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SUMMARY

In this work a conceptual theory of neural networks (NNs) from the perspective of functional analysis
and variational calculus is presented. Within this formulation, the learning problem for the multilayer
perceptron lies in terms of finding a function, which is an extremal for some functional. Therefore, a
variational formulation for NNs provides a direct method for the solution of variational problems.

This proposed method is then applied to distinct types of engineering problems. In particular a shape
design, an optimal control and an inverse problem are considered. The selected examples can be solved
analytically, which enables a fair comparison with the NN results. Copyright q 2008 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Many problems arising in science and engineering aim to find a function that is the minimal or
the maximal value of a specified functional. These type of problems are regarded as variational
problems [1].

Shape design [2], optimal control [3] or inverse problems [4] fall into the general class of
variational problems, and they are considered of great engineering interest. A typical shape design
problem in the aeronautical industry is that of finding airfoil sections with reduced drag [5]. One
example of optimal control in the chemical sector is to determine the feed rate that maximizes
the yield in a chemical fermenter [6]. A significant inverse problem in the metallurgy industry is
estimating the thermal properties of a melting metal [7].
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However, while some variational applications can be solved analytically, in most practical cases
the only general technique is to approximate the solution using direct methods. The fundamental
idea is to consider the variational problem as a limit problem for some function optimization
problem in many dimensions [8].

The direct methods of Euler and Ritz have been widely applied and are well covered in many
textbooks. In the Euler method, the values of the functional are considered along piecewise linear
functions, whereas in the Ritz method they are considered along some linear combination of func-
tions. Along such curves the functional turns into a function of some coefficients. The issue is then
to find the coefficients that minimize or maximize that function by solving a function optimization
problem. Alternative techniques based on Laguerre polynomials [9], Legendre polynomials [10],
Chebyshev polynomials [11] or more recent wavelets [12], for instance, have also been proposed.

Unfortunately, variational problems might be extremely difficult to solve in practice. The pres-
ence of non-linear and dynamic constraints, the deficient approximation or convergence properties
of the selected basis functions, the usual large dimension in the resulting function optimization
problem, the appearance of local optima or solutions presenting oscillatory behaviors are some of
the most typical complications.

In that concern, here we present a conceptual theory of neural networks (NNs) from the perspec-
tive of functional analysis and variational calculus, which aims to overcome such difficulties.

An NN is a biologically inspired computational model, which consists of a network architecture
composed of artificial neurons [13]. This structure contains a set of free parameters, which can be
adjusted to perform certain tasks.

The multilayer perceptron (MLP) is an important NN model, and much of the literature in the
field refer to it. Traditionally, the learning problem for the MLP has been stated in terms of the
minimization of an error function of the free parameters, in order to fit the NN outputs to an
input-target data set [14]. In this way, the learning tasks allowed belong to the category of data
modeling, such as function regression, pattern recognition or time series prediction.

Regarding engineering applications, NNs are nowadays being used to solve a whole range of prob-
lems [15]. Most common case studies include modeling hitherto intractable processes, designing
complex feed-back control signals, building meta-models for posterior optimization or detecting
device faults. All that applications need from an input-target data set in order to evaluate the error
function and therefore fall into one of the three categories of data modeling enumerated above.

In this work a variational formulation for the MLP is presented. Within this formulation,
learning means to solve a variational problem by minimizing or maximizing an objective functional
associated with the NN. The choice of a suitable objective functional depends on the particular
application, and its evaluation may need the integration of functions, ordinary differential equations
(ODEs) or partial differential equations (PDEs).

As it will be shown, this formulation provides a direct method for solving variational problems
including function regression, pattern recognition, time series prediction, shape design, optimal
control or inverse problems, among many others. Remark that the universal approximation prop-
erties [16] cause neural computation to be a very appropriate paradigm for that purpose.

