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Abstract

We present in this paper a numerical strategy for the simulation of rotary positive displacement pumps, taking as an example a gear
pump. While the two gears of the pump are rotating, the intersection between them changes in time. Therefore, the computational
domain should be recomputed in some way at each time step. The strategy used here consists in dividing a cycle into a certain number
of time steps and obtaining different computational meshes for each of these time steps. The coupling between two consecutive time steps
is achieved by interpolating the flow unknowns in a proper way. This geometrical decomposition enables one to have a plain control over
the mesh, particularly in the zones of interest, which are the gap between the gears and the casing, and the engagement and disengage-
ment zones of the gears.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Volk [1]: ‘‘Simply stated, a pump is a machine used to
move liquid through a piping system, and to raise the pres-
sure of the liquid’’.

In this paper, we define a possible strategy to simulate
the flow in rotary pumps of positive displacement type.
Our work is based on the study of a particular pump,
belonging to the family of gear pumps: an external gear
pump. However, the analysis framework is applicable to
the whole family.

The gear pump we consider is sketched in Fig. 1, each
gear having Nteeth = 11 teeth. The pump works as follows.
The shaft of one of the gears is driven by a motor: this is
the driving gear. It engages around the other one, called
the driven gear. When the teeth of the two gears start
disengaging (near the center of the pump), the consequent
low pressure sucks in the fluid. Upon further rotation, the
fluid is trapped in between the space formed by this cavity
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and the casing. The fluid is then carried around towards the
discharge side of the pump. As in principle it cannot flow
back through the very ‘‘small gap’’ between the teeth and
the casing and neither through the engaged teeth of the
gears, it is entirely ejected to the outport. Therefore, unlike
a fan (for example), the flow rate is expected not to depend
on the pressure difference between the inlet and outlet. At
high pressures however, some fluid may slip through the
gap and along the casing walls from the discharge side
(high pressure) to the suction side (low pressure). Thus
the efficiency of the pump may be affected. It is also well
known that for a higher viscous fluid, the leakage will be
smaller, but it requires more power to provide the same
rotational speed.

If we assume that all the fluid trapped between the teeth
is delivered to the outport (no leakage), the volume flow
rate Q (mm3/s) provided by the pump is directly propor-
tional to the velocity of rotation x (rad/s) of the gears.
The constant of proportionally is called the volumetric
constant and is referred to as Cv (mm3/rad)

Q ¼ Cvx:

The units considered along this work are mm, s and kg.
The gear pumps have many applications. In the car

industry, they are used to pump oil towards the elements
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Fig. 1. External gear pump (only half part).
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to be lubricated; in construction equipment they work as a
hydraulic power unit (e.g. excavator); they deliver gas in
petrol stations, since the flow rate delivered is directly pro-
portional to the velocity of rotation of the gears; they can
serve as a counter (e.g. for metering water consumption)
for they are reversible and can therefore be engaged by
the flow of fluid; they are used as hydraulic pumps in snow
plows, etc.

The main goal of this study consists in estimating the
pressure distribution within the suction side to avoid cavi-
tation. Cavitation is mainly due to the vaporization of the
oil or to the presence of air in it. Vaporization occurs when
the pressure is too low or the temperature too high. Low
pressure can occur for two main reasons. The first reason
is an unsufficient inlet pressure (in our case the atmospheric
pressure if the tank is at the same level). If this is the case,
the depression needed to suck in the fluid and overcome the
pressure looses from the tank can be propitious to the onset
of vaporization. The second reason could be the presence
of a highly swirling flow, which characteristic high veloci-
ties are accompanied by low pressures. Cavitation affects
the pumping capability of the pump as the gear cavities
are not filled completely with oil. Actually the scenario is
worse, as once cavitation has occurred, a subsequent
increase of pressure provokes the collapses of the vapor
bubbles. The resulting compression waves contribute to
the erosion of the structure and the generation of high level
noise.
Fig. 2. Section at symmetry plane. (Left) Gap between gears and casing is co
suction and discharge chambers are independent.
The study of cavitation is not addressed in this study.
But the numerical simulations will allow us to detect the
zones where the pressure is more likely to fall below the
vapor pressure of the fluid. This study will help therefore
to orient the modification to carry out on the original
geometry to improve the efficiency of the pump.

