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Abstract

Purpose – To develop a numerical methodology to simulate the lost foam casting (LFC), including
the gas back-pressure effects.

Design/methodology/approach – Back-pressure effects are due to the interactions of many
physical processes. The strategy proposed herein tries to model all these processes within a simple
formula. The main characteristic of the model consists of assuming that the back-pressure is a known
function of the external parameters (coating, temperature, gravity, etc.) that affects directly the heat
transfer coefficient from the metal to the foam. The general framework of the simulation is a finite
element model based on an arbitrary Lagrangian Eulerian (ALE) approach and the use of level set
function to capture the metal front advance.

Findings – After experimental tunings, the model provides a way to include the back-pressure
effects in a simple way.

Research limitations/implications – The method is not completely predictive in the sense that a
priori tuning is necessary to calibrate the model.

Practical implications – Provides more realistic results than classical models.

Originality/value – The paper proposes a theoretical framework of a finite element method for the
simulation of LFC process. The method uses an ALE method on a fixed mesh and a level-set function
to capture metal front advance. It proposes an original formula for the heat transfer coefficient that
enables one to include back-pressure effects.

Keywords Foaming agents, Gas flow, Simulation, Finite element analysis

Paper type Research paper

1. Introduction
In this paper we present a numerical model for the simulation of a relatively new
casting process, known as lost foam casting (LFC) or evaporative pattern casting.
See Piwonka (1990) for an introduction to LFC. This process was developed during
the 1960s and has known an exponential growth since then. To have an idea of the
importance gained by this technology in the last years, let us just mention that around
20 per cent of the total aluminum casting in the USA is obtained by LFC (Divone, 1999).
Despite its important place on the casting market, numerical codes have only recently
allowed the numerical simulation of LFC. This is partly due to the complexity of the
physical processes in play.
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In general casting, known as gravity casting, the molten metal is poured into a
mould filled with air. The metal is allowed to fill the mould thanks to gravity, if the
pressure at the inflow is sufficiently high. In LFC, the air is replaced by expandable
polystyrene (EPS). The polystyrene bead is placed in the mould, it is heated and
expands until it completely fills the mould. The resulting cluster is dipped into a
permeable refractory coating (of alumina, silica), which will act as a barrier between
the sand and the metal, providing a control on the gases escape and a better surface
finish. It is then embedded in a container filled with compacted sand and provided with
a gating. LFC operates as follows. The molten metal is poured into the gating and once
it gets in contact with the foam, the foam evaporates: this process is known as
pyrolysis. Gases can vent through the sand if the coating is sufficiently permeable.
However, if the gas is not vented sufficiently fast, casting defects can appear and
perturb the metal advance. The main parameters that control the process are the EPS
pattern and combustion characteristics, the coating material, thickness, texture and
permeability.

The numerical approach to LFC requires special attention at the physical and
numerical level. Owing to the complex physical mechanisms involved, some
physical simplifications are needed. For example, we decide not to try solving for
the combustion of the foam. Instead, we obtain an equation for the metal front
velocity, through a simple energy budget. Neither we consider the coating,
although its effects can be taken into account into the equation for the front
velocity. The foam is assumed to be burnt instantaneously, and the possible
generation of viscous residues or defects is not considered (Hirt and Barkhudarov,
1998). The list of the main assumptions is given in the Section 1. LFC usually
involves characteristic velocities lower than that encountered in classical casting,
and the metal flow can be either laminar or turbulent. In this work, turbulence is
treated by the subgrid scale (SGS) model.

The velocity approach to treat the front advance is not the only possibility. An
alternative consists in prescribing the pressure at front. This approach has the
advantage that it naturally takes into account the back-pressure effects due to the
decomposition of the EPS pattern. A possible implementation is explained in Kuo et al.
(2003); this method, however, does not consider the heat transfer rate between metal
and foam as an explicit part of the front advance mechanism. See also Mirbagheri et al.
(2003), where the authors propose in addition a model for the back-pressure.