Previous research made already some efforts in this direction. Zoppoli et al. [17] discussed the
approximation properties of different classes of NNs as linear combinations of non-fixed basis
functions, and applied this theory to some stochastic functional optimization problems. In [18],
Sarkar and Modak make use of neurocomputing to determine several optimal control profiles for
different chemical reactors. Also, Franco-Lara and Weuster-Botz [19] estimated optimal feeding
strategies for bed-batch bioprocesses using NNs.
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This study complements and generalizes that research, and introduces a number of novel issues:

(i) In Section 2, a conceptual theory of NNs from a variational point of view is written. In partic-
ular, we introduce the idea of the function space spanned by an MLP. This computational
tool can also be extended so as to include independent parameters, boundary conditions and
bounds. On the other hand, learning tasks are here stated as variational problems, defined
by an objective functional that has an associated parameterized function. In addition, we
explain the solution approach of the reduced function optimization problem by means of
the training algorithm.

(ii) The proposed formulation is general enough to incorporate a large number of variational
applications such as shape design, optimal control and inverse problems, which are explained
in detail in Sections 3, 4 and 5, respectively. Moreover, the embed of different numerical
methods, such as the Simpson method, the Runge–Kutta–Fehlberg method and the finite
element method into the objective functional is considered. Every problem class is accom-
panied by an illustrative example. The selected applications are easy to understand and
may be solved analytically, thus allowing a fair analysis of the results provided by the
variational MLP.

2. A VARIATIONAL FORMULATION FOR THE MLP

In this section a conceptual theory of the MLP from a variational point of view is presented.
Figure 1 depicts a state diagram for the learning problem in that NN. The solving approach here
consists of three steps. The first step is to choose a suitable parameterized function space in which
the solution to the problem is to be approximated. The elements of this family of functions are
those spanned by an MLP. In the second step the variational problem is formulated by selecting
an appropriate objective functional, defined on the function space chosen before. The third step is

define function space

Multilayer Perceptron

formulate variational problem

Objective Functional

solve reduced function optimization problem

Training Algorithm

Figure 1. State diagram for the learning problem in the multilayer perceptron.
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to solve the reduced function optimization problem. This is performed with a training algorithm
capable of finding an optimal set of free parameters.

Within a variational formulation, this NN is described by four elements: a neuron model, the
perceptron, a network architecture, the feed-forward, and associated objective functionals and
training algorithms.

2.1. The perceptron neuron model

The perceptron is the characteristic neuron model in the MLP [20]. It computes a net input signal
u as a function h of the input signals x and the bias and synaptic weights (b,w). The net input
signal is then subject to an activation function g to produce an output signal y [13]. Two of the
most popular activation functions are the sigmoid function, g(u)= tanh(u), and the linear function,
g(u)=u [21]. Figure 2 shows a perceptron with n inputs.

Mathematically, a perceptron neuron model spans a parameterized function space V from an
input X ⊂Rn to an output Y ⊂R [22]. Elements of V are parameterized by the bias and the synaptic
weights of the neuron (b,w). Thus, the dimension of V is n+1. The elements of the function
space, which a perceptron can define, are of the form

y :Rn → R

x �→ y(x;b,w)

where

y(x;b,w)=g

(
b+

n∑
i=1

wi xi

)
(1)

Although a single neuron can perform certain simple tasks, the power of neural computing
comes from connecting many artificial neurons in a network architecture.

2.2. The feed-forward network architecture

The architecture of an NN refers to the number of neurons, their arrangement and connectivity [20].
The characteristic network architecture in the MLP is the so-called feed-forward, which typically
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Figure 2. The perceptron neuron model.
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consists of a set of sensorial nodes, constituting the input layer, one or more hidden layers of
neurons, and another set of neurons, which composes the output layer. Communication proceeds
layer by layer from the input layer via the hidden layers up to the output layer [20]. Figure 3 shows
an MLP with n inputs, one hidden layer with h1 neurons and m neurons in the output layer.

