
 
 
 

 
INTERNATIONAL CENTER FOR NUMERICAL METHODS IN ENGINEERING 

 
 
 
 
 

 
PUMI: An Explicit 3D Unstructured  
Finite Element Solver for the Euler 

Equations 
 

 
R. Flores 
E. Ortega 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Publication CIMNE Nº-326, November 2008 
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scipedia

https://core.ac.uk/display/296526503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
 

 
 

 
 

PUMI: An Explicit 3D Unstructured  
Finite Element Solver for the Euler 

Equations 
 

 
 
 

R. Flores 
E. Ortega 

 
 

 
 

 
 

 
 

Publication CIMNE Nº-326, November 2008 
 
 
 
 
 

 
 
 

 
 

 
 
 

 
 
 
 
 
 
 
 
 

International Center for Numerical Methods in Engineering 
Gran Capitán s/n, 08034 Barcelona, Spain 



 

1 

PUMI: AN EXPLICIT 3D UNSTRUCTURED FINITE ELEMENT 
SOLVER FOR THE EULER EQUATIONS 

R. Flores*, E. Ortega 

* CIMNE, Edificio C-1, Campus Norte Universidad Politécnica de Cataluña 
C/ Gran Capitán s/n 

Barcelona 28040, España 
e-mail: rflores@cimne.upc.edu 

 
 

Keywords: CFD, Finite Element, Euler, Explicit Analysis, 3D. 

Abstract. The PUMI flow solver has been developed at CIMNE in to address the need for 
fast solutions of the flow field around complex geometries. Nowadays calculations 
involving a number of cells on the order of ten millions are performed routinely. PUMI 
was created to deal with this kind of large-scale problem using modest hardware, 
therefore special emphasis was placed on the computational efficiency of the code. Design 
guidelines where minimum memory requirement, very fast single-threaded performance as 
well as satisfactory parallel scaling up to a moderate number of threads (as found on 
current desktop hardware using a small number of  multi-core CPUs . In order to speedup 
the mesh generation activities an unstructured finite element  formulation was selected. 
This papers describes the theoretical basis of the algorithms as well as detail of the 
implementation that increase the robustness and efficiency of the code. 
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1. INTRODUCTION 

The quest of the aerospace industry for ever increasing levels of economy, comfort, 
safety and environmental friendliness has fuelled the development of computational fluid 
dynamics. Both the large costs and time overheads associated with wind tunnel testing and 
the tremendous yearly increase in the available computing power have driven the push for 
extensive numerical simulation. Nowadays complex 3D configurations (e.g. complete 
aircrafts) are analyzed in a daily basis. Therefore there is a need for fast and efficient flow 
solvers that yield detailed results with a minimum turnaround  time. The most economic  
method for obtaining realistic flow fields in the transonic range (the main area of interest 
for the aeronautical industry) is the solution of the Euler equations (simpler strategies like 
panel methods do not yield accurate results when compressibility effects become 
important). While today there are more accurate methods available (RANS mainly, as LES 
is still too complex to be used for production tasks) the inviscid solution is often suitable 
for preliminary design purposes. Besides, the solution can be improved through coupling 
with a boundary layer solver thus capturing viscous effects while keeping the solution 
time at a minimum. Furthermore, an Euler solver lies at the core of every NS solver so it is 
extremely important to have such a tool available as a basis for later developments. 
CIMNE being a research institution focusing on software and numerical methods 
development does not have huge computational resources available. Therefore, in order to 
cooperate with the aerospace industry it needs a flow solver suitable for use on limited 
hardware resources while still delivering a solution in a reduced time. The PUMI code was 
developed to address these requirements. Also, in order to better integrate the solver with 
the rest of CIMNE’s in-house developed software a finite element approach had to be 
chosen (due to the ongoing effort to integrate all of CIMNE’s codes into a common 
development framework [1] which is specially suited for finite element applications). To 
achieve optimum performance and reduce the memory requirements an edge based data 
structure was selected. As it shall be shown, this choice results in a numerical scheme 
which bear a remarkable resemblance to a finite volume formulation. This has the added 
advantage to enable use of many are well tested techniques originating from the finite 
volume community. To take advantage of the recent crop of multi-core CPUs available in 
desktop computers the code has been extensively parallelized using the Open-MP 
compiling directives. 

The first section of this paper explains the basic equations and their weak formulation 
suitable for use with the finite element method as well as the changes in the traditional 
formulation brought about by the edge-based data structure. Next the implementation of 
the algorithm shall be described, including details abut the stabilization techniques, 
convergence acceleration and code optimization. Finally, some real life application 
examples will be shown to illustrate the capabilities of the software. 

2. BASIC EQUATIONS 

The starting point is the Euler equation set formulated in an Eulerian (space fixed) 
reference frame and written using conservative variables (in order to obtain well placed 
shocks)  

 

 0 1...3k

k

for k
t x

∂ ∂+ = =
∂ ∂
Φ F

 (2.1) 
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with Φ being the vector of conservative variables and Fk the convective flux along the 
kth direction:  
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with δij being the Kronecker delta. The state vector contains the density, momentum 
( i iU uρ= ) and total energy (internal plus kinetic) per unit volume of the fluid. Assuming 

the fluid behaves like an ideal gas the expression for the total energy, enthalpy and 
equation of state are  

 

 

2 2

2 2v p p v

u u
e c T h e p c T p RT R c cρ ρ ρ   

= + = + = + = = −   
   

 (2.3) 

 

