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Abstract At the local level, successful meshless
techniques such as the Finite Point Method must have
two main characteristics: a suitable geometrical support
and a robust numerical approximation built on the for-
mer. In this article we develop the second condition and
present an alternative procedure to obtain shape func-
tions and their derivatives from a given cloud of points
regardless of its geometrical features. This procedure,
based on a QR factorization and an iterative adjust
of local approximation parameters, allows obtaining a
satisfactory minimization problem solution, even in the
most difficult cases where usual approaches fail. It is
known that high-order meshless constructions need to
include a large number of points in the local support
zone and this fact turns the approximation more depen-
dent on the size, shape and spatial distribution of the
local cloud of points. The proposed procedure also facil-
itates the construction of high-order approximations on
generic geometries reducing their dependence on the
geometrical support where they are based. Apart from
the alternative solution to the minimization problem,
the behaviour of high-order Finite Point approximations
and the overall performance of the proposed methodol-
ogy are shown by means of several numerical tests.

Sergio Idelsohn is ICREA Research Professor at CIMNE.

Enrique Ortega · Eugenio Oñate (B) · Sergio Idelsohn
International Center for Numerical Methods in Engineering
(CIMNE) Universidad Politécnica de Cataluña UPC Campus
Nord, edificio C1, Gran Capitán, s/n, 08034 Barcelona, España
e-mail: onate@cimne.upc.edu

1 Introduction

The Finite Point Method (FPM) presented by Oñate
et al. [1,2] is a conceptually simple discretization
technique which has shown great capacity to solve
convective-diffusive problems, incompressible and com-
pressible fluid flow problems [3–7] and solid mechan-
ics problems [8] with good accuracy. In all of these
works, the approximation procedure and its behaviour is
explored from different points of view. Recurrently, top-
ics such as local distribution of points, weighting function
effects and high-order approximations are reviewed and
their valuable contributions give the FPM a more solid
base.

The main objective of this work is to present an alter-
native approach to calculate the local approximation
in the FPM. This procedure plays an ad-hoc role only
when the usual procedure fails and allows getting a sat-
isfactory approximation without the necessity of modi-
fying the local geometrical support. Furthermore, some
important features of the Finite Point (FP) approxima-
tion methodology are reviewed and the essential issues
highlighted. The second objective is to explore practical
aspects of high-order approximations with the aim of
identifying capabilities of the FP methodology which
allow implementing high-order solutions efficiently.

2 Approximation in the finite point method

An approximation to an unknown function u(x) defined
in a closed domain �ε �d (d = 1, 2 or 3) which is dis-
cretized by a set of points xi, i = 1, n is developed.
In order to obtain a “local” approximation for func-
tion u(x), the domain � is divided into subdomains
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�i (henceforth called “clouds of points”) so that
∑

�i

represents a covering for �. Each cloud of points con-
sists of a point xi called “star point” and a set of points
xj, j = 1, 2, . . . , np − 1 surrounding xi that complete �i.
Assuming that the function u(x) in �i is smooth enough,
it is possible to state the following approximation

u(x) ∼= û(x) =
m∑

j=1

pj(x) αj = pT(x)α (1)

where p(x) is a vector whose m-components are the
terms of a complete polynomial basis in �d and α is a
vector whose components must be determined. These
vectors are given by

pT
j = [

p1(xj) p2(xj) · · · pm(xj)
]

(1 × m)

α = [
α1 α2 · · · αm

]T
(m × 1)

(2)

Next, the unknown function is obtained at each point
xj ε �i as follows
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α = P α (3)

where uh
j = uh(xj) is the value of the unknown function

u(x) at x = xj, ûj = û(xj) is the approximated value at
that point and

P =
⎡

⎢
⎣

pT
1
...

pT
np

⎤

⎥
⎦

=
⎡

⎢
⎣

p1(x1) p2(x1) · · · pm(x1)
...

p1(xnp) p2(xnp) · · · pm(xnp)

⎤

⎥
⎦(np × m) (4)

In order to solve the equation system (3) the condition
np = m must be fulfilled. This penalizes the approxima-
tion flexibility and does not suit a meshless methodology.
Thus, np > m is adopted, the problem then becomes
overdetermined and an approximate solution of the
equation system (3) is sought by means of a Weighted
Least Squares (WLSQ) technique. This solution mini-
mizes a discrete L2 error norm in the approximation to
u(x) in �i.

The WLSQ approximation features depend on the
shape of the chosen weighting function and the manner
in which the latter is applied. In the FPM a fixed weight-
ing function, centred in the star point of the cloud, is

chosen so that it satisfies the following conditions

ϕi(xj) > 0 ∀ xj ∈ �i

ϕi(x) = 0 ∀ x /∈ �i

ϕi(xi) = 1
(5)

This kind of approximation is called Fixed Least Squares
Method (FLS) and can be considered as a particular
case of the Moving Least Squares Method (MLS) intro-
duced by Lancaster and Salkauskas [9]. When the FLS
procedure is applied, the approximation methodology
is considerably simplified and its computational cost
reduced. It should be noticed, though, that the approx-
imation functions obtained are discontinuous and this
fact imposes certain restrictions on the local approxi-
mation.

