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SUMMARY

The characteristic-based split (CBS) stabilization procedure developed originally in fluid mechanics
has been adapted successfully to solid mechanics problems. The CBS algorithm has been implemented
within a finite element program using an explicit time integration scheme. Volumetric locking of linear
triangular and tetrahedral elements has been successfully eliminated. The performance of the numerical
algorithm is illustrated with numerical results. Comparisons with an alternative stabilization technique
based on the finite calculus method also are given. Copyright � 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many finite elements exhibit the so-called ‘volumetric locking’ in the analysis of incompressible
or quasi-incompressible problems in fluid and solid mechanics. Situations of this type are usual
in the structural analysis of rubber materials, some geomechanical problems and most bulk metal
forming processes. Volumetric locking is an undesirable effect leading to incorrect numerical
results [1].

Volumetric locking in solids is present in all low-order elements based on the standard
displacement formulation. The use of a mixed formulation or a selective integration technique
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eliminates the volumetric locking in many elements. These methods however, fail in some
elements such as linear triangles and tetrahedra, due to lack of satisfaction of the Babuška–
Brezzi (BB) conditions [1–3] or alternatively the mixed patch test [1, 4, 5] not being passed.
Most linear triangular and tetrahedral elements developed within a mixed formulation also suffer
volumetric locking. This poses serious limitations on the possibilities of finite element simulation
of processes involving large elasto-plastic deformations like metal forming processes. Even
nowadays there is hardly any meshing program that can discretize complex three-dimensional
geometrical shapes of formed parts avoiding tetrahedral elements. Special stabilizing techniques
must be developed to eliminate volumetric locking in linear triangles and tetrahedra.

Considerable efforts have been made in recent years to develop linear triangles and tetrahedra
producing correct (stable) results under incompressible situations. Brezzi and Pitkäranta [6]
proposed to extend the equation for the volumetric strain rate constraint for Stokes flows by
adding a Laplacian of pressure term. A similar method was derived for quasi-incompressible
solids by Zienkiewicz and Taylor [1]. Other methods to overcome volumetric locking are
based on mixed displacement (or velocity)–pressure formulations using the Galerkin-least-square
(GLS) method [7], average nodal pressure and average nodal deformation techniques [8, 9],
and sub-grid scale (SGS) methods [10–12] and the approach based on the finite calculus (FIC)
formulation [13, 14].

The characteristic-based split (CBS) stabilization method has been developed in fluid
dynamics [15, 16]. Zienkiewicz et al. [17] have extended this technique to solid mechanics
within explicit dynamic finite element formulation. This algorithm has been further developed
to consider bulk metal forming problems [18].

In this paper, application of the CBS algorithm in solid mechanics will be reviewed. Basic
continuum and discretized finite element equations are given. The constitutive model describing
large elasto-plastic deformations of metals is presented. Finally a summary of an alternative
stabilization algorithm based on the FIC is given [13].

Several numerical examples illustrating the performance of the CBS algorithm with linear
triangles and tetrahedra are presented. Numerical examples range from 2D and 3D analysis
of an impact problem to bulk forming problems. Numerical results obtained using the CBS
method are compared with the results obtained with the FIC algorithm and with solutions using
hexahedral elements based on a mixed formulation.

2. THE CBS ALGORITHM FOR SOLIDS

2.1. Continuous equations

The CBS algorithm for solids has been derived in Reference [17]. The algorithm obtained in
fluid mechanics has been extended to solid mechanics by introducing an appropriate constitutive
model for a solid material in split equations describing the solid material deformation.

The problem is governed by the Stokes equations. The Stokes equations do not contain
convection terms, so the term ‘characteristic’ in the name of the algorithm CBS is not relevant.
We maintain, however, the name CBS of the algorithm developed for fluid dynamics problem
governed by the Navier–Stokes equations.

