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Abstract: An important concern in sheet stamping is the risk of obtaining 
brittle final products that can be affected by fracture. Monte Carlo simulations 
presented herein show that this is governed by two main factors, namely static 
and dynamic friction coefficients. Whereas the latter correlates in a non-linear 
manner with minimum and maximum end thickness, the relationship of these 
design parameters to the former exhibits a bifurcation that is typical of highly 
non-linear phenomena, in which there is a sensitivity to small perturbations of 
the input values (chaos). In order to estimate the reliability of the process  
(i.e., the probability of obtaining brittle products due to low minimum and 
maximum thicknesses) with a reduced number of Monte Carlo runs, it is 
proposed to assimilate the problem to a pattern recognition task, due to the 
existence of two classes, namely robust and brittle. Among many pattern 
recognition algorithm that are useful to this end, use is made of support vector 
machines, as this incorporates the powerful tool of class margins that allow a 
drastic reduction of the number of simulations. 
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1 Introduction 

The production of goods using sheet stamping procedures requires quality control, for 
which the numerical modelling can be of great assistance. The main matter of concern in 
this respect is the brittleness of the end product as measured by the minimum and 
maximum thicknesses (denoted herein as tm and tM, respectively) resulting from the 
stamping, because fracture is most likely to initiate in zones where these variables are 
low. 

Friction plays an important role in sheet metal forming process and is therefore of 
major importance for reliable finite element simulations of these processes. For these 
simulations, a frequently used friction model is the Coulomb model in which the friction 
coefficient is constant parameter. From a wider point of view, this is not satisfactory 
because the friction coefficient depends on local contact conditions like pressure, 
combined surface roughness of the sheet and the tools, lubricant viscosity, and velocity of 
the surfaces. 

During sheet forming process, the friction between sheet and tools has an active role 
in affecting the material flow, the strain distribution, and the forming force. It also takes 
part in determining the forming failures (e.g., wrinkling, tearing, and surface distortion) 
and the location of these failures. Hence, an accurate simulation of the sheet forming 
process requires a detailed understanding of frictional behaviour under actual forming 
condition. Since the frictional force is known to be a complicated function of material 
properties and process parameters, it is unrealistic to use a single test to accurately 
represent the sheet metal forming process. 

In the frictional problem, two cases can be distinguished. At the early stage of the 
process where a full stick condition between the sheet and tools is verified, a tangential 
force appears opposing to the relative slip. At this phase, the active friction coefficient is 
the so-called static one (µs) Once a threshold value in the modulus of the force is reached, 
a slip condition is verified; hence, the dynamic friction coefficient (µd) becomes 
dominating. 
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Numerical simulations using random values of these two parameters (i.e., Monte 
Carlo simulations) show that the sheet stamping problem exhibits a chaos-like 
phenomenon, as small perturbation of the static friction coefficient, when the dynamic 
coefficient is relatively large, lead to either a small or a large value of the end 
thicknesses. This phenomenon is known as bifurcation in the theory of non-linear 
systems. Obviously, this is caused in this case by the high non-linear nature of the 
stamping process. 

This implies that the probability of having brittle products should be estimated by a 
Monte Carlo simulation involving the following steps:  

• the probabilistic description of the two friction coefficients, as the main stochastic 
variables determining the appearance of brittle products (other random variables and 
fields such as the elastic moduli have not been found to be of importance in this 
respect in the numerical simulations carried out in the study reported herein); 

• the use of an updated Lagrangian formulation for the finite element problem of each 
run; 

• the definition of a failure criterion, which could be the exceedance of certain 
thresholds for the minimum and maximum end thicknesses.  

The reliability R of the product would be the number of Monte Carlo samples on the safe 
zone divided into the total number of samples. The probability of failure is given by 
Pf = 1 – R. 