Going back to the minimization procedure, the fol-
lowing weighted discrete functional J(x) is defined

Ji =
np∑

j=1

ϕi(xj)
[
ûj − uh

j

]2

=
np∑

j=1

ϕi(xj)
[
pT

j α − uh
j

]2
(6)

where ϕi(xj) = ϕ(xj −xi). Next, it is possible to write the
discrete functional (6) in matrix form as follows

J =
(
Pα − uh

)T
φ(x)

(
Pα − uh

)
(7)

where

φ(x) = diag
(
ϕ(xj − xi)

)
j = 1, np (np × np) (8)

This discrete functional can be minimized with respect
to the unknown coefficients αj setting ∂J

/
∂α = 0, which

leads to the following equation system
(
PTφ(x) P

)
α −

(
PTφ(x)

)
uh = 0 (9)

also known as “normal equations” in the least squares
literature. Introducing the following matrices

A =
(
PTφ(x) P

)
,

Akl =
np∑

j=1

ϕi(xj)pk(xj)pl(xj) (m × m)

B =
(
PTφ(x)

)
, Blj = pl(xj) ϕi(xj) (m × np)

(10)

it is possible to express the normal equations (9) as

A α = B uh (11)
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Next, the vector of unknown coefficients can be found
by

α = A−1B uh (12)

If the columns of matrix P are linearly independent,
matrix A is positive-definite and consequently, non-sin-
gular. Then, the unknown coefficients αj are uniquely
determined by (12). However, depending on the spa-
tial distribution of the cloud of points (and especially in
2D and 3D problems), matrix A can become ill-condi-
tioned being very difficult to invert it with accuracy. For
cases like this one, an alternative procedure is presented
later on.

Finally, replacing (12) in (1), the approximation to the
unknown function is obtained for x = xi

û(xi) = pT(xi) A−1B
︸ ︷︷ ︸
NT (xi) (1×np)

uh (13)

where N(xi) is the shape function vector of the point xi

in �i.
The adoption of an FLS scheme, where matrices A

and B are constant in �i, noticeably simplifies the cal-
culation of shape functions derivatives. Consequently,

∂kNT(xi)

∂ xk
= ∂kpT(xi)

∂ xk
A−1B (14)

and the unknown function derivatives are calculated as

∂kû(xi)

∂ xk
= ∂kNT(xi)

∂ xk
uh = ∂kpT(xi)

∂ xk
A−1B uh (15)

2.1 Consistency of the approximation

It is a usual practice in meshless methods to associate
(despite its mathematical meaning) the term “consis-
tency” with the ability of a numerical method to repro-
duce a given polynomial of order p and its derivatives
in an exact way. In other words, the ability to reproduce
p-order polynomials is equivalent to p-order consistency
[10]. Following this approach, it is considered that a set
of functions N(x) has p-order consistency if the follow-
ing conditions are satisfied

np∑

j=1

Nj(x)p(xj) = p(x)

np∑

j=1

∂kNj(x)

∂xk
p(xj) = ∂kp(x)

∂xk
∇x ∈ �i (16)

where p(x) is a complete polynomial basis of order p
[11]. It was found for the MLS approximation that if the
basis is complete of order p, then consistency of order p

is obtained. It can also be demonstrated that any func-
tion in the basis can be exactly reproduced [11].

Due to the fact that the shape function and their
derivatives are discontinuous, in the FLS scheme
adopted here it is only possible to satisfy the consis-
tency requirements (16) in the cloud’s star point where
the weighting function is located, i.e., x = xi.

2.2 Approximation bases

In this work, complete polynomial bases in �d are used.
With the aim of avoiding numerical instabilities due to
large entries in matrix P, local approximation bases are
defined shifting the coordinate origin to the cloud’s star
point. Additionally, these local bases are scaled in order
to improve the conditioning of matrix A [6]. Proof that
shifting/scaling approximation bases leads to the same
shape functions can be found in the literature (see for
instance [12]). Here, for 3D problems, the following
second, thid and fourth order approximation bases are
employed

pT
(ii) =

[
1, x, y, z, xy, xz, yz, x2, y2, z2

]
m = 10

pT
(iii) =

[
1, x, y, z, x2, xy, xz, y2, yz, z2, x3, x2y, x2z, xy2,

xyz, xz2, y3, y2z, yz2, z3
]

m = 20

pT
(iv) =

[
1, x, y, z, x2, xy, xz, y2, yz, z2, x3, x2y, x2z, xy2,

xyz, xz2, y3, y2z, yz2, z3,

x4, x3y, x3z, x2y2, x2yz, x2z2, xy3, xy2z, xyz2, xz3,

y4, y3z, y2z2, yz3, z4
]

m = 35 (17)

where

x = xj − xi

dmax
, y = yj − yi

dmax
, z = zj − zi

dmax
(18)

and dmax = max(||xj − xi||) is the distance between the
star point and the furthest point in the cloud.