Large elasto-plastic deformations are considered with a small amount of compressibility
allowed, as this generally is the case with large deformation behaviour of solids.
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The equations expressing the momentum conservation are written as follows:

�
�vi

�t
= �sij

�xj

+ �p

�xi

+ bi

�ui

�t
= vi

(1)

where � is the density, vi the velocity in the i direction, sij the deviatoric stress component,
p the mean stress (or pressure), bi the i component of body force and ui the displacement in
the i direction. Equations of motion (1) are completed with appropriate boundary conditions
and constitutive equations for deviatoric part of stresses sij and pressure p. The elasto-plastic
constitutive model with J2 plasticity is presented later on. The constitutive law for pressure is
as follows:

1

K

�p

�t
= �vi

�xi

(2)

where K is the bulk modulus of the material. The boundary conditions prescribe velocities

vi = v̂i on �v (3a)

and tractions

ti = t̂i = nj (ŝij − �ij p̂) on �t (3b)

Application of a standard, Galerkin, finite element discretization of displacement u, velocity
v and pressure p

u ≈ ũ = Nvū

v ≈ ṽ = Nv v̄

p ≈ p̃ = Npp̄(t)

(4)

to Equations (1) and (2), gives the discrete equations of mixed formulation, cf. Reference [1]

M
d

dt
v̄ = Rv − fd − Cp̄

dū
dt

= v̄

Mp

dp̄
dt

= Rp + CTv̄

(5)
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In the above, v̄ and p̄ stand for the sets of unknown nodal parameters, the matrices are given
by, cf. Reference [1]

M =
∫

�
� NT

v Nv d�, Mp =
∫

�

1

K
NT

pNp d�

Rv =
∫

�t

NT
v t̂ d� +

∫
�

NT
v b d�, Rp = 0

fd =
∫

�
BT

v s d�, C =
∫

�
NT

v ∇Np d�

(6)

where B is the linear stress–strain operator matrix, stress deviator s can be determined assuming
arbitrary (isotropic) constitutive model.

With a fully incompressible material Mp would be zero and this would not permit the
application of time step procedures of the explicit type. Small compressibility allows us to
adopt fully explicit solution scheme. In the explicit solution, the two matrices M and Mp are
usually diagonalized.

The standard mixed formulation performs well for certain combinations of velocity and
pressure discretization, which lead to finite elements satisfying BB stability conditions, like
quadrilaterals and hexahedra with quadratic displacement (velocity) and linear pressure
interpolations.

Elements not satisfying BB conditions, for instance linear triangles and tetrahedra with
equal-order velocity and pressure interpolation, suffer volumetric locking. This difficulty can
be overcome by the use of operator splitting procedures (or fractional step methods).

While not meeting all the BB requirements, the linear displacement constant pressure quadri-
lateral and hexahedral elements are usually stable and give very reliable results. They are
standard elements of nearly all commercial ‘explicit’ finite element programs. They will serve
in this paper as the basis for comparison for the performance of stabilized triangles and
tetrahedra with linear displacement and pressure interpolations. Although our main interest is in
stabilization of triangular and tetrahedral elements, the CBS algorithm will be applied to bilinear
quadrilateral and trilinear hexahedral elements with equal-order displacement and pressure
interpolation.

2.2. The fractional step method

In the fractional step method, the equations are split into parts. The sum of the parts, however,
must be such that the original equations are always recovered. The split can be applied to
discretized equations, cf. Reference [19]. Here we will follow a ‘classical’ procedure [15, 16],
where the split is applied to the equations of continuum (1) and (2) following their time
discretization using the generalized mid-point rule (or � method). After temporal discretization
the equations have the following form:

�
vn+1
i − vn

i

�t
= �sn

ij

�xj

+ �pn+�2

�xi

+ bn
i

un+1
i − un

i

�t
= v

n+�3
i

(7a)
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and

1

K

pn+1 − pn

�t
= �v

n+�1
i

�xi

(7b)

where �t = tn+1 − tn, n and n + 1 are consecutive time instants, and �j are generalized mid-
point rule discretization parameters. Note that the deviatoric stress and body force terms in
Equation (7a) are evaluated at different temporal points than the pressure. This is to facilitate
the split introduced next. For an arbitrary variable �, we have the following relationship:

�n+�j = (1 − �j )�
n + �j�

n+1 (8)

with 0 � �j � 1. In our case, �1 can vary between 0.5 and 1, while �2 and �3 can vary between
0 and 1. In all that follows we shall use �1 = 1.