In order solve the equations a suitable set of boundary conditions is needed. For solid 
walls the slip condition (velocity parallel to the wall) is enforced 

 

 ( ) 0 S⋅ = ∀ ∈ Σu x n x  (2.4) 

 

where ΣS denotes the solid boundary. Some far field conditions are also needed, which 
depend on whether or not the flow is supersonic 

 

 
for if 1

for if 1

M

M

∞ ∞
−

∞ ∞

→ → ∞ <

→ → ∞ ≥

Φ Φ x

Φ Φ x
 (2.5) 

 

where the symbol ∞- indicates the upstream part of the far field. In order to achieve a 
well conditioned behaviour and obtain more general results it is convenient to write the 
equations in non-dimensional form. By choosing the following variables 
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 (2.6) 

 

the equations may be recast as 

 

 0 1...3k

k

for k
t x

∂ ∂+ = =
∂ ∂
Φ F 
 

 (2.7) 

 

In (2.6) L represents the characteristic length of the problem and ρ∞ and a∞ denote the 
density and speed of sound ( 2a RTγ= ) of the undisturbed fluid (far away upstream of the 
solid body). The non-dimensional vectors of unknowns and fluxes become 
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 (2.8) 

 

With this change of variables the thermodynamic relationships for the ideal gas now 
read:  
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The far field conditions now become much simpler  
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It is easy to show that the far field pressure and temperature are both equal to 
1

γ
. The 

non-dimensional solution is therefore a function of the Mach number, the specific heat 
ratio and the shape of the solid body only. The non-dimensional parameters have the 
additional advantage of being usually close to unity, thus yielding a better conditioned 
system. From this point on, for the sake of clarity, the tilde will be dropped from the non-
dimensional variables. Unless otherwise stated, the non-dimensional form of the 
expressions shall be assumed. 

To develop the finite element approximation to the equation set (2.7) we start with the 
weak form of the differential equations [2]. Let W be a generic test function defined inside 
the flow domain. The weak form of the flux balance statement reads:  

 

 ( ) 0k

k

W d W
t xΩ

 ∂ ∂+ Ω = ∀ ∂ ∂ 


Φ F
x  (2.11) 

 

as long as (2.11) holds for any W, both forms are equivalent. Next we use the Galerkin 
method to build an approximate solution Φ  which is a linear combination of the nodal 
values and the interpolating functions (Nj).  

 

 
( ) ( ) ( )

( ) ( )

j j
j j

i

N N

W N

= =

=

Φ x x Φ x Φ

x x

  
 (2.12) 

 

In (2.12) summation is assumed over the repeated index and the supra-index denotes 
nodal values. For the particular case of the finite element method the interpolation 
functions are the shape functions which are defined in an element-by-element basis. They 
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have the property  

 

 ( )j
i ijN δ=x  (2.13) 

 

The semi-discrete form of (2.11) becomes 

 

 0 1...j k
i j node

k

N N d for i n
xΩ

 ∂+ Ω = = ∂ 


F
Φ

  (2.14) 

 

where the dot over the state vector indicates the time derivative. In (2.14) there are as 
many equations as unknowns (nodes) therefore the system can be solved for the nodal 
values of the approximate solution (provided the boundary conditions are correctly 
enforced). The integrals in (2.14) are evaluated using Gauss quadrature; in order to 
evaluate the fluxes at the interpolation points the consistent approach would be:  

 

 ( ) ( )( )IP IP IP j
k k k jN= =F F Φ F x Φ      (2.15) 

 

in order to increase the efficiency of the algorithm we shall assume that it is acceptable 
to interpolate the fluxes inside the elements from their nodal values [3]. This is equivalent 
to using the Lobato quadrature for the fluxes and does not affect the final result in any 
significant way 

 

 ( )j j
k j k j kN N≅ =F F x F    (2.16) 

 

With this change (2.14) is transformed into 

 

 ( ) 0 1...jj j
i j k node

k

N
N N d for i n

xΩ

∂ 
+ Ω = = ∂ 

 Φ F   (2.17) 

 

Moving the flux term to the RHS and using matrix notation, the time derivative of the 
state vector can be written as 

 

 

j

i j

j j
i k

k

N N d

N
N d

x

−

Ω

Ω

=

= Ω

∂
= − Ω

∂





1Φ M r

M

r F





 (2.18) 

 

where M is the consistent finite element mass matrix. To avoid solving a linear system 
of equations at each time step the consistent mass matrix is usually replaced by its 
diagonal (lumped) counterpart such that 

 

 
d
ij ij ij

j

δ= M M  (2.19) 

 

thus rendering the process of matrix inversion trivial. To achieve better computational 
efficiency the residual vector (r) must be rearranged. Let us split the residual of the i-th 
equation in two parts:  
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 , , ,
jj i

i j k k i i k k j k
j i k

N
N N d N N d where N

x≠ Ω Ω

∂
= − Ω − Ω =

∂ ir F F   (2.20) 

 

in the expression above there is no sum over index i, and the sum over index j extends 
to all the possible values except for i. From this point on, to keep the notation compact, the 
summation sign will be omitted, but the remark still holds (i.e., i does not enter the sum 
over j). Integrating (2.20) by parts yields 

 

 , ,

1

2
ij i j i

i k j k i k j k i j k k i i k kN N d N N d N N n d N N n d
Ω Ω Γ Γ

= Ω − Ω − Γ − Γ   ir F F F F     (2.21) 

 

where we have defined the numerical interface flux as 

 

 
ij i j
k k k= +F F F    (2.22) 

 