Despite the Monte Carlo method being conceptually simple, it is nonetheless very 
costly in computational terms, since the accurate estimation of a single probability of 
failure requires hundreds of simulations using the finite element solver. Since in our case 
this implies a step-by-step procedure with small load increments, due to the high  
non-linearity of the problem, it is desirable to reduce the number of simulations as much 
as possible. It has been shown that this is possible by assimilating the problem to a 
pattern recognition task, in which the safe and failure sets of samples are regarded as 
classes, in a similar vein as conventional problems faced by statistical discrimination, 
such as plant or disease classification (Hurtado and Alvarez, 2001, 2003). The calculation 
of pattern recognition methods on the basis of some training samples yields a 
discriminating function, which can henceforth be used to assign new incoming samples to 
one or to the other class. Therefore, it is expected that they can be used as a substitute of 
the finite element solver for most of the samples needed in the estimation of the sheet 
stamping reliability. 

On the basis of such an approach, a manifold of pattern recognition methods are 
offered to the analyst. In fact, more than ten classification methods are described in the 
handbook (Hastie et al., 2001), which include Bayesian and kernel methods, 
classification trees, neural networks, etc. The selection of a single method among them is 
hindered by the so-called no-free-lunch theorem, which roughly speaking states that there 
are no reasons to prefer one classification method over other (Duda et al., 2001). 
However, in the present case, there is a special circumstance that facilitates the selection. 
A major difference of Monte Carlo samples with respect to those normally used in 
statistical analyses is that they are synthetic, in the sense that they are produced by 
computer codes and not drawn from nature. As a consequence, it is not necessary that 
they be available before initiating the calculation of the discriminating function, as they 
can be produced in the calculation process. Among pattern recognition methods, this 



   

 

   

   
 

   

   

 

   

    Reliability estimation of the sheet stamping process 113    
 

    
 
 

   

   
 

   

   

 

   

       
 

important feature of synthetic samples is best exploited by an artificial intelligence 
method known as support vector machines (Vapnik, 1998) because, in addition to the 
discriminating function as such, they include two ancillary functions known as margins, 
which can be used to reduce the search domain of the sample space, thus subjecting to 
control the generation of new training samples. A method in that sense has recently been 
proposed by the first author (Hurtado and Alvarez (2003). The method can be considered 
as a member of the family of controlled Monte Carlo simulation techniques, such as those 
developed for solving random vibration problems (Pradlwarter and Schuëller, 1999).  
See Hurtado (2004) for a thorough analysis on the applicability of pattern recognition 
techniques in structural mechanics. 

According to the above said, the present paper has the following purposes:  

• to illustrate the bifurcation problems posed by the random friction coefficients on the 
sheet stamping process and its implications on the product reliability and quality 
control;  

• to show how this reliability can be economically computed using the support vector 
method of pattern recognition, because it yields a discriminating function that can be 
used as a substitute of the finite element solver for most of the samples needed in its 
estimation. 

The rest of paper is divided into four sections as follows. First, some backgrounds on the 
finite element approach employed to the stamping process and on the support vector 
method for pattern recognition are exposed. Then, a case study is exposed in detail.  
The final section is devoted to some conclusions. 

2 Backgrounds 

2.1 Finite element approach 

This section summarises the main concepts and equations involved in the mechanical 
analysis of a stamping problem, as it is needed for a more complete description of the 
study reported herein. 

As is well known, this mechanical problem must be dealt with in both Eulerian  
(or spatial) and Lagrangian (or material) coordinate system, denoted as X and x, 
respectively, in the sequel. The displacement field is defined either in the material or 
spatial systems as 

X = X + u(X, t) 

X = X – u(X, t) (1) 

and the deformation gradient tensor is defined in tensor notation as 

i
iK

K

xF
X
∂

=
∂

 (2) 

In terms of the tensor F, the left and right Cauchy-Green tensors, P and Q, are defined as 
1

ij K , K ,i jP X X− =  



   

 

   

   
 

   

   

 

   

   114 J.E. Hurtado, F. Zárate and E. Oñate    
 

    
 
 

   

   
 

   

   

 

   

       
 

KL i , i ,K LQ x x=  (3) 

These tensors allow the definition of the Green-Lagrange E and the Almansi ∈  strain 
tensors as 

E = (Q – I) 

∈ = 1
2

(I – P–1) (4) 

