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SUMMARY

In this work the NURBS-Enhanced Finite Element Method (NEFEM) is combined with a

Discontinuous Galerkin (DG) formulation for the numerical solution of the Euler equations of gas

dynamics. With the NEFEM approach numerical fluxes along curved boundaries are computed

much more accurately due to the exact geometric representation of the computational domain. The

proper implementation of the wall boundary condition provides accurate results even with a linear

interpolation of the solution. A detailed comparison of the NEFEM in front of isoparametric finite

elements (FE) is presented, demonstrating the superiority of the NEFEM approach for both linear

and higher order computations. Copyright c© 2007 John Wiley & Sons, Ltd.
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key words: NURBS; Discontinuous Galerkin; CAD; exact geometry representation; high-order

isoparametric elements; Euler equations

1. INTRODUCTION

The importance of the geometrical model in Finite Element (FE) simulations has recently

been pointed out by several authors, see [1, 2, 3, 4, 5, 6] to name a few. For instance, in [3]

the error induced by the approximation of curvilinear geometries with isoparametric elements

is analyzed in the context of Poisson and Maxwell problems. Using an exact mapping for the

geometry in the numerical solution of the Maxwell’s equations the error is reduced by an order

of magnitude.

When a DG formulation is adopted, the importance of the geometrical model is crucial in

some applications, such as the numerical solution of the Euler equations of gas dynamics. In

[1] the authors demonstrate that using a linear interpolation for the geometry it is not possible

to converge to the steady state solution, even if the mesh is drastically refined near the curved

boundary. In [2] a detailed study of this problem is presented to conclude that accurate results

can only be obtained taking into account the curvature of the domain. More recently, in [5] a

new methodology is presented for the computation of the fluxes across curved boundaries but,

unfortunately, the proposed method is not conservative.

The importance of the geometrical model in the numerical solution of the compressible Euler

equations is not exclusive of DG methods. In [7, 8] the problem is identified in the context of

Finite Volume (FV) methods, and more recent advances in this area can be found in [9, 10].

Non-Uniform Rational B-Splines (NURBS, see [11]) are widely used for geometry description

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–28
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NEFEM FOR EULER EQUATIONS 3

in CAD (Computer Aided Design). This fact has motivated new numerical methodologies

considering an exact representation of the computational domain with NURBS, such as the

isogeometric analysis [4] and the NURBS-Enhanced Finite Element Method (NEFEM) [6].

The isogeometric analysis considers the same NURBS basis functions for both the description

of the entire geometry and for the approximation of the solution of the boundary value

problem. This idea was first introduced in [12] in the context of thin shell analysis. The

NURBS-Enhanced Finite Element Method (NEFEM) also considers an exact representation

of the domain but it differs from the isogeometric analysis in two main points: the geometry

is given by the NURBS description of the boundary (i.e. the information usually provided

by CAD), and standard FE polynomial interpolation is considered for the approximation of

the solution. Thus, in the large majority of the domain —for elements not intersecting the

boundary— a standard FE interpolation and numerical integration is used, preserving the

computational efficiency of classical FE techniques. Specifically designed piecewise polynomial

interpolation and numerical integration is required for those FE along the NURBS boundary. In

[6] the NEFEM is applied to the numerical solution of Poisson and electromagnetic scattering

problems. In the numerical solution of Poisson problems with high order isoparametric FE,

the optimal rate of h-convergence is not achieved and, consequently, the p-convergence is

clearly deteriorated. In contrast, using the NEFEM the optimal rate of h-convergence is

obtained for any polynomial degree. Moreover, exponential convergence is observed when a

p-refinement strategy is considered, see [6] for NEFEM optimal a priori error estimates. In the

context of electromagnetic scattering applications the use of the NEFEM reveals an important

improvement with respect to classical isoparametric FE. For the same spatial discretization an

important reduction of the error is observed, in some cases more than one order of magnitude.

