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Abstract: 
 
This document is an introduction to some important methodologies that have been developed in 
robust design in aerospace engineering. After describing the concept of robustness and 
uncertainty, multipoint, minimax, expected value, second order second moment and Taguchi 
methods are mentioned. At the end of this report, Game Theory, as one of the approach for multi 
objective optimization problems has been introduced.  
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Chapter 1 
 
Introduction 
 
 
 
 
 
 
 
 
 
1.1 Robustness: 
In order to design and manufacture high quality products at a minimum of costs, 
techniques are needed which are able to find those designs which meet the requirements 
usually specified by objectives (goal functions) at the beginning of the design process. 
Provided that the general system design has been fixed (e.g., the type of product and its 
desired basic properties are given), it is the engineer’s task to choose the design 
parameters x according to an (or some) objective function(s) f(x). These objective 
functions may be given by verbal descriptions, mathematical models, simulation 
models, or physical models. The process of finding the right design parameters is 
usually referred to as optimization. Typically, the optimization has also to account for 
design constraints imposed on the design parameters x. Such constraints can be 
modelled by inequalities and/or equalities restricting the design space (search space). In 
mathematical terms a general optimization task can be stated as: 
 

( ) ( )
( ) ( )
( ) ( )

:

: 0 1,...,

0 1,...,
i

j

optimize f x a

subject to g x i I b

h x j J c

⎫
⎪

≤ = ⎬
⎪= = ⎭

 (1)

                                                                     
where (b) represents the set of inequality constraints and (c) the set of equality 
constraints. 
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There are principle problems that might prevent us from identifying the optimum of f(x) 
in (1), like NP-hardness in discrete search spaces or multi-modality in continuous search 
spaces. However, one might also ask whether the formulation of the optimization 
problem in (1) is as general and practical as it seems. The question arises whether it is 
desirable to locate isolated, singular design points with a high precision: 
 
1- The global optimal design clearly depends on the goal (objective) function(s) and 
constraints in (1), however, these functions always represent models and/or 
approximations of the real world. As long as one does not have detailed knowledge of 
the error function of the model, one cannot be certain the model optimum can be 
mapped to the true optimum. Thus, being too precise in the model might waste 
resources, which could be better used at a later design stage.  
 
2- Even if one were able to map the model optimum to the true optimum, one might not 
be able to build the true optimum either because of manufacturing uncertainties or 
because the required precision during the manufacturing stage would be too costly. 
There is always an economical trade-off between a potentially more complex 
manufacturing process and the performance gain by the new design. 
 
3- The formulation of the optimization problem in (1) is inherently static. Reality is 
dynamic: environmental parameters fluctuate (temperature, Reynolds number for gas 
turbine design), materials wear down, parts of a complete system might be replaced. 
Since the constraints on which the original design process was based change, (1) is only 
correct for a limited time span.  
 
4- Life cycle costs have to be taken into account for many engineering designs. Life 
cycle engineering focuses on the whole life span of a design, e.g., easier maintenance 
(system design to enable a cheap disassembly and assembly process, e.g., for gas 
turbines), longer maintenance intervals, effect of attrition during operation, or 
environmentally friendly disposal, e.g., recycling capability.  
 
Systems (1) optimized in the classical sense can be very sensitive to small changes 
which are likely to occur as we have just argued. A better target for a design is one that 
provides a high degree of robustness. Marczyk writes ‘‘Optimization is actually just the 
opposite of robustness’’ [1]. Although there is some truth in this statement, it does make 
sense to reconsider the current optimization algorithm philosophy and the test functions 
and instances used to evaluate these in the framework of robustness. We will come back 
to Marczyk’s statement later in the paper. As a result, again one will search for optimal 
solutions, however, for robust solutions. The procedure of finding such solutions is 
referred to as robust design optimization. The appeal of robust design optimization is 
that its solutions and performance results remain relatively unchanged when exposed to 
uncertain conditions.  
 
Robust design and optimization has even deeper roots in engineering. There it is 
inextricably linked with the name of Taguchi [2] who initiated a highly influential 
design philosophy (see Section 2.5). Due to the advent of high-speed computers and its 
exponentially increasing FLOPS-rates (floating point operations per second), robust 
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design optimization has gained increasing interest in the past few years. One of these 
cases is aerospace engineering. 
 
1.2 Aerospace shape optimization: 
 
The definition of the aerodynamic shapes of aircraft relies heavily on computational 
simulation to enable the rapid evaluation of many alternative designs. Wind tunnel 
testing is then used to confirm the performance of designs that have been identified by 
simulation as promising to meet the performance goals. In the case of wing design and 
propulsion system integration, several complete cycles of computational analysis 
followed by testing of a preferred design may be used in the evolution of the final 
configuration. Wind tunnel testing also plays a crucial role in the development of the 
detailed loads needed to complete the structural design, and in gathering data 
throughout the flight envelope for the design and verification of the stability and control 
system. The use of computational simulation to scan many alternative designs has 
proved extremely valuable in practice, but it still suffers the limitation that it does not 
guarantee the identification of the best possible design. Generally one has to accept the 
best so far by a given cut-off date in the program schedule. To ensure the realization of 
the true best design, the ultimate goal of computational simulation methods should not 
just be the analysis of prescribed shapes, but the automatic determination of the true 
optimum shape for the intended application. This is the underlying motivation for the 
combination of computational fluid dynamics with numerical optimization methods. 
 
Recently, there has been significant progress in airfoil shape optimization (see 
Anderson and Bonhaus 1999; Anderson and Venkatakrishnan 1997; Drela 1998; 
Nielsen and Anderson 1998 and references therein) [3,4,5]. These papers demonstrate 
impressive shape optimization using high-fidelity CFD codes, reliable grid generation, 
and numerically efficient sensitivity calculations. Equally impressive progress has been 
made in optimization of 3-D wings (Elliott and Peraire 1997, 1998; Reuther et al. 1999; 
Nielsen and Anderson 2001) [6,7,8,9] and in coupled structural- aerodynamic 
optimization (Gumbert et al. 2001) [10]. These traditional aerospace shape optimization 
methods are based on deterministic parameters. These methods do not involve 
uncertainty (fluctuated) parameters. However, with a few exceptions such as (Drela 
1998) and (Reuther et al. 1999), these aerodynamic shape optimization projects all find 
optimal shapes based on one fixed operating condition. Nowadays, thanks to presence 
of powerful computing systems, it is possible to have some uncertainty parameters in 
the optimization process. In this report, we study airfoil shape optimization problem 
using more operating conditions including uncertainty in the operating conditions for 
the airfoil shape optimization. 
 
