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Abstract This work focuses on controlling the error
and adapting the discretization in the context of parabolic
problems. In order to obtain a sound mathematical frame-
work, the time domain is discretized using a Discontin-
uous Galerkin (DG) approach. This allows to formulate
the time stepping procedure in a variational format. The
error is measured in the basis of an output of interest of
the solution, defined by a linear functional. A dual prob-
lem, associated with this linear output is introduced. The
dual problem has to be solved backward in time.

An error representation is introduced, based on the
weak residual of the primal error applied to the dual
solution. Two different alternatives are studied to esti-
mate the error in the dual solution: 1) recovery based
error estimators and 2) implicit residual type estima-
tors. Once the error assessment is performed implicitly
in the dual problem, the obtained estimate is plugged
into the primal residual to obtain the error in the quan-
tity of interest. The implementation of the estimator is
drastically simplified by using the weak version of the
residual instead of the strong version used in previous
works.

Thus, the output error is assessed using a mixed tech-
nique, explicit for the primal problem and implicit for
the dual. In the framework of adaptive computations of
transient problems, this approach is very attractive be-
cause it allows using first the implicit scheme for the
dual problem and then integrating the primal problem,
estimating the error explicitly and eventually adapting
the space-time grid. Thus, at every time step of the time
marching scheme, the estimate of the dual error is in-
jected into the primal residual (explicit estimate for the
primal problem).

? Partially supported by MCYT, Spain. Grant Contract:
DPI2001-2204

1 Introduction

The modelling of transient diffusive phenomena leads
to second order parabolic PDEs. This is the case of
the transient heat equation, which is extensively used
to simulate the thermal behavior of mechanical devices
and structures. For instance, in the context of structural
analysis of bridges, the loads induced by thermal effects
have a significant influence in the final design. From a
practical viewpoint, the thermal load is characterized by
the temperature gradient in a characteristic cross section
of the bridge. The temperature gradient is a simple post-
process of the temperature distribution in the cross sec-
tion at a given instant T , say u(x, T ). Thus, the quantity
of interest is described by a linear functional J

(
u
)
.

The assessment of the error in a given quantity of in-
terest is performed introducing a dual problem in which
the linear functional J

(
·
)

appears in the right-hand side
of the governing equation and thus plays the role of an
external load. In the context of elliptic problems, the
combination of standard energy error estimates for both
the primal and the dual problems allows to assess the er-
ror in the output of interest [1,2]. In the parabolic setup,
the work of Machiels [3] follows the same idea neglect-
ing the error introduced by the time discretization. Also
for parabolic problems, Rannacher and co-workers [4]
explicitly express the output error in terms of residuals
associated with the strong form of the primal problem
and the (unknown) dual solution, following the pioneer-
ing work of Eriksson, Johnson and coworkers [5,6].

Here, the error in the quantity of interest is repre-
sented explicitly in terms of the dual solution using the
weak residual. Using the weak residual instead of the
strong one simplifies the implementation because there
is no need of computing flux jumps across the element
edges. Thus, once the error in the dual solution is esti-
mated, it can be directly injected into the primal residual
to easily obtain a sharp approximation of the error in the
quantity of interest.
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The assessment of the error in the dual problem is
performed using two different approaches: recovery type
estimates and implicit residual type estimates. The re-
covery estimates are extremely simple to implement and
prove to be very accurate in the application examples.
The implicit residual type approach requires solving lo-
cal problems in the space-time elements, involving a larger
programming complexity. The latter approach is how-
ever interesting if the dual solution is non-smooth. This
lack of smoothness may be caused by a number of fac-
tors. For instance, the presence of discontinuities in the
data (different materials) or sharp variations in the source
terms produce non-smooth (only C0, not C1) solutions.
The residual type estimates allow capturing this kind of
non-smooth error functions, while the recovery type esti-
mates obviously fail in these situations. The performance
of the two approaches is compared in the numerical ex-
amples.

The remainder of the paper is structured as follows.
The model problem, the space and time discretization
and the quantities of interest under consideration are
presented in Sect. 2. Sect. 3 introduces the error equa-
tions and the representation of the error in the quantities
of interest in terms of the primal and the dual errors. The
adopted error estimation strategies for the dual prob-
lem are described in Sect. 4. Finally, the numerical tests
demonstrating the performance of the proposed method-
ology are shown in Sect. 5.

2 Problem statement

2.1 Model problem

Let Ω ∈ Rd be a bounded d-dimensional open domain,
where d is equal to 1, 2 or 3. The problem to be solved
is stated as follows: find u(x, t), with x ∈ Ω ∈ Rd and
t ∈ I :=]0, T [ such that

u̇−∇ · (α∇u) = f in Ω × I (1a)
u(x, 0) = u0(x) for x ∈ Ω (1b)
u(x, t) = 0 for x ∈ ∂Ω, t ∈ I (1c)

where f is the source term, the coefficient α accounts
for the thermal conductivity (the capacity and density
terms affecting the u̇ term are set to 1) and u̇ stands for
∂u
∂t . The homogeneous Dirichlet boundary condition (1c)
is adopted in the presentation for the sake of simplic-
ity. Accounting for different boundary condition types
as Dirichlet non-homogeneous, Neumann or Robin does
not introduce any additional conceptual difficulty. The
numerical examples presented in Sect. 5 use actually dif-
ferent types of boundary conditions.

2.2 Space discretization

Problem (1) is discretized using standard Finite Ele-
ments (FE) in space. The discretization is associated

with a mesh of characteristic size H inducing the func-
tional space VH ⊂ H1

0(Ω). The dependence on time is
left to the coefficients (nodal unknowns) of uH in the FE
basis:

u(x, t) ≈ uH(x, t) =
npoin∑
i=1

ui(t)Ni(x) = uTN (2)

npoin being the number of nodes in the FE mesh dis-
cretizing Ω, u := [u1(t) u2(t) · · · unpoin(t)]

T and N :=
[N1(x)N2(x) · · · Nnpoin(x)]T.