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–28
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4 R. SEVILLA, S. FERNÁNDEZ-MÉNDEZ AND A. HUERTA

In addition, for a desired precision the NEFEM is also more efficient because it allows to

compute the solution with an important save in number of degrees of freedom.

In this paper the NEFEM is presented as a powerful method for the numerical solution

of the Euler equations using a DG formulation. Sections 2 and 3 recall the system of Euler

equations and its DG discretization. The basic concepts of the NEFEM are recalled in section

4, with special attention to the interpolation and the numerical integration in elements with

one curved edge defined by NURBS. Section 5 presents a classical test for inviscid flow methods

in order to evaluate the efficiency and accuracy of the NEFEM in front of classical FE. Low

and high order interpolations are tested, and a comparison between isoparametric FE and the

NEFEM in terms of the entropy error and other aerodynamic quantities of interest is presented,

demonstrating the superiority of the NEFEM approach for the simulation of compressible flow

problems.

2. EULER EQUATIONS

Euler equations of gas dynamics express the conservation of mass, momentum and energy for

a compressible, inviscid and non-conducting fluid. The strong form of these conservation laws,

in the absence of external volume forces, can be written in conservative form as

dU

dt
+

∂F k(U)
∂xk

= 0, (1)

where Einstein notation is assumed (that is repeated indices are implicity summed over), U is

the vector of conservation variables and F k(U) are the flux vectors for each spatial dimension

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–28
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NEFEM FOR EULER EQUATIONS 5

xk, that is

U =




ρ

ρv

ρE




, F k(U) =




ρvk

ρvvk + ekp

(ρE + p)vk




,

where ρ is the density, ρv is the momentum, ρE is the total energy per unit volume, ek is the

unitary vector in the xk direction, and p is the pressure, see [13] for more details.

An equation of state, relating the internal energy to pressure and density, completes this

system of nonlinear hyperbolic equations. For a perfect polytropic gas the equation of state is

p = (γ − 1)ρ
(
E − 1

2
‖v‖2

)
,

where γ is the ratio of the specific heat coefficients (specific heat at constant pressure over

specific heat at constant volume), with value γ = 1.4 for air.

A usual quantity for postprocess of inviscid flow computations is the Mach number, defined

as

M =
‖v‖
c

,

where c =
√

γp/ρ is the speed of sound. For a more detailed presentation of the Euler equations

see for instance [14, 15, 16].

Other useful quantities, usual for the evaluation of the accuracy, are the entropy error

εent =
p

p∞

(
ρ∞
ρ

)γ

− 1,

the pressure loss

ploss =
p

p∞

(
1 + 0.5(γ − 1)M2

1 + 0.5(γ − 1)M2∞

) γ
γ−1

,

and the pressure coefficient

Cp =
p− p∞

0.5ρ∞v2∞
,

where the subscript ∞ indicates free-stream values, see [2, 5] for more details.

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–28
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6 R. SEVILLA, S. FERNÁNDEZ-MÉNDEZ AND A. HUERTA

3. DISCONTINUOUS GALERKIN FORMULATION

This section recalls the basic concepts of DG [17] for the solution of the Euler equations in a

open bounded domain Ω ⊂ Rn. A regular partition in elements Ω =
⋃

e Ωe is assumed, and an

element by element discontinuos approximation space is considered.

The weak problem for the strong form of the Euler equations (1) is stated for each element

Ωe. By multiplying by a test vector function W , integrating over Ωe and integrating by parts,

the following equation is obtained

∫

Ωe

W · dU e

dt
dΩ−

∫

Ωe

∂W

∂xk
· F k(Ue) dΩ +

∫

∂Ωe

W · F ne
(U e) dΓ = 0 ∀W ,

where U e denotes the restriction of U to the element Ωe, ne is the outward unit normal vector

on ∂Ωe, and the normal flux is defined as

F n(U) = F k(U)nk,

with nk the k-th component of n. As usual in DG methods, to take into account the

discontinuous nature of the approximation, the normal flux at the boundary of the element is

replaced by a numerical flux, F̂ ne(U e, U
out
e ), which is evaluated in terms of the solution in

the current element Ωe and the solution at neighboring elements

Uout
e (x) = lim

ε→0+
U(x + εne) for x ∈ ∂Ωe. (2)