The study of the gear pump is organized as follows. We
first explain how to treat the geometrical issues. In partic-
ular, we discuss the possible geometrical modifications
which enable one to simplify the numerical study of the
problem. We then present the governing equations of the
flow, that is the Navier–Stokes equations and their associ-
ated boundary conditions. In the next section, some
numerical aspects are explained, including the space and
time discretizations as well as the algorithm used to treat
the evolving configuration of the pump. In the final section,
numerical results are presented. We want to compare the
results obtained for two possible treatments of the geome-
try and those obtained for two and three-dimensional
simulations.

2. Geometrical and meshing aspects

2.1. Gap between teeth and casing

The section through the symmetry plane of the pump is
shown in Fig. 2, for a given time step. As noted in Section
1, the suction and discharge sides of the pump are only
nsidered: suction and discharge chambers are connected. (Right) No gap:



Fig. 3. Mesh of the configuration shown in Fig. 2. (Left) Whole mesh. (Right) Structured mesh in the gap.
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connected if a gap is present. The right part of the figure
illustrates this possible independency. On the one hand, if
the gap is not considered, then both sides can be treated
separately. On the other hand, if the effects of pressure
loads are important, the leakage must be taken into
account and therefore the whole pump must be treated.
If this is the case, the corresponding mesh will of course
be much denser than in the first situation. Fig. 3 shows
an example of structured mesh in the gap and unstructured
mesh in the rest of the domain. This mesh enables the accu-
rate solution of the inport, the outport and the gap between
the gears and the casing.

2.2. Gear intersection

In a gear pump, only one gear is driven by a motor, the
second being driven by the first one. They are therefore in
close contact and while they are turning around, their
common intersection changes in time. Thus the computa-
tional domain should be recomputed in some way at each
time step of the simulation. In [2], the authors use a ficti-
tious domain method to solve a lobe pump, which exhibits
the same geometrical difficulty as the gear pump we have in
hands. In the fictitious domain method, the positions of the
lobes are identified by turning on and turning off the ele-
ments that are in the fluid and inside the lobes, respectively,
at each time step. The boundary condition on the lobe
boundaries are imposed in a weak way by introducing a
Lagrange multiplier. In [3], the authors use an Arbitrary
Lagrangian Eulerian (ALE) method [4,5] to follow the
rotation of the gears of a lobe and a gear pumps. However,
the automatic remeshing technique they adopt does not
enable a perfect control on the mesh, which can be
uncircumventable if one wants to accurately solve the gap
and the intersection of the gears. The method chosen in this
work to solve these deficiencies is based on an ALE formu-
lation with fixed meshes (FMALE), in the sense that the
evolving geometry is not meshed in an automatic way (like
in classical ALE with remeshing) but a priori, before start-
ing the simulation. It is similar to the method used in [6].

We first notice that the same geometrical configuration
is repeated periodically. This period correspond to the time
between two tooth passings. Let us define a configuration
cycle the period to recover the same configuration of the
pump. For a gear pump with gears of Nteeth teeth, the dura-
tion of a configuration cycle is 2p/(xNteeth). The FMALE
method applied to this context consists in dividing a config-
uration cycle into a given number of time steps. The
coupling between two consecutive time steps will be
explained in Section 4. Fig. 4 shows the geometries that
could be obtained at four consecutive time steps.

2.3. Half pump

We mentioned in the first section that in some cases, the
gap between the gears and the casing might be neglected.
This greatly simplifies the computation as the inport and
outport can be treated independently. By applying the
strategy introduced previously in Section 2.2, we can there-
fore obtain different meshes for a configuration cycle of the
inport only. This can be achieved by attaching the teeth to
the casing (with subsequent error in flow rate). Fig. 5 shows
the geometries that could be obtained at four consecutive
time steps, considering only the suction side of the pump.