Remark that (2.22) is twice the average of the nodal values. The expression (2.21) must 
now be symmetrised to achieve the full benefit of the edge data structure 
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 (2.23) 

 

Making use of the shape function property 1i j
j i

N N
≠

= −  and after some algebraic 

manipulation the residual can be written as 
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i
k i i k
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d N N N N d

b N N n d
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Γ

= + +
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= − Γ

= − Γ







ir F F F  

 (2.24) 

 

Note that the shape functions of node i are zero over any element not containing i; 
therefore the integrals in (2.24) need only computed for pairs ij of nodes sharing the same 
elements. Any such pair is called an edge. When the element is a simplex (i.e. triangle in 
2D or tetrahedron in 3D) the computational edges coincide with the geometric edges; 
otherwise aditional internal computational edges shall appear. Also, remark the d 
coefficients are antisymmetric, meaning that only half of them need be stored. Moreover, 
the b and c terms are zero for any interior edge so the storage requirements are greatly 
reduced [4]. 

The d coefficients being antisymmetric implies that the scheme (2.18) is conservative. 
Indeed, the net contribution to the residual is zero for any internal (i.e. not containing 
boundary nodes) edge e  

 

 
ij ij ji ji ij ij ij ij
k k k k k k k kd d d d+ = + = − =e e

i jr r F F F F 0     (2.25) 
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Using the form (2.24) of the residual entails important savings with regards to the 
number of operations and memory accesses [5]. Also note that for interior edges where 
only the d terms remain the expression for the residual is quite similar to what would be 
obtained from a cell-centered finite volume scheme whose cell centroids were located at 
the nodes of the FE mesh. Therefore, most techniques developed for use with unstructured 
finite volume solvers can be also applied to the edge-based finite element formulation. 

3. CONVECTIVE STABILIZATION 

The basic Galerkin formulation, being equivalent to a second order finite difference 
scheme suffers from the same shortcomings. In particular, it is susceptible to the odd-even 
decoupling phenomenon which allows spurious solutions to contaminate the results [6]. To 
prevent the occurrence of non-physical solutions some for of stabilization must be added 
to the basic Galerkin scheme. As the Euler equation set is hyperbolic, it represents the 
propagation of waves. Thus, the upwnding techniques developed for the wave equation 
can be successfully applied to the Euler equations. This is achieved using a change of 
variables to uncouple the set (2.7). Let us define the flux Jacobians (Ai) such that 

 

 
i

i
i ix x

∂ ∂=
∂ ∂
F Φ

A  (3.1) 

 

The Jacobians are therefore the derivatives of the flux vectors with respect to the state 
variables. Incidentally, the flux vectors are homogeneous functions of the conservative 
variables so it is also possible to write 

 

 i i=F A Φ  (3.2) 

 

Substituting (3.1) into (2.7) yields the quasi-linear form of the Euler equations 

 

 0k
kt x

∂ ∂+ =
∂ ∂
Φ Φ

A  (3.3) 

 

Note that the equations (3.3) are not linear as the Jacobians are functions of Φ. 
However, if we consider only small fluctuations around an equilibrium state it is 
acceptable to linearize the behaviour and assume the Jacobians are constant. For the sake 
of simplicity, the following discussion will assume a 1D flow along the x direction, the 
results still hold for any arbitrary direction. For the 1D case (3.3) reduces to 

 

 0
t x

∂ ∂+ =
∂ ∂
Φ Φ

A  (3.4) 

 

the index is dropped as there is only one space direction. The equation system being 
hyperbolic means the eigenvalues of the Jacobian are always real. It is possible to build a 
complete set of right eigenvectors [9] 

 

 il lj j ijλ=A R R  (3.5) 

 

so the Jacobian can be written as 

 

 ij ij iwhere δ λ−= =1A RΛR Λ  (3.6) 
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the matrix Λ is diagonal and contains the eigenvalues of the Jacobian. If we multiply 
(3.4) by R-1 we have 

 

 ( ) 0
t x

∂ ∂+ =
∂ ∂

-1 -1 -1Φ Φ
R R A RR  (3.7) 

 

Using the eigenvector decomposition of A and with the change of variable -1φ = R Φ  
the system becomes 

 

 0
t x

∂ ∂+ =
∂ ∂
φ φ

Λ  (3.8) 

 

as the matrix Λ is diagonal, all the equations in (3.8) are uncoupled. The evolution of 
the component of ϕ (called characteristic variables) is described by the wave equation. 
The wave speeds are the eigenvalues of the Jacobian. There are three distinct eigenvalues:  

 

 

1

2

3

u c

u c

u

λ
λ
λ

= +
= −
=

 (3.9) 

 

The first two eigenvalues represent acoustic perturbations and the third one entropy 
waves. In multi-dimensional cases the third eigenvalue is multiple due to the existence of 
vorticity waves which also travel with the same speed as the fluid. 

