fractured
elasticity can be written as follows:

Sij = 2G0K̄ij eeij
. (170)

Equation (170) is the general form, which accounts for the
anisotropic state of fracturing damage. Maekawa et al. [93]
experimentally demonstrated the isotropy of concrete shear
elasticity under biaxial compression-tension stress. Since
three-dimensional compressive stresses should make the in-
ternal damage more isotropic, the approximation of fracture
parameter can be defined as

K̄ij = K̄. (171)

By combining the volumetric and deviatoric fracture laws
of concrete, the total tensorial expression of the fractured
elasticity yields

σij = δij I1 + Sij = 3K0I1eδij + 2G0K̄eeij
. (172)

Taking the derivative with respect to dεekl

dσij = Mijkldεekl
, (173)

Mijkl = 2G0K̄δikδjl +
[
δij 3K0

dεell

3

− 2G0K̄δij

dεell

3

]
+ 2G0eeij

dK̄. (174)

The forth order tensor Mijkl can be expanded as follows:

Mijkl = term1 + term2 + term3,

term1 = 2G0Kδikδjl,

term2 = 1

3

[
(3K0 − 2G0K)δij

+ 2G0eeij
Uf

(
∂K

∂F

)
(175)

×
(

∂F

∂I1e

− 2

3

(
J2e

J3e

)2(
∂F

∂J3e

))]
δkl,

term3 = 2G0eeij
Uf

(
∂K

∂F

)[(
∂F

∂J2e

)
eekl

2J2e

+
(

∂F

∂J3e

)
eekm

eelm

3J 2
3e

]

where, Uf = 1 when F = Fmax and dF > 0, Uf = 0 other-
wise.

Using an elasto-plasticity concept, the strain component
can be separated into elastic and plastic parts as given below.

dεij = dεeij
+ dεpij

. (176)

Substitute (168) and (176) into (173), the matrix expression
of an incremental stress-strain relation can be written as fol-
lows:

d{σ } = M · [Î + L]−1d{ε} = Ccd{ε}. (177)

Equation (177) is the constitutive equation for concrete
which included both fracturing and plasticity (denote that
Î is a unit identity matrix).

4.4.3 Tensile Behavior of Concrete

The response of concrete under tensile stresses is assumed to
be linear elastic until the fracture surface is reached. The ten-
sile type of fracture, or cracking, is governed by a maximum
tensile stress criterion (tension cut-off). Cracks are assumed
to form in planes perpendicular to the direction of maximum
principal tensile stress as soon as this stress reaches the spec-
ified concrete tensile strengthf ′

t . In order to avoid further
complexities, cracks are assumed to form only in planes per-
pendicular to the structural plane (r, s plane). After cracking
has occurred, the elasticity modulus and Poisson’s ratio are
reduced to zero in the direction perpendicular to the cracked
plane, and a reduced shear modulus is employed. Taking 1
and 2 as the two principal directions in the plane of the struc-
ture, the stress-strain relationship for concrete cracking in
the 1 direction, is as follow;
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Experimental results indicate that a considerable amount
of shear stress can be transferred across the rough surfaces
of cracked concrete. Also, the dowel action of the steel bar
contributes to the shear stiffness across cracks. These tests
have shown that the primary variable in the shear transfer
mechanism is the crack width, although aggregate size, rein-
forcement ratio and bar size also have influence. A common
procedure to account for aggregate interlock and dowel ac-
tion in a smeared cracking model is to attribute an appropri-
ate value to cracked shear modulus Gc. The cracked shear
modulus is assumed to be a function of the current tensile
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strain [61]. For concrete cracked in the 1 direction

Gc
12 = Gc

13 = 0.25G0

(
1 − ε1

0.004

)
,

Gc
12 = Gc

13 = 0 if ε1 > 0.004, (179)
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and for concrete cracked in both directions,
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where,

Gc
13 = 0.25G0

(
1 − ε1

0.004

)
, Gc

13 = 0 if ε1 > 0.004,

Gc
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, Gc

22 = 0 if ε2 > 0.004,

Gc
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13 or Gc
12 = 0.5Gc

23 if Gc
23 < Gc

13.

(181)

If the crack closes the uncracked shear modulus G0 is again
assumed in the corresponding direction.

4.4.4 Tension Stiffening

Due to bond effects, cracked concrete carries between cracks
a certain amount of tensile force normal to the cracked
plane. The concrete adheres to the reinforcing bars and con-
tributes to the overall stiffness of the structure. Several ap-
proaches based on experimental results have been employed
to simulate this tension stiffening behavior. A gradual re-
lease of the concrete stress component normal to the cracked
plane is adopted in this work. The process of loading and
unloading of cracked concrete is also illustrated in Fig. 12.
Unloading and reloading of cracked concrete is assumed to
follow the linear behavior shown with a fictitious elasticity
modulus Ei given by

Ei = αtf
′
t

(
1−εi

εm
)

εi

, εt ≤ εi ≤ εm. (182)

αt and εm are tension stiffening parameters (Fig. 12) and εi

is the maximum value reached by the tensile strain at the
point considered. If the crack closes, i.e. if the strain com-
ponent normal to the crack plane becomes negative, the con-
crete acquires the uncracked behavior in the corresponding
direction, but the crack direction and the maximum tensile
strain continue to be stored. The value εi can be readily mod-
ified to simulate bond deterioration during reloading. The

Fig. 12 Loading and unloading behavior of cracked concrete (tension
stiffening diagram)

normal stress σ1(and or σ2) is obtained by the following ex-
pression.

σ1 = αtf
′
t

(
1 − ε1

εm

)
, εt ≤ ε1 ≤ εm (183)

or by

σ1 = σiε1

εi

, ε1 ≤ εi (184)

where ε1 is the current tensile strain in material direction 1.
The value of f ′

t should be taken as the modulus of rupture
of the concrete. This modulus can be related to the uniaxial
compression strength by

f ′
t = fr = 0.62

√
f ′

c (185)

where f ′
t , fr and f ′

c are expressed in MPa. However exper-
imental tests have shown large variations in the above coef-
ficient. The tension stiffening constant α in Fig. 12 is taken
equal to 0.5, 0.6 or 0.7 depending on the relative percentage
of steel in the section. However the change in structural be-
havior with this variation is generally small and a constant
value of α = 0.6 could be used. For the tension stiffening
constant, εm, a fixed value of 0.002 is employed.

4.4.5 Tension and Compression Behavior of Reinforcing
Steel

Reinforcing steel is modeled as a bilinear material and stress
reversal with Bauschinger effect is included, as shown in
Fig. 13. Four parameters are necessary as input data to de-
fine the steel model: the initial Young’s modulus Es1, the
strain hardening modulus Es2, the yield stress fy and the
ultimate strain εsu. The steel layers are considered as a one-
dimensional material in the reinforcement direction.



Nonlinear Formulations of a Four-Node Quasi-Conforming Shell Element 221

4.4.6 Constitutive Relation of Reinforced Concrete
Material

An incremental constitutive law for each layer of the shell is
expressed as follows:
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The constitutive matrix Cc is already given in (139) and
(177) for plasticity-based and EPF model, respectively. The
rigidity matrix in (86) can be determined by integrating the

Fig. 13 Stress-strain relationship of the reinforcing steel

Fig. 14 Shell element patch test

rigidity from each layer as follows:
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In order to incorporate the nonlinear material behavior, in-
tegration of (187) must evidently be carried out numerically
and the mid-ordinate rule is used for concrete and steel lay-
ers.