The numerical approximation chosen to solve the present problem is the finite
element method. In order to capture the ever changing computational domain occupied
by the metal, three main approaches are available (Lewis and Ravindran, 2000). The
first method consists in writing the governing equations in a Lagrangian frame of
reference, the nodes being advected by the flow velocity (Muttin et al., 1993;
Radovitzky and Ortiz, 1998). The second method is based on an Eulerian formulation.
The position of the front is identified by a level set function (LSF) (Osher and Fedkiw,
2002), which is transported by the velocity (Codina et al., 1994; Chang and Yang, 2001).
The third method is the arbitrary Lagrangian Eulerian (ALE) method, which uses both
Lagrangian and Eulerian approaches, and consists in adapting the mesh to each new
configuration but in limited zones; generally this implies a node movement near the
front and a remeshing if the resulting mesh is too distorted (Lewis et al., 1997; Gaston
et al., 2000). Let us mention finally the meshless method (Idelsohn et al., 2001) to solve
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free surface flows using a Lagrangian formulation. In this work we have chosen an
ALE method, but with the originality that it is applied to a fixed mesh (FMALE).

This paper is a continuation of the work initiated in (Houzeaux and Codina, 2004),
where some of the modelling and numerical aspects presented here are described in
more detail. Apart from summarizing the material of this reference, we concentrate
here in the modelling of the back-pressure effects. We introduce them through a
particular law for the heat transfer coefficient between the metal and the foam that
depends on the flow pressure and the gas pressure generated from the foam
combustion. This law incorporates also temperature effects by multiplying the gas
pressure by a function of temperature that we adjust from the experimental results of
Yao and Shivkumar (1995). Likewise, we also present a new industrial application that
demonstrates the capability of the present model to simulate LFC.

2. Physical model
2.1 Simplifying assumption
We described in the Section 1 the complexity of the physical processes involved in LFC.
In order to treat LFC numerically, some simplifying assumptions are needed. In
addition, assumptions are added for the sake of clarity of the exposition. They are:

. Metal and foam properties are constant.

. There is no solidification during filling.

. There is no source of contaminant, like viscous residues.

. The foam is assumed to be a constant temperature obstacle so that no partial
differential equation or the foam is, in principle, needed.

. All the combustion gases escape through the coating and the mould. Thus, no
gas is trapped between the metal and the foam.

According to these simplifications, we are able to devise a concise physical model,
presented in the following.

2.2 Governing equations
Let Vm the domain that is filled by the molten metal, Vf the domain occupied by the
foam and V the total domain (metal þ foam). They are shown in Figure 1. Obviously,
both domains depend on time.

Figure 1.
Domain and boundary
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Let us denote the physical properties as follows: r as the density, n as the kinematic
viscosity, cp as the specific heat at constant pressure, k as the thermal diffusion
coefficient and aij as the heat transfer coefficient between materials i and j. The
unknowns to be determined in the general case are u the velocity, p the pressure and T
the temperature of the molten metal. Let us denote umf as the velocity at which the front
of molten metal advances through the foam.

The subscripts m, f and o will be used to refer to molten metal, foam and mould,
respectively, for the physical properties. Likewise, Gij will be used to denote the
interface between materials i and j, and subscript inf will refer to values at the inflow of
the domain (Figure 1).

The equations describing the lost foam model in an Eulerian frame of reference are
conservation of momentum, mass and energy, given by:

›tuþ ðua ·7Þu2 27 · ½nm1ðuÞ� þ 7
p

rm
¼ g; 7 ·u ¼ 0;

›tT þ ua ·7T 2 7 · ðkm7TÞ ¼ 0;

ð1Þ

to be solved in Vm, where 1(u) is the rate of deformation tensor given by:

1ðuÞ ¼
1

2
ð7uþ 7utÞ:

We note that the advection velocity of the momentum and heat equations should be
corrected from u to ua as the domain Vm is moving; this point will be treated in Section
3.3. The governing set of equations must be provided with initial and boundary
conditions, the latter ones being:

s ·n ¼ 2pinfn on Ginf;

u ¼ 0 on Gmo;

u ¼ umf on Gmf;