In analysing a stamping problem, it is necessary to consider both the equation of motion 
in spatial coordinates and material coordinates. The first one reads 

x b aσ ρ ρ∇ + =  tx ∈ Ω  (5) 

with boundary and initial conditions, given by, 

n×σ = t   x ∈ Γt 

u = uo    ν = ν0   x ∈ Ωt (6) 

respectively. 
In material coordinates, the equation of motion is 

∇xT + ρ0b0 = ρA   x∈ Ω0 (7) 

with the following boundary and initial conditions: 

N×T = TΓ    x ∈Γ0 

u = u0    ν = ν0    x ∈ Ω0 (8) 

where T is the first stress tensor of Piola-Kirchoff and N is a unit normal vector.  
The weak form of the equilibrium equations is 

: ( )
t t t

d b a u d t u dσ δ ρ δ δ
Ω Ω Γ

∈⋅ Ω = − ⋅ Ω + ⋅ Ω∫ ∫ ∫  

0 0: (b )
D D D

T F d A u d T u dδ ρ δ δ
Ω Ω Γ

⋅ Ω = − ⋅ Ω + ⋅ Ω∫ ∫ ∫
 (9) 

0 0: ( )
D D D

S E d b A u d T u dδ ρ δ δ
Ω Ω Γ

∇× ⋅ Ω = − ⋅ Ω + ⋅ Ω∫ ∫ ∫  

where T and S are the first and second Piola-Kirchoff tensors, respectively, F is the 
gradient tensor, E is the Green-Lagrange tensor, and ∈ the Almansi strain tensor.  
The constitutive equations are those of a hypoelastic material (Belytschko et al., 2000). 
The form of the constitutive tensor depends on the modelling of the material as 
anisotropic, orthotropic, or isotropic. 

Using an updated Lagrangian formulation, the first of the equations (10), written in 
matrix form, is 

0
t t t t

T T T Tu u d d u bd u dδ ρ δ σ δ ρ δ
Ω Ω Ω Γ

⋅ Ω + ∈ ⋅ ⋅ Ω − ⋅ Ω − ⋅ Ω =∫ ∫ ∫ ∫  (10) 

where 
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σ = [σ11 σ22 σ33 σ12 σ13 σ23]T 

∈ = [∈11 ∈22 ∈33 ∈12 ∈13 ∈23]T (11) 

where the conventional elasticity definitions of the components of ∈  are applied. 
Supposing that the kinematics of body is compatible with the displacement field, the 
following finite element discretisation is adopted: 

u(X) = N(X)r (12) 

where N(X) is the shape function matrix and r is the vector of nodal displacements.  
The first variation of the displacement field and that of the Green-Lagrange tensor are 

δu(X) = N(X)δrδ ∈ (X) = B(X)δr (13) 

where B is the deformation matrix, given in this case by 

1 1

2 2

3 3

1 2 2 2

1 3 3 3

2 3 3

T

T

T

T T

TT

T

x N
X X

x N
X X

x N
X X

B
x N x N

X X X X

x N x N
X X X X

x N x
X X X

   ∂ ∂
   ∂ ∂   

   ∂ ∂
   ∂ ∂   

   ∂ ∂
   ∂ ∂   =

       ∂ ∂ ∂ ∂+       ∂ ∂ ∂ ∂       

      ∂ ∂ ∂ ∂+      ∂ ∂ ∂ ∂       

    ∂ ∂ ∂+    ∂ ∂ ∂      3

T
N
X

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  ∂  ∂    

 (14) 

The application of this discretisation leads eventually to a matrix differential equation of 
the form 

int ext 0Mr F F+ − =  (15) 

where the matrices M, Fint
, and Fext result from the assemblage of the element matrices 

( )

e

e TM N Ndρ
Ω

= Ω∫  

int,( )

e

e TF B dσ
Ω

= Ω∫  

ext,( )

e e

e T TF N bd N tdρ
Ω Γ

= Ω + Γ∫ ∫  (16) 

Since the mass matrix appearing in the above differential equation is not diagonal, thus 
making the solution of the problem cumbersome, a modification of the system is in order. 
To this purpose, an equivalent solution of the form 
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int ext 0*M r Cr F F F+ + + − =  (17) 

where M∗  is a diagonal mass matrix and C is a damping matrix, which is introduced in 
order to reduce the vibrations. The term Fcont is introduced to represent the contact force. 