The resulting DG weak formulation, to be discretized at each element Ωe, is

∫

Ωe

W · dUe

dt
dΩ−

∫

Ωe

∂W

∂xk
· F k(U e) dΩ +

∫

∂Ωe

W · F̂ ne(Ue, U
out
e ) dΓ = 0 ∀W . (3)

Some conditions are required for the definition of a numerical flux function: it must be

conservative, Lipstchiz and verify some consistency conditions. Some popular flux functions

for the numerical solution of the Euler equations are the exact Riemann solver, the Roe solver,

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–28
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NEFEM FOR EULER EQUATIONS 7

the Lax-Friederichs solver or the Harten-Lax-van Leer (HLLE) solver, see [18]. In this paper all

the numerical computations are performed using the approximate Lax-Friederichs flux function

described in [19], that is,

F̂ ne(U e,U
out
e ) =

1
2

[
F ne

(U e) + F ne
(Uout

e )− α(U e −Uout
e )

]
, (4)

where α is the largest eigenvalue of the jacobian matrix ∂F ne

∂U , i.e.

α = max
{

ve · ne + ce , vout
e · ne + cout

e

}
. (5)

Boundary conditions are implemented following the ideas in [20], initially developed in the

context of FV methods. Fictitious elements are considered along the boundary, and the value

of the solution is set to impose the boundary conditions through the numerical flux. As usual

in the solution of Euler equations a characteristic analysis is performed at the boundary to

decide the quantities to be prescribed, see for instance [14, 15, 16] or [21] for implementation

details.

The DG formulation (3) is discretized in each element, leading to a system of ordinary

differential equations

M
dU
dt

+ R(U) = 0, (6)

where U is the vector of nodal values (or approximation coefficients in a more general case),

M is a block diagonal mass matrix and R(U) is the residual vector. As it is shown in the

examples, the spatial discretization may be performed using isoparametric FE and NEFEM,

see section 4. In all experiments, the ODE system (6) is advanced in time using the explicit

third order Total Variation Diminishing Runge-Kutta (TVD-RK) scheme presented in [22].

Nevertheless, it is worth noting that semi-implicit and implicit time integration schemes seems

to be an efficient alternative for steady state computations, see [23, 24]. The stability condition

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–28
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8 R. SEVILLA, S. FERNÁNDEZ-MÉNDEZ AND A. HUERTA

for the TVD-RK method requires the use of a CFL number less than or equal to 1/(2p + 1),

where p is the degree of the functional approximation, see [25].

As usual for the solution of non-linear hyperbolic equations, the evaluation of the residual

R(U), which involves the flux at the interior of the elements and their boundaries, can

be carried out with two non equivalent options: a quadrature-free implementation or a full

quadrature version, see [13]. With a quadrature-free implementation the flux at the integration

points is interpolated in terms of the flux nodal values, whereas with a full quadrature

version the fluxes are evaluated at integration point level, in terms of the solution at each

integration point. The use of a quadrature-free implementation leads to an important save in

computational cost thanks to the use of elemental matrices, instead of a loop on integration

points. Moreover, for triangles with straight sides (or tetrahedras with planar faces) these

elemental matrices can be computed, using the jacobian, from matrices previously computed

at the reference element, see [26], with an important saving in computational time. However,

numerical experiments reveal that the use of the quadrature-free implementation for the

numerical solution of the Euler equations suffer from instability problems in the vicinity of

stagnation points, see [27] for a detailed explanation. Thus, all the computations presented in

this work are obtained with full quadrature implementation.