Thus, a semi-discrete form is obtained: find uH(t) ∈
VH such that(

u̇H(t), v
)

+ a
(
uH(t), v

)
= l

(
v
)
, for all v ∈ VH , (3)

where

a
(
u, v

)
:=

∫
Ω

α∇u ·∇v dΩ, l
(
v
)

:=
∫

Ω

fv dΩ

and
(
·, ·

)
stands for the usual L2 product in Ω. Equa-

tion (3) results in a system of ODEs for the time depen-
dent coefficients (nodal unknowns) of uH . Equation (3)
is rewritten in matrix form

Mu̇ + Ku = f , (4)

where M is a mass (or capacity) matrix, which is the
discrete form of

(
·, ·

)
in the basis of VH , K is a stiffness

(or conductivity) matrix discretizing a
(
·, ·

)
and f is a

force vector, which is the discrete counterpart for l
(
·
)
.

The most common approach for solving (3) or (4) is
to introduce a time discretization {t0, t1, . . . , tN} and to
use any time marching scheme yielding approximations
un to the nodal values vector in the corresponding times,
un ≈ u(tn) for n = 0, 1, . . . , N .

In order to properly introduce the error assessment in
some quantity of interest, the time discretization must
be derived in a variational format. The Discontinuous
Galerkin (DG) approach on time is usually adopted to
fulfill this requirement [3,4].

2.3 Time discretization. Discontinuous Galerkin
formulation

As previously mentioned, a time grid is introduced: 0 =
t0 < t1 < · · · < tn < · · · < tN = T . The time slabs
In :=]tn−1, tn] and their measure 4tn = tn− tn−1 (time
steps) are also introduced for n = 1, 2, . . . , N . Let 4t
denote the characteristic time step of the time grid. A
discrete functional space on the time interval I is defined
associated with the time discretization:

V4t := {v : I → R; v|t∈In
∈ Pq(In)} ,

where Pq(In) stands for space of the polynomials of de-
gree less than or equal to q in In. Note that, in general,



Goal-oriented error estimation for transient parabolic problems 3

the functions in V4t are discontinuous at the points of
the time grid, tn for n = 1, 2, . . . , N − 1.

A discrete functional space on Ω × I is introduced
combining the space and time discretizations, VH and
V4t:

VH
4t :=

{
v : Ω × I → R

∣∣∣
∀t ∈ I v(·, t) ∈ VH and ∀x ∈ Ω v(x, ·) ∈ V4t.

}
From a practical viewpoint, taking uH in VH

4t is equiva-
lent to choosing the coefficients ui in V4t, see (2).

The DG solution is uH ∈ VH
4t such that

B
(
uH , v

)
= L

(
v
)
, for all v ∈ VH

4t, (5)

where

B
(
uH , v

)
:=

N∑
n=1

∫
In

{(
u̇H , v

)
+ a

(
uH , v

)}
dt

+
N−1∑
n=1

(
JuHKn, v(·, tn)

)
+

(
uH(·, 0+), v(·, 0)

)
(6)

and

L
(
v
)

=
∫

I

(
f, v

)
dt +

(
u0, v(·, 0)

)
. (7)

The notation JuHKn denotes the jump of uH at tn, that
is

JuHKn := lim
ε→0

uH(·, tn + |ε|)− uH(·, tn − |ε|).

Using the superscripts “-” and “+” for, respectively, left
and right limits, the jump is described by

JuHKn := uH(·, tn+)− uH(·, tn−).

The jump at t0 is also included in (5). The value of
uH in t0− is replaced by the initial condition given in
(1b), u0. The term including u0 is in the right-hand-side
of (5) because it is part of data. Once it is computed,
the value of uH in t0+ is different than u0 up to the
error introduced by the discretization in the numerical
scheme.

Note that the broken character of VH
4t (discontinuous

at every tn) decouples the computation of uH in every
time slab. Once uH is known at “t(n−1)−”, this value is
taken as an initial condition for the time slab In and the
following equation has to be solved:∫

In

{(
u̇H , v

)
+ a

(
uH , v

)}
dt

+
(
uH(·, t(n−1)+), v(·, tn−1)

)
=

∫
In

(
f, v

)
dt +

(
uH(·, t(n−1)−), v(·, tn−1)

)
(8)

for all v in the restriction of VH
4t to the time slab In.

2.4 Exact and reference solutions

The continuous counterpart of VH
4t is

V :=
{

v : Ω × I → R
∣∣∣

∀t ∈ I v(·, t) ∈ H1
0(Ω) and ∀x ∈ Ω v(x, ·) ∈ L2(I)

}
The exact solution of (1) is also the solution of the fol-
lowing continuous weak equation: find u such that∫

I

{(
u̇, v

)
+ a

(
u, v

)}
dt +

(
u(·, 0), v(·, 0)

)
=

∫
I

(
f, v

)
dt +

(
u0, v(·, 0)

)
, (9)

for all v ∈ V. Note that u is continuous along time and
therefore its time jumps are zero. Consequently, equation
(9) may be written as a particular case of (5). That is,
u is such that

B
(
u, v

)
= L

(
v
)
, for all v ∈ V, (10)

where the definition of B
(
·, ·

)
given in (6) is still valid

because, for u continuous, the jump term vanishes.
From a practical viewpoint, the error estimation strate-

gies are formulated in the basis of a reference solution,
much closer to u than the approximate solution uH . In
the remainder of the paper we will use a reference so-
lution uh associated with a finer spatial mesh of char-
acteristic size h and a time grid of characteristic time
step δt. It is assumed that h � H and δt � 4t. The
reference time grid is denoted as 0 = t̃0 < t̃1 < · · · <

t̃n < · · · < t̃Ñ = T . The time slabs Ĩn :=]t̃n−1, t̃n] and
the time steps δtn = t̃n − t̃n−1 are denoted in the same
fashion. The corresponding functional space is denoted
as Vh

δt. Thus, the reference solution uh ∈ Vh
δt is such that

B
(
uh, v

)
= L

(
v
)
, for all v ∈ Vh

δt, (11)

where the definition of B
(
·, ·

)
must be modified

B
(
uh, v

)
:=

Ñ∑
n=1

∫
Ĩn

{(
u̇h, v

)
+ a

(
uh, v

)}
dt

+
Ñ−1∑
n=1

(
JuhKn, v(·, t̃n)

)
+

(
uh(·, 0+), v(·, 0)

)
(12)

Usually, the reference time grid is taken as a refine-
ment of the original time grid. That is, for every n =
0, 1, 2, . . . , N there exists ñ such that tn = t̃ñ . In this
case, the definition of B

(
·, ·

)
introduced in (6) is a par-

ticular case of the definition of (12) (they coincide for
any function in VH

4t).
Thus, in the following, the bilinear form B

(
·, ·

)
is

taken as described in (12), that is including the jumps
in all the points of the refined time grid. This definition is
the most general in the sense that it unifies the writing
of the equations for uH , u and uh, (5), (10) and (11)
respectively.
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2.5 Quantity of interest and dual problem

Our goal is to assess the error in some quantity of in-
terest. We restrict ourselves to the functional outputs of
the form

J
(
u
)

=
(
j, u(·, T )

)
, (13)

that is, we are interested on a quantity depending on the
solution at the final time t = T . The function j(x) in
(13) is in L2(Ω) and stands for the Riesz representation
of the linear output.

