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Abstract

Evolutionary methods are a powerful and robust tool for the solution of structural shape optimization problems. Nevertheless, the
use of these methods requires the structural analysis of an important number of different designs, this making the computational cost of
the analysis of each design a critical issue. For this reason, each design must be analyzed at a minimum computational cost but ensuring a
minimum quality of the results.

It is well known that the cheapest mesh for producing a solution with a fixed quality at minimum cost is an adapted one. Nevertheless,
traditional adapted meshes are obtained from adaptive remeshing strategies, where each design has to be analyzed more than once,
thereby also causing a high computational cost.

This work presents a new strategy that allows generating an adapted mesh for each design without the necessity of performing a full
adaptive remeshing procedure for each of them. It is based on the use of sensitivity analysis of all magnitudes related with adaptive reme-
shing (location of nodes, error estimation, etc.) with respect to the design variables. This sensitivity analysis is performed only once using
a geometry of reference and it is used to project the results of the corresponding analysis to all other designs to be analyzed. The projected
information allows generating an appropriate adapted mesh for each new design in one shot, greatly reducing the computational cost
compared with standard strategies.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

From a mathematical point of view, the treatment of an
optimization problem can be viewed as the minimization of
a function f(x) depending on a set of variables x and sub-
jected to some constraints. The general form of such a
problem is:
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minimize : f ðxÞ; x ¼ fxig; i ¼ 1; . . . ; n

with : gðxÞ ¼ fgjðxÞg; j ¼ 1; . . . ;m

verifying : gjðxÞ 6 0; j ¼ 1; . . . ;m

ai 6 xi 6 bi; i ¼ 1; . . . ; n

where f is the objective function, xi are the design variables
and gj are inequality constraints which, for structural prob-
lems, are normally expressed in terms of stresses or dis-
placements. The values ai and bi define lateral constraints.

Traditionally, evolutionary algorithms produce different
generations of individuals. Each individual is characterized
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by a set of values of x that correspond to a specific
structural design. The definition of each design in terms
of the values of x is called the ‘‘parametrization’’ of the
optimization problem. The resolution of the optimum
design problem consists of finding the values of x defining
the best design. In this work we deal with classical shape
optimization in which the values of x define the geometrical
shape of the problem boundary. Alternative optimization
approach like topological optimization are not considered
here.

In order to take decisions about the quality of each
design it is necessary to compute the corresponding values
of the objective function and the restrictions. This is carried
out by performing a complete structural analysis for each
individual, using a specific finite element mesh.

It is well accepted that evolutionary methods are a very
powerful and robust tool for the solution of general optimi-
zation problems with the ability of not getting trapped in
local minima, like in the case of deterministic methods.
This makes evolutionary methods very suitable to be used
in the context of structural shape optimization methods
where, typically, the constraints applied over the maximum
values of displacements and stresses produce a lot of local
minima where traditional deterministic methods can be
trapped. Nevertheless, the use of evolutionary methods
requires, typically, the analysis of a very significant number
of different designs this requiring a very high computa-
tional cost and preventing a more extended use of these
methods.

In the structural analysis of each different design the
computational cost and the quality of the solution are very
much dependent on the quality of the used finite element
mesh. One important ingredient of the numerical analysis
is the strategy for the generation of a proper mesh for each
design. Here we can see two types of strategies:

• To adapt a single existing mesh to the geometries of all
different designs. This produces bad shaped and over-
lapped elements when there are big differences between
the geometries of the different designs. Some existing
strategies (see Ref. [1]) allow adapting an existing mesh
for very big modifications of the boundary shape pre-
venting the elements from being too much distorted.
Nevertheless, despite the fact that this type of strategies
provides a valid mesh for each design, there is no control
of the discretization error contained in the results of
each analysis.

• To perform a classical adaptive remeshing procedure for
the analysis of each different design. Of course, this pro-
cedure ensures good quality results in the numerical
analysis of each design, but the total computational cost
grows significantly because each design is computed
more than once.

This work presents a new strategy that allows generating
an adapted mesh for each design without the necessity of
performing a full adaptive remeshing procedure. It is based
on the use of sensitivity analysis of all magnitudes related
with adaptive remeshing (location of nodes, error estima-
tion, etc.) with respect to the design variables. This sensitiv-
ity analysis is performed only once, using a geometry of
reference, and it is used to project the results of the corre-
sponding analysis to all other designs to be analyzed. The
projected information allows to generate an appropriate
adapted mesh for each new design in one shot, greatly
reducing the computational cost compared with traditional
adaptive remeshing operation over each design. This
method is inspired by a similar strategy that was developed
and used in the context of deterministic optimization meth-
ods (see [2,3]).

In the proposed method, a specific design is selected as a
reference of the whole population for each of the genera-
tions obtained during the evolutionary optimization pro-
cess. A complete exact sensitivity analysis is performed
for this reference, including the sensitivities of an error esti-
mator and all the magnitudes involved in a standard adap-
tive remeshing process. These sensitivities are used to
project all the information related with the adaptive reme-
shing process to all the individuals of a population, thereby
allowing the generation of an adapted mesh for each of
them in one shot.