3. Problem statement

3.1. The Navier–Stokes equations

Let X be an open bounded domain of R2 or R3. Con-
sider the time interval (0, T). Define q as the density of
the fluid and l as its viscosity. The governing equations
are the transient Navier–Stokes (NS) equations for the
velocity u and the mechanical (not thermodynamic) pres-
sure p

qotuþ qðua � rÞu� 2lr � eðuÞ þ rp ¼ 0 in X� ð0; T Þ;
r � u ¼ 0 in X� ð0; T Þ;

where e(u) is the rate of deformation tensor given by

eðuÞ ¼ 1

2
ðruþrutÞ:

We note that the advection velocity of the momentum
equation has been corrected from u to ua since in the meth-
od proposed here the domain X is changing with time; this
point will be treated in Section 4.



Fig. 5. Half-pump. Geometries at consecutive time steps.

Fig. 4. Whole-pump. Geometries at consecutive time steps.
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The authors would like to point out that turbulence
modeling is not envisaged in the framework of this paper.
However, all the cases presented in Section 5 have also
been performed using a turbulence model, namely the
Spalart–Allmaras one-equation model [7]. As no turbulent
effects were noticeable, the authors preferred not to
consider them in order to clarify the exposition.

3.2. Boundary conditions

The Navier–Stokes equations must be supplied with
boundary and initial conditions. The initial condition is
only needed for the velocity, we denote it by u0. As for
the boundary conditions, let us divide the boundary of X
as oX = CD [ CN, where D holds for Dirichlet and N holds
for Neumann. We consider here the following two condi-
tions of Dirichlet and Neumann types:

u ¼ uD on CD � ð0; T Þ;
r � n ¼ tN on CN � ð0; T Þ;

where n is the outward unit normal to oX, and r is the
stress tensor given by
r ¼ �pI þ 2leðuÞ;

I being the two(three)-dimensional identity. We have
chosen as Neumann condition the prescription of the trac-
tion r Æ n because it enters naturally the variational form of
the problem (only the diffusion term is integrated by parts).
Let us observe that for uniform flows we have that e(u) = 0,
and that for high Reynolds number flows the viscous term
of the traction can be neglected so that

r � n ¼ �pn for uniform flows;

r � n � �pn for high Reynolds number flows:

We will see that for the particular operating conditions of
this pump, the prescription of the traction approximates
very well that of the pressure.
4. Numerical strategy

In the previous section we presented the governing equa-
tions of the flow. However, some purely numerical and
algorithmic ingredients are necessary to solve the flow in
time. We first introduce the finite element method and
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the time discretization which are considered to solve the
partial differential equations. Finally we present the strat-
egy for the coupling of the different configurations defined
for each time step.

4.1. Finite element method and time discretization

4.1.1. Space discretization

The NS equations are solved using a Finite Element
model based on a stabilized Galerkin method. It is well-
known that the Galerkin formulation can lack stability
for two major reasons. The first reason is related to the
compatibility of the finite element spaces for the velocity
and the pressure which have to satisfy the so-called Ladyz-
henskaya–Brezzi–Babus̆ka (LBB) condition. This condi-
tion is necessary to obtain a stability estimate for the
pressure; without requiring this condition, the pressure
would be out of control. The second reason is attributed
to the relative importance of the viscous and convective
effects in the momentum equation. The stabilized formula-
tion is based on the algebraic variational subgrid scale
(SGS) model first introduced in [8]. The variational SGS
model first argues that the inability of the mesh to resolve
all the flow scales is responsible for the numerical instabil-
ities. Therefore, the model calculates in some approximate
way the unresolved scales of the flow, i.e. the scales smaller
than the mesh size. The method is extensively described in
[9]. In this work, we consider only one type of element
using equal order interpolation for the velocity and the
pressure, that is the P1/P1 element, continuous and linear
in velocity and pressure. This element does not satisfy the
LBB condition and therefore requires the use of the SGS
stabilization.