2.3 On the weighting function

The introduction of a compact support weighting func-
tion into the minimization problem allows focusing on
the information in the close neighbourhood of the star
point; thus, enhancing the local character of the approx-
imation. There exist many possibilities for choosing the
functional form of a weighting function that satisfies the
conditions given in (5). In FPM, a normalized Gaussian
function is chosen and defined by

ϕi(xj) = e−(dj/α)
k − e−(β/α)k

1 − e−(β/α)k (19)
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being dj = |xj − xi|, α = β/w and β = γ dmax (γ > 1.0).
The support of this function is isotropic, circular in 2D
and spherical in 3D. The parameters w, k and γ govern
the functional shape of the weighting function. These are
free parameters that should be properly set; moreover,
the final approximation features are highly dependent
on these parameters.

It is very difficult to define a combination of parame-
ters which allows getting an optimal global approxima-
tion for a given problem. Due to this fact, the freedom
to locally set and modify the approximation through a
variation of the functional form of the weighting func-
tion is an important tool for the numerical discretization
of complete geometries. Next, a brief analysis of the free
parameters involved in the weighting function definition
and their relation with the numerical approximation is
outlined.

Parameter γ provides more or less weight to the
boundary points of the cloud by increasing or decreas-
ing the size of the weighting function’s support. It is nec-
essary to point out here that in our case the number of
points in each cloud is defined a priori. Then, the support
size is already determined when the numerical approx-
imation is computed. Hence, only a small effect of the
variation of γ on the approximation is observed when
np ≈ m and this effect becomes negligible when the
number of points is increased. The error in the approx-
imation to the function tends to become higher when
γ is increased while the error in the approximation to
the derivatives of the function becomes smaller. Any-
way, these effects are not relevant and the parameter γ

is set to a constant value γ = 1.01 in the whole domain
�. Figure 1 shows the effect of parameter γ on the
approximation. The test problem is a Poisson’s prob-
lem ∇2φ = f (x, y, z) solved in a cubic domain and the
numerical results correspond to an isolate cloud centred
in the domain. A complete description of this problem
is presented later.

The next free parameter in expression (19) is the
exponent k. This parameter changes the shape of the
weighting function and increases the weight in the close
neighbourhood of the star point at the same time it
decreases the weight of the boundary points or vicever-
sa; see Fig. 2b. The effect on the numerical approxima-
tion is significant and could be interesting for particular
discretization cases. However, since we want to intro-
duce small adjusts in the approximation, through mini-
mum variations of the weighting function, the parameter
k is not suitable for that purpose. Therefore, this parame-
ter is set to a constant value k = 2 in the whole domain �.

Finally, the only parameter taken into account in
order to locally adjust the weighting function is the
parameter w. It allows changing the weighting of the

Fig. 1 Effect of the parameter γ on the L2-norm of the error
in a the variable φ, b the first derivatives (average) for clouds
with different number of points (np); w = 3.5 and second-order
approximation bases

points in the minimization problem and modifies the
local character of the latter. The effect of parameter w
on the functional form of the weighting function is pre-
sented in Fig. 2a.

For large values of w, the shape function tends to the
Dirac’s delta function (see Fig. 2a) and the approxima-
tion procedure tends to interpolate nodal data. When
w is increased, the values of Nj(x) → 0 except at the
star point where Nj(x) → 1, i.e., the shape function
also tends to the Dirac’s delta function. This causes the
error in the approximation to decrease and the con-
dition number of matrix A (κ(A)) to increase and, as
a consequence, the problem becomes more and more
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Fig. 2 Effects of the parameters w and k on the weighting func-
tion shape a effect of parameter w, γ = 1.01 and k = 2; b Effect
of parameter k, γ = 1.01 and w = 3.5

ill-conditioned. Beyond a given threshold it is not possi-
ble to invert matrix A with accuracy, the approximation
quality deteriorates quickly and numerical instabilities
appear. In Fig. 3 the effect of w on the numerical approx-
imation and the condition number of matrix A is shown
for the same Poisson’s test problem in Fig. 1. The results

displayed correspond to an isolated homogeneous cloud
centred in the analysis domain.

Figure 3 above shows that when w increases, the error
in the approximation of the unknown function decreases
while the approximation function tends to interpolate
the nodal values. For a value of parameter w ≈ 5,
ill-conditioning of matrix A becomes relevant and the
approximation error rises slowly. Finally, the process
diverges because it is not possible to invert matrix A
accurately enough.

Taking into account numerical experiments, a maxi-
mum admissible range for parameter w given by 3.0 ≤
wmax ≤ 4.5 for 3D problems is chosen. Note, however,
that this range must be defined for each particular prob-
lem. In this work, a value wmax = 3.5 is adopted in the
whole domain and then it is reduced in a local man-
ner, i.e., for each cloud of points, whenever necessary, in
order to obtain a given accuracy in the approximation
to the unknown function and their derivatives. We will
go back to this point later on.