4. NEFEM FUNDAMENTALS

A domain Ω ⊂ R2 is considered, whose boundary ∂Ω, or a portion of its boundary, is defined

by NURBS curves. A NURBS curve is a curve parametrized by a piecewise rational function,

whose definition changes at the so called breakpoints, see [11] for a detailed definition. In fact,

in practical applications CAD manipulators use trimmed NURBS, which are defined by a

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–28
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NEFEM FOR EULER EQUATIONS 9

restriction of the NURBS parametrization to a subspace of the parametric space.

A triangularization of the domain Ω =
⋃

e Ωe is also assumed, such that every triangle Ωe

has at most one side, Γe, on the NURBS boundary. Figure 1 shows a domain with part of the

boundary described by a NURBS circular curve and a valid triangulation for the NEFEM. As

W

Figure 1. Physical domain with part of the boundary defined by a circular NURBS curve (left) and a

valid triangulation for the NEFEM (right)

usual in mesh generation codes, it is also assumed that every curved boundary side belongs to

a unique NURBS. That is, a side can not be defined by portions of different NURBS curves, or

equivalently, every trimmed NURBS is cut to pieces corresponding to the boundary sides. It

is important to note that the breakpoints, which characterize the piecewise nature of NURBS,

are independent of the mesh discretization. Thus, the NURBS parametrization can change its

definition inside one side, that is break points may belong to element sides and do not need

to coincide with FE nodes. This is another major advantage with respect to the isogeometric

analysis [4].

For all elements not intersecting the NURBS boundary the usual FE interpolation and

numerical integration is considered. The basis of the NEFEM for an element with one side on

the NURBS boundary is recalled next.

Let Ωe be an element with two straight interior sides and one side defined by a trimmed

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–28
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10 R. SEVILLA, S. FERNÁNDEZ-MÉNDEZ AND A. HUERTA

NURBS, Γe = C([λe
1, λ

e
2]). A linear transformation Ψ from local coordinates to physical

coordinates is considered, see [6] for details. The linear transformation Ψ−1 maps de physic

element Ωe to a curved element Ie := Ψ−1(Ωe), see Figure 2. Note that Ie plays the role of the

Ψ

x

y

ξ

η

−1

1

I
e

Ω
e

Γ
e

−1 1

Figure 2. Linear transformation, mapping the curved element Ie := Ψ−1(Ωe) to the physic element

Ωe

reference element in standard FE, but here it depends on the definition of its NURBS side.

Thus, special numerical strategies are required for every element Ie, see next sections.

Remark 1. In order to simplify the presentation, it is assumed that the interior vertex of Ωe

is mapped to the vertex (−1, 1) in Ie. The implementation of this condition only requires a

proper local numbering of the vertices of the element.

4.1. FE polynomial basis

In order to work with standard FE polynomial approximations, Lagrange polynomials (that

is, standard nodal interpolation) can be considered. In fact, they can be defined on the

curved triangle, Ie, in the reference domain or equivalently, in the actual element in the

physical domain, Ωe. The use of a linear transformation from the local (reference) coordinates

ξ = (ξ, η)T in Ie to the cartesian coordinates x = (x, y)T in Ωe, ensures that a complete

polynomial interpolation of degree m in ξ leads to a polynomial interpolation with the same

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–28
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NEFEM FOR EULER EQUATIONS 11

degree in x. Thus, the consistency and accuracy of the approximation is ensured even for

elements Ωe far from being a straight-sided element.

In order to make the computation of the Lagrange polynomials, {Li(ξ)}neni=1, more systematic,

for any order and for any distribution of nodes, the implementation proposed in [28] is adopted.

Different options can be considered for the definition of a nodal distribution in Ie. For

low-order elements equally-spaced nodal distributions can be implemented. Nevertheless, for

high-order computations, the use of special distributions of nodes is more convenient in order

to reduce the condition number of the resulting elemental matrices, see [29, 30] for details.