It could be argued that if the sensitivity analysis of the
numerical solution of each design is performed, it could
be natural to use a deterministic optimization strategy
instead of an evolutionary one. Nevertheless, it is well
known that when there are local minima the deterministic
methods can get trapped on them and, in this cases, the
evolutionary ones are able to escape from that. This work
shows that even when evolutionary methods are used the
sensitivity analysis can provide good help in the analysis
of each design.

On the other side, it is also well known that deterministic
methods can be combined with evolutionary ones by look-
ing for the exact minimum once the evolutionary method
has provided a solution close to it. In these cases, the sen-
sitivity analysis is already available and the use of the strat-
egy proposed in this work is straightforward.

2. The proposed methodology

A scheme of the proposed strategy is presented in Fig. 1.
For each population, this strategy is summarized as
follows:

• A specific individual is selected as a reference of all of the
population. This individual can be fixed at the very
beginning of the optimization process as an initial
design. Nevertheless, the best results have been obtained
by defining a different reference for each generation of
the optimization process using the mean values of the
design variables of all of the individuals of that particu-
lar generation. Thus, if we have a population with P

individuals, the values of xr that define the reference

are computed as



Fig. 1. General scheme of the proposed methodology.
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xr ¼ 1

P

XP

p¼1

xp ð1Þ

where xp indicates the values of the design variables x
corresponding to the pth individual using the selected
parametrization.

• The reference design is analyzed using a traditional finite
element approach, including an adaptive remeshing
strategy to ensure a good quality of the results.

• Once a good mesh is obtained for the analysis of the ref-

erence, a complete sensitivity analysis of all the magni-
tudes involved in the adaptive remeshing strategy is
computed.

• For each of the individuals to be analyzed, the values of
all magnitudes involved in an adaptive remeshing strat-
egy are projected from the reference, using the corre-
sponding sensitivity analysis. This projection provides,
without any additional computation, an approximation
to the values that would be obtained for each specific
individual if it would have been computed with a finite
element mesh like the one used for the reference.

• An adapted mesh is generated for each individual using
the projected values of the last step. This adapted mesh
is used for the evaluation of the objective function and
the restrictions of the individual.

Details of each of the mentioned steps are provided in the
following sections.
Fig. 2. Parametrization of a curved B-spline.
3. Parametrization of the problem

Each design geometry is represented by using definition

points which specify some interpolation curves. The curves
used here are parametric B-splines. The general expression
of a closed B-spline for q points is (see, for instance, Ref.
[4]):

rðtÞ ¼
Xq

l¼0

rlN 4;lþ1ðtÞ ð2Þ
where r(t) is the position vector depending on a parametric
variable t, and N4,l+1 are the normalized fourth order (cu-
bic) B-splines. The curve is expressed as a linear combina-
tion of q + 1 normalized B-splines [4]. The rl coefficients are
the coordinates of the so-called polygon definition points

and they are found by using the coordinates of the defini-
tion points (see Fig. 2). The degree of continuity of a cubic
B-spline is C2. By using Eq. (2), the coordinates of the def-
inition points and some additional conditions about slopes
and curvatures, the following system of equations can be
derived:

V ¼ NR ð3Þ

where V is a vector containing the imposed conditions at
the definition points, N is a matrix containing some terms
corresponding to the values of the polynomials that define
each B-spline, and the R vector contains the coefficients rl

to be computed. Details of this process can be found in [4].
The first order sensitivities of R with respect to each

design variable xi are given by:

oR

oxi
¼ N�1 oV

oxi
� oN

oxi
R

� �
ð4Þ
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The derivatives of V with respect to the coordinates of the
definition points chosen as design variables can be easily
computed. The vector oR/oxi will contain the term orl/oxi.

Finally, the sensitivities of the coordinates of any point
on the interpolation curve corresponding to a fixed value of
t are obtained by:

orðtÞ
oxi
¼
Xq

l¼0

orl

oxi
N 4;lþ1ðtÞ ð5Þ
4. Mesh generation and mesh sensitivity analysis

The mesh generation algorithm used in this work is the
well known advancing front method. This technique is
ideal to generate non-structured triangular meshes (see,
for instance, Refs. [5,6]).

The characteristics of the desired mesh are specified via a
background mesh over which nodal values of the size
parameter d are defined and interpolated using the shape
functions. The background mesh for the first design has
to be defined by hand. For subsequent designs the back-
ground mesh will coincide with the mesh projected into this
design from the previous one. This projection will be
described later.

Once the sensitivities of the coordinates of each bound-
ary node are known, it is also possible to compute the sen-
sitivities of the coordinates of each internal nodal point
(mesh sensitivities). A description and comparison of meth-
ods commonly used to evaluate mesh sensitivities can be
found in [7]. These sensitivities are used to asses how the
mesh evolves when the design variables change.