2.4 Discretization of equations

In the FLS method the weighting function is fixed at the
star point of the cloud. The fact that we have different
shape functions for each star point (depending on the
cloud in which the shape function was calculated) leads
to multivalued shape functions, i.e., Nj(xi) 	= Nj(xk).
The approximation is globally and locally discontinu-
ous; hence, it must be only considered as valid in the star
point of the cloud where the shape function is located.
Consequently, a collocation technique becomes the nat-
ural choice in FPM.

Collocation procedures are simple and easy to imple-
ment; however, special care must be taken of the resul-
tant global equation system since they are likely to suffer
numerical instabilities. There is evidence in the liter-
ature that the robustness of collocation methods can
be enhanced working on the local approximation prop-
erties; for example, enforcing certain conditions such
as “positivity” by means of the biased selection of the
cloud’s points or through the local manipulation of the
weighting function [13]. In our work the stabilization
of the FPM equations has been achieved by solving
modified governing equations obtained via the so-called
Finite Calculus method. For details see [14]. A similar
approach is presented in [15].

3 Computation of the shape functions parameters

According to the FPM approximation methodology pre-
sented before, in order to get the unknown coefficients αj



954 Comput Mech (2007) 40:949–963

Fig. 3 Effect of parameter w
on the L2-norm of the error in
the variable φ and in the
condition number of matrix
A; np = 35 and second-order
approximation bases

and, consequently, the shape functions and their deriv-
atives for a given cloud of points, the following linear
system must be solved

A α = B uh (20)

It should be noticed that this system must be solved via
the inversion of matrix A because uh is not known in
advance. Although this methodology is fast, it is not the
most accurate for solving least squares problems, espe-
cially when the condition number of matrix A is large. If
we observe the structure of this matrix, we can see that it
is composed of a Vandermonde type matrix multiplied
by a diagonal matrix, which is, in turn, multiplied by
another Vandermonde type matrix. Consequently, the
final characteristics of matrix A are similar to Vander-
monde type matrices causing matrix A to be “naturally”
ill-conditioned. Obtaining an accurate solution of sys-
tem (20) is a key task in most meshless methods.

Introducing in (20) matrices A and B defined by (10),
the normal equations are recovered
(
PTφ(x) P

)
α =

(
PTφ(x)

)
uh (21)

Thus, the vector of the unknown coefficients is obtained
as follows

α =
(
PTφ(x) P

)−1(
PTφ(x)

)
uh (22)

It is possible to prove that if matrix P has rank m,
i.e., all their columns are linearly independent, matrix
PTφ(x) P is positive-definite and, consequently, non-
singular (note that matrix φ(x) is positive-definite by
definition). Then, the inverse matrix exists and the
unknown coefficients are uniquely determined.

The solution of the equations (22) by direct inversion
of matrix A must be restricted to cases when the con-
dition number of A is moderate. Generally, when the
condition number of matrix A is large, its inverse is not
appropriate to calculate the shape function and their
derivatives, even for cases when it is still numerically
possible to obtain one.

In this work, the procedure adopted to calculate the
shape function and their derivatives is the following.
Given a certain cloud of points, first, the direct inver-
sion of matrix A is attempted. If the condition number
of A is smaller than a given maximum admissible value
and if the calculated shape functions satisfy some qual-
ity tests, then, the shape functions are accepted. If some
of the preceding requirements are not met, the normal
equations (21) are solved by an alternative procedure
based on QR factorization.

3.1 Solution of the normal equations via QR
factorization

QR factorization is a more stable and accurate method
for solving least squares problems when matrix A is ill-
conditioned. The aim of using a QR factorization tech-
nique for the WLSQ problem is to get an acceptable
solution in cases where the other procedure fails with-
out having to modify the geometrical structure of the
cloud. From the computational cost’s point of view, the
least squares solution via QR factorization costs up to
twice as much as the solution via matrix A inversion if
np 
 m [16].

If matrix P has rank m and np > m, then it can be
uniquely factored as

P = QR (23)

where Q ε �npxm is orthogonal (QTQ = I) and R ε �mxm

is upper triangular with positive diagonal elements
Rii > 0. A similar procedure, based on columns piv-
oting, can be applied for cases in which matrix P is rank
deficient or near rank deficient.

In order to apply the QR factorization for solving the
WLSQ problem, it is necessary to obtain an equivalent
unweighted problem. Thus, the following factorization
is proposed

φ̃(x) = √
φ(x) such that φ̃

T
φ̃ = φ (24)
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and also the following modification of matrix P

P̃ = φ̃ P (25)

After that, it is possible to write a system equivalent to
Eq. (21) as
(
P̃

T
P̃

)
α =

(
P̃

T
φ̃

)
uh (26)

The equivalence between Eqs. (26) and (21) is verified by

P̃
T

P̃ α = P̃
T
φ̃ uh

(φ̃P)Tφ̃P α = (φ̃P)Tφ̃ uh

PT(φ̃
T
φ̃)P α = PT(φ̃

T
φ̃) uh

PT(φ)P α = PT(φ) uh

Once the equivalent system (26) is obtained, the modi-
fied matrix (25) is factorized, i.e., P̃ = QR and replaced
in this system leading to

(QR)TQR α = (QR)Tφ̃ uh

RT(QTQ) R α = RTQTφ̃ uh
(27)

where QTQ = I due to the orthogonality property and
matrix R is invertible (upper triangular with positive
diagonal elements). Multiplying both sides by (RT)−1,
we get

R α = QTφ̃ uh (28)

The unknown coefficients αj can be finally obtained by

α = R−1(QTφ̃) uh (29)

Here matrix R is generally well-conditioned and its
inverse is easy to obtain with accuracy, even for the
cases when matrix P is near rank-deficient.