Fekete points [31] are a good example of such distributions. For curved elements the nodes

can be located in the straight-sided triangle given by the vertexs of Ie, see left distribution in

Figure 3, or adapted to the exact geometry using the NURBS description, see right distribution

in Figure 3. Adapted distributions have a positive influence on the condition number, see [6].

Moreover, numerical experiments reveal that the non-adpated distribution lead to a more

restrictive CFL stability condition for the time marching, thus, in the numerical examples

adapted distributions are used.

Figure 3. 5th-order nodal distributions in Ie: Fekete points in the straight-side triangle (left) and

adapted to the NURBS side (right)

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–28
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12 R. SEVILLA, S. FERNÁNDEZ-MÉNDEZ AND A. HUERTA

4.2. Numerical integration

The weak form to be solved requires integration along element sides and in the interiors.

All the elements not having a side along the NURBS boundary are integrated using standard

procedures. The elements with one side, Γe, on the NURBS boundary require special attention.

All line integrals to be computed in NEFEM can be written as

∫

Γe

f d` =
∫ λe

2

λe
1

f
(
C(λi)

) |JC(λ)| dλ,

where f is a generic function (polynomial), the side of the element is given by a trimmed

NURBS Γe = C([λe
1, λ

e
2]), and |JC | denotes the norm of the differential of the NURBS

parametrization C (this is not a polynomial). As usual, a 1D numerical quadrature is used for

the numerical computation of the integral, namely

∫

Γe

f d` ≈
nip∑

i=1

f
(
C(λi)

) |JC(λi)| ωi, (7)

where λi and ωi are, respectively, the coordinates and weights of the nip integration points

in [λe
1, λ

e
2]. Recall that the parametrization of a trimmed NURBS, C, is a piecewise rational

function whose definition changes at breakpoints. Thus, an independent numerical quadrature

must be considered at every interval between breakpoints to account for the discontinuous

nature of the parametrization. Numerical experiments reveal that Gauss-Legendre quadratures

are a competitive choice in front of other quadrature rules such as trapezoidal and Simpson

composite rules or Romberg’s integration, see [32] for a detailed analysis.

The NEFEM also requires to compute integrals over an element Ωe with one side Γe on the

NURBS boundary, see Figure 2, that is

∫

Ωe

f dx dy = |JΨ|
∫

Ie

f dξ dη (8)

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–28

Prepared using fldauth.cls



NEFEM FOR EULER EQUATIONS 13

Ψ

ξ

η

I
e

Ω
e

u
0

1
1

1
−1
−1

Γe
=

e

1

e

2

ζ

λ λ

ϕ

(

[
e

1 2]
)

, e

λλφ

(

[
e

1 2]
)

, e

λλC

Figure 4. Transformation from [λe
1, λ

e
2]× [0, 1] to Ie and Ωe

where |JΨ| is the determinant of the Jacobian of the linear transformation Ψ. The computation

of (8) requires a numerical quadrature for every curved element Ie. Reference [32] presents

different alternatives and discusses their advantages and disadvantages. It is shown that

the best alternative corresponds to the definition of a transformation from the rectangle

[λe
1, λ

e
2] × [0, 1] to the curved element Ie, see Figure 4. That is, under the non restrictive

assumption that nodes are numbered following Remark 1,

ϕ : [λe
1, λ

e
2]× [0, 1] −→ Ie

(λ, ζ) 7−→





ϕ1

ϕ2





:=





φ1(λ)(1− ζ)− ζ

φ2(λ)(1− ζ) + ζ





(9)

where φ = (φ1, φ2)T := Ψ−1 ◦C is the parametrization of the trimmed NURBS corresponding

to the curved side in Ie. Note that such a parametrization is linear in ζ and as discussed in [6]

this induces some important practical advantages.