A well known technique to stabilize the numerical behaviour of the wave equation is 
upwinding. Switching from central to backward differencing for the convective term 
solves the decoupling problem [7]. This solution can be applied to the characteristic 
variables in (3.8), however, it is important to stress that the correct upwinding direction is 
not the same for all components of the solution. Indeed, unless the flow is supersonic 
(u>c) not all the eigenvalues in (3.9) have the same sign (i.e. not all the waves travel in the 
same direction). Therefore, the upwinding direction must be chosen in a component by 
component basis. In the context of an edge-based finite element solver, upwinding is done 
by replacing the interface fluxes with their value at the upwind side of the edge. If we 
define a characteristic flux in (3.8) as k k kλf = φ  (where the supra-index k indicates the 

specific characteristic component) we can recast the system as 

 

 0k k

t x

∂ ∂+ =
∂ ∂
φ f

 (3.10) 

 

which has the same form as (2.7) enabling the use of the discretization (2.24). For an 
internal edge we have 

 

 ( )i ij ij ij i j
k k k kd d= = +r f f f  (3.11) 

 

Now, let us assume that the x axis points from node i to node j. Depending on the sign 
of the wave propagation the upwind approximation of (3.11) is 

 

 

( )
( )

(2 ) ( ) 0

(2 ) ( ) 0

i ij i ij ij j i
k k k k k kUpwind

i ij j ij ij j i
k k k k k kUpwind

d d if

d d if

λ

λ

= = − − >

= = + − <

r f f f f

r f f f f
 (3.12) 
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This can be rewritten as 

 

 

( )
( )

( ) 0

( ) 0

i ij ij j i
k k k k k kUpwind

i ij ij j i
k k k k k kUpwind

d if

d if

λ λ

λ λ

= − − >

= + − <

r f φ φ

r f φ φ
 (3.13) 

 

Note that both expressions in (3.13) can be merged [6] into 

 

 ( )( )i ij ij j i
k k k k kUpwind

d λ= − −r f φ φ  (3.14) 

 

If we define the matrix Λ  as a matrix containing in its diagonal the absolute value of 

the eigenvalues, the discrete upwind approximation to (3.10) becomes 

 

 ( )( )i ij ij j i

Upwind
d= − −r f Λ φ φ  (3.15) 

 

Where the index k has been dropped, as (3.15) applies to the complete state vector (all 
characteristic variables). Now the change from conservative to characteristic variables can 
be reverted yielding 

 

 ( )( )ij

Upwind
d= − −i ij -1 j ir F R Λ R Φ Φ  (3.16) 

 

the matrix =-1R Λ R A  is called the positive Jacobian.. It is obtained by making all the 

eigenvalues of the flux Jacobian positive. 
At this point, it is important to remember the discussion above assumed linearized 

behaviour thus enabling the use of a constant flux Jacobian. In real-life, however, obtaining a 
matrix A such that ( )− = −j i j iF F A Φ Φ  where states i and j can be vastly different involves 
solving a Riemann problem. While this approach is feasible, a heavy computational cost 
penalty is involved. As an alternative, the PUMI solver uses Roe’s approximate Riemann 
solver [10] 

 

 ( ) ( )ij
Roe Roe Roewhere− ≈ − =j i j iF F A Φ Φ A A Φ    (3.17) 

 

where ij
RoeΦ  denotes the approximate Roe intermediate state which can be easily computed 

from states i and j. Thus, (3.16) is replaced by 

 

 ( )( )ij
RoeUpwind

d= − −i ij j ir F A Φ Φ  (3.18) 

 

It is possible to compute the positive Jacobian in (3.18) using the eigenvalues (3.9) and 
the corresponding eigenvector set (for which an explicit expression is available, see [10]). 
However the cost associated with this operation is very high. A more efficient alternative 

is to directly compute the product ( )Roe −j iA Φ Φ  without evaluating RoeA . There are 

very efficient algorithms to achieve this goal which can be found in [11] and [12]. 
It is worth mentioning that at stagnation or sonic points some eigenvalues of the 

Jacobian matrix vanish [13]. This causes in turn a loss of stabilization for some 
characteristic components of the solution, with the potential for non-physical spurious 
solutions. This problem is addressed in PUMI by setting a lower bound on the absolute 
value of the eigenvalues according to 
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 max( , )iii
cλ α=Λ  (3.19) 

 

with the α parameter in (3.19) being user-selectable. Setting α to 0,2 is usually enough 
to achieve god results. Up to this point, the discussion has dealt with the 1D version of the 
Euler equations. However, PUMI solves the 3D equation set, so additional care must be 
taken. The flux Jacobian for transport along an arbitrary direction (given by a unit vector 
n) can be obtained by linear combination of the Jacobians for the x, y and z directions 

 

 k k
k

=nA n A  (3.20) 

 

because the equations are hyperbolic, the eigenvalues of (3.20) shall always be real, 
irrespective of the choice of n and the positive Jacobian can thus be found. To stabilize the 
3D version of the equations a transport direction for each edge has to be defined so that 
the positive Jacobian can be calculated from (3.20). In PUMI the direction of choice is the 
edge itself, the unit vector for the edge connecting nodes i and j is 

 

 

j i
ij

j i

−=
−

x x
n

x x
 (3.21) 

 

Once this direction has been defined, the stabilized contribution to the residual vector 
can be written as 

 

 
iji ij ij ij ij

k k k k Roe ijUpwind
d d= − Δnr F n A Φ  (3.22) 

 

where we introduced the edge difference j i
ijΔ = −Φ Φ Φ .This is by no means the only 

possibility, other choices of the transport direction are equally suitable. A common choice 
is to make the n vector parallel to the ij

kd  coefficient so that the product ij ij
k kd n  is maximum 

[3]. 
The discretization (3.22) is stable, but being no longer centered it is of lower accuracy 

than the original form (2.24) (first order versus second order) [9]. To develop an efficient 
solver, at least second order space accuracy should be achieved over most of the flow 
domain. In PUMI this is accomplished by limiting the stabilizing term in (3.22) so that it 
tends to vanish in areas were the solution behaves smoothly. To keep the notation 
compact, let us define the artificial flux in (3.22) as 