The described procedure allows getting shape func-
tions of acceptable quality in cases where these can not
be obtained via direct inversion of matrix A. This fact
reduces the approximation’s dependence on the spatial
distribution of points and on the functional shape of the
weighting function significantly, giving robustness to the
Finite Point methodology.

4 Shape functions calculation an iterative procedure

With the aim of obtaining a suitable high-order approx-
imation in a given cloud of points despite its geomet-
rical configuration, the following iterative procedure is
proposed. First, the maximum admissible value of the
parameter w of the weighting function is set (wini =
wmax) and the WLSQ problem is solved via matrix A
inversion (12). Then, the shape function and their deriv-
atives are obtained by (13) and (15), respectively. The

resulting approximation is accepted if it satisfies the fol-
lowing requirements:

r1. κ(A) ≤ κmax(A)

r2.
∑

j
Nj − 1.0 � tol y

∑

j

∂Nj
∂x � tol

r3. consistency

The first requirement (r1) imposes a limit to the con-
dition number of matrix A in order to guarantee that the
latter is correctly inverted. The second requirement (r2)

implies that the shape functions and their derivatives
must build a “partition of unity” (PU) and a “partition
of nullities” (PNs), respectively. The last requirement
(r3) enables the verification of the approximation accu-
racy by checking the consistency requirements (16) in
the cloud’s star point. To achieve this, it is also possible
to replace the approximation basis by a known function
and check how much the approximated values deviate
from the exact values; see for instance [7]. The values
adopted for setting κmax(A), the parameter tol and the
admissible error in the consistency check depend on
the problem under consideration. In this work a value
κmax(A) = 1.E6 based on the infinite norm of matrix A
and the parameter tol = 1.E-10 are adopted. The consis-
tency check (r3) is performed according to the guidelines
given in [7].

If any of the preceding requirements is not satisfied,
the approximation is rejected and the solver changes to
the QR factorization based methodology (29) keeping
all approximation parameters constant. In general, the
QR factorization allows obtaining a suitable approxima-
tion where the matrix A inversion procedure fails. How-
ever, in particular cases where highly distorted clouds
of points are to be dealt with, it is possible that the
local approximation obtained via QR factorization also
fails and does not meet the requirements given by r1, r2
and r3. In this case the approximation is improved iter-
atively. In each iteration the parameter w is decreased
setting w = wi = αwi−1(α ≈ 0.75, w0 = wmax, i:iteration
counter) and the numerical approximation is calculated
again via the QR factorization technique. This proce-
dure continues until all the requirements are satisfied or
w reaches a minimum admissible value wmin. Numeri-
cal experiments have shown that two or three iterations
are enough to improve the approximation in highly dis-
torted clouds of points (if wmax is large).

Finally, if a local cloud of points does not allow con-
structing an appropriate high-order approximation, it is
possible to decrease its local order of approximation and
start the described shape function calculation procedure
again. This last option avoids the necessity of regener-
ating the cloud of points but its usefulness and effects
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on the global approximation must be evaluated for each
particular problem.

It should be noticed that the first requirement (r1)

loses its value when the QR solver is selected and in
that situation κ(R) is tested.

5 Generating local clouds of points

An adequate support of points is essential for setting
a good local approximation for each cloud. The quality
of the local approximation depends on the number of
points in the cloud and their spatial position in relation to
the star point. Even though the shape functions calcula-
tion technique already presented attempts to reduce this
dependence, the approximation’s spatial support contin-
ues playing a major role.

At present, there is not a unique reliable criterion
that allows determining the size, shape and spatial struc-
ture of the local support. Some numerical techniques
applied in this order belong to geometrical intuitive con-
siderations such as symmetry, cloud’s centre of gravity
position, etc. Other techniques introduce mathematical
considerations based on the structure of the matrices
involved in the shape function’s calculation procedure
focusing, for example, on conditioning and invertibility
features [17,18]. Mixed geometrical-mathematical con-
siderations are also used. Among them, enough over-
lap within approximation subdomains criteria and other
techniques related, for instance, to Point Collocation
procedure’s stability and the so called “positivity con-
ditions” can be mentioned [13,15,19]. All these crite-
ria, often employed with the aim to obtain a priori an
acceptable local support for the numerical approxima-
tion, lead to methods for generating the required point’s
connectivity.

A reliable methodology based on a Delaunay tech-
nique to generate local clouds of points for Finite Point
approximations was proposed in [7]. In the present work
the generation of local clouds of points has not a major
role. Only some geometrical considerations are applied
in order to guarantee that the “physical situation” of all
the points in the local cloud is compatible. The proce-
dure here employed is as follows.