Thus, using the transformations shown in Figure 4, integral (8) is computed as

∫

Ωe

f dx dy = |JΨ|
∫

Ie

f dξ dη ' |JΨ|
nip∑

i=1

mip∑

j=1

f(ξij)|Jϕ(λi, ζj)|ωi$j (10)

where nip and mip are the number of integration points in the λ and ζ directions, respectively,

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–28
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14 R. SEVILLA, S. FERNÁNDEZ-MÉNDEZ AND A. HUERTA

ξij := ϕ(λi, ζj), {λi, ωi} and {ωi, $i} are the 1D quadrature points and weights for [λe
1, λ

e
2]

and [0, 1] respectively, and |Jϕ| is the determinant of the Jacobian of the transformation ϕ.

5. NUMERICAL RESULTS

To evaluate the accuracy and the efficiency of the proposed methodology, a classical inviscid

test case is considered: the subsonic flow around a circle at free-stream Mach number

M∞ = 0.3. In all the numerical computations a DG formulation is adopted. As first studied in

[1] and later in [2, 5, 33], DG discretization of the wall boundary condition is very sensitive to

the geometrical description of curved boundaries. More precisely, in [1] the authors show that

it is not possible to converge to the correct physical solution if the computational boundary is

approximated with piecewise linear polynomials. When the steady state is reached the solution

is advanced in time until the density residual is reduced to 10−10 in the L2(Ω) norm.

The behavior of the proposed method for both linear and high order interpolations is studied

in the following sections.

5.1. Low order computations

Four O-meshes with 16 × 4, 32 × 8, 64 × 16, and 128 × 32 nodes, and 128, 512, 2048 and

8192 elements respectively, are considered for low order computations. A detailed view of these

meshes near the circle is represented in Figure 5, see [5] for the mesh generation details.

Figure 6 shows Mach number isolines for isoparametric FE with linear interpolation. The

results corroborate the conclusions first published by Bassi and Rebay [1] in the context of

DG methods. Even if the mesh is highly refined near the circle, for instance using the fine

mesh of figure 5 with 128 curved elements along the circular boundary, a non-physical entropy

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–28
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NEFEM FOR EULER EQUATIONS 15

(a) 16 × 4 (b) 32 × 8

(c) 64× 16 (d) 128 × 32

Figure 5. Detail of O-meshes for low order computations

production is observed behind the wall. As it is commented in [34], the singularities of the

polygonal approximation of the boundary generate entropy and the solution develops a non-

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–28
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16 R. SEVILLA, S. FERNÁNDEZ-MÉNDEZ AND A. HUERTA

physical wake that makes impossible the convergence to the correct solution.

(a) 16 × 4 (b) 32 × 8

(c) 64× 16 (d) 128 × 32

Figure 6. Mach number isolines with isoparametric FE and p=1

Figure 7 shows Mach number isolines computed with the NEFEM approach using linear

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–28
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interpolation. The results reveal a major symmetry of the Mach number patterns, even if

coarse meshes are used. Moreover, the NEFEM allows to converge to the correct physical

solution using the fine mesh with a piecewise linear approximation of the solution. The exact

computation of the outward unit normal improves the imposition of the solid wall boundary

condition in such a way that the entropy production is clearly reduced with respect to the

isoparametric FE solution.

L2 norm of entropy errors measured on the upper mid of the circle are reported in Table

I. For isoparametric FE, the entropy production observable in Figure 6 deteriorates the h-

convergence rate. In contrast, NEFEM exhibits the optimal convergence rate using linear

interpolation. Results of Table I also show that, to achieve an entropy error of 6 10−3 with

isoparametric FE it is mandatory to perform the computation on the fine mesh, whereas

the second mesh suffices to obtain the same precision with the NEFEM. Thus, the extra

computational cost associated to the numerical integration of the NEFEM is clearly surpassed

by the drastic saving in number of degrees of freedom (ten times less degrees of freedom).