5 Numerical Results

Results to the nonlinear analysis of plate and shell prob-
lems are presented to validate the numerical performance
of the formulation. The present nonlinear formulation of the
4-node quasi-conforming shell element, XSHELL41, is im-
plemented into the general purpose Nonlinear Dynamic Fi-
nite Element Package, XFINAS [178], developed in AIT and
Konkuk University. XFINAS is an extended version of the
nonlinear finite element package FINAS, developed in Im-
perial College, London. It runs on a personal computer with
the personal pre and postprocessor software GiD [51] devel-
oped by CIMNE in Spain. The PC used for the following
examples runs on Windows XP operating system.

5.1 Patch Test

The patch test used for verifying the present shell elements is
found in MacNeal and Harder (1985) [92]. The test involves
membrane and bending tests. The boundary conditions are
given in Table 2 and the patch mesh is shown in Fig. 15.
a = 0.12, b = 0.24, t = 0.001. E = 1e6, v = 0.25.

5.2 Linear Isotropic Static Problems

A list of shell elements used for comparison with the pro-
posed elements is as follows:

QUAD4—Isoparametric formulation with selective reduced
integration, MacNeal and Harder [92].

Table 2 Coordinates and
boundary conditions x y (a) Membrane Patch Test

1 0.04 0.02 Boundary Conditions: u = 10−3(x + y/2)

2 0.18 0.03 v = 10−3(y + x/2)

3 0.16 0.08 (b) Bending Patch Test

4 0.08 0.08 Boundary Conditions: w = 10−3(x2 + xy + y2)/2

θx = ∂w/∂y = 10−3(x/2 + y)

θy = −∂w/∂x = 10−3 (−x − y/2)
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S4R5—Bilinear shell with mixed formulations used for the
membrane and bending stresses and full 2 × 2 quadrature
in ABACUS by Hibbitt, Karlsson & Sorensen, Inc [59].

Simo et al. (1989) [138, 144] —Bilinear shell with mixed
formulation used for the membrane and bending stresses
and full 2 × 2 quadrature.

MITC4—4-node fully integrated shell element derived by
Dvorkin and Bathe [42]. The shear strains are determined
using the assumed strain interpolation.

QPH—Quadrilateral shell element with physical hourglass
control by Belytschko and Leviathan [17, 18].

Straight Cantilever Beam The following are simple linear
problems. A cantilever beam is subjected to four different
types of loading, tensile, in-plane and out-of-plane, and tor-
sion loadings. The cantilever beam length is L = 6.0, the
cross-section height h = 0.20 and thickness is t = 0.10. The
beam depth is small compared to its length, so the shear con-
tribution to the transverse deformation is small. Three mesh
conditions are considered, regular, trapezoidal, and parallel-

Fig. 15 Straight cantilever beam

Table 3 Maximum error in stress (%)

XSHELL41

Membrane Test 0.038

Bending Test 0.045

ogram mesh. The elastic modulus E = 1.0e7 and Poisson’s
ratio v = 0.30. The loadings are all unit loads applied at the
beam tip.

The problem is solved to demonstrate the elements ca-
pability in handling meshes with distortions and high as-
pect ratios. For in-plane problems, XSHELL41 and QUAD4
lock for the plane shear problem. For the out-of-plane shear
problem, the results of XSHELL41 are about the same as
QUAD4, only showing less sensitivity to mesh distortion.
However, for the twist problem, QUAD4 provides better re-
sults.

Curved Cantilever Beam A curved cantilever beam sub-
jected to, first, an in-plane unit point load at the free end, and
second, an out-of-plane unit point load. The curved beam
forms a quarter circle. It has an outer radius Ro = 4.32, in-
ner radius Ri = 4.12, and thickness of t = 0.10. The elastic
modulus E = 1.0e7 and Poisson’s ratio v = 0.25.

Quadrilateral elements used for analyzing the curved
beam would unavoidably be distorted. In addition to this,
a coarse mesh of 1 × 6 would make a high aspect ratio for
each element. Similar to the results on the previous problem,
XSHELL41 provides good results for the in-plane problem
but QUAD4 provides better results for out of plane shear
when the mesh requires a high aspect ratio.

Twisted Cantilever Beam The following problem is to test
an element’s ability to model warped geometry. The beam
is clamped in one end and free in the other. The free end
is twisted by ninety degrees. Two loading conditions are
considered, an in-plane and an out-of-plane unit load at the
beam tip. The beam has length L = 12, width w = 1.0 and
thickness t = 0.32. The material properties are E = 29e6
and v = 0.22.

For the XSHELL41, the warping correction suggested in
Taylor [155] was required to provide good result, shown in
Table 6.

Tapered and Swept Beam This problem demonstrates an
element’s ability to solve problems undergoing both shear
and bending. Because of the shape of the beam, elements
used in meshing are distorted. The beam dimensions are
shown in Fig. 18. The modulus of elasticity E = 1.0, Pois-

Table 4 Normalized results to
the straight beam problem Load Analytical QUAD4 XSHELL41

Solution a b c a b c

Extension 3.0 × 10−5 0.995 0.996 0.996 0.995 0.985 1.010

In-plane Shear 0.1081 0.904 0.071 0.080 0.904 0.091 0.115

Out-of-plane shear 0.4321 0.986 0.968 0.977 0.987 0.987 0.985

Twist 0.03208 0.941 0.951 0.945 0.738 0.761 0.769
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son’s ratio v = 0.33 and thickness h = 1.0. The converged
reference solution is 23.91. The XSHELL41 element gives

Fig. 16 Curved beam

Table 5 Normalized results of curved beam

Load (theory) QUAD4 XSHELL41

In-plane shear (0.08734) 0.833 0.917

Out-of-plane shear (0.5022) 0.951 0.864

Table 6 Normalized results of twisted beam

Mesh Size QUAD4 XSHELL41

In-plane Out-of-plane In-plane Out-of-plane

1 × 6 – – 0.971 1.013

2 × 12 0.991 0.985 0.976 1.060

4 × 24 – – 0.997 0.999

good results compared to the results of Simo et al. [138,
144].

Clamped Plate A clamped square and rectangular plate
subjected to a concentrated load at the center is analyzed
to convergence. The purpose is to test the elements per-
formance in bending of a thin plate, no shear contribution,
and bending with a high aspect ratio. The square plate has
a side length of a = b = 2.0 and the rectangular plate has
side lengths of a = 2.0 and b = 10.0. For both plates, the
thickness is t = 0.0001. The material properties used for the
plate are E = 1.7472e7 and v = 0.30. The concentrated load
at the plate center is P = 4.0e-4. The analytical solution is
from Timoshenko and Woinowsky-Krieger [157].

Only one quarter of the plate is used in the model.
XSHELL41 gives very good results for both the thin square
and rectangular plates and do not show any shear locking
problems.