Alternatively, it is also possible to consider an output
accounting for the behavior of the solution all along the
time, namely,

J
(
u
)

=
∫

I

w(t)
(
j, u(·, t)

)
dt, (14)

where w(t) is a weight function modulating the contri-
bution of every time to the quantity of interest. For the
sake of simplicity we will keep the form described in
(13). However, the generalization given in (14) does not
introduce any additional difficulty.

Thus, the Dual Problem is introduced as an auxiliary
problem to assess the error in the quantity of interest.
Let ϕ ∈ V be such that

B
(
v, ϕ

)
= J

(
v
)

for all v ∈ V. (15)

Recall that the jump terms in B
(
v, ϕ

)
are null for v ∈ V,

then (15) reads∫
I

{(
v̇, ϕ

)
+ a

(
v, ϕ

)}
dt +

(
v(·, 0), ϕ(·, 0)

)
=

(
j, v(·, T )

)
for all v ∈ V. (16)

After time integration by parts, (16) yields∫
I

{
−

(
ϕ̇, v

)
+ a

(
ϕ, v

)}
dt +

(
ϕ(·, T ), v(·, T )

)
=

(
j, v(·, T )

)
for all v ∈ V. (17)

Comparing (17) with (9) and (1), it is easily shown that
this weak form of the dual problem is equivalent to the
following strong form:

ϕ̇ + ∇ · (α∇ϕ) = 0 in Ω × I (18a)
ϕ(x, T ) = j(x) for x ∈ Ω (18b)
ϕ(x, t) = 0 for x ∈ ∂Ω, t ∈ I (18c)

Note that the initial condition (18b) is given at t =
T . The time integration must therefore be performed
backward in time. The problem is still physically and
mathematically sound because the sign of the diffusion
term, ∇ · (α∇ϕ), has changed with respect to the primal
problem (1).

The cost of approximating ϕ is the same as approx-
imating u. In the following the approximation to ϕ in
VH , ϕH is considered.

3 Error representation

3.1 Primal error equation

The error e := u−uH is inserted in (10) and the following
weak equation for the error is derived: find e ∈ V such
that

B
(
e, v

)
= L

(
v
)
−B

(
uH , v

)
=: RP

(
v
)
, for all v ∈ V,

(19)
where RP

(
·
)

stands for the weak residual in the primal
problem. Using (6) and (7) the expression for RP

(
·
)

is

RP
(
v
)

:=
∫

I

(
f, v

)
dt +

(
u0, v(·, 0)

)
−

(
uH(·, 0+), v(·, 0)

)
−

N∑
n=1

∫
In

{(
u̇H , v

)
+ a

(
uH , v

)}
dt

−
N−1∑
n=1

(
JuHKn, v(·, tn)

)
. (20)

Note that for any v in V, RP
(
v
)

is explicitly computed
once uH is available. It is worth noting that the expres-
sion for RP

(
v
)

does not require computing any spatial
jump (across element edges). The only jumps required,
JuHKn are the jumps in time, which are in this context
very easily computed.

Comparing (10) and (5) and using VH
4t ⊂ V, the

following orthogonality result is found:

B
(
e, v

)
= RP

(
v
)

= 0, for all v ∈ VH
4t. (21)

The reference error eh := uh − uH is the solution of
the discrete counterpart of (19)

B
(
eh, v

)
= RP

(
v
)
, for all v ∈ Vh

δt. (22)

Moreover the orthogonality condition (21) is also verified
replacing e by eh (recall VH

4t ⊂ Vh
δt ⊂ V).

The global error equation (19) or its discrete form
(22) are computationally unaffordable. The error esti-
mation strategies based on solving these equations lo-
cally (restricted to an element or a patch of elements)
yield local approximations of e (or eh) that can be used
to evaluate energetic quantities. Generally, in order to
evaluate J

(
e
)
, the approximation to e resulting from the

standard estimates is useless. However, a proper combi-
nation of energetic estimates in both the primal and the
dual problems allows assessing the error in the quantity
of interest, J

(
e
)

or J
(
eh

)
.

3.2 Using ϕ to assess J
(
e
)

The solution of the dual problem given by (15) and (18),
ϕ, allows representing the error in the quantity of inter-
est using the residual.
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Recall that ϕ is in V and therefore v can be replaced
by ϕ in (19), that is,

B
(
e, ϕ

)
= RP

(
ϕ
)
. (23)

Moreover, e is in V and therefore v can be replaced by e
in (15), that is,

B
(
e, ϕ

)
= J

(
e
)
. (24)

An error representation follows from (23) and (24):

J
(
e
)

= RP
(
ϕ
)
. (25)

This error representation gives the error in the quantity
of interest, J

(
e
)
, as an explicit function of ϕ and uH . Re-

call that the residual RP
(
·
)

depends on uH , see (20). The
residual is defined by integrals over Ω × I. Thus, using
the error representation (25), the error in the quantity
of interest may be easily split into local contributions,
from each element and time slab.

Using the orthogonality given by (21), the r.h.s. term
of (25) may be modified by adding (or subtracting) any
function in VH

4t, that is

J
(
e
)

= RP
(
ϕ− vH

)
. (26)

In the following we are interested in using vH = ϕH ,
where ϕH is the DG approximation of ϕ in VH

4t, and
vH = ΠHϕ, where ΠHϕ is the nodal interpolant of ϕ
in VH

4t. Obviously, ϕ and ΠHϕ are not known but ϕH

can be computed in the same fashion as uH . However,
once ϕH is obtained, a standard error estimate can be
used to approximate ε := ϕ − ϕH . The estimate for ε
is supposed to approximate RP

(
ε
)

properly because the
computation of RP

(
·
)

involves only energetic quantities.
Thus, the error representation (26) suggests using an

implicit error estimation strategy for estimating the er-
ror ε in the dual solution or, possibly, for ϕ−ΠHϕ. Once
ε or ϕ−ΠHϕ are fairly approximated, the error assess-
ment for the quantity of interest is purely explicit, see
(20) and (26).