Figure 8 shows pressure loss and pressure coefficient distributions on the upper mid of the

circle. At the most critical point, the stagnation point behind the circle, the maximum pressure

loss error with isoparametric FE in the fine mesh is 2.3 10−2, whereas the NEFEM maximum

error is reduced more than one order of magnitude, that is 10−3. Moreover, in the fine mesh,

the pressure coefficient error at the stagnation point is 0.4 for standard FE and 6 10−3 for

NEFEM, almost two order of magnitude more precise for the same number of degrees of

freedom.

To conclude, it is important to recall that the problematic associated to the solid wall

boundary condition is not an exclusive matter of DG methods. In [8] the same problem had
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(a) 16 × 4 (b) 32 × 8

(c) 64× 16 (d) 128 × 32

Figure 7. Mach number isolines with NEFEM and p=1

been observed by Barth in the FV framework. Thus, the benefits of the NURBS-Enhanced

concept are extensible to FV methods.
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Figure 8. (a) Pressure loss distribution and (b) pressure coefficient distribution, at the upper mid of

the circle for p=1

Finally, a comparison between h and p-refinement strategies for the NEFEM is presented

in order to recall the superiority of high order interpolations, see [35, 36] for classical FE and

[6] for the NEFEM. For the p-refinement strategy the coarser mesh in Figure 5 is considered

with an interpolation degree p = 1, 2, 4, 6. Figure 9 shows the logarithm of the L2 entropy

error in the upper mid of the circle as a function of the logarithm of the number of degrees of

freedom. Although the h-refinement process shows the optimal rate of convergence (straight

line with slope p/2), it is clearly surpassed by the exponential decay of the error for the p-

refinement strategy. Thus, the advantage of using high order interpolations is clear, specially

in the context of a DG formulation.

The performance of the NEFEM for high order computations is studied next.
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Figure 9. L2 entropy error at the upper mid of the circle for h and p-refinement using NEFEM

5.2. High order computations

Following [34], for high order computations outer boundaries are placed near the obstacle, and

the symmetry with respect to the x axis is used in order to reduce the number degrees of

freedom. Two computational meshes, represented in Figure 10, are considered. The coarser

mesh has 26 elements and only 2 curved elements to describe a half of a circle, and the fine

mesh is obtained by uniform refinement.

(a) (b)

Figure 10. Computational meshes for high order computations

Figures 11 and 12 show Mach number isolines in the coarser mesh of Figure 10 using
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isoparametric FE and the NEFEM, respectively. For both methods, a degree of interpolation

p=2 or p=4 is not sufficient to properly capture the solution, and the entropy production

behind the circle is clearly observed. For higher degree of interpolation, namely for p=6 and

p=8, the isoparametric FE solution displays an slight asymmetry with respecto to the y axis

due to the spurious entropy production. For the NEFEM, using an interpolation degree p=6

the solution exhibits better symmetry than using isoparametric FE with p=8, and, for the

NEFEM with p=8 a visually symmetric Mach number distribution is obtained.

(a) p=2 (b) p=4

(c) p=6 (d) p=8

Figure 11. Mach number isolines for isoparametric FE in the coarse mesh

Figures 13 and 14 show Mach number isolines for the fine mesh in Figure 10 using

isoparametric FE and the NEFEM, respectively. Again, for both methods, quadratic elements

are insufficient to properly capture the solution. For high order of interpolation, say p=4,

isoparametric FE solution shows a slight asymmetry with respect to the y axis, and a degree

of interpolation p=6 is mandatory to obtain a visually symmetric Mach number distribution.

For the NEFEM, a degree of interpolation p=4 is sufficient to reduce the non-physical entropy
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(a) p=2 (b) p=4

(c) p=6 (d) p=8

Figure 12. Mach number isolines for NEFEM in the coarse mesh

production in such a way that the Mach number pattern is visually symmetric.