Hemispherical Shell To give good results for this problem,
two properties must be demonstrated by the shell elements.
An inextensional bending mode must be allowed and sec-
ondly, a rigid body motion must be well expressed. The
hemisphere has a radius r = 10.0 and thickness t = 0.04.
An 18-degree hole is located at the top of the hemisphere.
Inward and outward forces in perpendicular directions are
applied at the base. The material properties are E = 6.825e7
and v = 0.30.

The problem is modeled using only one quarter of the
hemisphere. Two reference solutions are available; the result
from Simo et al. [138, 144] is 0.093 and from MacNeal and
Harder [92] is 0.094.

The mesh is increased from 2 × 2 elements to 16 × 16
elements. The QUAD4 element gives very good results for
this problem, while XSHELL41 gives similar result to the

Fig. 17 Twisted cantilever
beam
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Fig. 18 Tapered and swept beam

Table 7 Cook’s tapered and swept beam normalized results—4 node

Mesh Simo et al. (1989) [55] XSHELL41

2 × 2 0.883 0.816

4 × 4 0.963 0.937

8 × 8 0.991 0.983

16 × 16 0.999 0.997

Fig. 19 Clamped square and rectangular plates

Table 8 Clamped square and rectangular plates normalized results

Mesh a/b = 1 (w = 5.60) a/b = 5 (w = 7.23)

XSHELL41 QUAD4 XSHELL41 QUAD4

2 × 2 0.960 0.934 0.709 0.519

4 × 4 0.992 1.010 0.929 0.863

6 × 6 0.998 1.012 0.963 0.940

8 × 8 1.000 1.010 0.973 0.972

Distorted 0.995 – – –

results of Simo et al. [138, 144] for meshes 8 × 8 and 16 ×
16.

Pinched Cylinder A short cylinder with rigid end di-
aphragms subjected to two pinching forces is analyzed.
This is one of the most severe tests of an element’s abil-
ity to model both inextensional bending and complex mem-
brane states. The cylinder has a length L = 600.0, radius
r = 300.0 and thickness t = 3.0. The material properties
are E = 3.0e7 and v = 0.30. The radial displacement at the
location of the point load is 1.8248e-5.

Fig. 20 Hemispherical shell with 18◦ hole

Table 9 Hemispherical shell with 18◦ hole normalized results (0.093)

Elements per Side Simo et al. QUAD4 XSHELL41

2 0.919 0.972 1.038
4 1.004 1.024 1.038
8 0.998 1.005 1.012

16 0.999 – 1.001

Fig. 21 Pinched cylinder

Table 10 Pinched cylinder normalized results

Mesh S4R5 MITC4 QPH Simo et al. XSHELL41

4 × 4 – 0.37 0.37 0.399 0.625
6 × 6 0.6022 – – – –
8 × 8 – 0.74 0.74 0.763 0.926
11 × 11 0.875 – – – –
16 × 16 – 0.93 0.93 0.935 0.995
21 × 21 0.974 – – – –

Only one octant of the cylinder is used to model the prob-
lem. Very good results are obtained using XSHELL41 when



Nonlinear Formulations of a Four-Node Quasi-Conforming Shell Element 225

Fig. 22 Scordelis-Lo roof

Table 11 Scordelis-Lo roof problem normalized results—4 node

Mesh MITC4 QPH Simo et al. QUAD4 XSHELL41

4 × 4 0.94 0.94 1.083 1.050 1.035

6 × 6 – – – 1.018 1.009

8 × 8 0.97 0.98 1.015 1.008 1.002

10 × 10 – – – 1.004 0.999

16 × 16 1.00 1.01 1.000 – –

compared with the references. The ability of the present ele-
ments to analyze this problem is attributed to the cubic inter-
polation used in the string functions for bending whereas the
elements used in the references use bilinear formulations.

Scordelis-Lo Roof The Scordelis-Lo roof is a short cylin-
der section supported by rigid diaphragms at the edges. It is
a membrane-dominated problem. It has a length L = 50.0,
radius r = 25.0 and thickness t = 0.25. The material prop-
erties are E = 4.32e8 and v = 0.0. The load due to gravity
is 90.0 per unit area. The reference solution for the vertical
displacement of point a on the free edge is 0.3024.

Taking advantage of symmetry, only one quarter is used
in the analysis of the problem. The XSHELL41 element
gives very good results compared with references.

5.3 Linear Laminate Composite Static Problems

Simply-Supported Angle-ply Laminated Plates (θ,−θ)

Angle-ply laminated composite plate subjected to uniform
lateral loading is analyzed. Different aspect ratios are used to
verify the shell element for thick and thin plates. The prob-
lem geometry and material properties are as follows:

a = b = 20 in. a/h = 10,25,50,100

E1 = 25.0e6 psi E2 = 1.0e6 psi v = 0.25

G12 = G13 = 0.5e6 psi G23 = 0.2e6 psi.

The results are presented in the non-dimensional form using
the equation,

W̄ =
(

h3E2103

qoa4

)
Wc (188)

and are presented in Table 12. The results show that for
angle-ply plates, the shell element is good for thin and mod-
erately thick, but the convergence for thick plates is slow.
The reference solutions of Whitney [167] are obtained by a
series solution and the answers by Pucha and Reddy [111]
are obtained by a finite element solution.

Very Thin Simply-Supported Angle-ply Laminated Plates
(θ,−θ) Using the same material properties as the previ-
ous problem, a very thin plate, a/h = 1000, subjected to
uniform lateral loading is analyzed and the results are shown
in Table 13. The shell element gives very good results for the
very thin plate case.

Clamped Angle-Ply Laminated Plates (θ,−θ) The non-
dimensional center deflections of very thin plates, a/h =
1000, having clamped edges are shown in Table 14. The
plates are subjected to uniform lateral loading and the mate-
rial properties are the same as previous problem. The shell
element compares well with the reference solutions.

Clamped Cross-Ply Laminated Plate (0/90) A clamped
cross-ply laminated plate subjected to uniform lateral pres-
sure is analyzed. The aspect ratio for the plates is a/h =
1000 and the material properties are the same as the previ-
ous problems. The results compare well with the analytical
solution of Whitney [167].

Simply Supported Laminated Spherical Shell A laminated
spherical shell having a geometry shown in Fig. 23 is
analyzed for center deflection when subjected to a uni-
form inward pressure. Lay-ups of (0/90/0/90/0/90/0/90/0)
and (45/−45/45/−45/45/−45/45/−45/45) are considered
with span to thickness ratios, a/h, of 0.1, 0.01 and 0.001.
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Table 12 Non-dimensional
center deflection of angle-ply
plates of varying aspect ratio

a/h θ Whitney Putcha & Reddy XSHELL41

4 × 4 8 × 8 16 × 16 32 × 32

10 (thick) θ = 5 10.0117 10.079 6.649 7.221 7.726 8.584

θ = 15 12.2858 11.842 8.580 9.646 10.320 11.160

θ = 30 13.2337 11.749 9.224 10.690 11.600 12.520

θ = 45 12.7954 11.582 8.831 10.200 11.080 12.000

25 (thick) θ = 5 7.5191 7.5853 6.444 6.915 7.042 7.116

θ = 15 10.0133 9.5552 8.320 9.289 9.545 9.657

θ = 30 11.1228 9.5898 8.989 10.320 10.660 10.810

θ = 45 10.6816 9.4733 8.642 9.910 10.220 10.360

50 (moderately thick) θ = 5 7.1581 7.2218 6.420 6.891 7.006 7.039

θ = 15 9.6866 9.2024 8.288 9.262 9.504 9.569

θ = 30 10.8215 9.2624 8.956 10.300 10.620 10.710

θ = 45 10.3807 9.1736 8.614 9.894 10.190 10.260

100 (thin) θ = 5 7.0676 7.1298 6.414 6.886 7.000 7.030

θ = 15 9.6049 9.1077 8.280 9.256 9.498 9.559

θ = 30 10.746 9.1718 8.948 10.300 10.620 10.700

θ = 45 10.3035 9.0973 8.606 9.891 10.190 10.260

Table 13 Non-dimensional center deflection of angle-ply plates

Aspect ratio Spilker XSHELL41

a/h = 1000 & Engelmann Mesh(full)

