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Abstract. In this work we present a theory of the multilayer percep-
tron from the perspective of functional analysis and variational calculus.
Within this formulation, the learning problem for the multilayer percep-
tron lies in terms of finding a function which is an extremal for some
functional. As we will see, a variational formulation for the multilayer
perceptron provides a direct method for the solution of general varia-
tional problems, in any dimension and up to any degree of accuracy. In
order to validate this technique we use a multilayer perceptron to solve
some classical problems in the calculus of variations.

1 Introduction

Queen Dido of Carthage was apparently the first person to attack a problem
that can readily be solved by using the calculus of variations. Dido, having been
promised all of the land she could enclose with a bull’s hide, cleverly cut the hide
into many lengths and tied the ends together. Having done this, her problem was
to find the closed curve with a fixed perimeter that encloses the maximum area
[1]. The problem is based on a passage from Virgil’s Aeneid:

The Kingdom you see is Carthage, the Tyrians, the town of Agenor;

But the country around is Libya, no folk to meet in war.

Dido, who left the city of Tyre to escape her brother,

Rules here-a long a labyrinthine tale of wrong

Is hers, but I will touch on its salient points in order...

Dido, in great disquiet, organised her friends for escape.

They met together, all those who harshly hated the tyrant

Or keenly feared him: they seized some ships which chanced to be ready...
They came to this spot, where to-day you can behold the mighty
Battlements and the rising citadel of New Carthage,

And purchased a site, which was named ‘Bull’s Hide’ after the bargain
By which they should get as much land as they could enclose with a bull’s hide.

Despite the circle appears to be an obvious solution to Dido’s problem, proving
this fact is rather difficult. Zenodorus proved that the area of the circle is larger
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than that of any polygon having the same perimeter, but the problem was not
rigorously solved until 1838 by Jakob Steiner [1].

Although the history of variational calculus dates back to the ancient Greeks,
it was not until the seventeenth century in western Europe that substantial
progress was made. A problem of historical interest is the brachistochrone prob-
lem, posed by Johann Bernoulli in 1696 [1]. The term brachistochrone derives
from the Greek ‘brachistos’ (the shortest) and ‘chronos’ (time):

Given two points A and B in a vertical plane, what is the curve traced out
by a particle acted on only by gravity, which starts at A and reaches B in the
shortest time?

Sir Isaac Newton was challenged to solve the problem, and did so the very
next day. In fact, the solution to the brachistochrone problem, which is a segment
of a cycloid, is credited to Johann and Jacob Bernoulli, Sir Isaac Newton and
Guillaume de L’Hospital [1]. In that context, Dido’s problem was called the
isoperimetric problem, and it was stated as:

Of all simple closed curves in the plane of a given length 1, which encloses the
mazximum area?

The aim of both the brachistochrone and the isoperimetric problems is to find
a function which is the minimal or the maximal value of a specified functional.
By a functional, we mean a correspondence which assigns a number to each
function belonging to some class [2]. The calculus of variations gives methods
for finding extremals of functionals, and problems that consist in finding minimal
and maximal values of functionals are called variational problems [2].

While some simple variational problems can be solved analytically, the only
practical technique for general problems is to approximate the solution using di-
rect methods [2]. The fundamental idea underlying the so called direct methods
is to consider the variational problem as a limit problem for some function op-
timization problem in many dimensions [2]. Unfortunately, variational problems
are difficult to solve, and new numerical methods need to be developed in order
to overcome that difficulties.

Neural networks is one of the main fields of artificial intelligence. The multi-
layer perceptron is an important model of neural network, and much of the lit-
erature in the area is referred to that model. Traditionally, the learning problem
for the multilayer perceptron has been formulated in terms of the minimization
of an error function of the free parameters in the network, in order to fit the
neural network to an input-target data set [3]. In that way, the only learning
tasks allowed for the multilayer perceptron are data modelling type problems,
such as function regression or pattern recognition.