The simplest approach to optimization is to define an objective function f which might, 
for example, be the drag coefficient or the lift to drag ratio, and f is regarded as a 
function of the parameters a and b of the form RBAbaF →⊗:),(  where: 
 
    Aa∈  represents decision variables, designs controlled by the engineer (for example 
shape                     of airfoil). 
   Bb∈  represents uncertainty parameters, inputs not controlled by the engineer (for 
example Mach number). 
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Our (unattainable) goal is to find Aa ∈∗  such that, for every Bb∈ , 

Aabafbaf ∈∀<∗ ),(),(  (2)
 In following, we explain uncertainty parameters b in engineering optimization 
problems. 
 
1.3 Uncertainty parameters: 
 
Both computational results and experimental measurements in aerodynamic 
applications are subject to considerable uncertainty as illustrated by the scatter in the 
solutions submitted by various researchers. For these reasons, the current certification 
process relies heavily on full-scale flight testing. Dramatic savings would be achieved if 
the need for expensive full-scale flight tests could be reduced through improved 
reliability (or dependability) of modelling results. In a deterministic approach, the 
performance of a design is typically assessed for a limited number of design or 
operating conditions. Uncertainty associated with the operating conditions (like variable 
payload, atmospheric conditions) and manufacturing uncertainty (like fluctuations in the 
geometry and smoothness of the skin) may have substantial impact on the results. 
Techniques for propagating these uncertainties require additional computational effort 
but are well established. An example application is described in [11]. Exact and 
approximate uncertainty assessment methods are applied to an airfoil optimization 
problem in [12], where a dramatic improvement of the robustness of the design was 
achieved. 
 
At this point in the discussion it is appropriate to spend some time on nomenclature, 
especially the difference between "error", "scatter" and "uncertainty". Unfortunately, 
these terms have been used to denote somewhat different things in different fields of 
application. 
 
We adopt the following definitions, which are commonly used by statisticians: 
• Error is a deterministic concept and is defined as the difference between the true or 
exact answer to a problem and the answer, computed or measured using a faulty or 
simplified theory. 
 
• Scatter measures the range or spread of the data, but gives no information about the 
potential bias due to systematic measurement error or due to missing terms in the CFD 
code. 
 
• Uncertainty indicates that the result can be only known with a limited amount of 
confidence for a given level of precision. This uncertainty is an inherent property of the 
measurement technique or model description and is due to lack of knowledge. 
 
The distinction between the deterministic and stochastic nature is apparent in the AIAA 
definitions as well [13]: 
 
• Error is a recognizable deficiency in any phase or activity of modelling and simulation 
that is not due to lack of knowledge. 
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• Uncertainty is a potential deficiency in any phase or activity of modelling and 
simulation that is due to lack of knowledge. 
 
Since error is a recognizable deficiency, all errors are in principle at least correctable 
and therefore deterministic. 
 
Since uncertainty is caused by a fundamental lack of knowledge, it cannot be 
eliminated. If a higher confidence level (or level of credibility) of the prediction is 
required, the result can only be given with less precision. Uncertainty forces a 
fundamental trade-off between confidence and precision. 
 
Aerospace design has to face different kinds of uncertainties which are usually beyond 
the (direct) control of the designer: 
 
(A) Changing environmental and operating conditions. Examples are the angle of 
attack and Mach number in airfoil design, operating temperature, pressure, humidity, 
changing material properties and drift, etc.  
 
(B) Production tolerances and actuator imprecision. The design parameters of a 
product can be realized only to a certain degree of accuracy. High precision machinery 
is expensive; therefore, a design less sensitive to manufacturing tolerances reduces 
costs. 
 
(C) Uncertainties in the system output. These uncertainties are due to imprecision in the 
evaluation of the system output and the system performance. This kind of uncertainty 
includes measuring errors and all kinds of approximation errors due to the use of 
models instead of the real physical objects (model errors). 
 
(D) Feasibility uncertainties. Uncertainties concerning the fulfilment of constraints the 
design variables must obey. This kind of uncertainty is different to (A)–(C) in that it 
does not consider the uncertainty effects on f but on the design space. In real-world 
applications it often appears together with the uncertainty types (A) and (B). 
 
(E) Discretization and solution. These uncertainties are truncation error (spatial and 
temporal), iterative convergence, discrete geometry representation, etc. 
 
There are different possibilities to quantify the uncertainties subsumed under (A)–(E) 
mathematically. Basically, the uncertainties can be modelled deterministically, 
probabilistically, or possibilistically: 
 
(1) The deterministic type defines parameter domains in which the uncertainties. can 
vary. 
 
(2) The probabilistic type defines probability measures describing the likelihood by 
which a certain event occurs.  
(3) The possibilistic type defines fuzzy measures describing the possibility or 
membership grade by which a certain event can be plausible or believable. 
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The analysis and quantification of uncertainty and error due to these different sources 
have been studied by several authors. Particularly, discretization error has been studied 
extensively and a number of techniques have been proposed for modelling of this error 
[2]. Grid adoption techniques (see for example [2]) have been proposed to control this 
error. The influence of geometrical uncertainty has been addressed in [2], whereas 
uncertainty related to the turbulence modelling has been studied in [2]. Uncertainty 
analysis related to the operating conditions is mentioned in [2]. 
 
Some source of error can be made negligible thanks to the increase of computational 
resource, such as discretization error, iterative convergence error and etc. However, 
other sources of error and uncertainty remain significant and motivate further research 
in this field. 
 
There are tow approaches regarded as an optimization method which tries to account 
five uncertainties that have been defined in the previous section. These tow approaches 
will be mentioned in the next section. 
 
1.4 Aerospace shape optimization under uncertainty: 
 
The two major classes of uncertainty-based design problems are robust design problems 
and reliability-based design problems. A robust design problem seeks a design that is 
relatively insensitive to small changes in the uncertain quantities. A reliability-based 
design seeks a design that has a probability of failure that is less than some acceptable 
(invariably small) value. The same abstract mathematical formulation can be used to 
describe both robust design and reliability-based design. However, their domains of 
applicability are rather different. 
 
Figure 1 illustrates these domains. The two major factors are the frequency of the event 
and the impact of the event. No system is viable if everyday fluctuations can lead to 
catastrophe. Instead, one would like the system to be designed such that the 
performance is insensitive, i.e., robust, to everyday fluctuations. On the other hand, one 
would like to ensure that the events that lead to catastrophe are extremely unlikely. This 
is the domain of reliability-based design. In both cases, the design risk is a combination 
of the likelihood of an undesired event and the consequences of that event. An example 
of risk in the robust design context is the likelihood that the aircraft design will fail to 
meet the aerodynamic performance targets and will consequently lose sales and perhaps 
even go bankrupt. An example of risk in the reliability-based design context is the 
probability that a critical structural component will fail, which could lead to the loss of 
the vehicle or spacecraft, payload, and passengers, and to potential lawsuits. 
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Figure 1. Uncertainty-based design domains (from Huyse 2001 [12]). 