(1986) [145]

Exact FEM 8 × 8 16 × 16 32 × 32

θ = 5 4.736 4.756 4.637 4.710 4.729

θ = 15 7.142 7.135 6.882 7.076 7.125

θ = 25 7.870 7.840 7.548 7.791 7.851

θ = 35 7.561 7.535 7.253 7.485 7.542

θ = 45 7.320 7.310 7.034 7.252 7.304

The spherical shell has a radius R = 10.0, width a = 1.0
and edge height f = 0.125. The material properties are
E1/E2 = 40, G12/E2 = 0.60, G23/E2 = 0.50 and v12 =
0.25. Similar to the angle-ply cases, the present element
converges slowly when used for thick shells but performs
well for thin shells. The results are tabulated in Table 16.

Linear Buckling Buckling eigenvalues are determined for
flat plates subject to in-plane compressive loading. Four
cases are considered, i.e. lay-up of (θ20) and (θ,−θ)5s
for both simply supported and clamped supports. The plate
properties for the simple plate are Ey/Ex = 0.1, Gxy/Ex =
0.03, v = 0.3 and a/b = 1.13, while for the clamped plate,
are Ey/Ex = 0.09, Gxy/Ex = 0.03, v = 0.3 and a/b = 1.0.
The results along with the analytical solution by Zhang
[182] are presented in Figs. 24 and 25.

5.4 Nonlinear Isotropic & Elasto-Plastic Problems

Square Clamped Plate Subjected to Uniform Pressure A
very thin plate is subjected to an increasing uniform pres-
sure. The plate is thin enough that the effect of shear is neg-
ligible. The plate length is a = 1000.0 and thickness t = 2.0.
The modulus of elasticity is E = 2.0e4 and Poisson ratio
v = 0.30. The analytical solution is given by Timoshenko
and Woinowsky-Krieger [157].

Sixteen XSHELL41 elements are used to model one
quarter of the plate. The present four-node element matches
with the analytical reference solution.

Hinged Cylindrical Shell The snap through behavior of
two cylindrical shells subjected to a point load at the cen-
ter is analyzed. One shell is 12.7 mm thick and the other is
6.35 mm thick. All other properties are the same. The cylin-
der geometric properties are length L = 508.0 mm, radius
R = 2540.0 mm, arc half angle θ = 0.1 radian. The mod-
ulus of elasticity E = 3.10275 kN/mm2 and Poisson’s ratio
v = 0.30. The cylindrical shell is simply supported along the
longitudinal boundaries and unsupported along the curved
edges.

Only one quarter of the problem is modelled using a
mesh with 8 × 8 XSHELL41 elements. The thicker shell
(12.7 mm) has a typical snap-through behaviour while the
thinner shell (6.35 mm) behaves with a snap-back behav-
iour. Two mesh configurations are considered. The results
show good agreement with the reference solutions by Sabir
and Lock [126], and Ramm [113]. Also, present quasi-
conforming solution gives better comparison than the quasi-
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Table 14 Non-dimensional center deflection of angle-ply plates with clamped edges

Aspect ratio Whitney (1970) Spilker & Engelmann Zaghloul & Kennedy XSHELL41

a/h = 1000 [168] analytical (1986) [145] (1975) [180] Mesh (full)

8 × 8 16 × 16 32 × 32

θ = 5 0.946 1.070 1.184 1.031 1.042 1.045

θ = 15 1.691 1.965 – 1.881 1.964 1.984

θ = 25 2.355 2.467 2.890 2.387 2.541 2.578

θ = 35 2.763 2.734 3.172 2.620 2.824 2.872

θ = 45 2.890 2.850 3.182 2.689 2.911 2.962

Table 15 Non-dimensional center deflection of clamped cross-ply
laminate

Whitney Zaghloul XSHELL41 (full plate mesh)

(1969) [167] & Kennedy 8 × 8 16 × 16 32 × 32

analytical (1975) [180]

2.861 3.113 2.731 2.845 2.870

Fig. 23 Laminate composite hinged spherical shell

conforming solution by Voyiadjis and Shi [135] as can be
shown in Fig. 29.

Hinged Spherical Shell with Concentrated Load The hinged
spherical shell problem is also a snap-though problem. Its
added complication is the curvature in two directions. The
geometric properties are radius R = 2540.0 mm and length
a = 784.5 mm. It is hinged on all sides and is loaded
with a point load at the center. The modulus of elasticity
E = 68.95 kN/mm2 and Poisson’s ratio v = 0.30.

The problem is modeled with a 3 × 3 mesh of one quar-
ter of the shell. The general behavior using XSHELL41 is
in agreement with the references by Horrigmoe and Bergan
[62] and Dhatt [36]. Horrigmore and Bergan’s solution used

flat triangular elements and Leicester [84] provided a series
solution.

Hemispherical Shell with 18-Degree Hole The hemispher-
ical shell with an 18◦ hole is a popular linear benchmark
test to demonstrate an elements ability to solve problems in-
volving, almost, inextensional bending. Its nonlinear analy-
sis adds large displacements and rotations to the problem.

Taking advantage of symmetry, only one quarter of the
hemisphere is modeled with 16 × 16 mesh size. The load-
deflection curves of present solutions are in good agreement
with the published results of Buechter and Ramm [25], even
with a course meshes.

Imperfect Rectangular Plate Under In-Plane Loading A
thin, simply supported plate subjected to in-plane compres-
sive loading is analyzed. The analysis includes both mater-
ial and geometric non-linearity. The geometry and material
properties are shown in Fig. 35. The initial out-of-plane im-
perfection is w = wo sin(πx/a) sin(πy/b). Because of sym-
metry, only one quarter of the plate is used in the model;
4 × 4 meshes for the XSHELL41. The tolerance for con-
vergence used is 0.001. Fifteen displacement increments are
used with a maximum of 4 iterations for the three-node and 3
iterations for the four-node of MNR per increment. The ref-
erence solutions are by Javaherian and Dowling [73]. They
used a 4 × 4 mesh of semi-loof elements. A tolerance of
0.001 was used, 15 displacement increments were also made
with a maximum of 5 MNR iterations per increment. The
stress-strain plot and stress-deflection plot trends are in good
agreement. The spread of plasticity is also the same, starting
from the center and plate corners and spreading diagonally.
However, for the present results, it is seen that the top por-
tion of the center returns to elasticity, which is due to the
tension because of the bending of the plate. Also included
are results from an 8—node assumed strain shell element,
XSHELL81 [81].