 

 
ijij ij

k k Roe ij= − ΔnFa n A Φ  (3.23) 

 

To approach second order accuracy we cut back the artificial flux (3.23) by reducing 
the difference term 

 

 ( )1/ 2 1/ 2

lim

ijij ij j i
k k Roeited

− += − −nFa n A Φ Φ  (3.24) 

 

where 1/ 2 1/ 2 and  j i− +Φ Φ  are two high order approximations of the solution at the 
interface. The limited value is expected to be smaller than (3.23) thus reducing the amount 
of artificial diffusion. When working with uniformly spaced grids obtaining the high order 
approximation of the interface solution is relatively easy [7]. On the other hand, when 
using an unstructured grid as is the case with finite element solvers the process of 
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reconstruction of the interface values is slightly more involved [8]. To take advantage of 
the techniques developed for structured meshes, two additional extrapolated states are 
defined for each edge. These correspond to virtual points i-1 and j+1 such that 

 

 

1

1

i i ij
ij j i

j j ij
where

−

+

= −  = −
= + 

x x u
u x x

x x u
 (3.25) 

 

these points need not coincide with any node of the mesh, in fact they may even lay 
outside the fluid domain when the edge is close to the boundaries. There are many 
different approaches to estimate the value of the solution at the virtual points [8]: 

• By standard finite element interpolation in the element they lay in 
• Using the value of the nearest node 
• Using the nodal gradients of the solution 

The last method is the choice in PUMI. When solving the NS equations (which the code 
is also capable of treating) the nodal gradients are used to calculate the diffusive fluxes. 
Therefore the information is readily available. This also simplifies the treatment of virtual 
nodes which lie outside the fluid domain. The process of derivative recovery is described 
in the implementation details section of this paper. From the second order centered 
approximation of the nodal derivative, the forward and backward extrapolated states can 
be calculated 
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i j ij i
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 (3.26) 

 

From this data two additional differences (backward and forward) can be defined 

 

 
1 1i i j j

i j
− − + +Δ = − Δ = −Φ Φ Φ Φ  (3.27) 

 

The high-order interface approximations are built using a variable order reconstruction 
scheme   
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 (3.28) 

 

The k parameter in (3.28) controls the order of extrapolation [3], some typical values 
are: 

• k = -1  second-order full upwind scheme 
• k = 0  From’s scheme 
• k = 1/3  third-order upwind scheme 
• k = 1  three-point central difference scheme 

 

By using the high order artificial flux (3.24) the accuracy of the scheme is improved. 
However, the high order solution is susceptible to non-physical oscillations in the 
neighbourhood of shocks or sharp gradients. To overcome this limitation the scheme 
should revert to (3.23) (i.e. 1/ 2 1/ 2andi i j j+ −→ →Φ Φ Φ Φ ) whenever discontinuities appear 
on the solution (in areas where the solution is not smooth only the first order scheme is 
free form oscillations, as stated by Godunov’s theorem [7]). Sharp changes in the solution 
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are tracked in PUMI by measuring the local curvature of the solution. At each node a 
limiter is calculated based on the forward and backward differences. The limiter should 
ideally approach unity when both differences are similar and vanish when they are vastly 
different 

 

 ( , ) ( , )i j
i ij ij jf f− += Δ Δ = Δ Δl l  (3.29) 

 

Note the limiters are written as vectors, as they may be different for each component of 
the state vector. See the next section for details on the limiters available in PUMI. The 
expressions in (3.28) are modified to control the amount of extrapolation according to:  
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 (3.30) 

 

it is clear that the high order interface values revert to 1/ 2andi j −Φ Φ  when the limiters 
approach zero thus helping preserve the monotonicity of the solution. 

4. TIME INTEGRATION 

PUMI was developed to tackle steady problems, therefore the main goal of the time 
marching algorithm is to improve the robustness of the solver and to speed up 
convergence as much as possible, without much concern about the time accuracy. An 
explicit multi-stage Runge-Kutta scheme is chosen in order to increase the allowable time 
step an increase robustness of the solution process [9]. To advance (2.18), for each time 
step some intermediate states Ψj are created such that:   
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 (4.1) 

 

with n being the number of stages of the scheme. Each particular scheme is 
characterized by a choice of n and θi. Two common choices which provide reasonable 
robustness are: 

• 3-stage scheme with 1 2 3

3 3
1

5 5
θ θ θ= = =  

• 4-stage scheme with 1 2 3 4

1 1 1
1

4 3 2
θ θ θ θ= = = =  

Under many circumstances the 4-stage scheme provides a better balance between 
allowable step size and cost per step. When computing the residual vector in (4.1) it is not 
necessary to update the artificial fluxes at each stage. Doing so would increase 
substantially the cost per stage while yielding only a marginal increase in robustness. 
Therefore the stabilization terms are only computed at the first stage under most 
circumstances. The scheme presented in (4.1) is explicit and therefore only conditionally 
stable. There is an upper limit on the allowable time step. For a purely convective 
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problem, the stability limit for a given element could be calculated as:  

 

 

max
el

h
t C

λ
Δ =  (4.2) 

 

where C denotes the allowable Courant number, h is some measure of the element size 
and λmax is the maximum eigenvalue of the Jacobian matrix. If a time accurate solution is 
sought, a global time step equal to the minimum allowable step for all the elements of the 
mesh. However, when solving steady problems a local time stepping approach is 
acceptable [15]. This has the advantage of propagating the solution much faster, thus 
achieving convergence in a smaller number of steps. The local time stepping is 
implemented at the nodal level. For each node in the mesh a nodal size is calculated as 