T ¼ T inf on Ginf;

2km7T ·n ¼ amoðT 2 ToÞ=ðrmcpmÞ on Gmo;

2km7T ·n ¼ amfðT 2 T fÞ=ðrmcpmÞ on Gmf:

ð2Þ

These conditions are, respectively, a traction boundary condition, the no-slip condition
on the walls, the front advance velocity condition, the prescription of the pouring
temperature, the prescription of the heat flux on the walls and the prescription of the
heat flux between metal and foam. The vector n is the outward unit normal to domain
Vm, the tensor s is the stress tensor given by:

s ¼ 2pI þ 2rmnm1ðuÞ;

I being the nd-dimensional identity. Tinf is the pouring temperature and pinf is the
pouring pressure. We note that the boundary condition given by equation (2)1 at
the inflow is:
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p ¼ pinf on Ginf;

only if 1ðuÞ ¼ 0; which is satisfied, for example, if the flow is uniform.
In the governing set of equations, apart from the velocity, pressure and temperature,

we are left with two unknowns, namely the front advance velocity and the time
dependent domain Vm. A model for the front advance velocity is now given. Next a
front advance tracking is presented to tackle the evolution of Vm.

Remark. Equation (2)2 can be replaced by a slip condition, that is by imposing a
zero tangential traction together with a zero normal velocity.

2.3 Front velocity
The front velocity at which the front advances is a function of the heat absorbed by the
foam, which in turn depends on u and T so that umf ¼ umfðu;TÞ: If it is high enough,
the foam will be molten and vaporized, and the room left free will be occupied by the
metal. The front velocity can be computed from a simple global balance of energy.
Suppose that a point of the interface molten metal-foam advances a distance ds normal
to the surface of the interface in a time dt. The heat per unit surface released from the
molten metal to the volume initially occupied by foam will be:

Qrel ¼ amfðTm 2 T fÞdt:

This heat will be invested in melting and vaporizing the foam and in increasing
the temperature of the spatial points, which originally are occupied by foam and
at the end of the process are filled with metal. So the heat stored can be
approximated by:

Qsto ¼ rfcpf
1

dt
ðTm 2 T fÞ þ

rf

dt
ðEmel þ EvapÞ

� �
dsdt;

where Emel and Evap are the melting and vaporization energy, respectively, which must
be determined from experiments. Imposing that Qsto ¼ Qrel it is found that:

rfcpf
ds

dt
ðTm 2 T fÞ þ

ds

dt
ðrfEmel þ rfEvapÞ ¼ amfðTm 2 T fÞ:

For dt ! 0; ds=dt! umf; from where:

umf ¼
amfðTm 2 T fÞ

rfðcpfðTm 2 T fÞ þ Emel þ EvapÞ
: ð3Þ

We note that the model for the front velocity does not take into account the effects of
pouring temperature, coating, foam type, gravity, etc. In fact, the front velocity is
independent on the mould orientation with respect to the gravity. From experiments,
the front advance should depend on the pouring temperature, the coating, the foam and
the gravity g (Liu et al., 1994; Wang et al., 1994; Yao and Shivkumar, 1995). In addition,
more drastic effects can occur. For high temperature and low coating permeabilities, a
large gap between the front and the burnt foam is observed, called the kinetic zone
(Bakhtiyarov and Overleft, 2003). This situation is not envisaged in the context of this
work.
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We now present a simple way to take into account the effects of the back-pressure
pgas. This is the first step of model improvement. As we do not have at hand a
combustion model, a formula for the back-pressure must be obtained from
experimental results. According to the previous remarks, we assume that:

pgas ¼ pgasðT inf; foam; coatingÞ ð4Þ

is a known function.
We now present an expression for the metal-to-foam heat transfer coefficient

expliciting its dependence on pgas. We assume that the heat transfer coefficient in the
absence of back-pressure and gravity effects is known, and is referred to as a0

mf: It can
be shown that the value of the heat transfer between two materials is proportional to
their separation distance d. If we assume next that this distance is proportional to the
pressure difference between the metal and the gas, then we can express the heat
transfer as a function of these pressures. In particular, we have:

p ¼ pgas ! d ¼ d0 ! amf ¼ a0
mf;

p . pgas ! d , d0 ! amf . a0
mf;

p , pgas ! d . d0 ! amf , a0
mf:

From these remarks, we can derive an expression for the heat transfer coefficient,
similar to that used in usual thermal contact models (Agelet de Saracibar, 1998). We
propose the following expression:

amf U a0
mf

dp

dpgas

� �1

: ð5Þ

This expression involves pressure increments (with respect to the atmospheric
pressure) rather than absolute pressures. It enables to include in a simple way the
effects of the set of parameters (Tinf, foam, coating, g) in the determination of the front
advance, as the front velocity umf depends explicitly on the heat transfer coefficient.
Indeed, we have assumed that we knew an expression for the gas pressure in function
of the pouring temperature, the foam and the coating, given by equation (4). The
dependence on the gravity appears implicitly through the dependence on the pressure
in equation (5). We have then:

umf ¼
amfðT inf; foam; coating; gÞðTm 2 T fÞ

rf½cpfðTm 2 T fÞ þ Emel þ Evap�
: ð6Þ

2.4 Front tracking
One possibility of defining the molten metal-foam interface (or equivalently to
determine Vm at each time) is the level set technique. This is not a general conservation
law, but rather a mathematical model to describe the evolution of this interface
(see Codina et al. (1994) for an application of this method to classical mould fillings).
It consists in defining a scalar function, called the LSF, say c, over the computational
domain V in such a manner that its value at a certain point indicates the presence or
absence of metal. This function may be considered a fictitious fluid property. For
instance, we may assign the value 1 to regions where the liquid metal has already
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entered and the value 0 to foam-filled regions. The position of the metal front will be
defined by the isovalue contour c ¼ cc where cc [ ½0; 1� is a critical value defined a
priori. We usually take cc ¼ 0.5. This value is immaterial if c is a true step function,
but is needed in the finite element discretization. The level set technique is usually used
to follow free surfaces of fluids, i.e. surfaces advected by the fluid velocity itself. In the
present case we have a somewhat different situation. The LSF is advected due to
temperature gradients and is, therefore, not explicitly advected by the fluid motion
(equation (3)).

The velocity at the metal front is assumed to move along the normal to the front,
which is precisely the gradient of the level set function:

umf ¼ 2
7c

j7cj
umf: ð7Þ

3. Numerical model
In the previous section we presented the physical modeling of the lost foam process.
However, some purely numerical ingredients are necessary to solve the governing
equations efficiently. We first introduce the finite element method which is used to
solve the partial differential equations. Next we introduce the treatment of the front
advance. Then we explain how this method affects the governing equations; in
particular we will see that it can be viewed as an arbitrary Lagrangian (ALE) method
applied to fixed meshes.

3.1 Finite element method and time discretization
The Navier-Stokes and heat equations are solved using a finite element model based on
a stabilized Galerkin method. In fact, it is well-known that the Galerkin formulation can
lack stability for two major reasons. The first reason is related to the compatibility of
the finite element spaces for the velocity and the pressure which have to satisfy the
so-called Ladyzhenskaya-Brezzi-Babuška condition. This condition is necessary to
obtain a stability estimate for the pressure; without requiring this condition, the
pressure would be out of control. The second reason is attributed to the relative
importance of the viscous and convective effects in the momentum equation. The
stabilized formulation is based on the algebraic variational SGS model first introduced
in Hughes (1995). The variational SGS model uses as a starting argument that the
inability of the mesh to resolve all the flow scales is responsible for the numerical
instabilities. Therefore, the model calculates in some approximate way the unresolved
scales of the flow, i.e. the scales smaller than the mesh size. The method is extensively
described in Codina (2001). Finally, the time discretization is carried out using to
generalized trapezoidal rule, i.e. a finite difference scheme. To do so, we consider a
partition 0 ¼ t 0 , t 1 , · · · , t N ¼ T of the time interval [0, T ] of interest. The time
step is denoted as dt ¼ t n 2 t n21:

In this work, we consider two types of elements using both equal order interpolation
for the velocity and the pressure. The Q1/Q1 element is continuous and bilinear
(trilinear in three dimensions) in both velocity and pressure. We will also work with the
P1/P1 element, continuous and linear in velocity and pressure.