Large-Deflection Elasto-Plastic Analysis of Stiffened Plate
Under In-Plane Loading A stiffened imperfect plate is
subjected to compressive loading. The plate has three
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Table 16 Non-dimensional
displacements of the laminated
spherical shell

h/a Quarter (0/90/0/90/0/90/0/90/0) (45/−45/45/−45/45/−45/45/−45/45)

mesh XSHELL41 Noor & Mathews XSHELL41 Noor & Mathews

(1975) [97] Analytical (1975) [97] FEM

0.1 8 × 8 4.931E-03 5.797E-03 3.371E-03 3.540E-03

10 × 10 5.084E-03 3.544E-03

0.01 8 × 8 2.695E-03 2.717E-03 5.326E-04 5.170E-04

10 × 10 2.701E-03 5.337E-04

0.001 8 × 8 5.895E-05 5.916E-05 −1.012E-05 −1.050E-05

10 × 10 5.911E-05 −1.054E-05

Fig. 24 Buckling eigenvalues of simple plate

Fig. 25 Buckling eigenvalues of clamped plate

equally spaced stiffeners and has welded supports. The im-
perfection is created using a continuous function wo(x, y).
Only half of the stiffened plate is used for the finite element
model because of symmetry. For the XSHELL41 element,
a mesh of 16 × 12 is made for the plate and 4 × 12 for the
stiffeners. The geometry and material properties are shown
in Fig. 38.

Fig. 26 Square clamped plate subjected to uniform pressure—
Geometry and mesh

Fig. 27 Square clamped plate subjected to uniform pressure

For the elasto-plastic analysis, six layers are assumed in
the thickness direction for both the plate and the stiffeners.
No residual stress is applied. Material failure initially occurs
at the center of the plate where the displacement is greatest.
The spreading of plastic failure follows the stiffener con-
nections, where the restraints cause greater stress. The limit
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Fig. 28 Hinged cylindrical
shell geometry and mesh

Fig. 29 Hinged cylindrical shell load-deflection curve

Fig. 30 Hinged spherical shell geometry and mesh

load is reached when almost the entire width of the plate is
plastic and the stiffeners start to fail.

The load-shortening curve obtained is shown in Figs. 39–
41, including the numerical studies of Webb and Dowling
[166] and Djhani [38]. The reference numerical analysis
used finite difference method. A full depth yield criterion
for the plate was used, while stiffeners were of multi-layer
approach. The result of an actual test indicates a normal-
ized peak load of 0.835. The difference between the present
analysis and the test results may be attributed to the dif-
ference in residual stresses and actual imperfections of the
specimen.

Elasto-Plastic Buckling of Imperfect Stiffened Curved Panel
Agelidis [1] carried out parametric studies of stiffened cylin-
drical shells covering a broad range of geometries used in

the offshore structural engineering. The studies were carried
out using only a part/panel of the cylinder. In the following,
an imperfect stiffened Agelidis panel subjected to uniform
inplane compressive loading is analyzed. In the analysis, it is
assumed that the panel undergoes large deformation and ma-
terial non-linearity. The panel is 1/20 of a cylinder and has a
stiffener at the middle. The ends of the cylinder are bounded
by ring stiffeners, thus are assumed to be fixed against dis-
placement. The initial imperfections are made by assuming
a sine wave along the length and half a sine wave in the cir-
cumferential direction. The maximum imperfection ampli-
tude is 0.411. Only one half of the stiffened panel is used for
the model because of symmetry. The same mesh is used for
both the panel and the stiffener, 4 × 6 XSHELL41 elements.

The plot of the applied load vs. axial shortenning is
shown in Fig. 41. The plot also shows the result using
XSHELL81 [81]. The results show a very sharp limit point
and a snap-back behaviour with the sudden drop in load car-
rying capacity. The axially loaded cylinder is extremely sen-
sitive to imperfections, which is also shown in Fig. 41. In-
creasing the imperfection amplitude by 50% decreases the
limit load by 20%. It can also be observed that the post-
buckling behaviour is unchanged, and is influenced by the
yield strength. The maximum post buckling capacity would
be reached once plasticity has spread throughout the cylin-
der. Thus, the limit point is dictated by the initial imperfec-
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Fig. 31 Hinged spherical shell
load-deflection curve

Fig. 32 Hemispherical shell with 18◦ hole mesh

tion and the maximum post-buckling capacity depends on
the yield strength.

Pinched Elasto-Plastic Cylinder with Isotropic Hardening
A thin cylinder, pinched at the mid sections is analyzed for
large displacement, rotation and elasto-plastic behavior. von
Mises yield criterion with isotropic hardening is used with
six stations along the thickness. The cylinder has two end
diaphragms. It is modeled using only one octant with 32 ×
32 XSHELL41 elements.

The cylinder geometry and material properties are shown
in Fig. 43. The solution by Simo and Kennedy [137] using
generalized Ilyushin-Shapiro elastoplastic model and Brank
et al. [23] using von Mises yield criterion with seven integra-
tion points are also shown with the present results, Fig. 44.

The same snap-through response observed by Brank et al.
is also seen in the present analysis with similar limit points
and stiffening behavior. The geometry at different stages of
deformation is shown in Fig. 45.

Collapse of Scordelis-Lo Roof The Scordelis-Lo roof is a
popular benchmark problem for linear analysis. The inclu-
sions of geometric and material non-linearity, with large ro-
tations are complicating factors. The roof has a half-length
of L = 7.6 m, radius of R = 7.6 m, with a half-angle of 40
deg across. It is t = 0.076 m thick, subjected to a load, pro-
portional to its own weight, wt = 4.0 kN/m2, and supported
by rigid diaphragms at its ends. The material properties are
E = 2.1e4 N/mm2, v = 0 and σy = 4.2 N/mm2. Due to sym-
metry, only one quarter of the roof with a mesh of 32 × 32
XSHELL41 elements is used in the analysis model.

Many authors had performed the non-linear analysis, like
Peric and Owen [107], Crisfield and Peng [33], Brank et al.
[23], and Roehl and Ramm [122]. Roehl and Ramm used
solid and shell elements while the others used only shells.
Plotting the load-deflection curves of point A, two solution
trends seem to be available. Type one is with a sudden drop
in load carrying capacity, and the other, type two is where
there is a less drastic loss of load capacity with a gain in sta-
bility as the deflection increases. Roehl and Ramm also pre-
sented cases where, using shell elements under a small strain
assumption, the results vary in trend, depending on the num-
ber of stress stations through the thickness. This is also ex-
perienced for the present four-node formulation. Using three
stations along the thickness, type one trend is experienced,
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Fig. 33 Hemispherical shell
with 18◦ hole plot

Fig. 34 Deformed shape of
hemispherical shell with 18
degree hole

Fig. 35 Plate geometry and material properties

while type two for five and seven stations. Type one is a re-
sult of the formation of hinges at the top off the structure.
The present element has difficulty forming these hinges be-
cause of the assumption of a constant thickness throughout
the deformation. For this problem, the importance of thick-
ness deformation is emphasized.