As in the case of a single perceptron, an MLP spans a parameterized function space V from
an input X ⊂Rn to an output Y ⊂Rm [22]. Elements of V are parameterized by all the biases
and synaptic weights in the NN, which can be grouped together in an s-dimensional vector
�=(�1, . . . ,�s). The dimension of V is therefore s. The elements of the function space, which the
MLP in Figure 3 can define, are of the form

y :Rn → Rm

x �→ y(x;�)

where

yk(x;�)=g(2)

(
b(2)
k +

h1∑
j=1

w
(2)
k j ·g(1)

(
b(1)
j +

n∑
i=1

w
(1)
j i xi

))
(2)

for k=1, . . . ,m. This function space can be modified in order to include independent parameters,
boundary conditions, lower and upper bounds, etc., as it might be required by the problem.
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Figure 3. The multilayer perceptron network architecture.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 75:1341–1360
DOI: 10.1002/nme



1346 R. LOPEZ, E. BALSA-CANTO AND E. OÑATE

A feed-forward NN with as few as one hidden layer of sigmoid perceptrons and an output
layer of linear perceptrons provides a general framework for approximating any function from
one finite dimensional space to another up to any desired degree of accuracy, provided suffi-
ciently many hidden neurons are available. In this sense, the MLP is a class of universal
approximator [16].
2.3. The objective functional

Traditionally, the learning problem for the MLP has been formulated in terms of the minimization
of an error function of the free parameters, in order to fit the NN outputs to an input-target data set
[14]. In that way, the only learning tasks allowed are related to modeling of data, such as function
regression, pattern recognition or time series prediction.

In a variational formulation, the concept of error function, e(�), is changed by the concept of
objective functional, F[y(x;�)] [22]:

F :V → R

y(x;�) �→ F[y(x;�)]
The objective functional defines the task that the MLP is required to accomplish and provides

a measure of the quality of the representation that it is required to learn. In this way, the choice
of a suitable objective functional depends on the particular application. Changing the concept of
error function by the concept of objective functional allows us to extend the number of learning
tasks for that NN to any variational problem.

The learning problem for the MLP can then be formulated in terms of the optimization of an
objective functional of the function space spanned by the NN [22]:
Problem 1 (Variational problem)
Let V be the space of all functions y(x;�) spanned by an MLP, and let s be the dimension of V .
Find an element y∗(x;�∗)∈V for which the functional F[y(x;�)], defined on V , takes a minimum
or a maximum value.

A variational problem for the MLP can be specified by a set of constraints, which are equalities
or inequalities that the solution must satisfy. An easy approach here is to reduce the constrained
problem into an unconstrained one by adding a penalty term to the original objective functional
for each constraint in the problem. Adding a penalty term gives a large positive or negative value
to the objective functional when infeasibility due to a constrain is encountered.

On the other side, the objective functional, F[y(x;�)], has an objective function associated with
it, f (�), which is defined as a function of the free parameters in the NN [22],

f :Rs → R

� �→ f (�)

The minimum or maximum value of the objective functional F[y(x;�)] is achieved for a vector
of free parameters �∗ for which the objective function f (�) takes a minimum or maximum value,
respectively. Therefore, the learning problem for the variational MLP can be reduced to a function
optimization problem [22]:
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Problem 2 (Reduced function optimization problem)
Let Rs be the space of all vectors � spanned by the free parameters of an MLP. Find an element
�∗ ∈Rs for which the function f (�), defined on Rs , takes a minimum or a maximum value.

Owing to the universal approximation properties, this numerical method would allow to solve
applications in any dimension and up to any desired degree of accuracy [22].

2.4. The training algorithm

The training algorithm is entrusted to solve the reduced function optimization problem by adjusting
the free parameters in the NN so as to optimize the objective function. More specifically, the
training algorithm searches in an s-dimensional space for a free parameter vector �∗ at which the
objective function f reaches a minimum or a maximum value.

Training algorithms might require information from the objective function, from the gradient
vector and/or from the Hessian matrix of the objective function [23]. These methods, in turn, can
perform either global or local optimization tasks.