Given a point discretization of the whole domain and
a set of normal vectors belonging to the surfaces that
bound this domain, a maximum (npmax) and minimum
(npmin) allowable number of points in the cloud and an
initial search radius are set. Then, for each star point
xi all neighbours within the search radius (rsearch) are
found through an octree technique. If the points found
are not enough, the search radius is increased until con-
dition npmin ≤ np ≤ npmax is satisfied. For every star

Fig. 4 Local clouds generation cases a star point located over a
surface; b cloud of points intercepting a surface

point in the domain which is located either over a sur-
face (solid boundary) or sufficiently close to a surface,
the points included in its cloud must satisfy the condi-
tions described bellow.

Case 1: star point located over a surface
In this particular case (sketched in Fig. 4a), every point
in the cloud xj, j = 1, np − 1 located within the search
radius is accepted if it meets the following conditions

cos (θ) � cos
(π

2
+ δ

)
; cos (θ) = ni · rj

‖ni‖
∥
∥rj

∥
∥

(30)

rt
j < α rsearch (31)

Condition (30) determines an acceptable domain around
the start point, which is defined in the normal direction
to the surface, and δ is a small angle dependent on the
surface curvature. The second condition (31) imposes a
certain aspect ratio in the cloud given by the parameter
α > 0.

Case 2: cloud of points intercepting a surface
In this case the point xj located over a surface (xjnea ),
nearest to the star point xi, must be sought (see Fig. 4b).
Then, every point in the cloud is accepted if

cos (θ) � cos
(π

2
+ δ

)
; cos (θ) = njnea • rj∥

∥njnea

∥
∥
∥
∥rj

∥
∥

(32)
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Fig. 5 Clouds of points
generated in a case 1:; b
case 2:

and no restriction is imposed to the aspect ratio of the
cloud of points.

Next, some clouds of points generated by the pre-
sented techniques are shown in Fig. 5.

6 Numerical examples

Three-dimensional numerical examples are presented
next in order to set forth some features of the presented
Finite Point methodology. The first and second exam-
ples attempt to investigate h and p convergence char-
acteristics of the method using second, third and fourth
order approximation bases. In the last example, the per-
formance of the FPM is shown in a more realistic cal-
culation case which solution involves all the preceding
techniques.

6.1 Poisson’s problem in a cubic domain

The following Poisson’s problem is solved

∇2φ = f (x, y, z) in �

φ = 0 on D (33)

where � is a unit length sides cubic domain with Dirich-
let boundary  = D. The source term f (x, y, z) is given
by

f (x, y, z) = { − 2kyz(1 − y)(1 − z)

+ [
kyz(1 − y)(1 − z)(1 − 2x)2]2

− 2kxz(1 − x)(1 − z)

+ [
kxz(1 − x)(1 − z)(1 − 2y)2]2

− 2kyx(1 − x)(1 − y) + [
kxy(1 − x)(1 − y)

× (1 − 2z)2]2} ekxyz(1−x)(1−y)(1−z)

1 − ek/64
(34)

where k = 200. The above problem has the following
analytical solution

φ(x, y, z) = 1 − ekxyz(1−x)(1−y)(1−z)

1 − ek/64
(35)

which is used to assess the accuracy of the numerical
solution. The error in the numerical calculations is eval-
uated by means of a discrete average quadratic norm
given by

‖ϕ‖2 =

⎛

⎜
⎜
⎜
⎝

n∑

i=1
(ϕe

i − ϕn
i )2

n∑

i=1
(ϕe

i )
2

⎞

⎟
⎟
⎟
⎠

1/2

(36)

where φ is any variable for which the error is calculated
and ( )e and ( )n refer to the exact solution and the
numerical FPM solution, respectively.

The domain is discretized by unstructured and homo-
geneous distributions of 650, 2,013, 4,468, 8,647 and
19,850 points. Clouds of 21, 40 and 75 points are used
with second, third and fourth order approximation,
respectively. The initial parameter w = wmax = 3.5
is set for all cases and it is locally adjusted when the
requirements in Sect. 4 are not satisfied by the local
approximation. It must be noticed that it is not allowed
to decrease the local order of approximation during
the shape functions calculation procedure. The equation
system is solved iteratively by a Bi-Conjugate Gradient
Method (BiCGM) and the stopping criterion employed
is ‖res‖∞ � 1.E − 12 ‖RHS‖∞. Figure 6 shows the FPM
solution for the variable φ and the test case n = 4, 468.

Next, the spatial convergence characteristics of the
numerical solution for the Laplacian of the unknown
function φ are investigated. The error norm used is
e = ∥

∥∇2φ
∥
∥

2 and h is taken as an average point spac-
ing of the spatial discretization.

Good convergence rates (indicated with r in the fig-
ure above) can be observed for the present problem.
Figure 7 shows that high-order approximations do not
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Fig. 6 a Iso-φ lines on a
surface cut in the domain. b
Problem discretization
displaying φ-results

Fig. 7 Poisson’s problem in a cubic domain: h-convergence for
∇2φ

improve accuracy when very coarse discretizations are
employed. This is an expected behaviour because an
increase in the approximation order implies an increase
in the support size. This fact brings about extensive
clouds of points which cover the problem domain caus-
ing the computed unknown function, and specially their
derivatives, to be considerably smoothed. This behav-
iour can be improved using an appropriate domain dis-
cretization in such a way that the solution lies within the
asymptotic range of convergence.