The momentum equation (7a) is rewritten in the following form:

�
vn+1
i − v∗

i + v∗
i − vn

i

�t
= �pn+�2

�xi

+ �sn
ij

�xj

+ bn
i (9)

and split into two equations:

�
v∗
i − vn

i

�t
= �sn

ij

�xj

+ bn
i (10a)

�
vn+1
i − v∗

i

�t
= �pn+�2

�xi

(10b)

where the fictitious velocity v∗
i is called the fractional velocity. The fractional velocity is

obtained from Equation (10a)

v∗
i = vn

i + �t

�

�sn
ij

�xj

+ �tbn
i (11a)

and the real velocity is calculated from Equation (10b) as

vn+1
i = v∗

i + �t

�

�pn+�2

�xj

(11b)

Substituting Equation (11b) into Equation (7b),

1

K

pn+1 − pn

�t
= �v∗

i

�xi

+ �t

�

�2
pn+�2

�x2
i

(11c)

Finally, from the second of Equation (7a), we obtain

un+1
i = un

i + �tv
n+�3
i (11d)
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The CBS algorithm stated above consists of the following four steps:

(i) Calculate the fractional velocity v∗
i from Equation (11a).

(ii) Calculate the pressure pn+1 from Equation (11c).
(iii) Calculate the real velocity vn+1

i from Equation (11b).
(iv) Calculate the displacement un+1

i from Equation (11d).

2.3. Finite element discretization

Introducing the finite element space discretization of pressure and velocities given by
Equation (4) and applying the Galerkin method to Equations (11a), (11c) and (11b) leads
to the following set of discrete equations:

M
�v̄∗

�t
= Rv − fd

1

�t
Mp(p̄n+1 − p̄n) = −CTv̄n + C̃�v̄� − �tHp̄n+�2 − Rp

M
v̄n+1 − v̄∗

�t
= −Cp̄n+�2

ūn+1 = ūn + �t v̄n+�3

(12)

where the additional new matrices are defined as follows:

�v̄� = v̄∗ − v̄n

C̃ =
∫

�
(∇ · Np)T Nv d�

H =
∫

�
∇NT

p

1

�0
∇Np d�

Rv =
∫

�−�t

Nvs d� +
∫

�t

Nv(t̂ − np) d� +
∫

�
NT

v b d�

Rp =
∫

�v

NT
pnTv̄ d�

(13)

Evaluation of the second integral in Rv requires the ‘extraction’ of the pressure part from the
prescribed traction on the part of the boundary �t . This can be done taking the pressure from
the previous time step as an estimation. A similar estimation must be made for the deviatoric
stresses s on the part of the boundary �−�t to calculate the first integral in Rv . In a simplified
algorithm, these troublesome calculations are avoided and the vectors Rv and Rp are evaluated
according to the second of Equation (6). This simplification implies the non-physical boundary
condition

�p

�n
= 0 on � (14)

and introduces a certain error in the pressure. It can be demonstrated, however, that this error is
localized to narrow boundary areas, cf. Reference [20]. This simplification is employed in the
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numerical algorithm presented below. Using this form of the algorithm, one avoids computation
of C̃, as well as, avoids integrations of the projections of deviatoric stresses on the velocity
boundaries, cf. Reference [17].
2.4. Solution algorithm

(i) Approximate velocity increment determination:

�v� = �tM−1(Rn
v − fn

d ) (15a)

(ii) The pressure increment evaluation:(
1

�t
Mp + �2�tH

)
�p̄ = − CTv̄� − �tHp̄n (15b)

(iii) The velocity correction:

�v̄ = �v̄� − �tM−1Cp̄n+1 (15c)

(iv) The displacement update:

ūn+1 = ūn + �t v̄n+�3 (15d)

The algorithm presented can be used either in a semi-implicit form with an implicit solution
of the pressure equation (15b) or in a fully explicit manner taking �2 = 0. This paper presents
results obtained with a fully explicit algorithm.