 

 min( ) /i j j
nod elh h i el= ∈  (4.3) 

 

that is, the size of node i is the minimum of the sizes of all the elements to which i 
belongs. The element size is taken as the minimum height of the element. For example, 
consider a tetrahedral element:  

 

 
3

1,...,4
max( )

i
i
el i

j

h j
A

Ω= =  (4.4) 

 

with Ωi being the element volume and Ai
j the areas of its faces. This choice of size 

estimate increases robustness when high aspect ratio elements are present in the mesh. The 
allowable step at each node is then calculated as 

 

 

i
i nod
nod i i

h
t C

c
Δ =

+v
 (4.5) 

 

The value of C in (4.5) is, in principle, global. It is then used for all the nodes of the 
mesh. However, in areas of low speed flow due to the increased stiffness of the equations 
problems with oscillations can arise requiring a small value of C. To  avoid degrading the 
overall convergence of the mesh the user is able to specify two different values of the 
Courant number, where the smaller will be used in areas where the Mach number is below 
some adjustable threshold. To increase the allowable time step an implicit residual 
smoothing is used. A Laplacian smoothing is included to extend the support of the 
interpolation functions, yielding an increase in the allowable Courant number.  

 

 ( ) for all connected toi i j i

j

j iε= + −r r r r  (4.6) 

 

solving exactly for the smoothed residual ir  would require solving a linear system of 
equations negating the advantages of the explicit scheme. However, the smoothing is only 
used as a means to achieve faster convergence and has no effect on the steady state 
solution. Therefore, a rough approximation to the value of ir  is enough to obtain the 
desired result. The approximate value of the smoothed residual is computed by means of a 
Jacobi iteration scheme:  
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in common applications a good result can be obtained by running two passes of the 
scheme (4.7) and setting the smoothing coefficient ε to 0,1. The residual smoothing need 
not be applied at each stage of the Runge-Kutta scheme. For example, in the case of the 4 
stage scheme smoothing just the first and third stages is usually enough to produce a 
twofold increase in the allowable Courant number. 

6. ADDITIONAL DETAILS OF IMPLEMENTATION 

Choice of limiters 
Most simulations in PUMI are run using the Van Albada limiter [3] which yields good 

results under normal circumstances 
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l  (5.1) 

 

where ε is a small number which prevents division by zero when the flow is uniform (ε 
~ 10-5). For cases where achieving convergence is difficult there is the option to switch to 
a limiter based on the minimum modulus difference to increase robustness (albeit at the 
expense of a more diffusive solution) [5]  
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l  (5.2) 

 

when this approach is chosen there is the possibility to speed-up the computation using 
a simpler form of the MINMOD limiter by replacing (3.24) with 
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 (5.3) 

 

Use of (5.3) bypasses the calculation of (3.30) thus improving performance slightly. 
Sometimes a situation is found where the computation tends to diverge during the first 

steps of the analysis. This is often the case when the geometry contains non streamlined 
features for which the initial conditions are very far from the steady state. To improve 
robustness the user is offered to choice to run a certain number of time steps using the first 
order scheme (i.e. setting all the limiters to zero) at the beginning of the simulation. This 
is usually enough to reach conditions close enough to the steady state so that the high 
order scheme converges smoothly. 

Towards the end of the simulation, when the system is very close to the steady state 
convergence might me hampered by the continuous change of the limiters. The 
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nonlinearity they introduce slows down the rate of convergence while no longer providing 
a tangible gain in accuracy [8]. To overcome this limitation there is the option to freeze 
the limiters once the solution is close enough to the steady state. This point is usually 
chosen as the step where the residual has decreased three orders of magnitude with respect 
to its initial value. The user also has the option to freeze the limiters in a progressive way, 
decreasing the update frequency from once per step to completely fixed along the 
simulation. Decreasing the limiter update frequency also has the added benefit of reducing 
the computational cost of each step. 

For edges having a node on the solid boundary the process of extrapolation is further 
complicated by the fact that one virtual node usually lies outside the fluid domain. As the 
information used to recover the solution at the virtual node is one-sided a loss in accuracy 
is expected. This may eventually cause the limiters on the boundary nodes to have lower 
values than desirable thus increasing the amount of artificial diffusion. The effect can be 
detected on the solution as an spurious curvature of the Mach lines close to the solid wall, 
specially when the mesh is coarse. In order to mitigate the problem there is the choice of 
setting the limiters of all the affected nodes to unity. This way, the artificial flux is 
calculated using information from the interior node of the edge, where the loss of accuracy 
is much smaller.  

 
Derivative Recovery 
To recover the nodal values of the solution gradient it is assumed that the gradient field 

can be approximated using the shape functions and the nodal values 
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k j j k
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On the other hand, the elemental values of the gradient can also be obtained trough 
derivation of the shape functions 
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by equating the fields (5.4) and (5.5) in the weak sense we have 

 

 
j j

j k k jWN d W N d W
Ω Ω

∇ Ω = ∇ Ω ∀ Φ Φ   (5.6) 

 

with W being a generic test function. Using the Galerkin method (i.e. setting W=Ni) 
yields 

 

 
j j

i j k i k jN N d N N d W
Ω Ω

∇ Ω = ∇ Ω ∀ Φ Φ   (5.7) 

 

which is a linear system for the unknowns j
k∇ Φ . 
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note that RHS of (5.8) can also assembled by edges as it is similar to the RHS of (2.18). 