The same rationale applies if the reference solution
ϕh, in the refined space Vh

δt, is considered instead of the
exact solution ϕ. In this case the error to be evaluated
(in the quantity of interest) is eh, represented by

J
(
eh

)
= RP

(
ϕh − vH

)
, for all vH ∈ VH

4t. (27)

Then, the reference error, J
(
eh

)
is evaluated as a func-

tion of εh := ϕh − ϕH or ϕh −ΠHϕh. The next section
introduces an error estimation strategy yielding approx-
imations for εh and ϕh −ΠHϕh.

4 Error estimation

4.1 General strategy and requirements

As already noted, we are concerned with approximating
the solution of the dual problem. From a practical view-
point, we focus on approximating the reference solution
ϕh rather than the exact solution ϕ. Obviously, com-
puting ϕh is equivalent to compute the reference error,
εh := ϕh − ϕH .

The global computation of ϕh solving equation (15)
in Vh

δt would result in a prohibitive computationally cost.
The error estimation procedures we present in this sec-
tion provides an approximation ϕ? to ϕh, obtained after
local computations and using the coarse solution ϕH .

In this section two different strategies are proposed
to obtain ϕ?. First, ϕ? is obtained by a simple postpro-
cessing of ϕH . A recovery procedure is used following the
ideas of Wiberg and coworkers [7]. A second approach is
used, based on the philosophy of the residual type esti-
mators with the simplest local boundary conditions [8].
As previously noted, this is equivalent to obtaining the
corresponding error version, ε? := ϕ? − ϕH .

Actually, due to the local assumptions needed to com-
pute ϕ?, the approximation ϕ? ≈ ϕ (i.e. ε? ≈ εh) is not
always properly satisfied. That is, the estimated error
is not a good approximation for εh (i.e. ε? 6≈ εh). Nev-
ertheless, ε? is found to be a proper approximation for
ϕh −ΠHϕh, that is ϕ? ≈ ϕh −ΠHϕh + ϕH . This is be-
cause ϕ? is computed from the nodal values of ϕH and
therefore the values of ϕ? at the nodes of the H-mesh
are very close (or coincide) with the values of ϕH . Recall
that this is enough to obtain a good estimate for J

(
eh

)
.

4.2 Recovery estimates

The first idea is to recover a function ϕ? in Vh
δt from the

solution ϕH based on local computations. The goal is
to obtain ϕ? such that ϕ? ≈ ϕh, that is to enhance the
quality of ϕH .

Recall that ϕ? is required to evaluate RP
(
ϕ?

)
, see

(20). Therefore, ϕ? must be used as an argument of the
L2(Ω) product. Thus, recovering fluxes is not sufficient.
Using the mechanical language, we require displacements
and not only stresses.

Previous work on recovering of displacements is due
to Wiberg and coworkers [7], where the recovered solu-
tion is obtained in an enriched finite element space from
the approximation in VH

4t by a least squares approxima-
tion.

We adopt here the same philosophy. However, some
peculiarities of the present approach must be pointed
out:

– We assume that the selected reference space is “h-
refined” both in space and time. That is, there is
some refinement factor r (r = 2, 3, 4 . . .) such that
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xi-2                    xi-1                     xi                    xi+1

ϕΗ

Fig. 1 Illustration of the space recovery procedure in 1D.
Every element of the mesh ]xi−1, xi[ is associated with a
patch ]xi−2, xi+1[ and the corresponding nodes of the H mesh
(marked with •). A polynomial is fitted to the values in the
•-nodes. This polynomial is evaluated to obtain the enhanced
values in the refined h-mesh (nodes marked with �).

Fig. 2 Illustration of the space recovery procedure in 2D.
Every element of the mesh Ωk (a) is associated with a patch
ωk (shadowed in b). A polynomial is fitted to the values in
the nodes in ωk using a least squares criterion (b). This poly-
nomial restricted to Ωk and it is evaluated to obtain the en-
hanced values in the refined h-mesh (c).

h = H/r and δt = 4t/r. We are not considering
so far the possibility of enriching the reference space
using the “p” approach, that is, increasing the order
of interpolation.

– The time and the space recoveries are performed in-
dependently.

– The space recovery is performed locally, in patches of
elements, centered in every element of the mesh. The
values of ϕH at the nodes of the H-mesh are used
as the input data and a higher order polynomial is
fitted. Once the polynomial is obtained it is evaluated
in the nodes of the h-mesh to describe ϕ?.

– The time recovery is also performed locally, using a
patch of three time slabs. That is, to determine ϕ?

in In we use ϕH in In−1

⋃
In

⋃
In+1.

4.2.1 Space recovery The space recovery procedure is
defined for the solution freezed at some t ∈ I. This pro-
cedure is used to recoverer an approximation ϕ?(·, t) in

tn-2                    tn-1                     tn                    tn+1

u

uH

tn-2                    tn-1                     tn                    tn+1

ϕ

ϕΗ

Fig. 3 Illustration of the superconvergence property of DG.
Forward integration of the primal problem (top) and back-
ward integration of the dual problem (bottom).

tn-2          tn-1         tn           tn+1

ϕΗ  

In

Fig. 4 Illustration of the time recovery procedure. For every
time slab In, the previous and next time slabs are also con-
sidered to interpolate a cubic polynomial using the 4 values
(in tn−2, tn−1, tn and tn+1) that are assumed to be more
accurate (for backward integration, the right limits).

Vh from ϕH(·, t). The dependence on t is omitted in the
following to simplify the presentation. Thus, the main
idea, following [7], is to smooth out ϕH locally (in some
patches of elements). Every element of the mesh gener-
ating VH , Ωk for k = 1, . . . , nelem is associated with the
patch ωk of elements surrounding Ωk, see figures 1 and
2.