2.2 Support vector machines 

In this paragraph, the support vector method for pattern recognition is summarised after 
Vapnik (1998). 

Let us consider two classes that are linearly separable. Let the patterns be  
{x1, x2, ..., xn} and the classes to which they belong be identified as ci ∈ {–1,1} 
i = 1,2, ..., n. A separating hyperplane of the form 

g(x) = 〈w⋅x〉 + b = 0 (18) 

is sought, where w is a vector of parameters that define the normal vector to the 
hyperplane, and b is the threshold. The condition imposed to this hyperplane is that it 
maximises the distance to the given patterns, as this allows the best confidence on the 
classification it performs. The optimisation problem then reads 

max min{ : ( ) 0, 1, 2,..., }iiw,b
x x w x b i = n− ⋅ + =  (19) 

The definition of the classes through a sign facilitates the formulation of this optimisation 
problem. In fact, defining the margin γi for each pattern as γi = ci(〈w⋅xi〉 + b), it is easily 
concluded that a positive γ indicates right classification, the sign of the class 
notwithstanding. By normalising the parameters of the hyperplane by 1 / w , it is 

concluded that the points closest to the hyperplane satisfy 〈w⋅x〉 + b = 1, and the 
optimal margin becomes 

2
w

γ =  (20) 

as can be easily demonstrated. The optimisation problem becomes 

minimise 
2

( ) =
w

w
2

Ω  

subject to: ci(〈w⋅x〉 + b) ≥ 1,   i = 1,2, ..., n 

which can be recast as 

[ ]2
i

1

1( , , ) = ( ) 1
2

n

i i
i

L w b w c w x bα α
=

− 〈 ⋅ 〉 + −∑  (21) 

via Lagrange multipliers αi ≥ 0. The problem is hence to find a saddlepoint because it is 
necessary to minimise the loss function with respect to the hyperplane parameters (w, b), 
while maximising it with respect to the Lagrange multipliers. The solution is 

1

n

i i i
i

w c xα
=

= ∑  
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1
0

n

i i
i

cα
=

=∑  (22) 

Taking into account the positiveness of the Lagrange multipliers set forth above,  
equation (22) has a very important meaning for the structural safety problem:  
the separating hyperplane can be expressed only in terms of the patterns that have a 
positive Lagrange multipliers, while the rest are no longer needed. These special patterns 
are the support vectors, which have the special property of lying just on the margins 
defined above, as it can be easily demonstrated by invoking the well known  
Karush-Kuhn-Tucker complementarity condition of optimisation theory (Kall and 
Wallace, 1995): [ci(〈w xi〉 + b) – 1] = 0, I = 1,2, … n.This interpretation is crucial for the 
controlled Monte Carlo algorithm proposed herein, since it implies that the only samples 
needed to update the classifier are those lying in the band defined by the margins. 

The above means that the solution for the weights of the hyperplane can be expressed 
as a convex combination of some input patterns in the form 

0

s

j j j
j

w c xα
=

= ∑  (23) 

where s is the number of support vectors. An interpretation of this equation is that the 
optimal hyperplane can be defined only in terms of the patterns that are the closest to it, 
which agrees with intuition. 

For passing into the non-linear separation, it is convenient to cast the optimisation 
problem in terms of the so-called dual variables, i.e., the Lagrange multipliers. This is 
done by replacing equations (22) into equation (21): 

Maximise 
1 1 1

1w( )
2

n n n

i i i i j j j
i i i

c x x cα α α α
= = =

= − 〈 ⋅ 〉∑ ∑∑  (24) 

subject to: αi ≥ 0 

1

0
n

i i
i

cα
=

=∑  (25) 

The solution of this quadratic optimisation problem should be substituted into  
equation (23) to obtain the values of the hyperplane parameters. The threshold b can then 
be obtained from the Karush-Kuhn-Tucker condition. The classification function then 
reads 

1
( ) = sgn( ( )) = sgn ( )

n

i i
i

c x g x c w x bα
=

 〈 ⋅ 〉 + 
 
∑  (26) 