2.5. Elasto-plastic constitutive model

The constitutive model used in any analysis of metal forming process must properly represent
complex deformation and elasto-plastic properties of the material. The elasto-plastic constitutive
model used in our analysis is that presented in Reference [21]. In the description of large elasto-
plastic deformations, the multiplicative decomposition of the deformation gradient tensor F into
its elastic Fe and plastic part Fp is assumed

F = FeFp (16)

The model is developed in a stress-free intermediate configuration, and then all the constitutive
relationships are transformed to the deformed configuration.

In the deformed configuration, the following additive decomposition of the Almansi strain
tensor e into the elastic and plastic parts, ee and ep, respectively, is obtained:

e = ee + ep (17)

The Almansi strain tensor, and its elastic and plastic parts, e, ee and ep, can be expressed by
the deformation gradient tensor F and its elastic part Fe and plastic part Fp in the following
form:

ee = 1
2 (I − Fe−TFe−1

)

ep = 1
2 (Fe−TFe−1 − F−T F−1)

e = 1
2 (I − F−T F−1)

(18)
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The implementation of the general model has been simplified by the assumption that elastic
strains are small, which for metals is fully justified. This allows us to assume a simple form
of the elastic part of the free energy function �e

�e(ee) = � tr(ee)
2 + �(ee : ee) (19)

where � and � are the Lamé constants. With this form of the elastic potential, the Kirchhoff
stress tensor � is obtained as

� = ��e(ee)

�ee
= � tr(ee) + 2�ee (20)

In the present implementation of the model, the associated flow rule is assumed with the
Huber–Mises yield criterion. The stress–strain curve is taken in the following form:

�Y = K(a + 	̄p)n (21)

where �Y is the yield stress and K, a and n are the material constants.

3. STABILIZATION BASED ON FIC

The FIC approach has been successfully used to derive stabilized finite element and meshless
methods for a wide range of advective–diffusive and fluid flow problems [22, 23]. The same
ideas were applied in Reference [13] to derive a stabilized formulation for quasi-incompressible
and incompressible solids allowing the use of linear triangles and tetrahedra.

The basis of the FIC method is the satisfaction of the standard equations for balance of
momentum (equilibrium of forces) and mass conservation in a domain of finite size and retaining
higher order terms in the Taylor expansions used to express the different terms of the differential
equations over the balance domain. The modified differential equations contain additional terms
which introduce the necessary stability in the equations to overcome the volumetric locking
problem.

3.1. Equations of motion

Within the framework of a FIC formulation, the equations of motion for a solid material are
written as, cf. Reference [13]

ri − hk

2

�ri

�xk

= 0 in �, k = 1, nd (22)

where nd is the number of space dimensions of the problems (i.e. nd = 3 for 3D) and

ri := −�
�2

ui

�t2
+ ��ij

�xj

+ bi (23)

In Equation (23), � is density, t is time, �ij are stresses, bi are body forces, and hk are
characteristic length distances of an arbitrary prismatic domain where equilibrium of forces
is considered. Equations (22) and (23) are completed with adequate boundary conditions and
constitutive equations.
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Employing a standard split of stresses into deviatoric and volumetric (pressure) parts, sij
and p, respectively

�ij = sij + p�ij (24)

the governing FIC equations of the mixed displacement–pressure formulation can be obtained
in the following form [13]:

−�
�vi

�t
+ �sij

�xj

+ �p

�xi

+ bi − hk

2

�ri

�xk

= 0,
�ui

�t
− v

n+1/2
i = 0 (25a)

�p

K
− �(�ui)

�xi

−
nd∑
i=1


i

�ri

�xi

= 0 (25b)

where K is the bulk modulus, 	v is the volumetric strain and 
i are intrinsic time parameters
given by


i = 3h2
i

8G
(26)

with G being the shear modulus. It can be noted that the value of 
i deduced from the FIC
formulation resembles for hi = hj = h that of 
 = h2/2G heuristically chosen in other works [7].

3.2. Weighted residual forms

The residual ri is split now as

ri = �i + �p

�xi

(27)

where

�i = −�
�vi

�t
+ �sij

�xi

+ bi (28)

Note that �i is the part of ri not containing the pressure gradient and may be considered as
the negative of a projection of the pressure gradient. In a discrete setting, the terms �i can
be considered belonging to a space orthogonal to that of the pressure gradient terms. This is
similar to the stabilization procedure based on a SGS method suggested in References [10–12].