R. Flores, E. Ortega. 

16 

The expression above, which uses the consistent mass matrix, calls for the solution of a 
linear system. Two choices are available in PUMI: 

• Use of the lumped mass matrix to solve (5.8) 
• Solution of the system trough an iterative algorithm which uses the lumped mass 

matrix as an approximation of the consistent one: 
When the second method is chosen the solution scheme proceeds as follows:  
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 (5.9) 

 

the scheme (5.9) converges usually in just two or three iterations [3] so the increase in 
runtime is small. Once enough steps of the simulation have been run and the solution is 
close to the steady state, it is also acceptable to use the gradients at the previous step as 
initial guess for the iterative algorithm. 

 
Boundary conditions 
The boundary conditions that can be enforced fall into two broad categories, walls 

(slip) and far field (freestream values). 
Walls are assumed airtight, so the normal component of the velocity must vanish on 

them. This condition can be enforced in a weak form by setting the flux across the 
boundary in (2.24) to: 
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that is, only the pressure term of the momentum flux remains. Unfortunately, enforcing 
(5.10) alone does not guarantee zero mass flow everywhere (as the condition is only 
fulfilled in an average sense). This kind of problem arises mostly at the forward stagnation 
point. To achieve good results, zero normal velocity is enforced for points over the solid 
boundary in addition to (5.10). The velocity obtained after each stage of the time 
integration scheme is corrected according to:  

 

 ( ) [ ]0,1α α⋅ ∈Corru = u - u n n  (5.11) 

 

The parameter a in (5.11) is ramped slowly from zero at the beginning of the analysis to 
unity over a number of time steps [8]. This way the slip boundary condition is enforced in 
a progressive way, avoiding a sudden change at the first step which could lead to 
convergence problems if the initial condition is vastly different from the steady state 
solution (e.g. if the uniform freestream conditions are chosen as initial conditions). The 
normal vector at a node is taken as the weighted average of the normals of all the elements 
sharing the node 
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It must be noted that were there is sharp corner in the solid surface the normal in not 
properly defined and (5.10) cannot be always enforced. Two cases must be distinguished. If 
the solid surface is concave at the edge, the condition (5.11) is replaced by 

 

 ( )⋅Corru = u t t  (5.13) 

 

where t is the unit vector tangent to the edge (i.e. velocity parallel to the edge is 
enforced). The condition (5.10) is set on the faces of elements sharing the edge. On the 
other hand, if the surface is convex the direction of the velocity is not known a priori so it 
cannot be enforced. The velocity at the edge, in general, won’t be parallel to both faces so 
(5.11) cannot hold. In this case the value of the normal flux is calculated the usual way 
and no further restrictions are set on the velocity. This is the case, for example, of the 
trailing edge of a wing. 

The far-field boundary conditions require a certain amount of extra care. At the outer 
boundary where the fluid enters or leaves the computational domain only the components of 
the solution which enter the domain can be enforced, whereas those moving outward have to 
be taken from the interior solution. It is however impractical to change form conservative to 
characteristic variables, make the proper choice based on the propagation direction and finally 
revert to conservative variables. The same result can be obtained by using Roe’s approximate 

Riemann solver to calculate the fluxes at the outer boundary [8]. Let Roe
nA  be the flux 

Jacobian normal to the outer boundary for the intermediate state between the outer boundary 
and the freestream conditions. We have:  
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with the supra-indexes ∞ and O indication freestream and outer boundary conditions 
respectively. The value of the outer flux that takes into account the wave propagation 
characteristics of the solution can be approximated using the positive Jacobian  
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By setting the boundary flux to the value calculated through (5.15) the correct 
behaviour is obtained without having to enforce the value of the solution at the 
boundary. This method ensures that perturbations from the internal region of the 
domain are not reflected back at the outer boundary. Perturbations of the solution are 
thus minimized and no distinction has to be made between inflow/outflow or 
subsonic/supersonic boundaries when generating the input files. 
 
Performance enhancement 
To reduce solution time on modern desktop computers and workstations a node 

reordering mechanism is implemented to reduce the likehood of cache misses during 
execution. Starting with the first point (the choice of which is arbitrary) the nodes 
connected to the first one are assigned consecutive numbers. Once all of them have been 
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renumbered, the procedure is repeated starting with the nodes just renamed and 
renumbering their neighbours. The cycle is repeated until all the nodes in the mesh have 
been assigned a new numbering. When performing operations on the edges (which are 
processed in the same order as during the renumbering) the chances of a cache miss are 
reduced because neighbouring nodes are stored close to each order on the computer 
memory. The result of the renumbering algorithm depends obviously on the choice of the 
first node. This dependency can be somewhat mitigated by running several passes of the 
resequencer taking as first node at each iteration the last one from the previous pass [3]. 

To decrease solution time in multi-core and multi-CPU computers the code has been 
parallelized using OPEN-MP directives. To ensure no conflict (race condition) takes place 
during writes each of the active threads keeps a private copy of the residual vector. Thus, 
all the stages of the system assembly can be run in parallel without interaction from the 
different threads. Once all the private copies of the residual vector have been assembled, a 
reduction stage is performed in which all the private copies are merged (once again in 
parallel) to obtain the complete RHS of the equation. Once this has been done the solution 
using the lumped mass matrix can also be performed in parallel. This method of isolating 
the threads creates a slight memory overhead (as several partial copies of the vector are 
stored, one per thread) but it does not affect performance severely as long as the number 
of threads is not large. As PUMI is routinely run in systems with a limited number of cores 
(around four) there is no noticeable performance hit. 