In that way, zero-order training algorithms make use of the objective function only. The most
significant ones are stochastic, which involve randomness in the optimization process. Typical
examples are evolutionary algorithms [24] and particle swarm optimization [25], which are
able to find global optima. First-order training algorithms, such as conjugate gradient or quasi-
Newton methods, use the objective function and its gradient vector. Second-order methods, such
as Newton type methods, require Hessian information. In most of the cases, first- and second-
order methods have local convergence properties, although some global methods have also been
proposed [26].

In this work a quasi-Newton method with BFGS train direction and Brent optimal train rate
methods is always selected for training. The tolerance in Brent’s method is set to 10−6. On the
other hand, the objective function gradient ∇ f (�) is in all applications computed by means of
numerical differentiation [14]. In particular, the central differences method is used, with �=10−6.

3. SHAPE DESIGN

The goal in shape design problems is to optimize some performance criterion dependent on a given
spatial domain, while satisfying the constraints of the problem [2]. In order to properly define
an optimal shape design problem, the following concepts are needed: (i) a mathematical model
of the physical system; (ii) a statement of the physical constraints in the final design and (iii) a
specification of the performance criterion which measures optimality.

Mathematically, shape design problems are defined as variational problems [2] and their solution,
in most of the situations, relies on the use of direct methods [27].

In this work the design of an axisymmetric body of minimum drag [28] is approached by the
variational MLP introduced in the previous section.

3.1. Example: the minimum drag problem

This is an unconstrained boundary value problem with one input and one output variables, and
where the objective functional needs the integration of a function in order to be evaluated. The
problem is solved with the recently developed Flood library [29].
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3.1.1. Problem statement. Consider the design of a body of revolution with given length l and
diameter d providing minimum drag at zero angle of attack. If friction effects are neglected, the
drag of such a body with shape y(x) can be expressed as

D[y(x)]=2�q
∫ l

0
y(x)[Cpy

′(x)]dx (3)

where q is the free-stream dynamic pressure and Cp the pressure coefficient [28]. For a slender
body y′(x)�1, the pressure coefficient can be approximated by the Newtonian flow relation:

Cp =2[y′(x)]2 (4)

which is valid provided that the inequality y′(x)�0 is satisfied.
From Equations (3) and (4), the following approximation for the drag is obtained:

D[y(x)]=4�q
∫ l

0
y(x)[y′(x)]3 dx (5)

It is convenient to introduce the following dimensionless variables associated with the axial
coordinate and the radial coordinate

� = x

l
(6)

� = 2y

d
(7)

Also, a dimensionless coefficient associated with the drag can be defined as

CD[�(�)]=�2
∫ 1

0
�(�)[�′(�)]3 d� (8)

where �=d/ l is the slenderness of the body.
The analytical solution to the minimum drag problem formulated in this section is given by

�∗(�)=�3/4 (9)

which provides a minimum value for the drag coefficient CD[�∗(�)]/�2=0.4220.

3.1.2. Selection of function space. The body of revolution �(�), for �∈[0,1], will be represented
by an MLP with a sigmoid hidden layer and a linear output layer. This axisymmetric structure is
to be written in cartesian coordinates; hence, the NN must have one input and one output neurons.
On the other side, an appropriate number of hidden neurons is believed to be 3 for this particular
application. This network architecture is depicted in Figure 4.

The output signals from the NN in Figure 4 must be post-processed so as to satisfy the boundary
conditions �(0)=0 and �(1)=1. Such an MLP spans a family V of parameterized functions �(�;�)

of dimension s=10. Elements of V are of the form

� :R → R

� �→ �(�;�)
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xi eta

Figure 4. Network architecture for the minimum drag problem.

where

�(�;�)=�+�(�−1)

[
b(2)
1 +

3∑
j=1

w
(2)
1 j ·tanh(b(1)

j +w
(1)
j1 �)

]
(10)

The shape function �(�) is constrained to lie in the interval [0,1]. To deal with such constraints,
the outputs from the NN are bounded in the form

�(�;�)=

⎧⎪⎨
⎪⎩
0, �(�;�)<0

�(�;�), 0��(�;�)�1

1, �(�;�)>1

(11)

All the biases and synaptic weights are initialized at random, producing a random initial design.