There are many different ways to define the evolution of
the mesh in terms of the design variables. It is possible to
consider a simple analogous elastic medium, defining the
mesh on movement. This is the case of the ‘‘spring anal-
ogy’’, where each element side is regarded as a spring con-
necting two nodes. The force produced by each spring is
proportional to its length. The solution of the equilibrium
problem in the spring analogy is simple but expensive and
it involves to solve a linear system of equations with, for
2D problems, two degrees of freedom per node.

In this work, the spring analogy problem has been
solved iteratively using a Laplacian smoothing. This tech-
nique is frequently used to improve the quality of non-
structured meshes. It consists in the iterative modification
of the nodal coordinates of each interior node by placing
it at the center of gravity of adjacent nodes. The expression
of the new position vector of each node ri for each iteration
is given by:

ri ¼
Pki

j¼1rj

ki
ð6Þ

where rj are the position vectors of the ki nodes connected
with the ith node.

The solution of the spring analogy problem with a pre-
scribed error tolerance requires to check the solution after
each smoothing cycle. Taking into account that the
described iterative process is only a way to obtain mesh
sensitivities, rather than the solution of the equilibrium
problem itself, rigorous convergence conditions are not
needed. For this reason the number of smoothing cycles
to be applied can be fixed a priori. In the examples pre-
sented below we have checked that 50 iterations are enough
to ensure a good quality of results.

The first-order and higher-order mesh sensitivity analy-
ses along any design variable, xi, are obtained by differen-
tiating Eq. (6) with respect to xi for each cycle, i.e.

ori

oxi
¼
Pki

j¼1
orj

oxi

ki
ð7Þ
5. Finite element analysis

In this paper we will consider only the solution of struc-
tural problems governed by the standard elliptic equations
(see, for instance, [8]):

Lu � STDSu ¼ v in X ð8Þ

with appropriate boundary conditions. Discretization of
Eq. (8) leads to the standard linear system of equations:

Ka ¼ q with

K ¼
P

e
Ke

Ke ¼
R

Xe
BTDBdX

q ¼
P

e
qe

qe ¼ qXe
þ qRe

þ qP e

qXe
¼
R

Xe
NTbdX

qCe
¼
R

Ce
NTtdC

qP e
¼
P

NTp

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð9Þ

where K, a and q denote, as usual, the stiffness matrix, the
nodal displacements vector and the equivalent nodal forces
vector. Vectors b, t and p correspond to the body, surface
and point loads, respectively. Matrix B = SN is used to ob-
tain the strains at each point as e = Ba and the constitutive
matrix D relates strains with stresses as r = De.
6. Error estimation

The error associated with each finite element solution is
evaluated for each element using the Zienkiewicz and Zhu
[9] error estimator as:

kek2
Ee
� g2

e ¼
Z

Xe

ðr� � rÞTD�1ðr� � rÞdX ð10Þ

In this work, nodal stresses �r� are recovered using a glo-
bal least squares smoothing technique (see [9]):
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r� ¼
P

N i�r
�
i ¼ NT�r�

�r� ¼M�1U

U ¼
P

e

R
Xe

NTrdX

M ¼
P

e
Me

Me ¼
R

Xe
NNT dX

8>>>>>>>><
>>>>>>>>:

ð11Þ

Other procedures for nodal stress recovery, such as the
SPR proposed by Zienkiewicz and Zhu [10], can also be
used (see for example [11–13]).

The global error estimator g2 is found by addition of all
the elemental contributions g2 ¼

P
eg

2
e . The energy norm

can be defined and estimated from the expression:

kuk2
E ¼

Z
X

rTD�1rdX �
Z

X
rT

feD
�1rfe dXþ g2

¼ aTKaþ g2 ð12Þ
This error estimator has been found to be quite robust, reli-
able and inexpensive. The element sizes for a new mesh are
obtained using an adequate remeshing strategy (see, for in-
stance, [14–16]). This issue will be dealt with in the next
section.

7. Sensitivity analysis of the error estimator

The error estimator is related to strains or stresses,
which are related to displacements. Therefore, the sensitiv-
ity analysis of the error estimator requires the computation
of the sensitivities of all the magnitudes involved in the
analysis.

The objective function will normally be related to the
volume of the structure. Constraints are typically related
to strains, stresses or displacements. Therefore, it is neces-
sary to evaluate the sensitivities of the structural volume,
strains, stresses and displacements to compute the sensitiv-
ities of the objective function and the restrictions. This
requires the computation of the sensitivities of all the mag-
nitudes involved in the analysis.