 
As figure 2 illustrates, robust design is concerned with the event distribution near the 
mean of the probability density function, whereas reliability-based design is concerned 
with the event distribution in the tails of the probability density function. Obviously, it 
is much more difficult to accurately characterize the tail of a distribution than the center 
of the distribution. An additional consideration in distinguishing between robustness 
and reliability is that the mathematical techniques used for solving robust design 
problems are considerably different from those used for solving reliability-based design 
problems. The mathematical methods for robust design procedures are less well 
developed than those for reliability based design procedures. Certainly, the aerodynamic 
design procedures in use in industry are exclusively deterministic. There has been 
considerable work on “robust controls”. Although the robust design principles of 
Taguchi (1987) are used in aerospace engineering, these are not necessarily the best or 
even appropriate methods for many robust design problems. 
 

 
Figure 2. Reliability versus robustness in terms of the PDF (Zang [16]). 

Traditional design procedures for aerospace vehicle structures are based on 
combinations of factors of safety and knockdown factors, as illustrated in figure 3. 
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Factors of safety are numbers greater than 1.0 that are applied to the loads. Knockdown 
factors are numbers less than 1.0 that are applied to the strengths. Both factors are 
intended to account for uncertainties. They have proven useful during nearly six 
decades of design for conventional metal airframes. 
 

Figure 3. Factor of safety approach (Huyse [12]). 
 
Newly emerging uncertainty-based design procedures will help to overcome the 
shortcomings of the traditional design procedures. In particular, measures of reliability 
and robustness will be available during the design process and for the final design. This 
information will allow the designer to produce a consistent level of reliability and 
performance throughout the vehicles with no unnecessary over designs in some areas. 
As a result, designers will be able to save weight while maintaining reliability. In 
addition, with an uncertainty-based design procedure it will be possible to determine the 
sensitivity of the reliability to design changes that can be linked to changes in cost. As a 
result, it will be possible to make trade-offs between reliability and cost. For the same 
cost, airframes can be made safer than with traditional design approaches or, for the 
same reliability; the airframe can be made at a lower cost. 
 
Some principal barriers to the adoption of uncertainty-based design methods for 
aerospace vehicles are as follows: 
 
B1. Industry feels comfortable with traditional design methods. 
B2. Few demonstrations of the benefits of uncertainty-based design methods are 
available. 
B3. Current uncertainty-based design methods are more complex and much more 
computationally expensive than deterministic methods. 
 
This report consists of a survey of the state of the art in robust design. In particular, 
section 2 provides a generic overview of current robust design methods. Section 3 
focuses on game theory, as one of the most useful methods for multi objective 
optimization problems, and its application with Nash equilibrium and Pareto front. 
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Chapter 2 
 
Overview of Available Robust Design 
Methods 
 
 
 
 
 
 
In most industrial applications, some design operative parameters are not fixed or it is 
impossible to set a constant value. For example, some uncertainties could characterize 
some geometric entities (lengths, relative positions, angles) that are related to the 
problem studied. Many times the operative conditions are not fixed, but there is the 
presence of fluctuations: in turbo machinery, it is the case of the mass flow rate and the 
inlet pressure, while, in aeronautics, it is the case of the flight speed, the angle of attack, 
the air temperature, etc. 
 
For engineering design problems, an optimal design is usually obtained under some 
explicit/implicit assumptions. This leads to a design that works well under ideal 
operating conditions but may perform inadequately under non-ideal (off-design) 
conditions. The problem is that the optimal design does not consider the uncertainty or 
variability of some parameters/data that will affect the actual performance of the design 
in a real-world situation. Therefore, it is necessary to include uncertainties in a practical 
design optimization process. 
 
For these reasons, in all these cases the design parameters can be specified by the mean 
value and their variance, following the classic Gaussian theory. In the case of 
fluctuations of the operative conditions, it is important to achieve the stability of the 
solution, because a traditional optimization approach (single point method) could tend 
to a problem of "over-optimization" (figure 4), giving high performances in 
correspondence of the design point, but giving poor off-design characteristics. 
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Figure 4: Comparison of robust design optimisation with single point optimization 

 
 
With reference to figure 5, it is possible to note that the function presents an absolute 
extreme and a relative extreme respectively corresponding to the 1x  and 2x  value of the 
parameter x; in this case the operative uncertainties could be represented by the 
tolerance δ  of the input parameter x. Obviously a standard optimization, that does not 
consider the fluctuations, would find out the point 1x . On the contrary, a robust design 
optimization would find both the point 1x , which corresponds to the highest mean value 
of f(x), and the point 2x , that corresponds to the highest value of stability of the function 
inside the tolerance rangeδ . 
 

 
Figure 5: Selection of the best out put design parameter with robust design optimization 

 
In a traditional (deterministic) context, aerodynamic shape optimization of airfoils is 
concerned with obtaining the most aerodynamically favourable geometry for fixed, 
either known or assumed, operating or design conditions. Consider the practical case 
where the drag dC  is to be minimized with lift-constrained ∗≥ ll CC  at a given, fixed 
free flow Mach number: 

( )
( )⎩

⎨
⎧

≥ ∗

∈

ll

dAa

CMaCtosubject

MaC

,

,min
 (3)
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where a is the vector of design variables, A is the design space and ∗
lC  is the minimal 

lift value.  
 
This deterministic, single-point optimization model is not necessarily an accurate 
reflection of the reality. The formulation in (3) contains no information regarding off-
design condition performance. It is documented by other researchers [5] that, with 
formulation (3), the drag reduction is attained only over a narrow range of Mach 
numbers (see Figure 6a). We will refer to this in the remainder as "localized 
optimization". Drela explains that the optimizer creates a "bump" on the airfoil to fill 
the transitional separation bubble (see Figure 6b). This effectively reduces the drag 
penalty which occurs when a bubble undergoes transition and reattachment [5]. 
However, the location of this bubble varies with M and this explains the poor behaviour 
in off-design conditions for this "locally optimized" design. 
 

Fig. 6 Single-point optimization using 2.0=∗
lC , drag profile and aigrfoil geometry [17]. 

 
It can be concluded that the real problem is not with the optimization code, which is 
likely to perform well, but with the problem formulation of (3). The local optimization 
effect is particularly worrisome if substantial variability is associated with the operating 
conditions. Explicit tradeoffs between different design conditions should be considered 
in the problem formulation. 
 
Figure 7 shows that choice of M design dramatically affects the design performance. 
This method is not clear which point to select as design point. The mean value is not a 
good choice for the design point when the model is highly non-linear and also the 
highest Mach number ( 8.0=M ) is not necessarily the best design point either. 
 



Robust Design methods in Aerospace Engineering 

 
 

12 
 

 
Fig. 7 Different choices of M design and their effects on performance [17]. 