3.1.3. Formulation of variational problem. From Equation (5), the variational statement of this
problem is to find a function �∗(�;�∗)∈V for which the integral

F[�(�;�)]=
∫ 1

0
�(�;�)[�′(�;�)]3 d� (12)

defined on V , reaches a minimum value.
Note that no input-target data are used here. Instead and in order to evaluate the objective

functional in Equation (12), the integration of a function is needed. For that purpose, Simpson’s
composite method [30] is applied.

3.1.4. Solution of reduced function optimization problem. The evaluation of the initial guess is
0.565. Training is performed until Brent’s method gives zero rate. This occurs when the objective
function is 0.4221. Figure 5 illustrates this training process. Note that a logarithmic scale is used
for the Y -axis in the gradient norm plot.

Table I shows the training results for this problem. Here N is the number of training epochs,
M the number of objective function evaluations, CPU the CPU time for a laptop AMD 3000
in seconds, ‖�∗‖ the final parameters norm, f (�∗) the final value for the objective function and
‖∇ f (�∗)‖ the final gradient norm.

Comparing the drag coefficient provided by that NN (0.4221) to that by the analytical result
(0.4220), these two values are almost the same. In particular, the percentage error made by
the numerical method is around −0.02%. Finally, the optimal shape by the MLP is shown in
Figure 6.
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Figure 5. Evaluation (straight line) and gradient norm (zigzag line)
training histories for the minimum drag problem.

Table I. Training results for the minimum drag problem.

N =253
M=12438
CPU=967

‖�‖=39.288
f (�∗)=0.4221

‖∇ f (�∗)‖=7.452×10−6
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Figure 6. Neural network results to the minimum drag problem.

4. OPTIMAL CONTROL

The objective of optimal control is to determine the control signals that will cause a process to
satisfy the physical constraints and at the same time minimize or maximize some performance
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criterion [3]. The formulation of an optimal control problem requires: (i) a mathematical model
of the system, that is, a formal description that predicts the response of the physical system
to all anticipated inputs; (ii) a statement of the physical constraints on the controls and the
states and (iii) a specification of the criterion for evaluating the performance of the system
quantitatively.

The performance criterion is a scalar functional of the control variables. In this way, the theory
of optimal control is intimately related to the calculus of variations [31]. The history of input
values, which makes that objective functional to assume an extremum, is called the optimal control,
and the corresponding history of state values is called the optimal trajectory [3].

The application of the variational MLP to the solution of optimal control problems is
investigated here through the solution of a minimum time problem, which is a special case
of optimal control problem involving independent parameters. In particular, an NN of that
type is trained to determine the optimal control and the corresponding optimal trajectory of a
car [3].

4.1. Example: the car problem

The car problem is an optimal control problem with two controls, one independent parameter and
two state variables. It is defined by an objective functional with two constraints and requiring the
simulation of the system dynamics, which is described by two ODEs. The Flood library [29] is
also used to solve the problem.

4.1.1. Problem statement. Consider a car that is to be driven along the x-axis from some
position xi at velocity vi to some desired position x f at desired velocity v f in a minimum
time t f .

To simplify the problem, let us approximate the car by a unit point mass that can be accelerated
by using the throttle or decelerated by using the brake. Selecting position and velocity as state
variables, the mathematical model of this system is given by two ODEs with their corresponding
initial conditions:

ẋ(t) = v(t) (13)

v̇(t) = a(t)+d(t) (14)

x(0) = xi (15)

v(0) = vi (16)

for t ∈[0, t f ] and where the controls a(t) and d(t) are the throttle acceleration and the braking
deceleration, respectively.