For non-linear separation, it is very important to remark that a characterising feature of 
hyperplane discrimination is that the probability of correct classification of n samples 
increases with the number of dimensions d (Fine, 1999). In other words, increasing the 
dimension of the problem by projecting the samples onto a higher dimensional space, 
while maintaining a hyperplane formulation, is a good means for assuring correct 
classification of the training set. This is easily done by generalising the last equation to 
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1

( ) = sgn( ( )) = sgn ( ( , ) )
n

i i i
i

c x g x c K x x bα
=

 + 
 
∑  (27) 

where the linear kernel in equation (26) has been substituted by the general kernel 

K(x, z) = 〈φ(x)º φ(z)〉 (28) 

in which function ϕ(⋅) represents the non-linear mapping. The interesting point in this 
kernel presentation is that the non-linear mapping ϕ(⋅) need not be known explicitly. This 
allows constructing positive-definite kernels with virtually infinite dimensions in a 
Hilbert space using the spectral decomposition granted by Mercer’s theorem (Cristianini 
and Shawe-Taylor, 2000). Such a large dimensionality implies the highest probability of 
correct classification using a hyperplane, according to the above said. Table 1 shows 
some kernels widely applied in support vector classification. 

Table 1 Common kernels used by support vector machines 

Radial basis function 2
( , ) = exp( )K x y x yζ −  

Polynomial K(x, y) = (〈x, y〉 + c)d 
Fourier ( 1 2)( )( , ) =

2sin(( )/2)
m+ / x yK x y

x y
−

−
 

Sigmoidal K(x, y) = tanh(k〈x, y〉 + θ) 
Inverse multiquadric 

2 2

1( , ) =K x y
x y c − +  

 

3 Case study 

3.1 Problem description 

The square cup deep drawing problem is one of the most practical industrial application 
of sheet stamping. This problem has been the subject of much research and represents a 
benchmark test that was proposed by the Numisheet’93. 

The benchmark test reported herein features the ability to simulate a large amount of 
material draw-in with a nearly vertical wall and the ability to efficiently treating the 
frictional contact. It consists of the analysis of a deep drawing process of a square sheet 
into a square cup. The geometries of the punch, die, and blankholder are shown in  
Figure 1. For this deep drawing problem, the punch travel is 40 mm. 
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Figure 1 Geometry of the square cup deep drawing problem 

 

The sheet was modelled using triangular shell layered elements. The blankholder, punch, 
and die were modelled using rigid elements. The initial geometry of the tools as well as 
the sheet geometry after deformations were complete in a single simulation and are 
shown in Figures 2 and 3. The sheet material is mild steel using a non-linear hardening 
elasto-plastic model with the following properties: Young’s modulus E = 206 GPa, 
Poisson’s ratio ν = 0.3, mass density ρ = 7800 kg/m3, and the initial yield value 
C = 565.3 MPa. The blankholder material was steel using a linear elastic model with the 
following properties: Young’s modulus E = 210 GPa, Poisson’s ratio ν = 0.3, and mass 
density ρ = 7800 kg/m3. The die was held in place while the punch was moved vertically. 
Contact pair surfaces between the tools and sheet, die – sheet, and blankholder – sheet 
contact pairs were modelled using a constant friction coefficient. 

Figure 2 Initial geometry of the square cup deep drawing problem 
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Figure 3 Final deformed shape 

 

A constant blankholding force of 19.6 kN was applied to the surface of the blankholder as 
a surface load on those elements. The punch was moved vertically for 40 mm by applying 
a sinusoidal velocity over the total analysis time period. The total response time was 
obtained using an automatic time stepping calculation and was terminated when the 
punch stroke was completed. Material non-linearities were considered to be rate 
independent. 

A crucial stage in any probabilistic problem is the selection of the random variables 
together with their probability density functions. In the present case, the static and 
dynamic friction coefficients were selected as the only input random variables on the 
basis of previous experience. Since knowledge of the probabilistic information regarding 
these variables is rather scarce, it was assumed that they obey a lognormal distribution, as 
this assures a positive value. For both coefficients, the mean and standard deviation were 
selected as 0.15 and 0.03, respectively. These values were applied on the contact surface 
pair sheet-punch. The observed output random variables were the minimum and 
maximum thicknesses of the sheet after the forming process. 