The exact sensitivity analysis of all the element expres-
sions can be obtained by direct derivation of Eq. (9). This
provides the sensitivities of all magnitudes in terms of the
mesh sensitivities previously obtained (details of this pro-
cess are described in Ref. [17]). The sensitivities of an inte-
gral expression are computed after its transformation into
the isoparametric domain, whose shape does not depend
on the design variables. The Jacobian jJj of this transfor-
mation can be expressed in terms of the nodal coordinates,
so that it can also be differentiated in order to know the
integral sensitivities. Using the techniques developed in
[17], the sensitivities of the element stiffness matrix can be
obtained as:

oKe

oxi
¼
Z

Xn

oBT

oxi
DBjJj þ BT oD

oxi
BjJj þ BTD

oB

oxi
jJj

�

þBTDB
ojJj
oxi

�
dn1 dn2 ð13Þ
where the sensitivity of the Jacobian is:

ojJj
oxi
¼ jJj tr J�1 oJ

oxi

� �
ð14Þ

In Eq. (13), matrix B depends on the nodal coordinates,
so that oB/oxi can be obtained from the mesh sensitivities.

Normally, the sensitivities of D will be zero unless a
design variable affects the mechanical properties of the
material.

This technique allows to obtain first and higher-order
sensitivities of the stiffness matrix K, the nodal forces vec-
tor q and of any other integral expression involved in the
computations. The detailed expressions for the first and
higher-order sensitivity analysis can be found in [17].

Eq. (13) allows to obtain the sensitivities of the displace-
ment vector a as:

oa

oxi
¼ K�1 oq

oxi
� oK

oxi
a

� �
ð15Þ

Eq. (15) shows that the inverse of the stiffness matrix is
needed for the sensitivity computations. If a direct solver
is used this matrix has already been factorized and each
new sensitivity analysis involves only a new backsubstitu-
tion process. Moreover it is not necessary to assemble the
sensitivities of the stiffness matrix because they always ap-
pear multiplying a vector and these products can be com-
puted in an element-by-element manner.

The strain and stress sensitivities can be computed as:

oe

oxi
¼ oB

oxi
aþ B

oa

oxi
ð16Þ

or

oxi
¼ oD

oxi
eþD

oe

oxi
ð17Þ

The sensitivities of the smoothed stresses are computed in
terms of the sensitivities of the mass matrix M and the U
vector of Eq. (11). The techniques discussed above for
the integral expressions are also used to compute these sen-
sitivities. Finally, the sensitivities of the smoothed stresses
are obtained as:

o�r�

oxi
¼M�1 oU

oxi
� oM

oxi
�r�

� �
ð18Þ

or�

oxi
¼ NT o�r�

oxi
ð19Þ

The same comments about the factorization of the stiffness
matrix apply now to the mass matrix.

Following a similar procedure, the first-order sensitivity
of the error estimator is obtained from Eq. (10) as:

og2
e

oxi
¼
Z

Xn

or�

oxi
� or

oxi

� �T

D�1ðr� �rÞjJj
"

þðr� �rÞT oD�1

oxi
ðr� �rÞjJjþ ðr� �rÞTD�1 or�

oxi
� or

oxi

� �
jJj

þ ðr� �rÞTD�1ðr� �rÞjJjtr J�1 oJ

oxi

� ��
dn1 dn2 ð20Þ
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Fuenmayor et al. [18] extended the Zienkiewicz–Zhu [9]
error estimator to shape sensitivity analysis in order to de-
velop a discretization error estimator for shape sensitivity
analysis, obtaining the expression shown in (20). This
proves that the sensitivity of the error is equivalent to the

error in sensitivities.
Ref. [19] provides the expressions for the sensitivity

analysis of the SPR method. These expressions should
replace (16) and (17) in case SPR is used instead of the glo-
bal smoothing.

In order to use an adaptive mesh refinement strategy, it
is also necessary to compute the element and total strain
energy. The values of this strain energy and its first-order
sensitivities can be approximated from the finite element
solution as:

kuk2
Ee
� aTKeaþ g2

e ð21Þ
okuk2

Ee

oxi
� oaT

oxi
Keaþ aT oKe

oxi
aþ aTKe

oa

oxi
þ og2

e

oxi
ð22Þ
8. The applied evolutionary algorithm

The adaptive remeshing strategy proposed in this work
can be combined with any evolutionary method. For the
examples discussed below, Differential Evolution (DE)
has been applied. DE is an evolutionary algorithm that
has shown a robust performance, yielding good results,
even when applied to very different types of problems. Dif-
ferential Evolution was developed by Storn and Price in
1995 (see [20]). Its key idea is the differential operator,
which serves the same purpose as the crossover parameter
in a standard genetic algorithm, namely to exchange infor-
mation between parents when creating offspring.