Finally, the weighted residual form of the governing equations is written in the form

∫
�

�ui�
�vi

�t
d� +

∫
�

�	ij�ij d� −
∫

�
�uibi d� −

∫
�t

�ui t̄i d�t = 0 (29a)

∫
�

�vi

[
�ui

�t
− vi

]
d� = 0 (29b)
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∫
�

q

(
�p

K
− �(�ui)

�xi

)
d� +

∫
�

[
nd∑
i=1

�q

�xi


i

(
�p

�xi

+ �i

)]
d� = 0 (29c)

∫
�

[
nd∑
i=1

wi
i

(
�p

�xi

+ �i

)]
d� = 0 (29d)

The stabilization of the momentum equation is necessary in convection-dominated problems,
this is not relevant for solid mechanics problems, so the additional terms involving the space
derivatives of the characteristic lengths have been omitted in Equation (29a). On the contrary,
the stabilization term given by the last integral is essential in Equation (29c).

3.3. Finite element discretization

Introduction of finite element discretization of the displacements, the pressure and the pressure
gradient projection gives the following system of discretized equations:

M
�v̄
�t

− Rv + fd = 0 (30a)

�ū
�t

− v̄ = 0 (30b)

CT�ū − Mp�p̄ − Lp̄ − Q�̄ = 0 (30c)

QTp̄ + Ḡ�̄ = 0 (30d)

where the element contributions are given by

L =
∫

�
(∇N)T�∇N d�, Ḡ =

∫
�

NT�N d�

Q =
∫

�
(∇N)T�N d�, fd =

∫
�

BT� d�

(31)

where

� =
⎡
⎣
1 0 0

0 
2 0
0 0 
3

⎤
⎦ (32)

The matrices M, Mp, C and Rv are defined in Equation (6). In the discretization procedure
the same interpolation has been assumed for all the discretized fields: Nv = Np = N� = N.

The consistent definition of the characteristic length parameters is still an open question.
In advective–diffusive and fluid flow problems it is usual to accept that the characteristic
length vector has the direction of the velocity vector (this is the so-called streamline upwind
Petrov–Galerkin or SUPG assumption [24]). In the examples presented in this paper, we have
obtained good results using a simpler definition of the characteristic lengths with hi = hj = hmin,
where hmin is the smallest of the element (triangles or tetrahedra) heights.
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3.4. Solution scheme

A four-step semi-implicit time integration algorithm can be derived from Equations (30a)–(30d)
as follows:

(i) Compute the nodal velocities v̄n+1/2

v̄n+1/2 = v̄n−1/2 + �tM−1(Rn
v − fn

d ) (33a)

(ii) Compute the nodal displacements ūn+1

ūn+1 = ūn + �t v̄n+1/2 (33b)

(iii) Compute the nodal pressures p̄n+1

p̄n+1 = [Mp − L]−1[�tCTv̄n+1/2 + Mpp̄n − Q�̄n] (33c)

(iv) Compute the nodal projected pressure gradients �̄n+1

�̄n+1 = −Ḡ−1QTp̄n+1 (33d)

In above matrices, M, Mp, L, C, Q and Ḡ are evaluated at tn+1 and

fn
d =

∫
�
[BT�]n d� (34)

where the stresses �n are obtained by consistent integration of the adequate (non-linear)
constitutive law.

Note that steps (i), (ii) and (iv) are fully explicit. A fully explicit algorithm can be obtained
by computing p̄n+1 from step (iii) in Equation (33c) as follows:

p̄n+1 = M−1
p [�tCTv̄n+1/2 + (Mp − L)p̄n − Q�n] (35)

Obviously, the explicit solution is efficient if diagonal forms of matrices Mp, M and Ḡ are
used. The explicit solution is possible if certain compressibility is assumed, i.e. K �= 0. If
K → ∞ pressure must be obtained using the implicit scheme given by Equation (33c).