5.5 Nonlinear Laminate Composite Problems

Hinged Cylindrical Shell under Point Load The snap-
through behavior of a hinged cylindrical shell under a cen-
ter point load is analyzed. The geometric and material prop-
erties of the shell are shown in Fig. 49. Because of sym-
metry only one quarter is modeled using an 8 × 8 mesh of
XSHELL41 element. Two lay-ups are studied, (45/−45) and

(0/90/0) and the results are plotted with those obtained by
XSHELL81 [81] and Saigal et al. [127]. The present ele-
ment gives a lower limit load than the reference but give
generally the same behavior.

Boron-Epoxy Panel Under In-plane Loading A flat and
curved panel under in-plane loading is analysed for their
post buckling behaviour. The panel geometry and material
properties are shown in Fig. 51. Two types of lay-ups are
used, (90/0) and (45/−45)s. For the angle-ply lay-up, an ini-
tial imperfection of

w̄ = 0.5 sin(πx/Lx) sin(πy/Ly) (189)

was used. 16 × 16 elements were used to model both prob-
lems and the results are shown with the analytical solu-
tion provided by Zhang [181] and the FE solution from
XSHELL81 [81]. While the general trends of the results are
the same as those given by Zhang, the curve panel solutions
tend to give higher buckling loads.

C4/Graphite-Epoxy Panel Under In-plane Compressive
Loading Starnes and Rouse [147] conducted experimen-
tal studies on the post buckling and failure characteristics of
a C4/graphite-epoxy panel, T300/5208. The panel consists
of 24 plies, (±45/02/ ± 45/02/ ± 45/0/90)s, and is 508 mm
high, 178 mm wide and 3.36 mm thick. The typical lamina
properties are
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Fig. 36 (a) Normalized average
in-plane stress vs. Average
in-plane strain—4 node.
(b) Normalized force vs.
out-of-plane displacement
diagram—4 node

Fig. 37 Development of top
layer plasticity, dark areas are
plastic zones

Fig. 38 Stiffened plate
geometry and material

Elastic Constants Strengths

E1 131,000 Mpa v12 0.38 XT 1,400 Mpa
E2 13,000 Mpa v31 0.38 XC 1,138 Mpa
E3 10,000 Mpa v23 0.38 YT 80.9 Mpa
G12 6,400 Mpa YC 189 Mpa
G31∗ 3,200 Mpa Q 69 Mpa
G23∗ 6,400 Mpa
layer thickness 0.14 mm

The loaded ends were clamped and the unloaded edges
were simply supported to prevent the panel from buckling
as a wide column. In actual tests, C4 panels with these con-
ditions were observed to buckle into two longitudinal half
sine waves and one transverse half sine wave. The bound-
ary conditions were: at x = 0,178, W0 = X0 = 0, at y = 0,
U0 = W0 = X0 = dW/dx = 0, at y = 508, W0 = X0 =
dW/dx = 0, U0 = constant. The analytical buckling load
and critical end shortening from [147] is 40 kN and 0.5 mm,
respectively.



Nonlinear Formulations of a Four-Node Quasi-Conforming Shell Element 233

Fig. 39 Normalized average
in-plane stress vs. average
in-plane strain of stiffened plate

Fig. 40 Deformed shapes and
elasto-plastic stress plots, dark
areas are plastic zones

Fig. 41 Stiffened curved panel load-deflection curve
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Fig. 42 Deformed shapes (×5)
and spread of plasticity of an
imperfect stiffened cylinder
under axial compression, dark
areas are plastic zones

Fig. 43 Pinched elasto-plastic cylinder—geometry and material prop-
erties

The panel is modelled using XSHELL41 elements, 12
along the width and 24 along the height. An initial imperfec-
tion with amplitude of 1% of the plate thickness is assumed
to obtain an equilibrium path beyond the critical buckling
point. The imperfection is given in the following form:

wo = 0.0336 sin(πx/Lx) sin(πy/Ly). (190)

The results of the numerical analysis for the failure of
the C4 panel are plotted in Fig. 55. It is a plot of the end
shortening normalized with the critical end shortening ucr =
0.5 mm and the applied load normalized by the analytical
buckling load Pcr = 40 kN.

Three types of failure criteria are used in the analysis,
maximum stress, Tsai-Wu and Tsai-Hill criterion. The com-
plete matrix failure in an element dictates the failure for
the numerical analysis. The finite element model provides a
very close fit to the experimental results in both the pre and
post buckling range. The buckling point is also very well de-
fined. Among the three failure criteria used, the Tsai-Wu has
the closest match to the experimental failure value. All panel
failure values obtained in the numerical analysis are higher
than the reference result.

E-glass Plate Under Transverse Loading Moy et al. [95]
experimentally studied fiber-reinforced plastic panels un-
der transverse loading. A clamped laminated plate made of
e-glass/polyester type (0/45/90/−45/0), referred from their
study is analyzed using the present XSHELL41 element
with the different failure criteria. A full plate mesh of
16 × 16 elements is used and the results with those obtained
by Moy et al. [95] are shown in Fig. 57. Loss of stiffness is
shown on the behavior of the plate as a result ply failure. The
layer-damaged region of the numerical analysis gives good
approximation of the actual behavior of the plate.

Non-linear Dynamic Analysis of Composites with Layer
Failure An E-glass plate the same as the previous prob-
lem is analyzed considering large deformations and dynamic
effects. A uniformly distributed step load, q = 0.015 MPa
and q = 0.05 MPa is applied. The plate mass density is
ρ = 2.0e-6 Ns2/mm4.

Equilibrium iterations and ply failure checking are per-
formed with every time increment. For the larger load, more
damage is incurred causing a significant change in stiffness.
The time-central displacement plots are shown in Fig. 59.

Equilibrium iterations and ply failure checking are per-
formed with every time increment. For the larger load, more
damage is incurred causing a significant change in stiffness.
The time-central displacement plots are shown in Fig. 59.
The maximum positive displacement is approximately the
same when laminate failure is considered and not consid-
ered. For the maximum negative displacement, the magni-
tude is significantly decreased.

5.6 Reinforced Concrete Problems

Unreinforced Concrete Cylinder under External Pressure
This example is concerned with an unreinforced concrete
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Fig. 44 Pinched elasto-plastic
cylinder—load-deflection curve

Fig. 45 Pinched elasto-plastic
cylinder—deformed
configuration

Fig. 46 Scordelis-Lo roof,
geometry, material properties
and load

Fig. 47 Scordelis-Lo roof,
load-deflection curves—4 node
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Fig. 48 Scordelis-Lo roof, final
deformed shapes

Fig. 49 Hinged cylindrical composite shell

Fig. 50 Snap-trough behaviour of hinged cylindrical shell

cylinder subjected to an external water pressure until explo-
sion occurs. The analyzed cylinder was part of an experi-
mental test program conducted at the Naval Civil Engineer-
ing Laboratory in California, where 15 unreinforced con-
crete cylinders were put into a vessel loaded with external
water pressure until failure. Under this condition, the biax-
ial compression stress will be produced everywhere in the
cylinder wall and the performance of each concrete com-

pression models (Plasticity-based and EPF model) can be
investigated. Runge and Haynes [125] reported the experi-
mental results, while Chen et al. [29] conducted an indepen-
dent analytical analysis at Purdue University. The input data
for one of the analyzed cylinder is given in Fig. 61a.