4.1.2. Time discretization

The time discretization is carried out using the general-
ized trapezoidal rule, i.e. a finite difference scheme. To do
so, we consider a partition 0 ¼ t0 < t1 < � � � < tN time ¼ T
of the time interval (0,T) of interest. The time step is
denoted as dt = tn � tn�1 and is constant for n = 1,. . . ,
Ntime. The backward Euler scheme is considered here.
The solution of the equations is therefore implicit and
unconditionally stable. Given an initial condition u0, the
backward Euler scheme consists in solving for each
n = 1, . . . ,Ntime

q
un � un�1

dt
þ qðun

a � rÞun � 2lr � eðunÞ þ rpn ¼ 0 in X;

r � un ¼ 0 in X

ð1Þ

with appropriate boundary conditions.

4.2. Coupling of the configurations

As mentioned in Section 2.2, the main difficulty of solv-
ing the pump is the treatment of the zones of engagement
and disengagement of the teeth. A possible solution con-
sists in defining a new geometry and a new mesh at each
time step of the numerical simulation, the position of the
gears being known a priori. Then the flow equations are
solved successively on each geometry to obtain (un,pn), by
taking as a previous time step solution un�1 the interpo-
lated variables obtained on the previous geometry.

In fact, we can take advantage of the numerical strategy
based on an implicit solution of the Navier–Stokes equa-
tions for which we can afford relatively large time steps.
In addition, by using the backward Euler time integration
scheme, which is unconditionally stable for fixed meshes,
we can expect the resulting numerical strategy to be stable.
In order to choose the time step we have to make a com-
promise which, as always, faces accuracy with computation
time. On the one hand, the time step must be large enough
so that we do not have to calculate too many geometries
and to generate too many meshes. On the other hand,
the time step must be small enough to capture the impor-
tant time scales of the flow. We assume that the leading
period of the flow will be that of a tooth passing and that
we can neglect the effect of smaller scales on the mean flow.
According to these considerations, we decide to solve Nconf

times the flow equations during a configuration cycle
(between two tooth passings) with Nconf close to 10 (10
being approximately the number of points to solve with
sufficient accuracy a sine type signal). Therefore we set

dt ¼ 2p
xN teethN conf

:

We have Nconf configurations per cycle, each one with an
associated mesh. The question is how do we have to couple
the solutions obtained on the meshes. As shown in Fig. 6,
some nodes of the mesh of a given configuration can be
located inside the gear of the previous configuration.
Therefore we have to take into account in some way the
mesh movement from one configuration to the next one.
Let us first introduce some definitions.

We define a host element of a point of coordinates x in a
mesh j as the element where the point is located. Let us
define a hosted node as a node having a host element, and
a lost node a node without host element, which is the case
when a node falls inside a gear (see [10] for the element
search strategy). Let us identify with a subscript i the vari-
ables considered in mesh i, so that un

i is the velocity
obtained on configuration i, referred to as Xi, at time step
n. Note that n and i are related through the equation

i ¼ n� int
n

N conf

� �
N conf :

The procedure to construct the interpolation operator Ii,j

from mesh j to mesh i is the following:

For each configuration i = 1,. . . ,Nconf do
If i = 1 then

Set j = Nconf.
Else



Fig. 6. Mesh velocity used for interpolation between consecutive meshes.

Fig. 7. Master–slave strategy to couple the meshes.
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Set j = i � 1.
Endif

Look for the host elements of all nodes of i in mesh j.
Compute mesh velocity by solving e.g. Laplace’s
equation for um,i

Dum,i = 0,
with um,i = 0 on hosted nodes,
and um,i = gear velocity for nodes on gear bound-
aries (4) and (5).

Find the host elements for the lost nodes in mesh j

with coordinates x � um,idt.
Construct the interpolation operator Ii,j

using the classical Lagrange interpolation func-
tions.