Outline of the algorithm is shown in Fig. 3.
Storn and Price propose two different versions of Differ-

ential Evolution, we use the classical version DE1:
Let xp(t) be the pth solution parameter vector of gener-

ation t:

xpðtÞ ¼ ðxp
1ðtÞ; x

p
2ðtÞ; . . . ; xp

nðtÞÞ; ð23Þ
Fig. 3. Outline of the Differential Evolution algorithm.
where n is the length of the parameter vector (in real-value
encoding, n corresponds to the number of variables of the
objective function). For each vector xp(t), a so-called trial

vector xp0 ðtÞ is created by applying the differential operator:
Let K be a subset of 1,2, . . .,n. Then for each j 2 K holds

xp0

j ðtÞ ¼ xq
j ðtÞ þ F ðxr

jðtÞ � xs
jðtÞÞ; ð24Þ

and for each j 62 K holds

xp0

j ðtÞ ¼ xp
j ðtÞ; ð25Þ

where xq
j ; xr

j and xs
j are the jth components of three ran-

domly chosen parameter vectors (with q, r, s 5 p and
q 5 r 5 s). F is a coefficient usually taken from the interval
(0,1). It controls the amplification of the differential
variation.

The size of the subset K determines how many parame-
ters of each solution vector are changed. Storn and Price
propose the following scheme for choosing K:

K ¼ fm� n; ðmþ 1Þ � n; . . . ; ðmþ L� 1Þ � ng ð26Þ
The starting index m is a randomly chosen integer from the
interval [0,n � 1]. L is an integer drawn from the interval
[0,n � 1] with the probability P(L = m) = (CR)m.
CR 2 [0, 1] is the crossover probability and constitutes a
control variable for the algorithm. Both m and L are cho-
sen anew for each trial vector xp0 ðtÞ.

The hereby created individual xp0 ðtÞ is compared with its
parent xp(t). If it yields a higher fitness, we replace the par-
ent with the trial vector ðxpðt þ 1Þ ¼ xp0 ðtÞÞ. If not, the ori-
ginal vector is retained (xp(t + 1) = xp(t)).

In DE, the crossover operator and the mutation opera-
tor have been combined to a single genetic operator, the
differential operator. Mutation of a solution can thus only
occur within a range defined by the population. If the pop-
ulation converges towards an optimum, the difference
between the parameter vectors decreases. Thereby, the
magnitude of the mutation is decreased. DE thus incorpo-
rates an adaptive stepsize control.

Note, however, that the stepsize is reduced indepen-
dently of whether the algorithm is converging towards a
local or a global optimum. The algorithm only accepts a
new solution if it has a higher fitness than its parent. It
has no means of escaping, since worse solutions are never
accepted. Thus, the algorithm can get stuck in local
optima, if the individuals in a generation converge
prematurely.

In order to avoid premature convergence, F should not
be chosen too low. The threshold depends on the problem
at hand. In general, a larger F increases the probability of
escaping a local optimum while for F > 1 the convergence
speed decreases. The crossover probability CR also influ-
ences the convergence. A low value speeds up convergence,
again posing the problem of premature convergence. A
high crossover probability turns the algorithm into a
method resembling random search. In this work, F = 0.85
and CR = 0.7 were chosen.
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For a more detailed discussion of Differential Evolution,
see also [21].
Table 2
Pipe cross section

Design variable Optimal value

V1 10.666666ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

2 þ V 2
3

q
10.666666

V4 10.666666

Optimal analytical values of design variables.

Table 3
Pipe cross section

Generation Area Error%

Orig. Indiv 413.146 492.53
0 405.698 481.85
1–2 403.353 478.48
3 394.837 466.27
4 391.572 461.59
5 380.297 445.42
6 377.569 441.50
7 368.672 428.74
8 360.197 416.59
9 331.024 374.75
10 320.529 359.70
11 312.700 348.47
12 293.594 321.07
9. Projection to each design and definition of the adapted

mesh

Once the new design has been defined, the new values of
the error estimator, the ‘‘energy’’ and the coordinates of
the mesh can be projected from the reference to each differ-
ent design as:

ðx; yÞp ¼ ðx; yÞr þ
Xn

i

ðxp
i � xr

i Þ
ox
oxi

;
oy
oxi

� �
ð27Þ

gp2 ¼ gr2 þ
Xn

i

ðxp
i � xr

i Þ
og2

oxi
ð28Þ

kukp2

E ¼ kuk
r2

E þ
Xn

i

ðxp
i � xr

i Þ
okuk2

E

oxi
ð29Þ

where xr
i are the components of the reference vector xr de-

fined in expression (1).
The projected values provide the necessary information

to perform a remeshing over the next design, even before
any new computation is performed. In that sense, the error
estimator computed ‘‘a posteriori’’ is transformed into an
‘‘a priori’’ error estimator.

This projection is very important because it allows the
quality control of the mesh for each design prior to any
new computation. The projected values are used to create
the background mesh information needed to generate the
mesh for each design.

The generation of every new mesh in the remeshing pro-
cedure requires the definition of a ‘‘mesh optimality crite-
1

4

3

2

x

y P

Fig. 4. Pipe cross section. Original model and design variables.