A similar numerical model is used to solve the equation for the temperature T,
and the LSF c, which are interpolated like u and p. They are integrated in time using
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the generalized trapezoidal rule and the algebraic SGS method is employed to stabilize
the possible dominance of convective term. See Codina (2001) for further details.

3.2 Front advance treatment
In Section 2.4, we mentioned the possibility of identifying the presence and absence
of metal by solving a partial differential equation for the LSF. In this work, we
propose to solve the partial differential equations in the whole domain V in order to
advect the LSF correctly across the interface. We thus have to define in a clear way
the metal domain, the domain of interest. As presented here, the proposed method is
exclusive to the finite element method (although it can surely be extended to other
methods).

Let us take as reference the solution obtained at a time t n. We assume that the LSF
c n is known. The idea is to divide the finite element mesh of V into three zones, which
are three sets of elements of the finite element discretization: the metal set with
elements whose nodes satisfy c . cc; the foam set with elements whose nodes satisfy
c # cc; and finally, the front set which includes elements that have both metal and
foam nodes, i.e. the remaining elements. In the same way, we define the front nodes as
the nodes belonging to front elements, which in addition can be of metal or foam. Metal
nodes are nodes of metal elements; likewise, we define foam nodes similarly. These
metal and foam nodes can be of front type also.

The front velocity given by equations (3) and (7) is imposed as a Dirichlet boundary
condition on all the front nodes. This enables to advect the LSF properly across the
metal-foam interface, both in the metal and foam domain. Here we must list some
useful numerical ingredients:

. To compute the gradient of the LSF involved in equation (7), we use a
least-square smoothing.

. To obtain a smooth incompressible flow in the foam region, we solve a stationary
Stokes problem in the foam set (by removing the time derivative and convection
term). In addition, all the boundary nodes of the foam set are left free so that the
artificial fluid in the foam can escape the domain and be incompressible. That is,
we impose:

s ·n ¼ 0 on Gfo:

This step can be understood as an extension of the velocity field in the metal
region to foam. It is necessary for the numerical problem (not for the continuous
one) since at each time step the front will enter several foam nodes where the
velocity needs to be defined.

. To insulate the metal set completely from the foam set, the element matrices of
the front set are not assembled in the global stiffness matrix of the Navier-Stokes
and heat equations. Note that for numerical reasons, it is preferable to multiply
the front element matrices by a small value (say 1026) rather than removing
them from the assembly. What we have now are two independent domains, one
filled with metal, the other filled with foam, and a front of one element width on
which the velocity is prescribed to umf.

. The velocity vectors of the front nodes located on the mould boundary are
projected on the boundary so that the metal does not escape the metal domain.
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. As far as the heat equation is concerned, by removing the front element contribution
to the stiffness matrix we are imposing implicitly an adiabatic condition for the
metal domain, that is amf ¼ 0 in equation (2)6. How ever, if amf – 0; the adiabatic
condition can be converted into the desired boundary condition by reconstructing
the boundary. In the independent foam domain, the temperature can be set constant.

3.3 ALE method with fixed mesh
When using the level set technique in general casting, involving a metal-air mixture,
the Navier-Stokes equations are solved in the entire mould, the physical properties
being those of the metal or those of the air according to the value of c. The frame of
reference is then Eulerian. In the present case, the LSF is used to define the metal
computational domain, which changes at all time. However, according to the numerical
algorithm used to capture the front advance, we want to use the same mesh all along
the time integration. The method to solve this problem is an ALE method with a fixed
mesh. The convection velocity ua in equations (1)1-3 should be equal to u2 um where
um is the mesh velocity of the new nodes of the metal domain and u elsewhere. The
method is described in Houzeaux and Codina (2004).