It should be noticed that the convergence charac-
teristics of FPM solutions are very dependent on local
approximation parameters such as np and w and the
geometrical distribution of points. Consequently, partic-
ular settings could originate a non-expected behaviour
of the convergence rates in some variables for which
observed and theoretical orders of convergence do not
agree.

Fig. 8 Error versus CPU run time

The convergence of the error norm versus CPU-time
is examined in Fig. 8. All cases were computed on a
Pentium IV 3.0 GHz processor based machine.

For this problem it is possible to note that high-order
approximations allow getting a better accuracy saving
CPU-time and storage depending on the spatial discret-
ization employed. As regards the CPU times, the most
accurate solution is not always the fastest one but in
some cases high-order accurate solutions involve a sig-
nificant storage savings. From the point of view of the
conditioning of the global equation system, Fig. 9 shows
that high-order approximations do not necessarily imply
ill-conditioning due to the increase in the band-width
of the system. The relation between the error and the
number of BiCG solver iterations necessary to achieve
a given residual seems to be only proportional to the
size of the system to be solved. Here the fourth-order
approximations present the best rate.
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Fig. 9 Error versus iterations of BiCG solver

6.2 Potential flow around a sphere

In this numerical example an ideal, irrotational and
incompressible fluid past around a stationary sphere is
solved in a closed domain � with boundary  = D∪N.
These assumptions lead to the following Laplace’s prob-
lem

∇2φ = 0 in �

φ − φD = 0 on D

n̂ · ∇φ = 0 on N

(37)

where D and N are Dirichlet and Neumann bound-
aries, respectively, and n̂ is the unitary outward normal
vector to N. Appropriate boundary conditions are set
in such a manner that originates an unperturbed velocity
field given by �v∞ = (1, 0, 0). Furthermore, in this exam-
ple a modified form of the Neumann’s boundary con-
dition derived through Finite Calculus technique [14] is
adopted with the aim of overcoming numerical instabil-
ities in the numerical solution.

Due to geometry and flow symmetry, only a half-
sphere is computed. The computational domain is dis-
cretized by a homogeneous unstructured distribution of
7,763 points and p-convergence is examined. The sur-
face of the half-sphere is covered by a coarse distribu-
tion of 253 unstructured points. Clouds of 25 ≤ np ≤ 35,
40 ≤ np ≤ 55 and 80 ≤ np ≤ 90 are used with second,
third and fourth order approximation, respectively. The
parameter w = 3.0 is kept fixed in all test cases and
QR solution of the WLSQ problem is employed when
requirements given in Sect. 4 are not satisfied by the
local approximation. Similar to the numerical example
in Sect. 6.1, the order of the local approximation is not
allowed to change during the shape functions calcula-
tion procedure. The global equation system is solved by
an iterative BiCG solver and the stopping criterion is
the same as for that example.

Numerical results of the pressure coefficient (Cp) and
the velocity field calculated for the fourth-order approx-
imation case are shown in Fig. 10.

A comparison between the analytical Cp distribution
along a cross section of the sphere and numerical results
obtained using second, third and fourth-order approxi-
mations is presented in Fig. 11. The discrete L2-norms
of the error in the numerical approximations are 1.7E-
2, 1.3E-2 and 8.8E-3 for the second, third and fourth
order approximations, respectively. These results show
that the numerical solution converges to the analytical
solution when the order of approximation is increased.
Note that the spatial discretization is the same in the
three cases.

Spatial convergence of the solution around the given
cross section is examined for three different unstruc-
tured, non-homogeneous distributions of points over
the sphere using second-order approximation bases. The
surface of the half-sphere is covered by 221, 359 and
1,167 points concentrated around the cross section
where the approximation error is computed. Each of
these half-sphere surface discretizations belong to an
unstructured discretization with 7,657, 8,151 and 10,683
points. Local approximation is built on 25 ≤ np ≤ 35

Fig. 10 Potential flow around a sphere a iso-lines of Cp; b modulus of velocity. Fourth-order calculation case, n = 7,763 and 80 ≤ np ≤ 90
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Fig. 11 Cp distributions over the sphere using second, third and
fourth order approximation bases

clouds of points with the parameter w = 3.0. This set-
ting is kept fixed for the three cases here analyzed. The
surface point discretizations over the symmetry plane of
the problem are shown in Fig. 12.

The convergence behaviour with the number of points
and the Cp distribution on the sphere for the finest sur-
face discretization (ns = 1, 167) are shown in Fig. 13.
Spatial convergence of the solution in a localized area
of the domain is obtained using second-order approx-
imation bases. A similar behaviour is observed using
high-order approximations. It should be noticed that in
these cases, parameters such as w and the number of
points in the cloud must be adjusted according to the
local discretization so as to get the best results. This evi-
dences the susceptibility of high-order approximations
to the spatial distribution of the points which claims for
an individual setting of the approximation’s parameters
in each cloud.