The acceleration is bounded by the capability of the engine, and the deceleration is limited by
the braking system parameters. If the maximum acceleration and deceleration are max(a)>0 and
max(d)>0, respectively, such bounds on the control variables can be expressed as

0� a(t) �max(a) (17)

−max(d)� d(t) �0 (18)
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Also, the car is to be driven to a desired position x f and a desired velocity v f ; therefore, x(t f )=
x f and v(t f )=v f . Such constraints on the state variables can be expressed as error functionals:

Ex [(a,d)(t)] = x(t f )−x f

= 0 (19)

Ev[(a,d)(t)] = v(t f )−v f

= 0 (20)

where Ex and Ev are the final position and velocity errors, respectively.
As the objective is to make the car reach the final point as quickly as possible, the objective

functional for this problem is

F[(a,d)(t)]= t f (21)

Let us set the initial position, initial velocity, final position, final velocity, maximum accelera-
tion and maximum deceleration to be xi =0, vi =0, x f =1, v f =0, max(a)=1 and max(d)=1,
respectively. This optimal control problem has an analytical solution given by

a∗(t) =
{
1, 0�t<1

0, 1�t�2
(22)

d∗(t) =
{
0, 0�t<1

−1, 1�t�2
(23)

with a minimum final time t∗f =2 [3].

4.1.2. Selection of function space. Here an MLP with a sigmoid hidden layer and a linear output
layer is chosen to represent the control (a,b)(t). The NN must have one input, t , and two output
neurons, a and d . Again, in this problem we use three hidden neurons. Figure 7 is a graphical
representation of this network architecture.

Also this NN needs an associated independent parameter representing the final time t f . Therefore,
such an MLP spans a family V of parameterized functions (a,b)(t;�, t f ) of dimension s=14+1.

t

d

a

Figure 7. Network architecture for the car problem.
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Elements V are of the form

(a,d) :R → R2

t �→ (a,d)(t;�, t f )
where

a(t;�, t f )=b(2)
1 +

3∑
j=1

w
(2)
1 j tanh(b

(1)
j +w

(1)
j1 t) (24)

d(t;�, t f )=b(2)
2 +

3∑
j=1

w
(2)
2 j tanh(b

(1)
j +w

(1)
j1 t) (25)

for t ∈[0, t f ]. Equation (24) represents just one function, in which many of the parameters are
shared.

The control variable is constrained to lie in the interval [0,1]. To deal with such constraints,
the outputs are bounded in the form

a(t;�, t f ) =

⎧⎪⎨
⎪⎩
0, a(t;�, t f )<0

a(t;�, t f ), 0�a(t;�, t f )�1

1, a(t;�, t f )>1

(26)

d(t;�, t f ) =

⎧⎪⎨
⎪⎩

−1, d(t;�, t f )<−1

d(t;�, t f ), −1�d(t;�, t f )�0

0, d(t;�, t f )>0

(27)

All the biases and synaptic weights and the independent parameter are initialized here at random.
This gives a starting random control with an also randomly chosen final time.

4.1.3. Formulation of variational problem. From Equations (19), (20) and (21), the car problem
formulated in this section can be stated so as to find a control (a,d)∗(t;�∗, t∗f ) such that

Ex [(a,d)∗(t;�∗, t∗f )] = 0

Ev[(a,d)∗(t;�∗, t∗f )] = 0

and for which the functional

T [(a,d)(t;�, t f )]= t f

defined on V , takes on a minimum value.
This constrained problem can be converted to an unconstrained one by the use of penalty terms.

The statement of this unconstrained problem is now to find a control [(a,d)∗(t;�∗, t∗f )] for which
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the objective functional

F[(a,d)(t;�, t f )]=�X (Ex [(a,d)(t;�, t f )])2+�V (Ev[(a,d)(t;�, t f )])2+�T t f (28)

defined on V , takes on a minimum value.
The values �X =1, �V =1 and �T =10−3 are called the error position, error velocity and final

time term weights, respectively.
Please note that no input-target data are used here, and that evaluation of the objective functional

(28) requires a numerical method for integration of ODEs. Here the Runge–Kutta–Fehlberg method
is chosen [30].