4. Numerical examples
4.1 Horizontal plate
The first example we solve is the aluminum casting of a two-dimensional plate (Yao
and Shivkumar, 1995; Hirt and Barkhudarov, 1998). The geometry is shown in Figure 2.
The values of the physical properties are shown in Table I. For the sake of simplicity,
we set amo ¼ 0 in equation (2)5 and amf ¼ 0 in equation (2)6. Through the solution of
this example we want to test the numerical strategy as well as the front velocity model
given by equations (5) and (6). To test the numerical strategy, the gravity and
back-pressure effects are neglected by putting 1 ¼ 0 in equation (5). Then we consider
a fine mesh of 3,660 Q1/Q1 elements and a very coarse mesh of 264 elements (Figure 3).
On the fine mesh, both the no-slip and a slip condition for the velocity are put to the
test, as well as a large time step dt ¼ 0:1 s and a small one dt ¼ 0:05 s:

Figure 2.
Horizontal plate

LFC process
tackling back-

pressure effects

581



Figures 4 and 5 compare the evolutions of the metal front and velocity vectors for the
three times 0.6, 1.0 and 1.8 s shown in Figure 2. For the sake of comparisons, the time is
set to zero when the front passes the plate entrance. We first observe that the
distortioned profile of the front obtained in the experiments cannot be well reproduced.
Note also that taking 1 ¼ 0 the front velocity is independent of the inflow temperature
as we have:

umf <
amf

rfcpf
:

Then, contrary to the experiment, we would obtain the same front evolution for any
inflow temperature.

We also observe a strong recirculation zone generated once the metal enters the
plate, and transported by the metal jet from left to right. This recirculation is even
captured by the (very) coarse mesh, but located at a different position. We also observe
that using the no-slip condition, higher velocities are obtained in the jet. This is a mesh
size effect as in order for the no-slip solution to pump the same flow rate from the
ingate as the slip solution, the velocity of the no-slip simulation must be greater at

Symbol Property Value

Aluminum
amf Metal to foam heat transfer coefficient 6.00 £ 103 (kg s23 K21)
rm Density 2.70 £ 103 (kg m23)
nm Viscosity 3.70 £ 1027 (m2 s21)
km Conductivity 8.32 £ 1025 (m2 s21)
cpm Specific heat 8.37 £ 102 (J kg21 K21)
Tinf Inflow temperature 9.88 £ 102 (K)
pinf Inflow pressure 4.00 £ 103 (Pa)

Foam
rf Density 2.00 £ 101 (kg m23)
cpf Specific heat 4.00 £ 103 (J kg21 K21)
Emel Specific melting heat 8.00 £ 102 (J kg21)
Evap Specific vaporization heat 4.00 £ 102 (J kg21)
Tf Temperature 2.93 £ 102 (K)

Table I.
Horizontal plate: physical
properties and variables
in play

Figure 3.
Horizontal plate
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the ingate. The generation of this vortex is shown in more detail in Figure 6. This
figure also shows the temperature contours.

Figure 7 compares the velocity vectors obtained in the top left part of the plate using
the slip and no-slip conditions. We note that the profiles are similar.

We now test the model for the front advance with gas back-pressures. For this
example we take 1 ¼ 1 in equation (5) and set:

amf ¼ a0
mf

pþ rmgh

pgasbðTÞ
; ð8Þ

where pgas ¼ 4 £ 103 Pa: This value belongs to the range of experimental gas pressures
given in Liu et al. (2002). It is equal to pinf given from Table I where pinf can be, for
example, provided by a downsprue. h is the distance in the gravity direction, in this case
from the ingate. g ¼ 9:8 m s22 is the norm of the gravity vector. The function b(T)
represents the temperature dependence of the back-pressure. It is chosen in order to
reproduce approximately the experimental results of Yao and Shivkumar (1995). We set:

bðTÞ ¼ ð25:33 £ 1024T inf þ 1:4Þ21;

Figure 4.
Horizontal plate: front

advance at time 0.6, 1.0
and 1.8 s
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Figure 5.
Horizontal plate: velocity
vectors at time 0.6, 1.0 and
1.8 s