In this work we present a variational formulation for the multilayer perceptron.
Within this formulation, the learning problem for the multilayer perceptron lies
in terms of solving a variational problem by minimizing a performance functional
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of the function space spanned by the network. The choice of a suitable perfor-
mance functional depends on the particular application. On the other hand, the
performance functional might need the integration of functions, ordinary differ-
ential equations or partial differential equations in order to be evaluated.

As we will see, neural networks are not only able to solve data modelling prob-
lems, but also a wide range of mathematical and physical problems. More specif-
ically, a variational formulation for neural networks provides a direct method for
solving general variational problems.

In order to validate this numerical method for the solution of variational
problems, we use a multilayer perceptron to solve the brachistochrone problem
and the isoperimetric problem, and compare the results provided by the neural
network to the analytical results.

2 The Multilayer Perceptron Function Space

A neuron model is the basic information processing unit in a neural network, and
the perceptron is the characteristic neuron model in the multilayer perceptron
[4]. On the other hand, artificial neurons can be combined in a network archi-
tecture to form a neural network. The characteristic network architecture in the
multilayer perceptron is the so called feed-forward architecture [4]. In this way,
a multilayer perceptron can be defined as a feed-forward network architecture
composed of perceptron neuron models.

Mathematically, a multilayer perceptron spans a parameterized function space
V from an input X C R™ to an output Y C R™ [5]. Elements of V are parame-
terized by the free parameters in the network, which can be grouped together
in a s-dimensional free parameter vector a = (v, ..., as). The dimension of the
function space V is therefore s. The elements of the function space spanned by
a multilayer perceptron are of the form

y:R"—=R™

x = y(x;a).

A multilayer perceptron with as few as one hidden layer of sigmoid neurons and
an output layer of linear neurons provides a general framework for approximating
any function from one finite dimensional space to another up to any desired degree
of accuracy, provided sufficiently many hidden neurons are available. In this sense,
multilayer perceptron networks are a class of universal approximators [6].

3 The Variational Problem

Traditionally, the learning problem for the multilayer perceptron has been for-
mulated in terms of the minimization of an error function of the free parameters
in the network, in order to fit the neural network to an input-target data set [3].
In that way, the only learning tasks allowed for the multilayer perceptron are
data modelling type problems.
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In a variational formulation for the multilayer perceptron, the concept of error
function, e(w), is changed by the concept or performance functional, Fly(x;a)]
[5]. A performance functional for the multilayer perceptron is of the form

F V —-R
y(x;a) — Fly(x;a)].

The performance functional defines the task that the network is required to
accomplish and provides a measure of the quality of the representation that the
network is required to learn. In this way, the choice of a suitable performance
functional depends on the particular application. As we will see, changing the
concept of error function by the concept of performance functional allows us
to extend the number of learning tasks for the multilayer perceptron to any
variational problem. Some examples are optimal control problems [5], inverse
problems [7] or optimal shape design problems.

The learning problem for the multilayer perceptron can then be formulated
in terms of the minimization of a performance functional of the function space
spanned by the neural network [5]:

Problem 1 (Variational problem for the multilayer perceptron). Let V' be the
space of all functions y(x;«) spanned by a multilayer perceptron, and let s be
the dimension of V. Find a function y*(x;a*) € V for which the functional
Fly(x;a)], defined on V, takes on a minimum or a maximum value.

A variational problem for the multilayer perceptron can be specified by a set of
constraints, which are equalities or inequalities that the solution must satisfy.
Such constraints are expressed as functionals. An easy approach is to reduce the
constrained problem into an unconstrained problem by adding a penalty term
to the original performance functional for each constraint in the problem [5].

4 The Reduced Function Optimization Problem

The performance functional, F[y(x;a)], has a performance function associated,
f(«), which is defined as a function of the free parameters in the network [5],

R >R
a— f(a).