The first analytical results were published by Chen and
Chen [28] and Chang and Chen [29] who performed the an-
alytical study, considering a plasticity-based model devel-
oped by Chen and Chen [28]. Later, Rule and Rowlands
[124] analyzed one of those cylinders, shown in Fig. 61a,
with a flat shell finite element which uses a linear shape
function for in-plane displacements and a cubic polyno-
mial for out of plane-displacement; they did not consider
the geometric nonlinearity in their analysis. These authors
adopted the orthotropic elastic model and the uniaxial strain
approach proposed by Darwin and Pecknold [34] with a sim-
plified biaxial failure envelope and a uniaxial stress strain
curves for concrete.

The analysis of this example is performed considering the
cylinder discretized as shown in Fig. 61b. By taking advan-
tage of symmetry, only one octant of the cylinder is modeled
with 150 elements. The cylinder thickness is divided into 10
equal layers. The material properties used are also shown in
Fig. 61b. Results for the transverse mid-length displacement
of the cylinder are plotted in Fig. 62. The average implo-
sion pressure determine experimentally is 3.97 MPa, with a
standard deviation of 0.17 MPa.

As shown in Fig. 62, the EPF model gives good agree-
ment with the references, while plasticity-based model gives
higher explosion pressure. The reasons for this difference
are that the EPF model used the non-associate plasticity and
it considers the fracture of concrete during the compression
process, while the plasticity-based models do not. However,
the trends of the load-displacement curves given by those
models are similar.

Mcniece Slab An isotropically reinforced concrete slab,
simply support at the four corners, was tested by Jofriet and
Mcniece [76]. Many investigators had analyzed the same
slab, among them were Lin [85] and Chung and Elisa [31].
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Fig. 51 Geometry of panel
under axial load

Fig. 52 Variation of central deflection with axial compression of
boron-epoxy panels (90/0) lay-up

Fig. 53 Variation of central deflection with axial compression of im-
perfect boron-epoxy panels (45/−45) lay-up

The material properties of concrete and reinforcing bar
are given in Table 1. The geometry and reinforcement of the
slab are shown in Fig. 63. Due to symmetry, one-quarter of
the slab is modeled by the present shell element with a 6 × 6
mesh. The thickness of the slab is divided into 10 equal lay-
ers, and the reinforcement is represented by an equivalent
smeared double layer with a 0.85% steel ratio. The point
load is applied vertically at the center of slab. The trans-

Fig. 54 C4/Graphite-epoxy panel

Fig. 55 Normalize load-deflection curve and failure of a
C4/Graphite-epoxy panel

verse displacement at the center is chosen to be the imposed
displacement degree of freedom where each imposed dis-
placement increment equals 0.1 inch. In this example, both
material and geometry nonlinearity are included.

The load vs. vertical displacement at point A is given in
Fig. 64 and is compared with the experimental results of
Jofriet and McNiece [76] and the analysis results of Chung
and Elisa [31].

The numerical results show that the response of slab is
linear until the first crack has formed at the bottom surface
at approximately 3.590 KN (807 lb) of applied load. Be-
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Fig. 56 C4/Graphite-epoxy
panel deformed shape and
resultant stresses

Fig. 57 Geometry and material properties of the e-glass plate under
transverse load

Fig. 58 Load-center deflection curves of the e-glass plate

Fig. 59 Center deflection versus time of e-glass clamped plate with
and without ply failure

yond this point, the slab exhibits the nonlinear behavior due
to the progress of concrete cracking. The initial yielding of
the reinforcing bar is predicted at 14.0 KN (3,147 lb) from
those three material models. The slab fails by yielding of re-
inforcing steel. As shown in Fig. 65b, the plastic strains in
reinforcing steel spread over the centerline of the slab. This
made the formation of the plastic hinge (yield line) and fi-
nally mechanism occurred. The unsymmetrical failure mode
is caused by the different position of the steel layer ie; one
of steel layer is placed over another one, this made the dif-
ference in moment capacity in the x and y directions of the
slab. For EPF model, the difference of ultimate load between
the predicted and experimental values is about 4% while
the difference for the perfect plasticity and strain-hardening
model are about 8% and 5%, respectively. As can be seen,
the numerical simulation captures the response accurately.
In general, the FE predictions using present formulation are
in close agreement with the corresponding experimental re-
sults. Therefore, the present material models used in the
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Fig. 60 Magnified plate
deformation (×10) at time
t = 0.35 sec

Fig. 61 (a) Geometry and load
of a concrete cylinder. (b) Finite
element mesh

Fig. 62 Applied pressure versus mid length radial displacements

analysis is found to be capable of predicting the nonlinear
behavior of the RC slab.

Duddeck Slabs In this example three corner supported
slabs (S1, S2, S3) tested by Duddeck et al. [41] are stud-
ied. These slabs have various degrees of orthotropy of the
steel reinforcement but total amount of reinforcement in
slabs kept constant. This example has the advantage of well-
defined support conditions where only transverse deflection
is restrained at the corner support as shown in Fig. 67. All
three slabs are tested under the same loading conditions of a
concentrated load at the slab centre.

The material properties and the equivalent reinforcement
layers for three slabs are given in Table 18 and the equivalent
reinforcement layers for the three slabs are given in Table 19
in millimeters.

In the finite element analysis, by taking advantage of
symmetry, it is only necessary to consider one quarter of the
slab. A 9 × 9 mesh of the present shell element is used. The
thickness of the slab is divided into 10 layers, and the rein-
forcement is represented by four of an equivalent smeared
layer (two layers on the top and bottom sides).

The failure loads (expressed in kilo-Newton) obtained
in the numerical analysis are listed in Table 20. The load-
deflection curves for the three slabs analyzed are compared
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Fig. 63 Geometry and finite
element mesh of Mcniece slab

Fig. 64 Load-deflection curve of Mcniece slab

Table 17 Material properties of Mcniece slab

Concrete Reinforcing Steel

Ec = 28.6 GPa Es1 = 200 GPa

f ′
c = 37.9 MPa Es2 = 0.0 GPa

ft = 3.10 MPa fy = 413.45 MPa

υ = 0.15 ρx = ρy = 0.85%

εu = 0.0035

in Figs. 68–70 and shown to match the experimental results.
For each present material model, excellent agreement with
the experiments is observed and is also found through the
whole loading process. The slab S1 with isotropic reinforce-

ment show smaller deflections and larger load carrying ca-
pacity, although the total amount of the steel is equal for
all three slabs. In the analysis of slab S1, failure occurs by
crushing of the concrete in the vicinity of the load, where the
transverse shear stress effects are dominant. For the slabs S2
and S3, the load carrying capacity is found to be lower than
slab S1, but these slabs show a ductile mode of failure. This
is because the yield line has been completely formed at the
ultimate load level as we can see in the plastic strain distribu-
tion of steel bar in Fig. 17. Although the slabs have different
load carrying capacities, the cracking load of each slab are
the same.