Table 1
Pipe cross section

Design variable Initial value Data range Constraints

V1 20 [5.2–50.0]
V2 19 [4.0–50.0]
V3 19 [4.0–50.0] V3 < V1 � 0.5
V4 20 [5.2–50.0] V4 < V2 + 0.5

Design variables data.
rion’’. In this work a mesh is considered as optimal when
the error density is equally distributed across the volume,
i.e. when kek2

e=Xe ¼ kek2
=X is satisfied. The justification

of this mesh optimality criterion can be found in [14,15].
The combination of the mesh optimality criterion and

the error estimation allows to define the new element sizes.
Previously, it is necessary to define the admissible global
error percentage c as:
13 287.775 312.72
14 248.683 256.66
15 238.330 241.81
16–17 215.287 208.76
18 183.325 162.92
19 172.175 146.93
20–21 121.327 74.01
22–23 114.472 64.17
24–25 107.505 54.18
26–27 102.514 47.02
28–30 87.954 26.14
31–35 83.300 19.47
36–42 80.041 14.79
43–55 76.814 10.17
56 75.292 7.98
57–65 72.874 4.51
66 72.108 3.42
67–81 71.627 2.73
82 71.140 2.03
83–91 70.676 1.36
92–95 70.469 1.07
96–98 70.334 0.87
99–103 70.175 0.64
104–124 70.152 0.61
125–127 70.146 0.60
128–185 70.049 0.46

Evolution of objective function (area) and difference (error%) with respect
to the analytical solution for each generation.
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c ¼ 100
kek
kuk � 100

gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ðaTKaÞ2

q ð30Þ

The target error level for each element is:

kekt
e ¼

c
100
kuk

ffiffiffiffiffiffi
Xe

X

r
ð31Þ

The new element sizes �he can be computed in terms of the
old sizes he using the expression:
0
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Minimun = 69.725903 

Fig. 5. Pipe cross section. Evolution of area and erro
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Fig. 6. Pipe cross sectio
�he ¼
he

n1=p
e

with ne ¼
keke

kekt
e

ð32Þ

where p is the order of the shape function polynomials. For
further details see [14,15].

Expression (32) provides the size distribution that will
be used for the generation of the computational mesh
corresponding to each design. This size distribution is com-
puted using the information obtained from the reference
individual.
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r with respect to the optimal analytical solution.

5 6 7 8
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n. Shape evolution.
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Once the analysis of a given design is finished the quality
of the obtained results is checked by using the error estima-
tor (10). As expected, in most cases the estimated error will
be below the prescribed tolerance, but if it is not the case a
new classical adaptive remeshing procedure is used in order
to obtain a new set of results with a good quality. The num-
ber of cases (designs) in which this operation is needed is
very small, as it will be shown in the numerical examples.

10. Numerical examples

Four numerical examples, modelled with six-node qua-
dratic triangular elements, are exposed in this section:

• Pipe cross section.
• Gravity dam.
• Hook.
• Flywheel.
3

Plane strain

= 2300 kg/m
E = 13.1 10 N/m10 2

ρ

ν = 0.25

Fig. 8. Gravity dam. Original model.

6

8 5
10.1. Pipe cross section

The structure to be optimized corresponds to the cross
section of a pipe subjected to an internal pressure. Two per-
pendicular planes of symmetry were considered, therefore,
only one quarter of the section was modeled. The initial
shape is shown in Fig. 4. The shape of the component is
defined by a total of eight points, five of these points
describe a circular internal shape and three describe the
exterior of the pipe. The shape optimization problem con-
sists of finding the best shape for the external boundary
keeping the internal one fixed. The four design variables
represented in Fig. 4, corresponding to coordinates of the
points used to define the external boundary, were used in
the analysis.
Fig. 7. Pipe cross section. Optimal solution found (black contour) vs.
optimal analytical solution (shaded area).

Table 4
Pipe cross section

Design variable Solution obtained Analytical solution

V1 10.764639 10.666666ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

2 þ V 2
3

q
10.753775 10.666666

V4 10.776701 10.666666

Optimal analytical values of design variables vs. optimal solution found.
The mechanical properties considered do not corre-
spond to any specific material. We used E = 10.1 · 106

and m = 0.3. A uniform internal pressure P = 0.9 · 106

was applied over the internal surface of radius Ri = 5.
The objective function is the total cross-sectional area of
the pipe. The maximum von-Mises stresses along the
boundary of the model were restricted to 2.0 · 106. The ini-
tial values of the design variables and their allowed data
range and constraints are shown in Table 1. Observe that
we used constraint equations between the values of the
design variables in order to minimize the creation of unfea-
sible individuals.

The area of the analytical solution for this optimization
problem (1/4 of cross section) is Aopt = 69.725903 that cor-
responds to an external radius Ro = 10.666666. The design
variables values that describe the optimal solution are dis-
played in Table 2.
1

4

3

210

7

9

Fig. 9. Gravity dam. Design variables used to define the internal
boundary.