Return

Note that the previous configuration of the first config-
uration is configuration Nconf.

We now know how to interpolate a variable from one
mesh to the next one. In the case of the Navier–Stokes
equations, the only variable to interpolate is the velocity
(note that for incompressible flows the time derivative
of the pressure does not appear). When solving configu-
ration i at time n, we must take in Eq. (1)1 as solution
of the previous time step un�1

i the following interpolated
value:

un�1
i ¼ I i;jðun�1

j Þ: ð2Þ
where j = Nconf if i = 1 and j = i � 1 otherwise. Also, as the
mesh is moving, we have to take into account the mesh
velocity in the convective term of the NS equations, so that

un
a;i ¼ un

i � um;i:

The Navier–Stokes equations for configuration i at time n
consists therefore in finding in domain Xi

q
un

i � I i;jðun�1
j Þ

dt
þ q½ðun

i � um;iÞ � r�un
i

� 2lr � eðun
i Þ þ rpn

i ¼ 0;

r � un
i ¼ 0:

ð3Þ
The coupling algorithm is the following:

Set u0
N conf

Set n = 0
Set dt = 2p/[xNteethNconf]
For each cycle m = 1, . . . ,Ncycle do
for each configuration i = 1, . . . ,Nconf do

Set n = n + 1
If i = 1 then

Set j = Nconf.
Else

Set j = i � 1.
Endif

Interpolate un�1
i ¼ I i;jðun�1

j Þ
Solve NS equation (3) for (un

i ; p
n
i ).

Return

Return

This coupling is carried out using a master–slave strat-
egy, as sketched in Fig. 7. The master code is in charge
of the communication and of the interpolation between
consecutive meshes, by performing the operation given by
Eq. (2). The slaves are the Nconf processes corresponding
to the Nconf meshes of the Navier–Stokes solver. The mas-
ter code uses the Message Passing Interface standard (MPI)
[11] to establish the communication and synchronization of
the processes.
5. Results

This section presents some numerical results. In the first
part we demonstrate the convergence properties of the
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coupling strategy through the solution of a simple test
example. The following sections treat with the case of inter-
est, that is the gear pump. Some complementary informa-
tion can be found in the web page referenced in [12].

5.1. Test problem

Through the solution of a simple test problem we want to
check the convergence of the solution with the number of
configurations Nconf. The transient solutions will be com-
pared to a stationary solution. Fig. 8(Left) shows the geom-
etry used to solve the stationary problem. It consists of a
fixed circular domain of radius 10 centered at the origin,
and a unit square located at (1, 0) which is rotating with an
angular velocity x = [0,0,x]t, x = 2p. The problem is
solved in a non-inertial frame of reference with angular
velocity x, in which the velocity of the square is zero, and
that of the circle �x · x. We work without dimensions
and set q = 1, l = 1. In order to perform the convergence
test, three cases are considered: 4, 10 and 20 configurations.
These configurations are shown in Fig. 8. All the meshes
have approximately 2300 P1/P1 elements. It is expected that
the solution gets better as the number of configurations
increases.

To check this, we have plotted the evolution of the
velocity module at point Q with coordinates (2,0) for the
four cases. In the case of the stationary solution, the veloc-
ity at point Q should be computed as u + x · x (in order to
take into account the rotation of the frame of reference) at
the points located at (2cos(xt),�2sin(xt)). Fig. 9(Left)
Fig. 8. Test problem. From left to right: 1 configuration for stationary sol
configurations.
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Fig. 9. Test problem. (Left) Evolution of the velocity module at point Q. (R
compares the results for the four simulations. After a short
transient period, the three transient simulations attain the
expected periodic behavior. The figure confirms that the
solution is getting better as the number of configurations
increases. We even note that only the 20 configurations
simulation is able to capture the sudden velocity decrease,
just before the square reaches its initial position.
Fig. 9(Right) compares the velocity module obtained on
a horizontal cut passing through the origin, and enables
to draw the same conclusions.
5.2. Data of the problem