In the simple 1D case represented in Fig. 1, the patch
of elements involves 4 nodes of the H-mesh (for interior
elements). In this case a cubic polynomial is interpolated
using the four values of ϕH in these nodes to set the
values of ϕ? in the nodes of the h-mesh.
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In the 2D case, a quadratic polynomial is fitted to the
nodal values of ϕH in ωk using a least squares criterion.
Following Fig. 2, the values of ϕH in the 16 nodes of the
H-mesh in ωk are used to fit a quadratic polynomial (6
d.o.f. in 2D). Once this polynomial is fitted, we evaluate
it in the nodes of the fine h-mesh in Ωk. The average of
all the computed values is used for the nodes of the h
mesh involved in different patches (internal boundary of
Ωk).

4.2.2 Time recovery The time recovery procedure is de-
fined for the solution located at some x ∈ Ω. It consists
on building up an enhanced approximation ϕ?(x, ·) in
Vδt from ϕH(x, ·). The dependence on x is omitted in
the following to simplify the presentation.

The time recovery strategy proposed here exploits a
well known superconvergence property of the DG scheme.
In the DG approximation the approximation in tn− (left
limit) is much better than the approximation in tn+. Ob-
viously, if the time integration is performed backwards,
the accurate value is tn+. This property is standard for
time DG schemes and it is illustrated in Fig. 3.

Thus, using this fact, the restriction to the time slab
In of the recovered function ϕ? is obtained by a proce-
dure similar to the 1D spatial recovery. This procedure
is illustrated in Fig. 4. A cubic polynomial is found in-
terpolating the values of ϕH at the times tn−2, tn−1, tn

and tn+1. Once the polynomial is determined it is eval-
uated at the points of the refined time grid (generating
Vδt) in In to define the restriction of ϕ? to In.

4.3 Residual estimates

The reference error in the dual problem εh := ϕh−ϕH is
the solution of the discrete residual equation, analogous
to (22),

B
(
v, εh

)
= RD

(
v
)
, for all v ∈ Vh

δt, (28)

where the residual in the dual problem is defined in the
same fashion as RP

(
·
)

: RD
(
v
)

:= J
(
v
)
−B

(
v, ϕH

)
. An

alternative approach to build up a proper approximation
to εh is to solve locally the residual equation (28).

The main difficulty for this kind of estimates is to set
proper boundary conditions to the local problems.

Here, we present a simple approach based on solving
the restriction of (28) to every element of the space-time
mesh, that is to every Ωk× In for k = 1, 2, . . . , nelem and
n = 1, 2, . . . , N .

In this case we need both initial conditions at Ωk ×
{tn} (recall that for ϕ the time integration is performed
backwards) and boundary conditions on ∂Ωk × In. Here
we have made the following choices:

– Initial condition at Ωk × {tn}. We assume, as in 4.2.2,
that at t = tn, ϕH(·, tn+) is much more accurate
than ϕH(·, tn−). Thus we recover an approximation

ϕ?
0(x) from ϕH(·, tn+) using exactly the same proce-

dure described in Sect. 4.2.1. ϕ?
0(x) is used as initial

condition for the local problem.
– Boundary conditions on ∂Ωk × In. For the sake of sim-

plicity we set Dirichlet type boundary conditions. We
also extract the boundary conditions from a recovery
procedure. Now, for every node in ∂Ωk, we smooth
out the restriction of ϕH to this node, using the re-
covery strategy described in Sect. 4.2.2.

Once the initial and boundary conditions are set, the
local problem is solved using a fine local discretization
(the restriction of Vh

δt to Ωk × In).
Note that this can be done either using ϕ? or ε? as

unknowns. This is because the equations for ϕh and εh

are respectively (22) and (28). Recall that both ϕ? and
ε? can be used as input of RP

(
·
)

and the same estimate
for J

(
e
)

is obtained.

4.4 Remarks on the implementation of an adaptive
process

The definition of a proper adaptive strategy is beyond
the scope of this paper. However, it is worth noting that
a reliable estimate using this approach will be extremely
useful in an adaptive process. The scheme of the imple-
mentation of this process may be summarized as follows:

– Set prescribed error values (tolerances). Compute ϕH

integrating backwards. Estimate ϕ?.
– Start computation of uH . Loop on time steps.

– After each time step, compute the contribution
to RP

(
ϕ?

)
of every element in the time slab In.

– Check if some of these contributions are too large
and, if needed, refine either the spatial mesh (re-
duce H) or the time grid (reduce 4t).

– End loop on time steps.

5 Numerical examples

5.1 Example 1: 1D synthetic problem

J
`
u

´
J

`
uh

´
J

`
uH

´
J

`
e
´

J
`
eh

´
0.3369 0.3367 0.3361 8.09× 10−4 6.09× 10−4

Table 1 Example 1: Values of the quantity of interest for
the solutions and errors

We consider the 1D spatial domain Ω :=]0, 1[ and
time interval I =]0, 0.2[, i.e. T = 0.2. We solve Problem
(1) with α = 1 and f such that the exact solution is

u(x, t) := e−π2(t+t2) sin(πx),

see Fig. 5. The solution u is such that (1b) is verified
and the initial condition is set such that the solution
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RP
`
·
´

RP
`
·
´
/J

`
e
´

RP
`
·
´
/J

`
eh

´
ϕ?

1 (recov.) 6.09× 10−4 75.3% 100.1%
ϕ?

2 (resid.) 6.07× 10−4 75.0% 99.8%

ϕh 6.09× 10−4 75.2% 100.0%
ϕ 8.09× 10−4 100.0% 110.4%

Table 2 Example 1: Residuals giving approximations to er-
rors in the quantity of interest. Reference solution with r = 2.
Effectivity indices.
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0
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t
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0.2
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0.8
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0
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0

1
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3

4

5

6

7

8

t

Fig. 5 Example 1: Representation of the primal solution uH

(top) and the dual solution ϕH (bottom))

holds, that is u0(x) = u(x, 0). The quantity of interest
is defined according to (13) taking

j(x) = eπ2T sin(πx),

namely, the quantity of interest is a weighted average
of the solution at the last time, at t = T . The approxi-
mations uH and ϕH are computed with a uniform mesh
of 30 two-noded linear elements. The time grid is uni-
form with N = 20 and therefore 4t = T/N = 0.01. The
solutions uH and ϕH are displayed in Fig. 5.

The reference mesh is both determined by a refining
factor of 2 (r = 2), see Tab. 2, and 6 (r = 6), see Tab. 3.
Recall that h = H/r and δt = 4t/r.

For each value of r, two different recovered solutions,
ϕ?