Table 5
Gravity dam

Design variable Initial value Range Constraints

V1 50.0 [50.0–60.0]
V2 3.0 [2.0–10.0]
V3 47.0 [41.0–50.0] V3 < V1 � 2.0
V4 7.0 [3.0–20.0] V4 > V2 + 3.0
V5 40.0 [25.0–48.0] V5 < V3 � 3.0
V6 10.0 [3.0–25.0] V6 > V4 + 2.0
V7 33.0 [25.0–39.0] V7 < V5 � 3.0
V8 7.0 [3.0–20.0] V8 < V6 � 2.0
V9 30.0 [23.0–30.0] V9 < V7 � 2.0
V10 3.0 [2.0–10.0] V10 < V8 � 3.0

Design variables data.
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In the analysis, 30 individuals per generation were used.
The analysis ran for a total of 185 generations. A maxi-
mum estimated relative error in energy norm c = 1.0%
was required for the analysis of each individual.

Table 3 shows the numerical values corresponding to the
evolution of the objective function (area) and the difference
(error%) between the objective function and the optimal
analytical value. These numerical results are presented
graphically in Fig. 5.
Fig. 10. Gravity dam. Analysis of generation 28. T
A graphical representation of the shape evolution as a
function of the generation number is shown in Fig. 6.

A comparison between the optimal analytical solution
and the solution found at the end of the optimization pro-
cess is represented in Fig. 7. Table 4 shows the numerical
comparison between the optimal values of the design vari-
ables and their optimal analytical values taken from Table
2. This comparison clearly shows the high accuracy of the
results obtained by means of the proposed methodology.
he highlighted individual required remeshing.
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Fig. 11. Dam. Evolution of objective function (area) and difference (error%) with respect to the final solution.
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Fig. 12. Dam. Shape evolution.
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Fig. 13. Dam. Comparison between the initial and the optimized shapes.

Fig. 14. Hook. Original model and design variables.
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The difference between the areas corresponding to the
analytical solution and the optimal solution found is
only 0.46%. In any case, one should take into account that
the optimal analytical external contour (circular shape)
cannot be obtained because the B-splines used to define
de contour are unable to exactly reproduce a circular
shape.

For this example, 97% of the meshes obtained with the
method of projection from the reference proposed in this
work provided an estimated relative error in energy norm
below the prescribed c = 1.0%. Only the remaining 3%
required an additional adaptive remeshing step in order
to provide good quality results.

10.2. Gravity dam

The gravity dam represented in Fig. 8 was analyzed.
Both dead weight and water pressure were considered in
the analysis. The model does not include any sharp reen-
trant corners.

The shape optimization problem consists of finding the
best shape for the internal boundary, keeping fixed the
external one, that minimizes the cross-sectional area of
the gravity dam. A total of seven points were used to define
the internal boundary. As indicated in Fig. 9, the coordi-
nates of five of these points were considered as the design
variables for this problem.

The maximum von-Mises stresses along the boundary of
the model have been restricted to 2.75 · 106 Pa. The initial
values of the design variables and their allowed data range
and constraints are shown in Table 5.

In the analysis, 30 individuals per generation were used.
The analysis ran for a total of 121 generations. A maxi-
mum estimated relative error in energy norm c = 3.0%
was required for the analysis of each individual.

For this example, 94% of the meshes obtained with the
method of projection from the reference proposed in this
work provided an estimated relative error in energy norm
below the prescribed c = 3.0%. Only the remaining 6%
required an additional adaptive remeshing step for provid-
ing good quality results. As an example of the analysis car-
ried out for one generation, Fig. 10 shows the meshes used
to analyze the individuals corresponding to the 28th gener-
ation. The figure shows the average individual used as ref-

erence for the analysis of all of the individuals of this
generation. In this case, the meshes for 29 of the individuals
where directly obtained by means of the data projection
from the reference individual. Only one of the individuals
required remeshing to reduce the estimated error in the
energy norm to the specified value.

Fig. 11 shows the evolution of the objective function
(area) and the difference (error%) between the objective
function and the optimal value obtained at the end of the
process. The optimization process provided an area reduc-
tion from 6,865,300 to 5,839,540.

A graphical representation of the shape evolution as a
function of the generation number is shown in Fig. 12.
Fig. 13 clearly shows the difference between the original
and the optimized designs.

10.3. Hook

The proposed methodology is used in this example in
the optimization of the shape of a hook in order to mini-
mize its weight. The initial shape, the applied load and
the geometry definition points are shown in Fig. 14. The
coordinates of 19 points are used as design variables, 16
of them points can move horizontally, one can move verti-
cally and the rest have been enforced to move along
straight lines inclined 45�.

A parabolic vertical load has been applied over the inner
part of the hook with a resulting load of 630 kg. The mate-
rial properties are E = 2,100,000 kg/cm2 and m = 0.3. A
plane stress model has been used. The objective function
is the total cross-sectional area of the hook. The maximum
von-Mises stresses along the boundary of the model were
restricted to 2000 kg/cm2. The minimum thickness of the
spike of the hook was limited to 0.5 cm.