4.1.4. Solution of reduced function optimization problem. The evaluation of the initial guess was
0.827; after 112 epochs of training this value falls to 1.999×10−3. Figure 8 shows the complete
training history.
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Figure 8. Evaluation (straight line) and gradient norm (zigzag line) training histories for the car problem.

Table II. Training results for the car problem.

N =112
M=7647
CPU=324

‖�∗‖=6.843
f (�∗, t∗f )=1.99951×10−3

ex (�∗, t∗f )=5.00358×10−4

ev(�∗, t∗f )=4.99823×10−4

‖∇ f (�∗, t∗f )‖=4.63842×10−8

t∗f =1.99901
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Figure 9. Results for the acceleration (top line) and the deceleration (bottom line) in the car problem.

The training results are summarized in Table II, with N being the number of epochs, M the
number of evaluations, CPU the processing time in seconds for a laptop AMD 3000, ‖�‖ the final
parameters norm, f the final objective function value, ‖∇ f ‖ the final gradient norm, ex the final
position error, ev the final velocity error and t∗f the optimum time.

As we can see, the final errors in the position and the velocity of the car are very small, and the
final time provided by the NN matches the analytical final time provided by the optimal function
in Equation (22). More specifically, the errors made in the constraints are around 10−3 and the
error made in the final time is about 0.2%. The results for the optimal control signals (acceleration
and deceleration) obtained by the NN are shown in Figure 9.

5. INVERSE PROBLEMS

There are two main types of inverse problems: input estimation problems, in which the system
properties and output are known and the input is to be estimated; and properties estimation
problems, in which the system input and output are known and the properties are to be estimated
[4]. The statement of an inverse problem is characterized by (i) a mathematical model of the
process depending on the items to be estimated; (ii) a statement of the constraints and (iii) a set
of observed data from that process.

Mathematically, inverse problems are a class variational problems. On the other hand, they
might be ill-posed [32]. Owing to both their variational and ill-posed nature, inverse problems can
be very difficult to solve, and in most cases a direct method is necessary in order to approximate
their solution [32].

An artificially generated inverse problem is here attempted for validation. In particular, an MLP
is entrusted to estimate the thermal conductivity in an inhomogeneous medium [4].

5.1. Example: the thermal conductivity estimation problem

This is an unconstrained problem with two input and one output variables, and where evaluation
of the objective functional needs to integrate a PDE. The problem is solved with the Flood library
[29]. The PDEs are integrated using the Kratos library [33].
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5.1.1. Problem statement. For this problem, consider a two-dimensional inhomogeneous medium
with domain � and boundary �, in which the thermal conductivity is to be estimated. The heat
transfer model here is

∇(�(x, y)∇T (x, y; t)) = �T (x, y; t)
�t

in � (29)

T (x, y;0) = T0 in � (30)

T (x, y; t) = T� on � (31)

for t ∈[0, t f ], and where �(x, y) is the thermal conductivity, T0 is the initial temperature and T� is
the boundary temperature. Experimental data are obtained from measurements of the temperature
for different time steps and at different points on the domain

t1 T11(x1, y1; t1) T12(x2, y2; t1) . . . T1Q(xQ, yQ; t1)
t2 T21(x1, y1; t2) T22(x2, y2; t2) . . . T2Q(xQ, yQ; t2)
...

...
...