 
Now, we mention some robust design methods which regard fluctuated (uncertain) 
parameters. Developing optimization methods that result in more robust designs and 
regard fluctuated (uncertain) parameters sounds appealing. There are five popular 
methods of robust design: multipoint, minimax, expected value, second order second 
moment and Taguchi method. 
 
2.1 Multipoint method: 
 
A straightforward, but heuristic, approach to avoid localized optimization is to consider 
different Mach numbers and to generalize the objective in (3) to a linear combination of 
flight conditions (m in total):  

( )
( )⎪⎩

⎪
⎨
⎧

=≥ ∗

∈ ∑
miforCMaCtosubject

MaCw

liil

m

i idiAa

,...,1,

,min

,

 (4)

 
where iw ’s are positive weights and iM ’s are the Mach numbers.  
 
Drela [5] studied the behaviour of the optimization solutions of (3) in two-dimensional 
viscous flow when the number of free-design variables is relatively large. He concluded 
that increasing the number of geometric design variables requires a corresponding 
increase in the number of design conditions (Mach numbers) used in the multipoint 
optimization problem (4). He also suggested that the number of design points must be 
greater than the number of free-design variables to achieve a smooth airfoil geometry. 
Other notable conclusions made by Drela (1998) are as follows: 
 
(A) Near-continuous sampling of the operating space (i.e., in the range of Mach 
numbers) may be required in the theoretical limit of a general airfoil design problem 
with a very large number of degree of freedom (for geometric variables), a very 
expensive proposition. 
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(B) The most suitable operating points to be actually sampled in multipoint airfoil 
optimization (i.e., 1M , 2M , . . . , mM ) are not apparent a priori. From limited 
experience, sampling somewhat beyond the expected operating range appears to be best. 
 
(C) The point weights (i.e., 1w , 2w , . . . , mw ) used in multipoint airfoil optimization are 
arbitrary, and their appropriate values can not be easily estimated without prior 
experience. 

 
(D) Optimized aerodynamic shapes are usually “noisy” and require a posteriori 
smoothing. 
 
It is noticeable that W. Li has given a mathematical argument to validate Drela’s 
hypothesis [14]. 
 
Practical problems arise with the selection of the flight conditions iM  and with the 
specification of the weights iw . There are no clear theoretical principles to guide the 
selection, which is, in fact, largely left up to the designer’s discretion (see, for example, 
[5,6,7,15]). 
 
With the multipoint formulation of (4), an improved dC  can be realized over a wider 
range of Mach numbers M [5]. However, this formulation is still unable to avoid 
localized optimization. In fact, multiple bumps might appear on the airfoil, one 
associated with each flight conditions iM . In the transonic regime, each bump occurs at 
the shock foot location for each of the sampled Mach numbers. 
 
The two-point optimization results shown in Fig. 8 illustrate the shortcomings of this 
method, which were also reported by Drela [5]. Optimization at selected Mach numbers 
results in clearly distinguishable drag troughs at each of the design Mach numbers (Fig. 
8). Drela leaves it up to the designer to determine which Mach numbers to include in the 
objective in (4) and which weights to choose. Three reasonable selections are compared 
with each other in Fig. 8: the endpoints of the Mach interval and selected interior points. 
It is clear that, at least in this case, the selection of the design conditions has an 
important effect on the final results. In particular, the selection of the endpoints of the 
Mach range can lead to troubling results. We observed this in both two-point (Fig. 8) 
and four-point (Fig. 9) optimization. 
 
Because the drag is higher in the upper part of the Mach range, one may want to include 
more design Mach numbers from the upper part than from the lower part in the 
multipoint objective function in (4). This procedure does not require any additional 
function calls, keeping the computational cost under control, and it should result in 
lower drag at the upper end of the Mach range. Figure 9 shows the result of such a 
multipoint optimization. The selected Mach numbers are indicated on the chart. The 
maximum drag is reduced, but a penalty is paid near the lower end of the Mach range. 
In fact, the drag has increased from 0.0044 to 0.0055 compared with the result for 
evenly spaced Mach numbers. Also, the drag trough at each sample Mach number 
persists, which indicates localized optimization, as explained earlier. In his study, Drela 
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applies larger weights to the upper part of the Mach range to ensure that the upper part 
is not compromised excessively by the less important lower part.  
 
 

 
Fig. 8 Optimal drag profiles obtained using different two-point optimization 

Strategies [12] ( 1w  = 2w  = 0.5 and ∗
lC  = 0.6). 

 

 
Fig. 9 Drag profile obtained using different four-point optimization 

Strategies [12] ( 1w  = 2w  = 3w  = 4w  = 0.25 and ∗
lC  = 0.6). 

 
 
Figure 10 explains this in more detail using two contour plots of the local Mach 
number. The operating conditions (free stream Mach numbers) are very similar, but the 
flow solutions (local Mach number) are very different. The multipoint optimization 
process introduces geometric features to the airfoil that lock the shock waves in place. 
Because we used four-point optimization, we have four shocks (see also [5]). In Fig. 
10a, four shocks can be distinguished along the top surface. In Fig. 10b, the most-aft 
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shock has basically disappeared. The optimizer has locally modified the geometry and 
eliminated the shock associated with Mach 0.8, which was one of the design conditions. 
 

Fig. 10 Local Mach number for two free-flow conditions after four-point optimization 
using ∗

lC  = 0.4 [17]. 
 
These results indicate that a multipoint optimization achieves a better overall drag 
reduction than single-point optimization for both sets of design Mach numbers. 
However, a drag trough may form at or near each of the discrete design points, in which 
case the drag increases rapidly away from the design points. This effect becomes more 
pronounced near the high end of the Mach range. 
 
In order to avoid arbitrariness of weights, some new methods have been introduced. In 
[19] adaptive weights are also proposed in conjunction with a new scheme that permits 
to automatically add new points to prevent from off-design loss. Another method, called 
profile optimization method that relies on adaptive adjustments of the weights, has been 
introduced to achieve a consistent reduction of the cost function f over a range of 
operating conditions [14]. 
 
Alternative Strategies 
 
Because derivatives have to be calculated for each variable at various operating 
conditions, the computational cost associated with multipoint optimization using CFD is 
substantial. Alternate methods, which incorporate some common-sense engineering 
knowledge into the optimization process, may be a valuable and cheaper alternative. 
One such example is the method of the weighted average of geometries (WAG) [15]. 
 
In the WAG method, the optimal design is obtained as a weighted average of n single-
point optimal designs, each one of them corresponding to one of the n chosen operating 
conditions. The weighting factors depend on the relative importance of each operating 
conditions. However, a key feature of this optimization method is that it still requires 
the formulation of some aggregate objective function, which describes the overall, or 
aggregate, performance of the design as a function of the variable Mach number. 
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The method requires the designer to select appropriate weights before the optimization 
process is started. As a result, the quality of the optimum solution is directly related to 
the actual choice of the selected weights. Sometimes such a choice may be quite 
difficult to make, and this selection introduces some arbitrariness in the design process. 
 