The minimum or maximum value of the performance functional is achieved
for a vector of free parameters at which the performance function takes on a
minimum or maximum value, respectively. Therefore, the learning problem for
the multilayer perceptron, formulated as a variational problem, can be reduced
to a function optimization problem [5]:

Problem 2 (Reduced function optimization problem for the multilayer percep-
tron). Let R® be the space of all vectors a spanned by the free parameters
of a multilayer perceptron. Find a vector a* € R® for which the function f(a),
defined on R?®, takes on a minimum or a maximum value.



A Variational Formulation for the Multilayer Perceptron 163

In this sense, a variational formulation for the multilayer perceptron provides a
direct method to approximate the solution of general variational problems, in
any dimension and up to any desired degree of accuracy [5].

The training algorithm is entrusted to solve the reduced function optimiza-
tion problem. There are many different training algorithms for the multilayer
perceptron, which have different requirements and characteristics. One of the
most used is the conjugate gradient [3].

5 The Brachistochrone Problem

In this section we solve the brachistochrone problem by means of a multilayer
perceptron, and compare the neural network results to the analytical results.
For this example we take the points A = (a, f,) and B = (b, f;) to be A =(0,1)
and B = (1,0). The problem is solved with the Flood library [8].

The first step is to choose a network architecture to represent the curve. Here
a multilayer perceptron with a sigmoid hidden layer and a linear output layer is
used. This neural network is a class of universal approximator [6]. The curve is
to be represented in cartesian coordinates y = y(x), so the network must have
one input and one output neuron. As an initial guess, we use six neurons in the
hidden layer. Such a multilayer perceptron defines a family V' of parameterized
functions y(z; ) of dimension s = 19, which is the number of free parameters in
the network. Figure 1 is a graphical representation of this network architecture.

Fig. 1. Network architecture for the brachistochrone problem

The second step is to derive a performance functional for the brachistochrone
problem. The time for a particle to travel from point A to point B along a curve
y(x; ) is given by the integral [1]

b s )2
Tlyna) = o= [ [y, 0

where g = 9.81 is the gravitational acceleration. The constraints of this problem
can be expressed as error functionals,
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Ealy(z;a)l = y(a) — va

=0, (2)
Eply(z;a)] = y(b) — v»
=0. (3)

Making use of Equation (1) and considering the constraints (2) and (3), we
get

b "o o
Fly(z;a)] = pT\/%—g / 71;%/;([52 du
+pa (Yla;e) —ya)? + o (y(bi2) — m)? (4)

where pr, pa and pp are penalty term ratios, which are set to 1073, 1 and 1,
respectively. Please note that evaluation of the performance functional in Equa-
tion (4) requires a numerical method for the integration of functions. Here we
choose the Simpson’s composite method [9] with 100 integration intervals. The
brachistochrone problem for the multilayer perceptron can then be stated as:

Problem 3 (Brachistochrone problem for the multilayer perceptron). Let V be
the space of all functions y(x;«) spanned by a multilayer perceptron with 1
input, 6 sigmoid neurons in the hidden layer and 1 linear output neuron. The
dimension of V is 19. Find a vector of free parameters o* € R!'” that addresses
a function y*(z;a*) € V for which the functional (4), defined on V, takes on a
minimum value.

The third step is to choose a suitable training algorithm for solving the reduced
function optimization problem. Here we use a conjugate gradient with Polak-
Ribiere search direction and Brent optimal step size methods for training [3].
The tolerance in the Brent’s method is set to 107%. On the other hand, training
of the neural network with the conjugate gradient requires the evaluation of the
performance function gradient vector V f(«) [3]. This is carried out by means
of numerical differentiation. In particular, we use the symmetrical central differ-
ences method [3] with an e value of 107%. In this example, we set the training
algorithm to stop after 1000 epochs of the training process. Table 1 shows the
training results for this problem.