. . .
...

tP TP1(x1, y1; tP) TP2(x2, y2; tP) . . . TPQ(xQ, yQ; tP)

where P and Q are the number of time steps and points considered, respectively.
The goal in this problem is to estimate the thermal conductivity �(x, y); hence, the mathematical

model matches the experimental data. In this way, the objective functional for this problem can be
the mean-squared error between the computed temperature for a given thermal conductivity and
the measured temperature,

E[�(x, y)]= 1

PQ

P∑
i=1

(
Q∑
j=1

(T̂�(x,y)(x j , y j ; ti )−Ti j (x j , y j ; ti ))2
)

(32)

For this example, the problem domain is the square �={(x, y) : |x |�1, |y|�1} with boundary
�={(x, y) : |x |=1, |y|=1}. Artificial temperature data are generated with the following expression
for the thermal conductivity, which will be considered to be the analytical solution of the problem,

�∗(x, y)= x2+ y2 (33)

5.1.2. Selection of function space. The thermal conductivity �(x, y) in � is represented by an
MLP with two inputs, three hidden sigmoid neurons a one linear output neuron. Figure 10 is a
graphical representation of this network architecture.

Such an NN spans a family V of parameterized functions �(x, y;�) of dimension s=13, which
is the number of biases and synaptic weights. Elements of V are of the form

� :R2 → R

(x, y) �→ �(x, y;�)
where

�(x, y;�)=b(2)
1 +

3∑
j=1

w
(2)
1 j ·tanh(b(1)

j +w
(1)
j1 x+w

(1)
j2 y) (34)
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Figure 10. Network architecture for the thermal conductivity estimation problem.
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Figure 11. Evaluation (straight line) and gradient norm (zigzag line) training histories for the thermal
conductivity estimation problem.

On the other hand, the biases and synaptic weights are initialized at random, which means that
a random initial guess is used for the thermal conductivity.

5.1.3. Formulation of variational problem. Making use of Equation (32), the variational statement
of this problem is to find a function �∗(x, y;�∗)∈V for which the functional

E[�(x, y;�)]= 1

PQ

P∑
i=1

(
Q∑
j=1

(û�(x,y;�)(x j , y j ; ti )−ui j (x j , y j ; ti ))2
)

(35)

defined on V , achieves a minimum.
Evaluation of the objective functional (35) requires a numerical method for integrating PDEs.

Here the finite element method [34] is chosen. The domain is discretized with a triangular mesh
composed of 927 elements and 568 nodes, and the time is discretized in 11 time steps.

5.1.4. Solution of reduced function optimization problem. The evaluation of the initial guess is
1.117. Convergence occurs after 168 epochs. After training the evaluation falls to 2.868×10−5.
The gradient norm decreases from 0.469 to 1.106×10−3. Figure 11 depicts the evaluation value
of the objective function and its gradient norm versus the training epoch.
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Table III. Training results for the thermal conductivity estimation problem.

N =168
M=10476

CPU=16253
‖�∗‖=21.606

f (�∗)=2.868×10−5

‖∇ f (�∗)‖=1.106×10−3
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Figure 12. Neural network results to the thermal conductivity estimation problem.

Table III shows the training results for this problem. Here N denotes the number of training
epochs, M the number of objective functional evaluations, CPU the CPU time in seconds for a
laptop AMD 3000, ‖�‖ the final parameters norm, f (�∗) the final objective function evaluation
and ‖∇ f (�∗)‖ its gradient norm.

The solution here is good, since the mean-squared error between the output from the model and
the experimental data is of order 10−6 and the estimated thermal conductivity matches very well
the actual thermal conductivity given by Equation (33). Figure 12 shows the thermal conductivity
estimated by the NN.

6. CONCLUSIONS AND FUTURE WORK

A variational formulation for NNs provides a direct method for the solution of variational problems.
The performance of this numerical method has been studied through different classes of engineering
applications, such as shape design, optimal control and inverse analysis.

The examples considered were efficiently solved by the proposed methodology. It is important
to highlight that the results, practically equivalent to the analytical ones, where achieved with very
few degrees of freedom. An extra advantage of the proposed technique is that, at least for these
problems, no suboptimal solutions were found. This might indicate that, in contrast to other direct

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 75:1341–1360
DOI: 10.1002/nme



NEURAL NETWORKS FOR VARIATIONAL PROBLEMS IN ENGINEERING 1359

methods, multimodality is significantly reduced. This aspect needs further exploration and it is
subject of current research.
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