In the analytic hierarchy process [21], the weights can be changed during the 
optimization process itself. For each optimization step, a pair wise comparison matrix 
can be defined that indicates the relative importance of each of the design conditions at 
the current iteration step in the optimization process. The method monitors the 
optimization progress and gives the designer the opportunity to adjust the relative 
weight accordingly. 
 
The need to adjust the weights is eliminated altogether in Messac’s physical 
programming method [19]. In this method, the designer expresses preferences concisely 
using a classification function. Examples thereof are smaller-is-better, range-is-better, 
and must-be larger. 
 
In addition a degree of desirability is associated with each of these classes, ranging from 
unacceptable to highly desirable. By the use of these preference functions, the different 
design metrics are all mapped onto a dimensionless scale on which the actual 
optimization is performed. The method seems quite well suited for problems where 
various objectives have different dimensions, such as range and speed. 
 
2.2 Minimax method: 
 
We can also use the following minimax optimization formulation for robust 
optimization under uncertainty (Ben-Tal and Nemirovski 1997) [22]: 
 

( ) ( )

( )⎪⎩

⎪
⎨
⎧

≤≤≥ ∗

≤≤∈

maxmin,

,maxmin
maxmin

MMMforCMaCtosubject

MaCM

ll

dMMMAa
ρ

(5)

 
Here ( )Mρ  > 0 is a positive weighting function of M .Since we can not compute lC  and 

dC  for all M in the range [ minM , maxM ], computationally tractable approximations of 
(5) must be used. The simplest approximation scheme is to replace [ minM , maxM ] by a 
finite subset of [ minM , maxM ], say { 1M , 2M , . . . , mM }. Then minimax formulation (5) 
can be discretized as follows: 
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Here iρ  > 0 is determined by ( )Mρ  and iM . 
 



Robust Design methods in Aerospace Engineering 

 
 

17 
 

The objective of minimax strategies is to mitigate the detrimental effects of the worst-
case performance, which can be used to find a design with the optimal worst-case 
performance. This problem also was studied by Huyse and Lewis (2001)[14] ; Huyse 
(2001)[18] and Tang (2005)[23]. 
 
It seems that (4) and (6) are completely different. However, under the strict 
complementarity condition (i.e., Lagrange multipliers are nonzero for all active 
constraints), (4) is mathematically equivalent to (6). W. Li and L. Huyse have shown 
this in their research [20].  
 
2.3 Expected value-based method: 
 
Reconsider the basic problem in (3). If we minimize the drag dC  over a range of free-
flow Mach numbers M while maintaining the lift lC > ∗

lC , the optimization problem (3) 
is now interpreted as a statistical decision making problem.  Note that M is now treated 
as a random variable.  
 
In the presence of uncertainty, a designer is forced, in effect, to take a gamble. Under 
such circumstances, rather than naively hoping for the best or conservatively focusing 
on the worst, the right decision consists of the best possible choice of the design, 
whether favourable or unfavourable operating conditions occur. All decision problems 
have two essential characteristics [24]: 
1) A choice, or sequence of choices, must be made among various possible designs. 
2) Each of these choices corresponds to a performance, but the designer cannot be sure a 
priori what this performance will be. The exact performance also depends in part on 
unpredictable events, in this case the operating conditions. 
 
In this example, only one initial choice regarding the design needs to be made; the 
airfoil geometry must be selected. According to the Von Neumann–Morgenstern 
statistical decision theory (see Ref. 24), the best course of action in the presence of 
uncertainty is to select the design airfoil that leads to the lowest expected drag. This is 
commonly known as the maximum (or minimum) expected value criterion. The risk ρ , 
associated with a particular design a, is identified as the expected value of the perceived 
loss associated with the design. The best design or decision, which minimizes the 
overall risk, is referred to as Bayes’s decision. In our problem formulation, Bayes’s risk 

∗ρ and Bayes’s decision ∗a  are given by Eqs. (7) and (8), respectively: 
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or 

( ) ( ) ( )∫ ∗∗ = MdMfMaC Md ,ρ  (8)
 
where ( )Mf M  is the PDF of the free-flow Mach number M. 
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The practical problem with formulation (7) is that integration is required in each of the 
optimization steps. Because the objective function dC  is computationally expensive to 
evaluate, this approach, although theoretically sound, becomes prohibitively expensive. 
Therefore, a computational scheme that minimizes the number of function calls is 
desirable. 
 
In addition, the physical and mathematical models themselves used for the objective 
function will not be error free. Each of these model errors can be treated as a random 
variable. Their effect on the optimal solution is readily assessed by extending the 
integration over these additional random variables. 
 
Note that in this problem we are not concerned with rapid Mach number variations. 
Only slowly varying Mach numbers (steady states) are considered. Because the Mach 
number is constant for a certain length of time, the angle of attack can be adjusted to 
reach the required lift ∗

lC . Consequently, the lift constraint in (7) is not probabilistic but 
remains deterministic. 
 
The integration with respectto M in (7) can also be performed numerically. Irrespective 
of the chosen integration scheme, integral (7) can formally be written as (m integration 
points): 
 

( ) ( )⎥
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⎤
⎢
⎣
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+= ∑

=

∗
m

k
kdk mMaCw

1
,min ερ  (9)

 
 
where the integration error ( ) 0→mε  when ∞→m . 
 
Formulation (9) is strikingly similar to (4). It is, therefore, interesting to analyze how 
Bayes’s decision ∗a compares with the multipoint solution and exactly how localized 
optimization is avoided. In the multipoint approach, the design condition Mach numbers 
and weights need to be selected by the designer. In the statistical approach, the Mach 
numbers are determined by the integration scheme. The weights are directly related to 
the relative importance of each Mach number through the integration over the 
probability density. In short, the statistical approach removes the arbitrariness from the 
weighting process. Comparison of (4) with (9) reveals the shortcoming in the multipoint 
formulation that causes localized optimization. Numerical integration of (7) results in 
Eq. (9) and includes a random, zero-mean error term ( )mε , which decreases as the 
number of sampling points increases. The multipoint optimization (4) differs from (9) 
only in the sense that this error term is not explicitly considered in the objective 
function. However, omitting this term alters the structure of the problem at hand.  
 
The multipoint optimization looks for the design, which minimizes the weighted sum of 
the goal function dC , evaluated in the m specified points kM . There is no control over 
the objective function dC  in the neighbourhood around these m sampling points. 
Experience by other researchers [25] and the preceding deterministic examples have 
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indicated that significant troughs in plots of dC  vs M are introduced near the sampling 
points. In effect, multipoint optimization will prefer a design 1a  over a design 2a  even 
when design 1a  is considerably worse than design 2a  in all but the m specified 
sampling points. The multipoint formulation allows the optimizer to mold the goal 
function dC  to its own advantage. What was originally a random integration error is no 
longer random, and the discrete sum in (4) no longer approximates the integral in (7) at 
all. 
 