4. NUMERICAL RESULTS

4.1. Impact of a cylindrical bar

The problem analysed is the impact of a cylindrical bar with initial velocity of 227 m/s into a
rigid wall. The bar has an initial length 32.4 mm and initial radius 3.2 mm. Material properties of
the bar are typical of copper: density � = 8930 kg/m3, Young’s modulus E = 1.17 × 105 MPa,
Poisson’s ratio � = 0.35, initial yield stress �Y = 400 MPa and isotropic hardening modulus
H = 100 MPa. A time period of 80 �s has been analysed.

Figure 1 shows 2D and 3D solutions using triangular and tetrahedral elements based on equal-
order interpolation for displacement and pressure—both solutions exhibit volumetric locking.
Figure 2 shows correct numerical solution obtained using quadrilateral elements, a mixed
displacement–pressure formulation with constant discontinuous pressure in each element. This
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(a) (b)

Figure 1. Final deformed mesh for standard displacement solution with locking: (a) 2D solution
using axisymmetric triangular elements; and (b) 3D solutions using tetrahedra elements.

Figure 2. 2D explicit solution using mixed formulation with quadrilateral elements: (a) deformed
mesh; (b) pressure distribution; and (c) effective plastic strain distribution.

solution is used as a reference of comparison for the CBS stabilized solution using triangular,
tetrahedral, quadrilateral and hexahedral elements with equal-order displacement and pressure
interpolation. The CBS results for triangles and tetrahedra are also compared to the results
obtained using the alternative stabilized algorithm based on FIC. Results obtained using the CBS
algorithm and quadrilateral elements with equal-order displacement and pressure interpolation
are shown in Figure 3. Figures 4 and 5 show results obtained using triangular elements with the
CBS algorithm. We can see that the solutions are locking-free, and the distribution and values
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Figure 3. 2D explicit solution using the CBS algorithm (�t = 0.60�tcr) with quadrilateral elements:
(a) deformed mesh; (b) pressure distribution; and (c) effective plastic strain distribution.

Figure 4. 2D solution using the CBS algorithm (�t = 0.60�tcr) with triangular elements:
(a) deformed mesh; (b) pressure distribution; and (c) effective plastic strain distribution.

of the pressure and effective plastic strain are consistent with those obtained using quadrilateral
elements as shown in Figure 2. The two cases of analysis with the triangular mesh have
different time steps, taken as 0.6 and 0.15 of the critical time step, respectively. Influence of
the time step has been studied. Figure 6 shows the results obtained with triangular elements
with the FIC stabilization, with 
 taken as h2/G with  = 0.01. 3D solutions obtained using
tetrahedra with the CBS and FIC stabilizations are shown in Figures 7 and 8, respectively.

Different 2D and 3D solutions have been compared in Figures 9 and 10. Figure 9 shows
the pressure variation along the axis of symmetry and Figure 10 presents the pressure variation
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Figure 5. 2D solution using the CBS algorithm (�t = 0.15�tcr) with triangular elements:
(a) deformed mesh; (b) pressure distribution; and (c) effective plastic strain distribution.

Figure 6. 2D solution using the FIC formulation ( = 0.01) with triangular elements: (a) deformed
mesh; (b) pressure distribution; and (c) effective plastic strain distribution.

along the generatrix. Although the pressures generally agree there is some divergence especially
at the end of the axis of symmetry (Figure 9), which could indicate that a certain error is
introduced by the approximate treatment of the traction boundary conditions in the simplified
split algorithm.

4.2. Sidepressing of a cylinder

A cylinder 100 mm long with a radius of 100 mm is subjected to sidepressing between two rigid
plane dies. It is compressed to 100 mm. The material properties are the following: E = 217 GPa,
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Figure 7. 3D using the CBS formulation with tetrahedral elements: (a) deformed mesh;
(b) pressure distribution; and (c) effective plastic strain distribution.

Figure 8. 3D solution using the FIC formulation ( = 0.01) with tetrahedral elements:
(a) deformed mesh; (b) pressure distribution; and (c) effective plastic strain distribution.

� = 0.3, � = 7830 kg/m3, �0 = 170 MPa, H = 30 MPa, friction coefficient = 0.2. The die velocity
is assumed to be 2 m/s. Initial set-up is shown in Figure 11. A quarter of a cylinder was
discretized with hexahedra or tetrahedra. Contact between the deformed material and die is
treated using the penalty method.