1 and ϕ?
2, are obtained, both in Vh

δt. The first one is
computed following the strategy described in Sect. 4.2
(recovery) and the latter following the strategy intro-
duced in Sect. 4.3 (residual).

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

3.5

4

4.5

5
x 105

t

error

Fig. 6 Example 1: Error distribution along time. Contribu-
tions to the error from every time slab corresponding to exact
error �, reference error M, estimated error with the recovery
approach O and estimated error with the residual approach ?.
Note that the latter three (reference error and two estimates)
are practically identical

The numerical results are summarized in tables 1, 2
and 3. It can be noted, comparing tables 1 and 2, that
J
(
e
)

= RP
(
ϕ
)

and J
(
eh

)
= RP

(
ϕh

)
, as expected.

The estimates associated to ϕ?
1 and ϕ?

2 have similar
quality. It is noted that both of them are extremely good
approximations of the reference error. This is the best
one can expect from solutions belonging to the refer-
ence functional space Vh

δt. Fig. 6 shows the values of the
contributions to the error from each time slab. The coin-
cidences between ϕ?

1 and ϕ?
2 and the reference error are

confirmed there. Moreover, if r increases the reference
solution gets closer to the exact solution. The estimates
follow the same behavior as shown in Tab. 3.

RP
`
·
´

RP
`
·
´
/J

`
e
´

RP
`
·
´
/J

`
eh

´
ϕ?

1 (recov.) 7.86× 10−4 97.1% 99.7%
ϕ?

2 (resid.) 7.87× 10−4 97.3% 100.0%

ϕh 7.87× 10−4 97.3% 100.0%
ϕ 8.09× 10−4 100.0% 102.8%

Table 3 Example 1: Residuals giving approximations to er-
rors in the quantity of interest. Reference solution with r = 6.
Effectivity indices.

5.2 Example 2: 2D synthetic problem

We consider the 2D spatial domain Ω :=]0, 1[×[0, 1] and
time interval I =]0, 0.2[, i.e. T = 0.2. We solve Problem
(1) with α = 1 and f such that the exact solution is

u(x, y, t) := 100e−10t−800(x−xm)2(y−ym)2 sin(πx) sin(πy)2,

where xm = ym = 0.1. The solution u is such that (1b)
is verified and the initial condition is set such that the
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Fig. 7 Example 2: Representation of the solution uH at dif-
ferent times ( t = 24t, t = 84t, t = 164t and t = 204t = T ,
from top to bottom)
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Fig. 8 Example 2: Representation of the solution ϕH at dif-
ferent times( t = 24t, t = 84t, t = 164t and t = 204t = T ,
from top to bottom)
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J
`
u

´
J

`
uh

´
J

`
uH

´
J

`
e
´

J
`
eh

´
0.2601 0.2601 0.2597 0.463× 10−3 0.356× 10−3

Table 4 Example 2: Values of the quantity of interest for
the solutions and errors

RP
`
·
´

RP
`
·
´
/J

`
e
´

RP
`
·
´
/J

`
eh

´
ϕ?

1 (recov.) 3.46× 10−4 74.8% 97.2%
ϕ?

2 (resid.) 4.26× 10−4 92.0% 119.6%

ϕh 3.56× 10−4 76.9% 100.0%
ϕ 4.60× 10−4 100.0% 129.4%

Table 5 Example 2: Estimated errors associated with dif-
ferent approximations of the dual solution ϕ and effectivity
indices with respect to the exact and the reference solutions.

solution holds, u0(x, y) = u(x, y, 0). The quantity of in-
terest is defined according to (13) taking

j(x, y) =
1
40

exp(2π2T ) sin(πx) sin(πy).

The approximations uH and ϕH are computed with a
uniform mesh of 30 × 30 four-noded quadrilateral ele-
ments. The time grid is uniform with N = 20 and there-
fore 4t = T/N = 0.01. The solutions are displayed in
figures 7 and 8.

The reference mesh is determined by a refining factor
of 2 (r = 2). Thus, h = H/2 and δt = 4t/2.

As in the previous example, the estimates ϕ?
1 and

ϕ?
2 are computed, both in Vh

δt. The recovery estimate
ϕ?

1 follows the strategy described in Sect. 4.2 and the
residual estimate ϕ?

2 follows Sect. 4.3.
The numerical results are summarized in tables 4 and

5. It can be noted, also in this example, comparing tables
4 and 5, that J

(
eh

)
= RP

(
ϕh

)
and J

(
e
)

= RP
(
ϕ
)
, as

expected. Some examples show a tiny difference between
J
(
e
)

and RP
(
ϕ
)
. This is due to the error introduced by

the numerical quadrature in the integration of the exact
solution, which is not a polynomial. Here, this error is
below the threshold of accuracy used for displaying the
results.

The behavior of the recovery estimate is, in this ex-
ample, similar to the previous one. The effectivity cor-
responding to the reference error is very good (97.2%).
The residual estimate is not so sharp, presenting an ef-
fectivity index of approximately 92.0% w.r.t. the exact
solution and 119.6% w.r.t. the reference solution.

Fig. 9 shows the spatial error distribution at a given
time (at different times the results are similar). The ex-
act, reference and estimated (both with the recovery and
the residual approaches) error distributions are practi-
cally identical, both in shape and values. The space dis-
tributions depicted in Fig. 9 are the local restrictions
(to Ωk and the corresponding time slab) of the resid-
ual RP

(
·
)

evaluated in ϕ, ϕh, ϕ?
1 and ϕ?

2, respectively
for the exact error, the reference error, the recovery es-
timate and the residual estimate.
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Fig. 9 Example 2: Error distribution at t = 164t. Distri-
butions estimated by recovery approach (top), estimated by
residual approach, exact error and reference error (bottom).
All are practically identical

In this example, the recovery estimate performs ex-
tremely well, both for the value of the quantity of interest
and the local contributions to the error. Moreover, recall
that the recovery estimate is computationally less costly
than the residual estimate.