6.3 Potential flow around a semispan wing

The last numerical example is the 3D solution of an
ideal irrotational and incompressible fluid past around
a semispan wing. The system of equations (37) is solved
in a closed domain � with boundary  = D ∪ N and
proper boundary conditions are imposed in such a man-

Fig. 13 a L2-norm error versus number of half-sphere surface
points, O(2) with 25 ≤ np ≤ 35. b Cp distribution over the sphere.
Comparison between calculated and analytical results, n = 10,683
and nsurface = 1,167

ner that originate an unperturbed velocity field given
by �v∞ = (1, 0, 0). In this example, the modified form of
the Neumann’s boundary condition derived through the
Finite Calculus technique [14] is also adopted in order
to avoid numerical instabilities.

The semispan wing is set to zero incidence angle and
has an aspect ratio A = 8, taper ratio λ = 0.5 and zero
sweep-angle with respect to the quarter-chord line. The

Fig. 12 Symmetry plane of
the problem. From left to
right, half-sphere surface
discretization with 221, 359
and 1,167 points, respectively
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Fig. 14 Surface
discretization over the
semispan wing and the
symmetry plane showing
surface Cp results

Fig. 15 Numerical surface
results for non-dimensional
modulus of velocity

airfoil section is a NACA-0012 constant along the semi-
span.

The computational domain is discretized by an
unstructured and non-homogeneous distribution of
43,335 points. Second-order approximation bases are
used with clouds of 50 ≤ np ≤ 70 and the shape func-
tions calculation procedure is allowed to self-adjust
according to the iterative procedure presented in Sect. 4.
In this example it is unnecessary to decrease the order
of the local approximation in any cloud of points. As
in the previous examples, the global equation system is
solved by a BiCG method.

Figure 14 shows the surface discretization over the
wing (4,689 points) and the symmetry plane (837 points);
the points colour display the computed pressure coeffi-
cient values. The velocity field around the semispan wing
is shown in Fig. 15.

The Cp distribution obtained with the present meth-
odology along the root section of the wing is compared
with accurate 2D results in Fig. 16. A reasonable agree-
ment can be observed.

Fig. 16 Comparison of Cp distributions along the root section of
the semispan wing

With the aim of demonstrating the performance of
the proposed methodology, the CPU-time for each one
of the stages of the calculation is presented in Table 1.
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Table 1 CPU-times for semispan wing test case (n = 43, 335,
50 ≤ np ≤ 70 and second order approximation bases)

CPU-time Overall
(s) time (%)

Local cloud generation 4.65 6.59
Shape functions calculation 6.1 8.64
Assembly of the equation system 0.3 0.42
Equation system solution (BiCGM) 50.6 71.67
Others 8.95 12.68
Total: 70.6 100

This numerical example was computed on a Pentium IV
3.0 GHz processor based machine.

As it has been mentioned before, the iterative shape
functions calculation procedure has been employed and
the time involved in this task is 6.1 s. If direct inversion
of matrix A procedure (12) is used for the shape func-
tions calculation, the time needed is about 5.1 s; while if
the alternative QR factorization based procedure (29) is
used in all the domain the CPU-time is 11.5 s. These facts
demonstrate that the iterative procedure only needs a
little more time than the usual procedure, and takes
around twice more as much in the worst case, when all
shape functions in the domain must be recalculated.

Several numerical experiments that are not reported
here confirm that the iterative shape function calcula-
tion procedure has a noticeably positive impact on the
accuracy of the numerical solution, the stability of col-
location procedure and the iterative convergence of the
BiCGM.

7 Conclusions

An alternative procedure to obtain shape functions and
their derivatives for the FPM taking as a starting point a
given cloud of points has been presented. Our approach
reaches a satisfactory approximation focusing only on
the WLSQ problem and thus placing no emphasis on
getting an adequate local point distribution. The QR
factorization based approximation shows more accuracy
and robustness than the usual approximation procedure,
based on matrix A inversion, and is more adequate to
deal with non-appropriate local distributions of points.
In addition, the shape of the weighting function has dem-
onstrated to have very important effects on the approx-
imation characteristics and seems to be a good choice to
improve the local approximation quality.

Meshless methods such as the FPM permit to con-
struct high-order approximations with a reasonable
computational cost and this fact constitutes one of their
main advantages over conventional mesh-based meth-

ods. Some three-dimensional numerical tests have been
presented in order to point out certain features of the
high-order FPM. The results obtained are encourag-
ing. However, certain non-expected features springing
from the high-order approximations related, in general,
to particular settings of the approximation parameters
must be studied in more detail. Finally, the ability of
the FPM to undertake realistic calculation problems in
competitive CPU times has been satisfactorily demon-
strated.

Future work on Finite Point approximations is highly
promising. Research areas such as effective local cloud
generation techniques, h − p adaptability and efficient
high-order approximations should be worked upon in
order to exploit the Finite Point Method potential for
practical 3D applications.
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