Figure 12 shows the results obtained using hexahedrals mixed formulation with constant
pressure and trilinear displacement interpolation. The results are shown in the form of deformed
shape with distribution of the effective plastic strain and pressure. These results will be treated as
the reference ones for other solutions. Results obtained using the CBS algorithm and hexahedral
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(a)

(b)

Figure 9. Pressure distribution along the axis of symmetry in: (a) 2D solutions; and (b) 3D solutions.

elements with equal-order displacement and pressure interpolation are shown in Figure 13.
Figures 14 and 15 show the results obtained using the CBS algorithm for two different meshes
of tetrahedra. The results obtained with the FIC stabilization are shown in Figure 16. Quite a
good agreement can be seen between different solutions presented. Variation of pressure along
the line ABCDEA defined in Figure 17 has been presented in Figure 18. Figure 18 confirms
a good agreement between stabilized solutions with the reference solution.
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(a)

(b)

Figure 10. Pressure distribution along the generatrix in: (a) 2D solutions; and (b) 3D solutions.

4.3. Backward extrusion

Backward extrusion of a cylinder made of steel 16MNCr5 has been analysed. This is a bench-
mark example of the finite element program for forming simulation MARC/Autoforge [25].
The tooling and billet geometry are given in Figure 19(a). Initial material dimensions are
the following: length 30 mm and diameter 30 mm. Punch of diameter 20 mm has a prescribed
stroke of 28 mm. Material properties are as follows: Young’s modulus E = 3.24 × 105 MPa,
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Figure 11. Sidepressing of a cylinder: (a) initial tetrahedral mesh; and (b) initial hexahedral mesh.

Figure 12. Sidepressing of a cylinder, mixed formulation, hexahedral mesh: (a) effective plastic
strain; and (b) pressure distribution.

Figure 13. Sidepressing of a cylinder, CBS algorithm, hexahedral mesh: (a) effective plastic
strain; and (b) pressure distribution.

Figure 14. Sidepressing of a cylinder, CBS algorithm, tetrahedra, coarse mesh (4090 elements):
(a) effective plastic strain; and (b) pressure distribution.
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Figure 15. Sidepressing of a cylinder, CBS algorithm, tetrahedra, fine mesh (22 186 elements):
(a) effective plastic strain; and (b) pressure distribution.

Figure 16. Sidepressing of a cylinder, FIC algorithm ( = 0.1), tetrahedra, fine mesh (22 186
elements): (a) effective plastic strain; and (b) pressure distribution.

Figure 17. Definition of the line for comparison of pressure distribution.
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Figure 18. Pressure distribution along the line ABCDEA.

Figure 19. Backward extrusion: (a) geometry definition; (b) final deformed shape with effective plastic
strain distribution, solution with quadrilaterals and mixed formulation; and (c) final deformed shape

with effective plastic strain distribution, solution with triangles and the CBS algorithm.
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Poisson’s coefficient � = 0.3, material density � = 8120 kg/m3, yield stress �Y0 = 300 MPa and
hardening modulus H = 50 MPa. Friction between the material and tools is defined by the
Coulomb friction coefficient � = 0.1.

The simulation of the backward extrusion was carried out with remeshing employed to
regenerate the meshes when element distortion was excessive. Figures 19(b) and (c) show the
results in the form of the final deformed shape with the distribution of the effective plastic strain
obtained using quadrilaterals and mixed formulation, and using triangles and the CBS algorithm,
respectively. The results are in a good agreement with the solution given in Reference [25].
This example demonstrates use of the CBS algorithm in simulation of bulk forming processes.

5. CONCLUSIONS

The characteristic-based split algorithm provides the necessary stabilization for elements not
satisfying BB conditions like equal-order displacement–pressure interpolation triangles, quadri-
laterals, tetrahedra and hexahedra. The extension of the CBS algorithm to solid mechanics
is straightforward. Its implementation in the explicit dynamic finite element program allows
the simulation of solid mechanics problems with quasi-incompressible deformation of materials
typical for bulk metal forming problems, for instance. The results obtained using the CBS
algorithm are in quite a good agreement with the results obtained using other methods.
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