We now go on with the gear pump. The properties of the
oil we are considering are

l ¼ 3:0� 10�5 kg=mm s;

q ¼ 9:0� 10�7 kg=mm3
:

The pump works at 1500 rpm, which corresponds to angu-
lar velocities

xt ¼ �½0; 0;x�t for the top gear;

xb ¼ ½0; 0;x�t for the bottom gear

with

x ¼ 157:08 rad=s:

The center of the top and bottom gears are located at xt

and xb, respectively. The velocities on the teeth are thus
ution with boundary conditions; 4 configurations; 10 configurations; 20
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prescribed to the velocities of their corresponding gears,
that is

u ¼ xt � ðx� xtÞ on the top gear; ð4Þ
u ¼ xb � ðx� xbÞ on the bottom gear; ð5Þ

where x is the coordinate vector. On the casing, the velocity
is u = 0. The pump discharges an almost constant flow rate
at constant velocity of rotation but has no control on the
global pressure rise. The amount of pressure is controlled
by the workload imposed on it. The pressure is prescribed
by specifying the traction as

r � n ¼ �pan at inport;

r � n ¼ �pon at outport:

The boundary conditions are sketched in Fig. 10.

5.3. Two-dimensional pump

We present in this section the results obtained on the
section at the symmetry plane of the pump. In particular,
we compare the results obtained on the whole pump with
those obtained by simulating only the suction side of the
pump. We also investigate the effects of the gap.

5.3.1. Whole pump

We first consider the transient simulation of the whole
pump. The pressure at the outport is fixed to a value po
Fig. 10. Whole pump. Geometry and boundary conditions.
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Fig. 11. Whole pump, Dp = 900 kg/mm s2. Evolution of the solutio
of 10 bars. At the inport, the pressure is that of the reser-
voir, i.e. the atmospheric pressure pa, so that we have in
our unit system:

pa ¼ 102 kg=mm s2;

po ¼ 103 kg=mm s2;

which gives a pressure drop of Dp = 900 kg/mm s2 = 9 bars.
This prescribed pressure drop is the highest one studied in
this paper. When studying the effects of the gap in Section
5.3.3, smaller pressure drops will be considered.

The configuration cycle is divided into Nconf = 10 con-
figurations, of which the four first ones are shown in
Fig. 4. The time step of the simulation (which will be the
same for all the numerical example) is therefore dt �
3.64 · 10�4. The meshes of the configurations are com-
posed of 9738, 9780, 9563, 11,459, 12,297, 9569, 9668,
9220, 9500 and 9912 P1/P1 elements. The mesh of the first
configuration is shown in Fig. 3.

Fig. 11 shows the evolution of the velocity module and
pressure at points Q and R, as depicted in Fig. 10. We
observe that a periodic solution is obtained after very few
configuration cycles. The results that are presented from
now on were obtained once the periodic flow was achieved.

The results obtained on the four first configurations are
shown in Fig. 12. We can observe the high acceleration of
the oil when the teeth disengage, especially for the fourth
configuration.

Finally, Fig. 13 shows the pressure distribution along
the casing of the first configuration, P being the reference
point depicted in Fig. 10. We note that the pressure goes
from its inlet value Pa to its outlet value po in stairway steps
along the casing. We conclude that in this particular case,
the prescription is almost that of the pressure. We also
observe that almost all the pressure drop is achieved along
the spaces between the teeth and the casing, that is the gap.

5.3.2. Half pump

We compare the solutions obtained on the whole pump
configurations with that obtained on the half pump config-
uration, as shown in Figs. 4 and 5, respectively. The same
pressure boundary conditions as those used for the whole
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Fig. 12. Whole pump, Dp = 900 kg/mm s2. Results of the first four configurations. (Left) Streamlines. (Right) Streamlines and velocity vectors in the
disengagement zone.
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Fig. 13. Whole pump, Dp = 900 kg/mm s2. Pressure distribution along the
casing wall, from point P in the clockwise direction.