These results motivate the use of the recovery esti-
mate in the following example.
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5.3 Example 3: thermal effects on a bridge cross-section

The evolution of the temperature distribution in a bridge
cross-section is analyzed. The geometry of the cross-
section is displayed in Fig. 10. The thermal parameters
are set to the following values corresponding to concrete:

– thermal conductivity κ = 1.5 W / m oC
– density ρ = 2500 kg / m3

– specific heat c = 960 J / kg oC

This implies solving the model problem (1) with α =
κ/(ρc) = 6.25× 10−7 m2/s and f = 0 (no heat produc-
tion in the concrete body). In this example, the Dirichlet
boundary condition (1c) is now replaced by a Robin type
boundary condition

(κ∇u) · n = I + hc(uA − u)

where I stands for the heat flux induced by the solar ra-
diation (it is of course a function of time and it acts only
in the top part of the boundary, Γ1), hc is a coefficient
representing the convection (it is taken uniform all along
the boundary and equal to 15 J / m s oC) and uA is the
external temperature (varying with time).

4

0.20

1.50

0.20

0.20

1

Fig. 10 Example 3: geometry of the bridge cross-section,
lengths expressed in meters

The evolution of I and uA as functions of time is
described by

I(t) =

{
2W
T0

sin2( π
T0

(t− ta)) for ta ≤ t ≤ ta + T0,

0 otherwise

and uA(t) = uM +
∆

U

2
sin(

π

12
(t− tm)),

where T0 is the duration of the day light (it is set to 10
hours), ta is the time of dawn (it is set to 8:00 am) and
W accounts for the total amount of energy given by the
insolation per length unit (it is set to 7000 J / m ), uM

is the average ambient temperature, ∆
U

is the temper-
ature range (difference maximum minus minimum tem-
peratures) and 12 stands for the duration of a half day
(in these expressions time is expressed in hours). Note
that the natural time unit is the hour and consequently,
the magnitudes involving time (e.g. α) must be properly

expressed in terms of hours, that is α = 6.25×10−7 m2/s
= 2.25× 10−3 m2/ hour .

The mechanical load induced by the thermal effects
is characterized by the so-called temperature gradient,
which is the slope of a plane fitting the actual temper-
ature distribution, see Fig. 11. This temperature gradi-
ent is considered as the quantity of interest, that has
to be assessed accurately. Formally, the linear function
u

L
(x, y) equivalent to the temperature distribution u(x, y)

(at a given time t) is obtained using a least squares fit-
ting. Once u

L
(x, y) = a0 + axx + ayy is determined, the

quantity of interest is precisely the coefficient ay.

y

a    2

u

uL

x

Fig. 11 Example 3: illustration of the quantity of interest.

An orthogonal basis of the linear polynomials in the
domain Ω is obtained in order to easily compute ay as
a direct function of u. Let P0(x, y) = 1 and P1(x, y) and
P2(x, y) be obtained using a Gram-Schmidt orthogonal-
ization from the family {1, x, y}, that is

P1(x, y) = x−
∫

Ω
xP0 dΩ∫

Ω
P0P0 dΩ

P0 = x−
∫

Ω
x dΩ

measΩ
= x− x̄

and

P2(x, y) = y −
∫

Ω
y dΩ

measΩ︸ ︷︷ ︸
ȳ

−
∫

Ω
y(x− x̄) dΩ∫

Ω
(x− x̄)2 dΩ

(x− x̄),

where (x̄, ȳ) is the center of gravity of the cross-section.
Thus, u

L
is explicitly computed as

u
L

=

∫
Ω

uP0 dΩ∫
Ω

P0P0 dΩ
P0 +

∫
Ω

uP1 dΩ∫
Ω

P1P1 dΩ
P1 +

∫
Ω

uP2 dΩ∫
Ω

P2P2 dΩ
P2

and, ay coincides with the coefficient affecting P2, that
is

ay =

∫
Ω

uP2 dΩ∫
Ω

P2P2 dΩ
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Note that the quantity of interest is J
(
u
)

= ay for a
given time t = T (we will adopt T as the end of the com-
putation). Thus, the definition of the functional output
describing the quantity of interest is precisely

J
(
u
)

=
∫

Ω

u(·, T )j dΩ where j =
P2∫

Ω
P2P2 dΩ

,

which is exactly the form given in Eq. (13).
If the geometry is symmetric with respect to the y

axis, the expression is further simplified since

x̄ = 0, P1(x, y) = x and P2(x, y) = y − ȳ.

In this case

j(x, y) =
y − ȳ∫

Ω
(y − ȳ)2 dΩ

.

The computation starts at midnight, when the tem-
perature is assumed to be uniform and it is carried out
for 63 hours (T = 63 hours). That is, the last time is 3:00
pm of the third day. From a practical viewpoint, after
two day cycles the solution is assumed to be indepen-
dent of the initial conditions and therefore not polluted
by the errors introduced by setting u0. At 3:00 pm the
quantity of interest is assumed to reach its maximum
(and therefore critical) value. The time evolution of the
temperature gradient is described in Fig. 12 both for
the solution uH and the reference solution uh. It is worth
noting that the maximum is indeed reached daily around
3:00 pm Fig. 13 shows the distribution of temperature
at the end of the computation. The output of interest
is precisely the gradient associated with this distribu-
tion. Note that the high temperatures are concentrated
at the top of the cross-section, due to the effect of solar
radiation.
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h
) 

Fig. 12 Example 3: evolution of the temperature gradient
both for uH and uh

Here the error is estimated using the recovery es-
timate introduced in Sect. 4.2. The error assessment is
performed for the solution obtained with the two meshes

Fig. 13 Example 3: temperature distribution at time t = T
(end of computation)

 

Fig. 14 Example 3: Meshes used in the computation, with
168 elements (top) and 368 elements (bottom)

displayed in Fig.14 ( of 168 elements and 368 elements)
and with the following values for4t (in hours):4t =0.02;
0.1; 0.2; 0.7; 1; 1.5 and 3 (corresponding to 3150, 630,
315, 90, 63, 42 and 21 time steps, respectively). More-
over, the error assessment is performed for two reference
meshes, with half element size and time step (r = 2) and
with r = 4. The estimated errors are computed in all
cases, however the computational cost of obtaining the
reference solution is prohibitive for r = 4 and 4t = 0.02
and also with the mesh of 368 elements for r = 4.

4t Mesh 1 Mesh 2
168 elements 368 elements

0.02 16.79108 16.48149
0.1 16.79108 16.48149
0.2 16.79113 16.48153
0.7 16.79268 16.48292
1 16.79544 16.48539

1.5 16.80692 16.49591
3 16.85808 16.53685

Table 6 Example 3: Values of J
`
uH

´
for all computations

The results are summarized in the following tables.
Tab. 6 shows the values of J

(
uH

)
in all the test cases.