7. EXAMPLES OF APPLICATION 

The code has been successfully tested with cases of industrial relevance by running 
simulations of a complete subsonic transport airplane. The study has been completed as 
part of the EU’s 6th Framework project REMFI (Rear Empennage and Fuselage Flow 
Investigation). A very detailed study of the flow field around the tail surfaces of a A380-
like geometry has been carried out analyzing the aerodynamic interference and aeroelastic 
effects caused by the twin-sting support mechanism. This device is used in wind tunnel 
testing for direct force measurements at the tail section. Due to the increased torsional 
loads applied on the wing, an optimal boom spacing must be sought which while 
minimizing direct aerodynamic interference at the tail prevents excessive wing twist 
which could introduce additional errors through it effect on downwash. To gain further 
understanding of the phenomena involved the complete aircraft model including the 
suspension devices had to be simulated. The typical mesh for an inviscid computation 
contains approximately ten million tetrahedral cells. The surface mesh for such a case is 
shown in Fig. 1 with a close-up of the interface between wing and support arm in Fig. 2. 
Different boom spacings have been tested for a wide range of flight conditions, covering 
from low subsonic speeds (M=0,35) all the way to high transonic regime (M=0,95 which 
is well above typical cruise conditions for such and aircraft). Fig. 3 shows a detail of the 
pressure distribution around the adaptor area evidencing the large aerodynamic 
interference effect. The numerical results have been checked against wind tunnel 
measurements in order to validate the code. In Fig. 4 the computed pressure distribution 
over the HTP at 70% span is plotted together with experimental data gathered during wind 
tunnel testing. A good agreement between both sets of results is observed. 

8. CONCLUSIONS 

The mathematical foundations and details of implementation of a 3D unstructured finite 
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element Euler solver have been presented. The code is designed to provide fast results 
while keeping the memory requirements at a low level. In addition to the optimized 
memory footprint, the code is parallelized to take advantage of the growing number of 
multi-core or multi-processor platforms available today. The software has been tailored to 
run on modest hardware (desktop computers) while still being able to deal with 
configurations of industrial relevance (models containing tens of millions of cells). The 
cost of the computations is kept low while achieving good quality  results (checked 
against other codes and wind tunnel measurements).  

 

REFERENCES 

[1] Dadvand P., ‘A Framework for Developing Finite Element Codes for Multidisciplinary 
Applications’, Ph.D. Thesis, (2007) 

[2] Donea J., Huerta A., ‘Finite Element Methods for Flow Problems’, John Wiley & Sons 
Ltd., (2003) 

[3] Löhner R., ‘Applied CFD Techniques’, John Wiley & Sons Ltd., (2001) 
[4] Morgan K., Peraire J., Peiró J., ‘Unstructured Grid Methods for Compressible Flows’, 

In Report 787 – Special Course on Unstructured Grid Methods for Advection 
Dominated Flows. AGARD, (1992) 

[5] Morgan K., Peraire J., ‘Unstructured Grid Finite-Element Methods for Fluid 
Mechanics’, Rep. Prog. Phys. 61: 569-638 (1998) 

[6] Lyra P. R. M., Morgan K., ‘A Review and Comparative Study of Upwind Biased 
Schemes for Compressible Flow Computation. Part I: 1-D First-Order Schemes, Arch. 
Comput. Methods Eng.,Vol. 7: 19-55 (2000) 

[7] Lyra P. R. M., Morgan K., ‘A Review and Comparative Study of Upwind Biased 
Schemes for Compressible Flow Computation. Part II: 1-D Higher-order schemes, 
Arch. Comput. Methods Eng.,Vol. 7: 333-377 (2000) 

[8] Lyra P. R. M., Morgan K., ‘A Review and Comparative Study of Upwind Biased 
Schemes for Compressible Flow Computation. Part III: Multidimensional Extension 
on Unstructured Grids’, Arch. Comput. Meth. Engrg Vol 9: 207-256 (2002) 

[9] Lomax H., ‘Fundamentals of Computational Fluid Dynamics’, Springer-Verlag, (2001) 
[10] Hirsch C., ‘Numerical Computation of Internal and External Flows’, Volume 2, John 

Wiley & Sons. (1990) 
[11] Turkel E., ‘Improving the Accuracy of Central Difference Schemes’, ICASE Report 

8853, September (1988) 
[12] Hu G., ‘The Development and Applications of a Numerical Method for Compressible 

Vorticity Confinement in Vortex Dominant Flows’, PhD Thesis, Virginia Polytechnic, 
(2001) 

[13] Swanson R.C., Turkel E., ‘Multistage Schemes with Multigrid for Euler and Navier-
Stokes Equations. Components and Analysis’, NASA Technical Paper 3631, August 
(1997) 

[14] Hirsch C., ‘Numerical Computation of Internal and External Flows’, Volume 1, John 
Wiley & Sons. (1990) 

[15] Zienkiewicz O., Taylor R., ‘The Finite Element Method: Volume 3, Fluid Dynamics.’ 
5th edition, Butterworth-Heinemann; (2000) 

 



Figures 

20 

 

Fig. 1 Surface mesh of test model including booms and adaptors. 

 

Fig. 2 Surface mesh detail around the wing-boom adaptor area. 
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Fig. 3 Wing pressure contours showing the disruptive effect of the wing-boom adaptor. 
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Fig. 4 Pressure distribution at the horizontal stabilizer. Comparison of simulation and wind tunnel 
experimental data. 