This undesirable behaviour is avoided if we can prevent the optimizer from exploiting 
the approximation error in (9) to its own advantage. We need to make sure that the 
discrete sum in (9) remains a good approximation of the integral in (7) throughout the 
optimization process. An elegant solution is to randomize the sampling points kM  in 
the evaluation of the integral. This ensures that the optimizer maximizes the 
performance not just for m specific values of kM , but for any set of values kM ; k =1, . . . 
, m. To minimize the loss of accuracy in the integration due to random location of the 
integration points, stratified sampling can be used to generate the values of kM . Our 
experience with the spline-based integration also suggests that the sampling points 
should not be allowed to be arbitrarily close to each other. 
 
However, with this scheme, a repeated evaluation of the objective function dC  for 
identical values of the design parameters a will lead to different results. This makes it 
hard to identify whether a new design is really better than a preceding one, or if the 
improvement should be attributed to random fluctuations instead. When a trial solution 
a is still far away from the optimal solution ∗a , large improvements dC∆  can be 
expected. This means that a very crude integration, which requires very few function 
evaluations, will suffice in the early stages of the optimization. The improvement of the 
goal function is expected to be smaller closer to the optimal solution, and more 
sampling points kM  will be required to keep the integration error small enough. 
Current research focuses on the development of a strategy that takes maximum 
advantage of this effect. 
 
Relatively small random perturbations can be used to change the integration points, but 
other, more adaptive strategies are currently being researched. The number of 
integration points must be sufficiently high so that the integration error caused by the 
change of integration points between optimization steps is smaller than the decrease of 
drag in that particular optimization step. 
 
Figure 11 shows that EV optimization strategy with normal distribution for M using 
random sampling points kM  in the evaluation of the integral results in a much smoother 
drag profile over the entire Mach range. The resulting airfoil geometry is somewhat 
smoother as well. It may be concluded that, for the same computational effort as 
multipoint algorithm, the EV scheme results in a superior design. 
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Fig. 11. Drag profile obtained using different optimization strategies (results obtained 

using lC  = 0.175) [12]. 
 

 
Impact of PDF: In most practical cases the Mach number will not be uniformly 
distributed over a given range. A key advantage of the explicitly statistical approach is 
that the relative importance of each operating condition is automatically accounted for 
through the PDF. 
 
Quite often a cruise Mach number is set and the assumption of a (truncated) "normal" or 
Gaussian distribution around this mean value seems appropriate. The truncated normal 
PDF is very well approximated by a Beta distribution. The Beta distribution is always 
bounded within an interval [a, b] and has shape parameters 1α  and 2α , both greater than 
zero: 
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where ( )21 ,ααB =, ( 1α ), ( 2α )/, ( 1α  + 2α )is the Beta-function. 
 
Depending on the value of 1α  and 2α , the Beta PDF can assume a variety of shapes (see 
Figure 12). When 21 αα = the distribution is symmetric and can be used as an 
approximation for the truncated normal, especially for 5i ≥α . When 121 == αα , the 
distribution becomes uniform. For 21 αα ≠  the distribution is skewed towards either left 
or right. Bath-tub distributions are obtained when both parameters in the PDF are less 
than 1 (but greater than 0). 
 
Figure 13 compares the optimal drag-profile obtained using three different Beta-
distributions bounded within [0.7, 0.8]. When a PDF Beta (3, 1) is assumed for the 
Mach number, the higher Mach numbers are more likely to occur. Their impact is easily 
discerned from Figure 13. The greater weight of the higher Mach numbers translates 
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into a lower drag in the high Mach range. The trade-off is a higher drag at the lower end 
of the Mach range. For a Beta (l, 3)-distribution, a lower drag is obtained in the lower 
part of the Mach range at the expense of much faster drag increase for higher Mach 
numbers. When a Beta (5, 5) PDF is used, the higher likelihood of Mach numbers near 
the mean value M = 0.75 results in the lowest drag of all three curves near the middle of 
the Mach range. 
 
This illustrative comparison reveals the importance of an accurate quantification of the 
PDF of the Mach range. In general, careful data analysis is required when the PDF is 
selected for each of the uncertain variables. Practical experience has revealed that 
especially the tails of the distributions need to be modelled very carefully because they 
tend to have a large impact [26]. Cut-off values should most definitely not be chosen 
arbitrarily! 
 

 
Fig. 12. Sample Beta distributions, and comparison with truncated Normal [12] 

 

 
Fig. 13. Impact of assumed PDF for M on optimal drag profile [12]. 
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2.4 Second order second moment method (SOSM): 
 
When the variability of the free-flow Mach number M is not too large, a second-order 
Taylor series expansion of dC  around the mean value M  may be a sufficiently accurate 
model of the variation of the drag dC  with respect to M: 

( ) ( ) ( ) ( )22 .
2
1.,, MMCMMCMaCMaC dMdMdd −∇+−∇+= (11)

 
 
When substituted in Bayes’s risk expression (7), the linear term disappears after 
integration over M because the Taylor series is built around the mean value M . Bayes’s 
risk Eq. (4) can be approximated by  
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,,min 2ρ
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where ( )MVar denotes the variance of the Mach number M. 
 
It seems that we have substituted the integration with an almost equally expensive 
computation of a second-order derivative. However, this theoretical result provides 
additional insight into the problem. It follows from (11) that the variability of M can 
affect the optimal design only if the objective function dC  is highly nonlinear in this 
parameter.  
 
In mathematical terms, the advantage of working with expected utilities is that the 
minimum is second-order accurate with respect to variations in the parameters. This 
ensures a more global solution and localized optimization will be avoided. This can also 
be explained in an intuitive manner: The second-order derivative is a measure for the 
curvature. Because this curvature is now a part of the objective function, a design that 
results in a drag trough or cusp at M  as found in the optimal solution will not be 
accepted by the optimizer. The high curvature of the cusp at M  would increase the 
objective in (11), and excessive localized optimization will be avoided. 
 
Equation (11) indicates that first order sensitivities of the drag dC  with respect to the 
uncertain variable M do not affect the expected value of the design. The second order 
information represents the curvature of the dC (M) curve, and a large value of curvature 
near a design Mach number is indicative of localized optimization. In the SOSM 
formulation, the weighting between the drag and the curvature is determined by the 
variance of the Mach number. Figure 14 shows a considerable reduction in curvature of 

dC  vs M using SOSM. 
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Fig. 14 Comparison of SOSM result with single-point and EV optimization [17]. 