Tab. 7 displays the reference error in all cases where it
could be computed, that is, the values of −J

(
eh

)
/J

(
uh

)
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Mesh 1 Mesh 2
4t 168 elements 368 elements

r = 2 r = 4 r = 2 r = 4

0.02 2.402% – 0.934% –
0.1 2.402% 2.954% 0.934% –
0.2 2.402% 2.954% 0.935% –
0.7 2.410% 2.964% 0.942% –
1 2.425% 2.980% 0.955% –

1.5 2.490% 3.050% 1.015% –
3 2.722% 3.357% 1.190% –

Table 7 Example 3: Values of the reference relative error,
−J

`
eh

´
/J

`
uh

´
, – if not available

Mesh 1 Mesh 2
4t 168 elements 368 elements

r = 2 r = 4 r = 2 r = 4

0.02 0.42161 0.52636 0.16813 0.21016
0.1 0.42162 0.52638 0.16814 0.21016
0.2 0.42172 0.52649 0.16821 0.21024
0.7 0.42501 0.53021 0.17112 0.21350
1 0.42941 0.53506 0.17477 0.21746

1.5 0.44187 0.54772 0.18563 0.22821
3 0.51574 0.51574 0.17062 0.21208

Table 8 Example 3: Values of the estimated error,−RP
`
ϕ?

´
Mesh 1 Mesh 2

4t 168 elements 368 elements
r = 2 r = 4 r = 2 r = 4

0.02 107.1% – 110.2% –
0.1 107.1% 109.3% 110.2% –
0.2 107.1% 109.3% 110.2% –
0.7 107.5% 109.7% 111.2% –
1 108.0% 110.1% 112.1% –

1.5 108.2% 110.1% 112.0% –
3 94.2% 94.2% 87.8% –

Table 9 Example 3: Values of the effectivity index w.r.t the
reference error, RP

`
ϕ?

´
/J

`
eh

´
, – if not available

(we introduce a minus sign because all values are orig-
inally negative). Tab. 8 shows the estimated error in
the quantity of interest, RP

(
ϕ?

)
, both for r = 2 and

r = 4. Finally, the effectivity indices computed for all
cases where the reference error is computationally af-
fordable are shown in Tab. 9.

It is worth noting from Tab. 6 that the error intro-
duced by the time discretization is negligible for 4t =
0.1 and 4t = 0.02. This is confirmed in Tab. 7, more-
over for mesh 1 (168 elements), the time error associated
with 4t = 0.2 is also negligible with regard to the error
introduced by the mesh.

The results in Tab. 7 indicate also that the reference
error is proportional to the exact error by a factor (the
ratio exact/reference error) that depends on the refining
index, r. For large r, the reference error is practically
equal to the reference error. For the values of r that re-

sult in a non-expensive local description of the error, the
ratio exact/reference depends on the convergence rates
and may be fairly approximated using the principle of
Richardson’s extrapolation, see [8].

The estimated errors are displayed in Tab. 8. The
behavior of the estimated error quantities is consistent,
for a given mesh the error increases with 4t. The only
anomaly is detected for mesh 2 (368 elements) and 4t =
3, where the error is reduced from 4t = 1.5. This is
due to the fact that the dependence of the quantity of
interest with time is far from being monotonic. Thus, the
large time steps (3 hours!) may yield errors with different
signs.

Tab. 9 shows the effectivity indices w.r.t. the refer-
ence solution. Obviously, these values are available only
in the cases where the reference solution is computed.
The values of the effectivity index range from 88 to
112%, that is the difference between the exact error and
the estimated error is lower than 12% in all cases.
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Fig. 15 Example 3: Time-distribution of the contributions
to the error in the quantity of interest. Contribution from
every time slab to the error. Both the reference values (◦)
and the estimated values (+) are represented for two cases:
Mesh 1 (168 elements), 4t = 1 and r = 4 (top) and Mesh 2
(368 elements), 4t = 0.02 and r = 2 (bottom).

This good behavior stands also locally, both in space
and time, as shown in Fig. 15 and Fig. 16 The distri-
bution of the contributions to the error in every time
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Fig. 16 Example 3: Local effectivity indices of the space-
distribution of the contributions to the error in the quantity
of interest. Contribution from every element to the error, ac-
cumulated in time. Two cases: Mesh 1 (168 elements), 4t = 1
and r = 4 (top) and Mesh 2 (368 elements), 4t = 0.02 and
r = 2 (bottom).

slab (accumulated in space) is assessed very accurately.
In Fig. 15 the results demonstrate that the estimated
values of the time contributions are very good approx-
imations to the reference errors. Only two of the test
cases are displayed, the behavior being similar for the
other studied cases.

The space distribution is the restriction to every el-
ement Ωk of the residual, see Eq. (26) and Eq. (26).
That is, the contribution of every element of the mesh
to the error in the quantity of interest, accumulated in
time. This spatial representation of the error is obvi-
ously not unique: the local representation of the r.h.s
term of Eq. (26) depends on the selected vH . Different
options for vH lead to different error distributions. The
choice of the optimal vH in order to properly drive an
adaptive procedure is beyond the scope of this paper.
Thus, Fig. 16 shows the distribution of the local effec-
tivity index associated with such spatial quantities, that

is the estimated value divided by the reference values.
The local effectivity indices are all close to one and the
distribution is quite uniform. Fig. 16 demonstrates that
the proposed error estimator produces also sharp esti-
mates for the spatial error distributions, which is a key
aspect in an adaptive framework. The accuracy of the
spatial error assessment is also similar for all other test
cases.

6 Concluding remarks

The paper introduces a straightforward and efficient me-
thodology to estimate the error in the quantities of inter-
est for second order parabolic problems. The main idea is
to produce a recovery estimate for the dual solutions and
to plug it into the residual of the primal problem. This
approach is especially interesting in view of an adaptive
procedure.

An alternative residual estimate is also considered,
which increases the computational cost and the com-
plexity of the implementation. In the studied examples
the residual estimator does not show any advantage, the
results being of the same level of accuracy. However, the
residual estimator is expected to be much more efficient
than the recovery estimator in problems with singular
features (material discontinuities, sharp loads...) where
the solution is not regular.

The results in the analyzed examples, both academ-
ical and practical, demonstrate the performance of the
proposed approach.
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