Figure 6.
Horizontal plate: metal
entering the plate; velocity
vectors (top); temperature
contours (bottom)
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which is valid for T $ 763 K: Note that bðT ¼ 763Þ ¼ 1 so that the heat transfer (and
thus the velocity) is maximum, as indicated by the experimental data. Observe also that
this expression implies that when T increases then b(T) increases and thus the front
velocity umf decreases, whereas one would expect a faster burning of the front and,
therefore, a higher front velocity. In general terms, the physical effects that could explain
this behaviour are the impermeability of the coating (which could prevent gases from
escaping and, therefore, increase the back pressure) or the generation of residues in the
front where combustion takes place. In any case, the expression forb(T) given is the one
that adjusts sufficiently well the experimental data for the temperature range
considered.

Table II shows the filling times obtained for three different inflow temperatures
T inf ¼ 763; 988; 1; 388 K without the gravity term in equation (8); this situation
would correspond to a side gating configuration of the experiment. These filling times
are also compared to the one obtained for T inf ¼ 988 K with a top gating, that is taking
into account the gravity term in equation (8).

Finally, Figure 8 compares the profiles obtained at different times of the four cases
presented before. We observe that with respect to the results obtained with amf ¼ a0

mf
as shown in Figure 4, the front advance is faster in the centre region. This increase in
the front velocity is a consequence of the high mechanical pressure encountered in this
region, whose dependence is taken into account explicitly in the heat transfer
coefficient model (equation (8)).

4.2 Revolver lathe piece
We now simulate a three-dimensional casting and compare the results obtained with a
lostfoam casting with that of a gravity casting. The geometry is given in Figure 9
(Left), and the mesh, composed of 160,785 tetrahedral elements, is shown in Figure 9
(Right). This is a real geometry of a real casting example but for which we do not have

Tinf (K) Gating Time (s) Experiment (s)

988 Top 1.65 1.75
763 Side 2.25 2.10
988 Side 2.50 2.70
1,388 Side 3.30 3.15

Source: Yao and Shivkumar (1995)

Table II.
Horizontal plate: filling

time for different
temperatures and gating

compared with
experimental results

Figure 7.
Horizontal plate: velocity
vectors at top left corner,

fine mesh, dt ¼ 0.05 s;
no-slip condition on walls

(left); slip condition on
walls (right)
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experimental results to compare with. This example is merely intented to understand
qualitatively the difference between classical gravity casting and LFC. We take the
same physical properties as those of the previous example, and for the front velocity
model, we take 1 ¼ 0 in equation (5). Figure 10 shows the evolution of the metal front
for both castings. The red colour is used to depict the interior metal front while the grey
colour indicates the metal-mould contact surface. On the one hand, we observe that in
the gravity casting, the ingate cone is filled at last. On the other hand, in the case of the
lostfoam casting, the metal advance is more isotropic; in fact, the model for the front
advance chosen here does not depend on gravity, as 1 ¼ 0.

Finally, Figure 11 shows the velocity vectors and the temperature contours obtained
with the lostfoam simulation at two different times of the casting.

5. Conclusions
We have presented a numerical model to solve LFC problems. This numerical model
is based on a finite element method using an ALE formulation with a fixed mesh.
It was found that the evolution of the metal domain could be well captured by solving

Figure 8.
Horizontal plate
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a partial differential equation for a level set function, advected on both sides of the
front. The first numerical example showed that the dynamics of the metal was almost
exclusively driven by the front advance, as the different time steps, the different wall
treatment and the meshes give similar results.

Figure 9.
Revolver lathe piece:
geometry (left); mesh

(right)

Figure 10.
Revolver lathe piece: metal

advance at different time
steps; gravity casting

(top); lostfoam casting
(bottom)
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A model for the front velocity has been devised. It has been calibrated using
experimental data on a simple geometry. Such a calibration can then be useful for
solving complex three-dimensional castings, as long as all the important physical
parameters are kept constant (foam, coating thickness, etc.).
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