Parabolic Cylindrical Shell A parabolic cylindrical shell
with variable thickness subjected to uniformly distributed
pressure, which was tested by Hedgren [58], is analyzed
with the present shell element. The shell is tested with end
support diaphragms and free longitudinal edges. The shell
geometry and zones with different layer patterns are shown
in Fig. 74. The material properties are given in Tables 21, 22
and reinforcement patterns of each zone can be found in the
reference [61]. Thirty-six finite elements are used to model
one-quarter of shell as shown in Fig. 74, each of which is
divided into 8 equal concrete layers. The shell is considered
simply supported on its curved ends, assuming free longitu-
dinal displacements and free rotation on a plane normal to
the shell surface.

The design load of the shell is 0.358 N/cm2 (0.52 lb/in2).
In the following presentation of results, the applied load is
expressed in terms of a load factor λ, which is defined as
the ratio of the applied load to the design load. In Fig. 77,
the experimental load-vertical deflection curve at mid-span
of the free edge is compared with the present results using
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Fig. 65 (a) Deformation shape. (b) Plastic strain in the reinforcing steel (last analysis step)

Fig. 66 (a) Crack strain in top surface. (b) Crack strain in bottom surface (last analysis step)

Fig. 67 Geometry and finite
element mesh of Duddeck slabs



242 G.R. Lomboy et al.

a linear and a nonlinear geometric model. The experimental
curve is given only up to λ = 2.8 and an experimental ex-
trapolated curve presented in [49] is also included in Fig. 77.
Using EPF model, the collapse load found for the nonlinear
geometric analysis is λ = 4.39, which agrees quite well with
the reported experimental ultimate load, λ = 4.40, and both
are reached for identical collapse mechanisms. The geomet-
rically linear analysis exhibits a very different response with
softer behavior and lower load carrying capacity (λ = 3.25).
Hedgren [58] pointed out the importance of nonlinear geo-

Table 18 Material properties of Duddeck slabs

Concrete Reinforcing Steel

Ec = 16.4 GPa Es1 = 201 GPa

f ′
c = 43.0 MPa Es2 = 0.0 GPa

ft = 3.00 MPa fy = 670 MPa

υ = 0.0 ρ = 1.82%

εu = 0.0035

Table 19 Equivalent steel layer thickness of Duddeck slabs

Slab Top Layers Bottom Layers

No. X-direction Y -direction X-direction Y -direction

S1 0.193 mm 0.193 mm 0.397 mm 0.397 mm

S2 0.252 mm 0.133 mm 0.520 mm 0.273 mm

S3 0.283 mm 0.103 mm 0.582 mm 0.212 mm

Fig. 68 Load-deflection curve of Duddeck slab S1

metric effects on the behavior of this shell. An increase of
the shell stiffness and its load carrying capacity, due to the
vertical uplift of the shell crown and the downward displace-
ment of the free edges, is observed. An increase of lower
arm of the internal forces is consequently obtained, when
the deformed geometry is taken into consideration. The nu-
merical failure mechanism can be clarified by reference to
Fig. 79, where the plastic strains in the circumferential rein-
forcement are presented as contours at a load level λ = 4.39.
Positive values corresponding to the top layer and negative
values refer to the bottom circumferential layer. The neg-
ative yield line (negative plastic strains) is completely

Fig. 69 Load-deflection curve of Duddeck slab S2

Fig. 70 Load-deflection curve of Duddeck slab S3

Table 20 The ultimate loads
for Duddeck slabs Slab no. Experimental Perfect Plasticity model Strain Hardening model EPF model

S1 61.06 KN 52.5 KN 49.1 KN 56.1 KN

S2 43.46 KN 45.4 KN 45.1 KN 42.7 KN

S3 34.25 KN 36.2 KN 35.9 KN 35.4 KN
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Fig. 71 Deformation shape of
Duddeck slabs. (a) S1. (b) S2.
(c) S3 (last analysis step)

Fig. 72 Plastic strain in the reinforcing steel. (a) S1. (b) S2. (c) S3 (last analysis step)

Fig. 73 Crack strain in bottom surface. (a) S1. (b) S2. (c) S3 (last analysis step)

Fig. 74 Geometry of a
reinforced concrete parabolic
cylindrical shell
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formed, whereas the two positive yield lines (positive plastic
strains) are only partially formed along the edges.

Table 21 Material properties of parabolic cylindrical shell

Concrete Reinforcing Steel

Ec = 20.69 GPa Es1 = 200 GPa

f ′
c = 30.2 MPa Es2 = 40.0 GPa

ft = 4.80 MPa fy = *see Table 22

υ = 0.145

εu = 0.0035

Table 22 Material properties of parabolic cylindrical shell—yield
strengths

Designation Yield Strength (MPa)

#3 252.9

#4 219.1

#9 306.6

6 Concluding Remarks

A nonlinear formulation based on the quasi-conforming
technique, which includes geometric and material nonlin-
earity, was presented in this paper. The formulation was
presented using an updated Lagrangian stress resultant, co-
rotational approach. In the derivation of the geometric stiff-
ness matrix, the trial basis function for the nonlinear strains
is proposed to be made independent of its linear counter-
parts. Specific to the present formulation, it is proposed that
a constant trial basis function be used as it has several ben-
efits. First, while it is simple, it can easily provide solu-
tions for buckling and post-buckling problems. Moreover,
it does not degrade the nonlinear solution and does not re-
quire increased computational efforts. On the contrary, with
the minimum amount of terms, it even reduces the number
of computations. Lastly, it is shown to be robust and can be
applied for various types of elements.

The proposed element passed the patch test with a max-
imum stress error of 0.075%. For the linear analysis, poor

Fig. 75 Transverse section of a
reinforced concrete parabolic
cylindrical shell

Fig. 76 Finite element mesh
and reinforcing steel pattern of a
parabolic cylindrical shell
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Fig. 77 Load-deflection curve of a reinforced concrete parabolic
cylindrical shell

results were obtained in the in-plane shear when the mesh
was rough and the aspect ratio was high, but it was shown
to converge with sufficient mesh refinement. The element
yielded very good results in bending and was free of shear
locking. This is attributed to the higher-order string function
that was used. The rate of convergence for bending prob-
lems was found to be faster for thin shells compared to thick
shells.

For the nonlinear analysis, the element was shown to be
useful in analyzing problems of large displacements and ro-
tations. Very good results were also obtained for the geo-
metrically nonlinear analysis, wherein, as discussed in the
previous chapter, the nonlinear strains were derived from
the full expression of the Green strain tensor and were as-
sumed to have a constant distribution. The present formula-
tion is also effective for the analysis of nonlinear material

Fig. 78 Deformation shape of a
parabolic cylindrical shell (last
analysis step)

Fig. 79 Plastic strain
distribution of the
circumferential reinforcement
(last analysis step)
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Fig. 80 Crack strain in top
surface of a parabolic cylindrical
shell (last analysis step)

Fig. 81 Crack strain in bottom
surface of a parabolic cylindrical
shell (last analysis step)

problems. The stresses occur directly at the nodes, and the
spread of plasticity within the element is accounted for.
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