G. Houzeaux, R. Codina / Computers & Fluids 36 (2007) 667–679 675
pump simulation are imposed. Thus, we are going to
compare the results of the half pump with those obtained
on the whole pump for the maximum pressure drop. This
time, as only the suction chamber is solved, the meshes
are much less dens. The ten configuration meshes are
composed of 2039, 1733, 1757, 3600, 3351, 2114, 1741,
1751, 2133 and 2246 P1/P1 elements.

Fig. 14 shows the results obtained on the first configura-
tion. We observe some relatively small differences between
the half and whole pump results. In particular, the reverse
flow of the gap stretches the recirculation zones of the suc-
tion sides towards the center.

Finally, Fig. 15 shows the evolution of the velocity mod-
ule and pressure at point Q. We observe very similar
values.
5.3.3. Effects of the gap

We now study more in detail the effect of the gap. To do
so, we consider four values of po, that is 100, 400, 600 and
1000, which lead to pressure drops of Dp = 0, 300, 500 and
900, respectively. With these simulations we want to
analyze the flow through the gap between a tooth and
the casing. We consider the azimuthal component of the



Fig. 14. Half and whole pumps, Dp = 900 kg/mm s2. Results for the first configuration. (Left) Half pump. (Right) Whole pump. (Top) Velocity. (Mid)
Pressure. (Bottom) Streamlines.

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 0  0.005  0.01  0.015  0.02  0.025  0.03

V
el

oc
ity

 m
od

ul
e 

at
 Q

 [m
m

/s
]

Time [s]

Whole pump
Half pump

 60

 80

 100

 120

 140

 0  0.005  0.01  0.015  0.02  0.025  0.03

P
re

ss
ur

e 
at

 Q
 [k

g/
m

m
 s

2 ]

Time [s]

Whole pump
Half pump

Fig. 15. Half and whole pumps, Dp = 900 kg/mm s2. Evolution of the solution at point Q. (Left) Velocity module. (Right) Pressure.
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velocity along a line passing through the gap of length
2H = 0.095 mm. The external radius r = 26.92 mm of the
gear being large and therefore the curvature being small,
the flow in the gap can be approximated to a planar
Couette flow. Let x be the streamwise direction and y be
the crosswise direction and assume the flow is fully devel-
oped in x. See Fig. 16(Left).

Solving the Navier–Stokes equations in Cartesian coor-
dinates for the velocity u = [u,v]t, we have that u = u(y),
v = 0 and
l
d2u
dy2
¼ dp

dx
:

We solve this equations with boundary conditions
u(�H) = U = xr and u(H) = 0 for a constant pressure
gradient. The solution is

u ¼ 1

2

1

l
dp
dx

y2 � U
H

y þ U � 1

l
dp
dx

H 2

� �
: ð6Þ
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Fig. 16. Planar Couette flow comparisons. (Left) Geometry of the gap. (Right) Velocity in gap.
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With positive pressure gradient, we expect the flow to be
retarded. We remarked previously that almost all the
pressure drop was achieved in the space between the gear
and the casing. Therefore we assume that the imposed
pressure gradient is entirely distributed over the ‘‘contact’’
zones of the gear with the casing. Let L be the length of
these contact zones. We have L = 1.44 mm. We note that
for the geometry considered there are six contact zones.
We then approximate the pressure gradient as

dp
dx
¼ po � pa

6L
: ð7Þ
From the solution obtained at different pressure drops, we
pick up the velocity in the azimuthal direction at the center-
line of the gap of an arbitrary tooth for the first configura-
tion of the cycle, shown in Fig. 4(Top left). Fig. 16 shows
the simulation results together with the planar Couette
solution given by Eq. (6) with the pressure gradient given
by Eq. (7). We observe that despite all the approximations
we have stated (curvature neglected, fully developed flow
assumed, pressure drop distributed in six equal parts), the
flow in the gap follows the planar Couette flow solution.
We have thus in hand a tool to approximate the leakage.