 
The overall drag reduction is not as good as obtained using explicit numerical 
integration (Fig. 11), but the computational effort is a lot smaller. The method is 
particularly useful if higher-order derivatives are available (and numerically reliable) 
and several uncertain variables are present in the problem. Table 1 compares the relative 
computational cost for each optimization step. SOSM scales linearly with the number of 
random variables (one additional second derivative is required for each additional 
random variable in the optimization), whereas full numerical integration rapidly 
becomes expensive. Because the method is based on a second-order Taylor series 
approximation of the objective function, SOSM will give the best results if the variance 
of the random variables is relatively small. 
 
Table 1. Number of function/derivative evaluations required per optimization step (Note: 

SOSM requires less if analytic derivatives are available) [12]. 
Optimization Method 1 Random Variable 3 Random Variables 

Single Point 1 1 
SOSM 3 7 

Expected Value (using 4 points) 4 64  
 
 
2.5 Taguchi Method: 
 
Early attempts to account for design uncertainties in the framework of quality 
engineering are closely connected with Taguchi, the ‘‘father of robust design’’ who 
envisioned a three-stage design methodology comprising [27]: 
 
(1) Systems design: determines the basic performance parameters of the product and its 
general structure. 
(2) Parameter design: optimizes the design parameters in order to meet the quality 
requirements. 
(3) Tolerance design: fine-tuning of the design parameters obtained in the second stage. 
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The system design is a step where new ideas are generated to provide products to 
customers. Within the parameter design step, the designer determines the optimum 
setting for control factors using orthogonal arrays and SN ratios. The manufacturing 
cost will not be affected by the parameter design, since the tolerances are fixed. The 
final goal of the parameter design is that the designer makes products insensitive to 
noise factors without eliminating them. The tolerance design is implemented to improve 
quality at a minimum cost. It should be used when the sensitivity of responses resulting 
from the parameter design is not satisfactory. In particular, the parameter design scheme 
of the Taguchi method is adopted for robust design. 
 
From viewpoint of mathematical optimization, the differentiation between the second 
and the third stage seems superfluous since both stages differ only in the granularity by 
which design parameters are treated (of course practically the classification might be 
important because stage two and three can occur under very different constraints, e.g., 
design time vs. operation time). That is why we will only concentrate on the second 
stage.  
 
Taguchi argued that one should design a product in such a way as to make its 
performance insensitive to variation in variables beyond the designer’s control. His 
methods for robust design distinguish two types of inputs to a system: control 
parameters (or control factors) are the inputs that can be easily controlled or 
manipulated by the designer, hence the inputs that constitute optimization variables x; 
noise variables (or noise factors) are the inputs that are difficult or expensive to control, 
hence the inputs b to whose variation product performance is desired to be insensitive. 
For example, x might specify the design of a photocopier and b might specify the 
environment in which it must operate. 
 
The main difference of Taguchi’s method compared to ordinary optimization lies in the 
accounting for performance variations due to noise factors beyond the control of the 
designer. That is, there are two kinds of parameters entering the objective function: 
control parameters x, which are to be tuned to optimality, and noise factors b, such as 
environmental conditions (e.g., temperature, pressure, etc.) and production tolerances 
(e.g., weight and length variations, purity of material used, etc.) difficult to be 
controlled by the designer. 
 
In the statistical approach, one consider the fluctuating operating conditions b 
= ( ) Niib ,...,1=  as samples of random variables B = ( ) NiiB ,...,1= , whose statistical 

characteristics are known (mean µ (B) ( ) Ni
i
B ,...,1== µ , variance 2σ (B) ( ) Ni

i
B ,...,1
2

== σ  etc). 
One also suppose for the sake of simplicity that the random variables B = ( ) NiiB ,...,1=  are 
independent. The statistical characteristics of operating conditions can be determined by 
experimental measurements or engineering experience. Gaussian Probability Density 
Functions (PDFs) or truncated Gaussian PDFs are often used in practice (see [12] for 
instance). 
 
The main consequence of this assumption is that the cost function of the problem is also 
a random variable f. According to the Von Neumann-Morgenstern decision theory, the 
best choice is then to select the design which leads to the best expected fitness. This is 
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known as the Maximum Expected Values (MEV) criterion (Sec. 2.3). The decision or 
design that minimizes the risk is known as the Bayes’ decision and is solution of the 
following problems: 
 

( ) ( ) ( )
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∫

Ω
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Bf bdbbxfMinimize ρµ ,  (13)

 
However, problem (13) does not address the variability of the fitness. The mean value 
of the fitness is the only criterion that is considered in the Bayes’ decision. For 
engineering problems, one also would like to select a design for which the fitness is not 
subject to large variation as operating conditions fluctuate. Then, a second criterion is 
often joined to the MEV criterion that relies on the minimization of the variance 2

fσ of 
the fitness: 
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This approach aims at determining a trade-off between the expected fitness and the 
expected fitness variation as operating conditions randomly fluctuate. Although this 
approach is satisfactory from theoretical and practical viewpoints, its application is not 
straightforward. Particularly, the estimation of the mean and variance can be tedious 
from complex CFD applications. This issue is detailed below. 
 
2.5.1 Deterministic viewpoint: 
For a given design determined by x, the statistical mean fµ  and variance 2

fσ  are 
defined by: 
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These integrals can not be analytically evaluated since no analytical formulation of f is 
available. To estimate them, one should either provide an analytical approximation of 
the cost function or discretize the integrals. The latter solution is quite similar to the 
multipoint approach, since the integrals become weighted sums of the cost functions 
evaluated for some prescribed operating conditions. Then, the former approach using an 
approximation f~  is usually preferred: 
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2.5.2 Stochastic viewpoint: 
To estimate the mean and variance of the random variable f, one can simply use 
statistical estimators in a classical Monte-Carlo approach. A sample of operating 
conditions is ( ) Niib ,...,1=  if size N is generated according to the PDF. Then, unbiased 
estimators of the mean and variance are: 
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This approach does not suffer from point-optimization effect since the sample ( ) Niib ,...,1=  
is generated randomly according to the PDF Bρ . However, it is well known that this 
stochastic approach requires a large sample to provide an accurate estimation of the 
statistics. For CFD applications, a direct Monte-Carlo method is not conceivable 
presently. Nevertheless, a cheaper approximation f~  of the cost function can be used in 
a Monte-Carlo approach to estimate the mean and variance, as suggested in [28]: 
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Chapter 3 
 
Game Strategies for Multi objective 
Optimization 
 
 
 
 
 
 
 
Multi objective optimization can be described as a methodology for the design of 
systems where the interaction between several objectives must be considered, and where 
the designer is free to significantly influence the system performance with more than 
one objective. 
 