In the analysis, 20 individuals per generation were used.
The analysis ran for a total of 410 generations. A maxi-



Fig. 16. Hook. Comparison between the initial (black contour) and the
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mum estimated relative error in energy norm c = 3.0% was
required for the analysis of each individual.

For this example 90% of the meshes obtained with the
proposed mesh projection technique provided an estimated
relative error in energy norm below the prescribed 3%. The
remaining 10% required an additional adaptive remeshing
step.

Fig. 15 shows the shape evolution as a function of the
generation number. It can be observed that the optimiza-
tion process displaces de vertical part of the hook until it
coincides with the resultant of the load forces in order to
eliminate the bending moment over this region. Fig. 16
shows a comparison between the original shape of the hook
(black contour) and the final solution obtained (shaded
area).

The optimization process provided an area reduction
from 181.22 to 101.78 cm2. This implies that the original
design was 78% heavier than the final solution.
optimized (shaded area) shapes.
10.4. Flywheel

Consider the design example shown in Fig. 17a in which
a fly-wheel is defined with one design region and two non-
design regions. A centrifugal load corresponding to a rota-
280 281-303 304-321 322-332 333-3

Original Individual 0 1-12

26-28 29-51 52-63 64-78 79

168-178 179-180 181-210 211-223 224-23

Fig. 15. Hook. Sh
tion speed of 3 rads/s, and a tangential load corresponding
to a distributed load of 1 N/mm2 applied over the external
boundary are considered. The material properties are:
Young’s modulus E = 210 GPa, Poisson’s ratio l = 0.29
and density q = 7860 kg/m3.
401-41047 348-373 374-394 395-400

13-14 15 16-22 23-25

80 81-87 88-157 158-167

3 234-235 236-264 265-267 268-279

ape evolution.



Fig. 17. Flywheel topology optimization.

a) Initial shape b) Independent design variables

Fig. 18. Flywheel modelization.
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Fig. 19. Flywheel. Evolution of objective function (weight) and difference (error%) with respect to the final solution.
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This problem has been previously solved, see [22], using
a combination of two optimization tools. In a first step,
and from the discretised model represented in Fig. 17b
(6000, linear plane stress quadrilaterals), topology optimi-
zation was used to find a preliminary layout optimization,
obtaining the topology represented in Fig. 17c.
In order to obtain a more refined shape for the flywheel
a classical deterministic shape optimization strategy based
on shape sensitivity analysis was followed. The initial shape
for this analysis, obtained from the preliminary model of
Fig. 17c is shown in Fig. 18a. This analysis reduced the
total weight from 1.53 to 1.45 kg.



Fig. 21. Flywheel. Comparison between initial and optimized shapes.
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In the analysis presented in this section, the determinis-
tic shape optimization algorithm has been substituted by
the evolutionary algorithm previously described.

The geometry of the solution obtained from the topol-
ogy optimization process has four symmetry axes. How-
ever, the tangential load has no symmetry axes and
consequently it is not possible to reduce the problem to
the study of only one eighth of the total. In any case, in
order to limit the computational cost of the shape optimi-
zation process, taking into account the presence of the sym-
metry axes, the following approach has been followed:

• The optimization problem is parameterized using a total
of 60 design variables which are some of the coordinates
of the key points that are allowed to move.

• Linear constraints where used in order to maintain the
symmetries of the model, finally obtaining a total of
only eight independent design variables (see Fig. 18b).

• The objective function adopted is the total weight of the
flywheel.

• The maximum values of the von-Mises stresses along the
boundary were restricted to 100 N/mm2.
Fig. 20. Flywheel. Shape evolution vs. g
• 300 generations with 15 individuals per generation
where considered.

• A maximum estimated relative error in energy norm
c = 5.0% was required for the analysis of each
individual.
Fig. 19 shows the weight values obtained along the evo-
lutionary optimization process and the difference (error%)
eneration number. Adapted meshes.
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between the objective function and the optimal value
obtained at the end of the process. A graphical representa-
tion of the shape evolution and the corresponding adapted
meshes is shown in Fig. 20. The total weight is reduced
from 1.53 kg to 1.4445 kg, which is very close to the result
obtained in the case of the deterministic optimization pro-
cess (1.45 kg). Nevertheless, if only the part of the design
that is modified is taken into account, then the reduction
is from 0.25 kg to 0.17 kg.

Fig. 21 shows a comparison between the original shape
(dotted line) and the final solution obtained (shaded area).

11. Conclusions

A strategy for integrating adaptive remeshing proce-
dures into evolutionary optimization processes has been
developed and tested. This integration provides an adapted
mesh for each design by projecting all necessary informa-
tion from a reference of all the population to each of the
different individuals. This projection avoids the necessity
of a full adaptive remeshing process over each design.

The proposed strategy provides a control on the quality
of the analysis of each design in the cheapest way because
only one single analysis is performed for each different
individual.

The examples show that the integration of the adaptive
remeshing strategy into the evolutionary algorithm does
not affect the convergence of the optimization process
and ensures a good evaluation of the objective function
and the constraints for each different design.
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