Table 1. Training results for the brachistochrone problem

Fly* (z;a")] Ty*(z;2")] Ealy™(z;07)] Eply”™ (z;2")]
3.404 - 1074 0.576 2.889 1073 —5.716-107°

The errors made in the constraints by the multilayer perceptron are of order
1073 and 1075 for points A and B, respectively. The descent time provided by
that neural network is 0.576, while that provided by the analytical result is 0.577.
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This yields a percentage error of around —0.173%. Results here are good, since
the constraint errors made by the network are very small and the descent time
provided by the network is very similar to the descent time for the brachistochrone.
Figure 2 illustrates the neural network solution to the brachistochrone problem.
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Fig. 2. Neural network solution to the brachistochrone problem

6 The Isoperimetric Problem

In this section we solve the isoperimetric problem by means of a multilayer
perceptron, and compare the neural network results to the analytical results.
The perimeter goal is set to be [ = 1. This problem is solved with the Flood
library [8].

Here a multilayer perceptron with a sigmoid hidden layer and a linear output
layer is used. This neural network is a class of universal approximator [6]. The
closed curve is to be represented in polar coordinates r = r(0), for 6 € [0, 27,
so the network must have one input and one output neuron. We use 6 neurons
in the hidden layer. This multilayer perceptron spans a family V' of functions
r(0; ) with dimension s = 19. Figure 3 is a graphical representation of this
network architecture.

In order to derive a performance functional for the isoperimetric problem we
first consider the expression for the area enclosed by a polar curve [1],

Apr(B:)] = & / "1 (6: )b, (5)

The perimeter constraint is expressed as an error functional, by considering
the arc length of a curve in polar coordinates [1]

2m
Eplr(0;a)] = ; VIr(0: ) + [r'(0; )]2d6 — |
—0. (6)
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theta r

Fig. 3. Network architecture for the isoperimetric problem

Similarly, the join constraint can be expressed as an error functional,
Ey[r(0; )] = r(2m;2) — r(0; 2)
=0. (7)

Making use of Equations (5), (6) and (7), we obtain the performance functional
to be minimized,

21
Flr(0;a)] = - pA%/O [r(0; a)]?do

2

2
T pp ( VS G - 1)
T (r(2mia) — r(0:)? ®

where ps = 1073, pp = 1 and py = 1 are penalty term ratios. Evaluation of (8)
requires a numerical method for the integration of functions. Here we choose the
Simpson’s composite method [9] with 100 integration intervals. The isoperimetric
problem for the multilayer perceptron is then stated as:

Problem 4 (Isoperimetric problem for the multilayer perceptron). Let V' be the
space of all functions r(0; ) spanned by a multilayer perceptron with 1 input, 6
sigmoid neurons in the hidden layer and 1 linear output neuron. The dimension
of V is 19. Find a vector of free parameters a* € R that addresses a function
r*(0;a*) € V for which the functional (8), defined on V, takes on a minimum
value.

Here we use a conjugate gradient with Polak-Ribiere search direction and Brent
optimal step size methods for training [3]. The tolerance in the Brent’s method
is set to 107%. Evaluation of the performance function gradient vector V f(a) [3]
is carried out by means of the symmetrical central differences method [3], with
€ = 1075, The training algorithm is set to stop after 100 epochs.
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Table 2. Training results for the isoperimetric problem

Flrr(0;a")] Alr(0;27)] Ep[r*(8;2")] Es[r*(8;a")]
—6.332-107° 0.079579 —1.266-107° —4.228 -107°

The perimeter error is of order 10, while the join error is of order 10~%. The
area of the closed curve provided by the neural network is 0.079579, while that
of the circle is 0.079577. This yields a percentage error of around 2.513-1073%.
Results here are also good, since the error made in all the constraints by the
network is very small and the area provided by the network is very similar to
that of the circle. Figure 4 illustrates the network solution to the isoperimetric
problem.
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Fig. 4. Neural network solution to the isoperimetric problem

7 Conclusions

A variational formulation for neural networks provides a direct method for the
solution of general variational problems, in any dimension and up to any degree
of accuracy. This numerical method has been validated for two classical problems
in the calculus of variations with analytical solution. Ongoing work focuses on
the solution of variational problems in engineering. Some examples are optimal
control, inverse or optimal shape design problems.
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