Although single objective optimization problems may have a unique optimal solution, 
multi-objective optimization problems offer a possibly uncountable set of solutions, 
which when evaluated produce vectors whose components represent trade-offs in 
decision space. A decision maker then implicitly chooses an acceptable solution by 
selecting one of these vectors. Mathematically speaking, an multi objective optimization 
problem minimizes (or maximizes) the components of a vector ( )xf  where x is an n-
dimensional decision variable vector, or in general 
 

( ) ( ) ( ){ }
( ) mixgtosubject

xfxfxfMinimize

i

p

,...,10

,...,1

=≤

=
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A multi objective optimization problem then consists of n variables, m constraints, and 
p objectives (p≥ 2), of which any or all of the objective functions may be nonlinear 
(Hwang and Masud 1979 [29]). Multi objective optimization problems are often 
characterized by measures of performance (objectives) which may be (in) dependent 
and/or non-commensurable; the multiple objectives being optimized almost always 
conflict. These opposing objectives place a partial, rather than total, ordering on the 
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search space. In order to successfully deal with these characteristics, several EC-based 
methods (Fonseca and Fleming 1995 [30]) were developed to determine optimal 
solutions given a multi-objective optimization problems objectives and constraints. One 
of the best approaches to many of these methods, however, is the use of Game Theory. 
 
Game Theory [31], formulated mathematically by J.F.Nash in the early 50s, has found 
their first applications in economics, in particular to solve the problems concerning the 
decisions that have some effects on different and often competitive fields. 
 
These strategies may however been adopted also in the industrial design, and in 
particular they can be combined with Evolutionary Algorithms, in order to optimise a 
product following several criteria and objectives, with the great advantage to save a lot 
of computational time, that is perhaps the first need in industrial field. 
 
We shortly describe the basic ideas of three main Game Strategies, while in the 
following chapters we will show how these strategies can be combined with 
Evolutionary Algorithms and become a robust algorithm for the multi-objective 
optimisation. 
 
Currently, there are tow different Game strategies to solve the above problem: 
1) Cooperative Games (Pareto Front) 
2) Competitive Games (Nash Game) 
 
3.1 Cooperative Games (Pareto Front): 
In a problem of minimisation of two functions ( )Af  and ( )Bf , we define the variables 
space ( ) BAyx ×∈, as the set of rational strategies. In fact, if we consider A and B as 
two players, each pair (x,y) represents a combination of the strategies played by the two 
players. 
 
The Pareto front may be seen as the result of a cooperative game, in which the two 
players A and B try to minimize both the two functions; in other words, each strategy 
played by the players is paid by the fitness of the two functions, it means how much the 
solution satisfies the objectives of minimization of the two functions. 
 
Not a single solution is found, but instead a set of solutions that is called as Pareto 
front. This set is characterised by the fact that there does not exist a solution such that 
both the two functions have a better fitness of any point of the front. In mathematical 
terms: 
          
( ) BAyx ×∈∗∗ ,  to Pareto front if and only if: 
 

( ) ( ) ( )
( ) ( )⎪⎩

⎪
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The analytical Pareto front solution of above optimization problem is computed by 
introducing a weighting function [ ]1,0∈λ , then make a linear combination such 
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as 21 )1()( ffxF λλ −+= . Thus, a parametric representation of the optimal Pareto set is 
obtained by solving: 
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So, on the Pareto front, there exist )(),( 11 λfyxf = and )(),( 22 λfyxf =  which are 
function of weighting constants, the Pareto front pairs are ( )(1 if λ , )(2 if λ ), where 

[ ]1,0∈iλ  . The zero gradient of linear combined function F(x) implies that the 
minimum solution of function F(x) at a given λ  is on the Pareto front. 
 
3.2 Competitive Games (Nash Game): 
Nash optima define a non-cooperative (competitive) multiple objectives optimization 
approach firstly proposed by J.F. Nash [31]. Since it originated in Games Theory and 
Economics, the notion of player is often used and we kept it. For an optimization 
problem with N objectives defined. A Nash strategy consists in having N players, each 
optimizing his own criterion. However, each player has to optimize his criterion given 
that all the other criteria are fixed by the rest of the players. When no player can further 
improve his criterion, it means that the system has reached a state of equilibrium called 
Nash Equilibrium. 
 
Let iX be the search space for the ith criterion, Nii XXXXX ⊗⊗⊗⊗=⊂ ......1 . An 
strategy pair Xxxx N ∈∗∗∗ ),...,,( 21 is said to be a Nash Equilibrium if and only if: 
 

Nifor

xxxxxxfxxxf NiiiiXxNi
ii

,...,2,1

),...,,,,...,,(inf),...,,( 112121

=

= ∗∗
+

∗∗
−

∗∗

∈

∗∗∗

(22)

 
Now, we present how 2 players try to optimize 2 different objectives. Of course, it is 
possible to have n players optimizing n criteria as presented in the definition. But to 
make thing as clear as possible, we will restrict ourselves to n = 2. 
 
Let's assume that we have two design targets 1f  and 2f , whatever they are conflict or 
not, these two targets are functions of design variables x = ( 1x , 2x ), where Xx∈  and 

21 XXX ⊗= , 11 Xx ∈  and 22 Xx ∈ . We further assume that two targets are both 
minimization problem for convenience. 
 
Player1 is responsible for 1f  by modifying 1x , Player2 is responsible for 2f  by 
modifying 2x , so the design problem can be explained as follows: 
 

),(min:2

),(min:1

212

211

2

1

xxfPlayer

xxfPlayer

x

x  (23)
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Where 1x  is the free design variable of cost function 1f , 2x  is fixed in Player1 and 
comes from the result of Player2, similarly 2x  is the free design variable of cost 
function 2f , 1x  is fixed in Player2 and comes from the result of Player1. 
 
Let  ),( 1

2
1

1
1 −−− = mmm xxx  is the best design variables in 1−m design iterations, where 

1
1
−mx  is the best design found by Player1 at 1−m  step, and 1

2
−mx  is the best design 

found by Player2 at 1−m  step. At m step, Player1 optimizes 1x  from 1
1
−mx  to achieve a 

better value mx1  while using 1
2
−mx  in order to evaluate 1f . At the same time, Player2 

optimizes 2x  from 1
2
−mx  to achieve a better value mx2  while using 1

2
−mx  in order to 

evaluate 2f . In this case 
 

),(inf),(

),(inf),(

2
1

122
1
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1
211

1
211
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−
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 (24)

 
After the optimization process, Player1 sends the best value mx1  to Player2 who will use 
it at m + 1 step, Similarly, Player2 sends the best value mx2  to Player1 who will use it at 
m + 1 step. So the best solution at the end of step m is ),( 21

mmm xxx = . Nash equilibrium 
is reached when neither Player1 nor Player2 can further improve their criteria. 
 
In fig.15 we reproduce the comparison of the Pareto front with Nash. 
 

 
Fig. 15. Comparison of Pareto and Nash solutions. 
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