Fig. 17 shows the volume flow rate variation as a func-
tion of the pressure drop between inport and outport. The
figure compares three results:
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Fig. 17. Flow rate variation as a function of the pressure drop.
(1) Half pump: the flow rate obtained on half of the
pump (the suction side) for which no reverse flow
exists. This flow rate is used to normalize the two
others.

(2) Whole pump: the flow rate computed on the whole
pump for different pressure drops.

(3) Calculated: the flow rate obtained on the whole pump
at zero pressure drop Q(dp/dx = 0) minus the flow
due to the Couette profile in the gap (at top and bot-
tom gears) and given by
Q ¼ Qðdp=dx ¼ 0Þ � 4

3l
po � pa

6L
H 3:
Note that the flow rate obtained on the half pump is
somewhat overestimated. This is due to the fact that when
the half pump configurations were calculated, the teeth was
extended to the casing to close the contact.

5.4. Three-dimensional pump

This section presents the results of the three-dimensional
suction chamber, for which we neglect the effects of the
gap. The meshes for the 10 configurations have 32,427,
54,145, 54,761, 37,782, 41,058, 42,472, 35,978, 38,811,
36,211 and 41,586 P1/P1 elements. The mesh of the first
configuration is shown in Fig. 18(Left), while the right
part of the figure shows a detail of the mesh near the
teeth.

Fig. 19 compares the evolution of the velocity module
and pressure at point Q with the results obtained on the
two-dimensional half pump. In the three-dimensional
pump, point Q is located at the same planar position than
that of the two-dimensional pump on the symmetry plane.
As expected, we observe that the velocity module is higher
in the three-dimensional case. In fact, the flow rate is
multiplied by the height of the pump with respect to that
of the two-dimensional pump, while the entrance pipe is,
in comparison, much smaller. If U2D is the average inlet
velocity, the flow rate in two dimensions would be
U2DdH, d being the inlet diameter and H the pump height,
whereas in three dimensions it would be U3Dp(d/2)2. Thus,
the ratio of average inlet velocities is U2D/U3D = dp/4H,



Fig. 18. Whole 3D pump. (Left) Mesh of the first configuration. (Right) Detail of the mesh near the teeth.
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Fig. 19. 3D half and 2D half pumps. Evolution of the solution at point Q. (Left) Velocity module. (Right) Pressure.
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that for the geometry we use yields U2D/U3D = 0.54. Note
that the ratio estimated from Fig. 19 for the velocities at
point Q is very close to this figure. Referring to this figure,
we also note that contrary to the velocity, the pressure
exhibits a quite similar evolution in both the two and
three-dimensional cases.
Fig. 20. Whole 3D pump. Velocity vectors and pre
Fig. 20 presents the velocity vectors and pressure
contours of the first four configurations.

In Fig. 21, the particle path as well as the pressure on the
boundary of the domain are shown. We can observe the
three-dimensional vortex generated at the entrance of
suction chamber.
ssure contours of the first four configurations.



Fig. 21. Whole 3D pump. First configuration, pressure and particle path.
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6. Conclusions

We have presented in this paper a finite element method
to simulate the flow in rotary displacement pumps. The
methodology consists in dividing the periodic geometrical
cycle of the pump in a series of configurations, on which
the transient Navier–Stokes equations are solved. Theses
configurations are coupled with each other through a
master–slave strategy. The numerical results have demon-
strated the possibilities of the method.

With respect to other methods, we pretend that the
present one enables on to accurately solve the leakage
effects through the gap and the gear intersection. However,
the authors would like to point out two drawbacks of the
method. Firstly, the generations of the configurations can
be quite tedious, if the geometry happens to be compli-
cated. Secondly, one Navier–Stokes solver must solve each
one of the configuration flow. Therefore, the memory
required by the simulation can be quite large if many
configurations are used. However, this can be circumvented
if one uses MPI to distribute the calculation on many
computers.
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