Two codes developed at the International Centre for Numerical Methods in 
Engineering of Barcelona were used for the calculations: the finite element code 
STAMPACK for the sheet stamping problem and the code STAC for the Monte Carlo 
analyses. The STAMPACK code uses the new finite elements described in Oñate  
et al. (1996, 1999). The support vector problem, which determines the new samples to be 
generated in the controlled Monte Carlo simulation, was solved with a special code 
developed for such purpose. 

3.2 Monte Carlo analysis 

A first analysis conducted on this example was a conventional Monte Carlo simulation, 
intended to illustrate the bifurcation problems arising from the highly non-linear 
behaviour of the stamping process. The number of Monte Carlo samples was 300. 

Figure 4 shows the relationship between the minimum end thickness and the static 
friction coefficient. It can be observed that a bifurcation of the cloud of points occurs for 
values of the coefficient around the mean. The low values of the end minimum thickness 
are associated also to the upper tail values of the dynamic friction coefficient, as shown in 
Figure 5. Similar figures were obtained for the relationships of both friction coefficients 
to the maximum end thickness. All this means that the risk of forming sheets likely to 
suffer fracture corresponds to static coefficients around the nominal value used 
commonly in deterministic calculations and to somewhat large values of the dynamic 
parameter. 
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Figure 4 Relationship between the minimum end thickness and the static friction coefficient 

 

Figure 5 Relationship between the minimum end thickness and the dynamic friction coefficient 

 

3.3 Reliability classification analysis 

Figure 6 shows that the minimum and maximum end thicknesses are intimately related. 
Thus, a product can be specified as brittle when these values are lower than certain 
thresholds. Assuming that the failure domain is defined as tm < 0.5 m and tM < 1.4 mm for 
this example, the above Monte Carlo simulation shows that the probability of failure is 
Pf = 22/300 = 0.0733. However, 300 samples are required to estimate this figure with 
such a good accuracy. It is shown in this paragraph that the computational cost is much 
lower when using the Monte Carlo method controlled by support vector machines in the 
following manner: Two simulations of pairs (µs, µd), corresponding to the safe and unsafe 
zones, are first produced. This can be easily done by simply assigning a low and a large 
value of the dynamic friction coefficient, since this is tightly related to the end thickness 
as shown above. Next, a support vector classifier is calculated and the resulting margin 
functions are used to generate a new sample inside the margin band, because  
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samples out of that zone produce no improvement of the classifier, according to the 
Karush-Kuhn-Tucker conditions. 

Proceeding in this manner, the classifier is sequentially updated until the margin 
becomes sufficiently narrow. 

Figure 6 Relationship between the minimum and maximum end thicknesses 

 

A support vector machine with a polynomial kernel with parameters c = 1, d = 3 
(conventional ones) was selected. Figure 7 shows the discrimination and margin 
functions obtained in this manner. Notice that the end margin band is very narrow and 
that the 300 samples used in the previous analysis are correctly classified. The training 
samples (µs, µd) were picked up in the above described manner from the databank used 
for the previous Monte Carlo simulation. Only 15 calls of the finite element solver were 
required to build the classifier, which evidently yields the same failure probability when 
used for classifying the rest (285) samples not used in its training. 

Figure 7 Support vector discriminating function. The support vectors appear as black circles 
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4 Conclusions 

Monte Carlo simulations of sheet stamping process show that the leading variables in 
determining the generation of products with a high risk of fracture are the static and 
dynamic friction coefficients. In particular, a sudden jump from acceptable to 
unacceptable end thickness arises when the latter parameter surpasses a certain critical 
value, in combination with static coefficients around the mean. This appears as a 
bifurcation, which is a phenomenon that is likely to occur in non-linear systems. 

A method for calculating the reliability of sheet stamping products has been 
proposed. It is based on the consideration of the problem as a pattern recognition task. 
The use of a specific pattern recognition method known as support vector machines over 
neural networks, Bayesian approaches, and other techniques is justified by the 
availability of margin functions that allow to devise a controlled Monte Carlo simulation 
procedure. By means of a numerical example, it has been shown that a reduced number 
of finite element calculations suffice for creating a discriminating function that can be 
used with new samples of the friction coefficients for calculating the probability of 
obtaining brittle products. 
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