(a) p=2 (b) p=4

(c) p=6 (d) p=8

Figure 13. Mach number isolines for isoparametric FE in the fine mesh

The accuracy in terms of the entropy error for high order computations is analyzed next.
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(a) p=2 (b) p=4

(c) p=6 (d) p=8

Figure 14. Mach number isolines for NEFEM in the fine mesh

Figure 15 shows the L2 the entropy error at the upper mid of the circle as a function of the

square root of the number of degrees of freedom for isoparametric FE and for the NEFEM.

The p-convergence for isoparametric FE computations is clearly deteriorated for high order
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Figure 15. Entropy error on the circle surface (Γc) for p-refinement
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interpolations, whereas the NEFEM maintains the exponential p-convergence, as stated in

[6]. The results reveal that the best accuracy that can be obtained with isoparametric FE on

the coarser mesh corresponds to an error of 5 10−4. In order to improve the accuracy of the

isoparametric FE computation, an hp-refinement strategy must be adopted. For instance, an

error down to 10−4 can be achieved with the second mesh shown in Figure 10. For the NEFEM,

if the first mesh is considered, the error with p=8 is 4 10−5, more than one order of magnitude

more precise than using isoparametric FE with the same number of degrees of freedom.

Moreover, if the second mesh is considered, the NEFEM error with p=8 is 10−6, two orders

of magnitude more precise than standard isoparametric FE. It is also worth noting that with

a high-order approximation of degree p=8, similar accuracy is obtained using isoparametric

FE in the fine mesh and NEFEM in the coarse mesh, that is NEFEM requires four times less

degrees of freedom.

Finally, it is important to recall that in a FE adaptive process, see [37], the computational

mesh must be locally refined to properly capture both the solution and the geometry, whereas

in a NEFEM context the adaptive process is controlled only by the complexity of the

solution, independently of the geometrical complexity of the domain, and therefore reducing

the necessary number of degrees of freedom to achieve a desired accuracy.

6. CONCLUDING REMARKS

The NEFEM combined with a DG formulation is proposed for the numerical solution of

the compressible Euler equations. A classical test for inviscid flow solvers is considered to

evaluate the accuracy and the efficiency of the proposed methodology in front of isoparametric

FE. The proper imposition of the wall boundary condition in the NEFEM allows accurate
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computations even with a linear interpolation of the solution. With isoparametric linear

elements it is not possible to converge to the correct solution using linear interpolation, even

if the mesh is drastically refined near curved boundaries. Moreover, under p-refinement, the

optimal (exponential) convergence is achieved with NEFEM and not for isoparametric FE.

Numerical results demonstrate that the NEFEM is a powerful method for the solution of the

Euler equations of gas dynamics, more efficient than classical isoparametric FE. The extra cost

of the NEFEM, due to the numerical integration over elements along the NURBS boundary, is

surpassed by the important saving in number of degrees of freedom. More precisely, NEFEM

provides similar accuracy than isoparametric FE using between 4 and 10 times less degrees of

freedom.
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21. D. Kuzmin and M. Möller, “Algebraic flux correction II. Compressible Euler equations,” in Flux-corrected

Transport: Principles, Algorithms, And Applications, Springer Verlag, 2005.

22. B. Cockburn and C. W. Shu, “TVB Runge-Kutta local projection Discontinuous Galerkin finite-element

method for conservation-laws. II. General framework,” Math. Comp., vol. 52, no. 186, pp. 411–435, 1989.
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36. B. Szabó, A. Düster, and E. Rank, The p-version of the Finite Element Method, vol. 1 of Encyclopedia of

Computational Mechanics, ch. 5. Wiley, 2004.
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Mesh FEM NEFEM

εent r εent r

16 × 4 5.74E-02 - 2.43E-02 -

32 × 8 2.34E-02 1.30 6.01E-03 2.03

64 × 16 1.40E-02 0.73 1.46E-03 2.04

128 × 32 6.53E-03 1.10 3.53E-04 2.05

Table I. L2 entropy error at the upper mid of the circle and rate of convergence (r) for p=1
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