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SUMMARY

Many finite elements exhibit the so-called ‘volumetric locking’ in the analysis of incompressible or
quasi-incompressible problems. In this paper, a new approach is taken to overcome this undesirable
effect. The starting point is a new setting of the governing differential equations using a finite calculus
(FIC) formulation. The basis of the FIC method is the satisfaction of the standard equations for balance
of momentum (equilibrium of forces) and mass conservation in a domain of finite size and retaining
higher order terms in the Taylor expansions used to express the different terms of the differential
equations over the balance domain. The modified differential equations contain additional terms which
introduce the necessary stability in the equations to overcome the volumetric locking problem. The FIC
approach has been successfully used for deriving stabilized finite element and meshless methods for a
wide range of advective–diffusive and fluid flow problems. The same ideas are applied in this paper
to derive a stabilized formulation for static and dynamic finite element analysis of incompressible
solids using linear triangles and tetrahedra. Examples of application of the new stabilized formulation
to linear static problems as well as to the semi-implicit and explicit 2D and 3D non-linear transient
dynamic analysis of an impact problem and a bulk forming process are presented. Copyright � 2004
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many finite elements exhibit the so-called ‘volumetric locking’ in the analysis of incompressible
or quasi-incompressible problems in fluid and solid mechanics. Situations of this type are usual
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in the structural analysis of rubber materials, some geomechanical problems and most bulk metal
forming processes. Volumetric locking is an undesirable effect leading to incorrect numerical
results [1].

Volumetric locking in solids is present in all low-order elements based on the standard
displacement formulation. The use of a mixed formulation or a selective integration tech-
nique eliminates the volumetric locking in many elements. These methods, however, fail in
some elements such as linear triangles and tetrahedra, due to lack of satisfaction of the
Babuska–Brezzi conditions [1–3] or alternatively the mixed patch test [1, 4, 5] not being
passed.

Considerable efforts have been made in recent years to develop linear triangles and tetra-
hedra producing correct (stable) results under incompressible situations. Brezzi and
Pitkäranta [6] proposed to extend the equation for the volumetric strain rate constraint for
Stokes flows by adding a Laplacian of pressure term. A similar method was derived
for quasi-incompressible solids by Zienkiewicz and Taylor [1]. Zienkiewicz et al. [7] have
proposed a stabilization technique which eliminates volumetric locking in incompressible
solids based on a mixed formulation and a characteristic based split (CBS) algorithm ini-
tially developed for fluids [8–10] where a split of the pressure is introduced when solving
the transient dynamic equations in time. Extensions of the CBS algorithm to solve bulk
metal forming problems have been recently reported by Rojek et al. [11]. Other meth-
ods to overcome volumetric locking are based on mixed displacement (or velocity)–pressure
formulations using the Galerkin-least-square (GLS) method [12], average nodal
pressure [13] and average nodal deformation [14] techniques and sub-grid scale (SGS) methods
[15–18].

In this paper a different approach is taken to overcome volumetric locking. The starting point
is a new setting of the governing differential equations using a finite calculus (FIC) formulation.
The basis of the FIC method is the satisfaction of the equations of balance of momentum and
that relating the pressure with the volumetric strain in a domain of finite size. The modified
differential equations contain additional non-local terms from standard infinitesimal theory.
These terms introduce the necessary stability in the discretized equations to overcome the
volumetric locking problem.

The FIC approach has been successfully used to derive stabilized finite element and meshless
methods for a wide range of advective–diffusive and fluid flow problems [19–26]. The same
ideas were applied in Reference [27] to derive a stabilized formulation for quasi-incompressible
and incompressible solids allowing the use of linear triangles and tetrahedra. These ideas are
extended in this paper where an enhanced formulation with improved pressure stabilization
properties is described.

The content of the paper is the following. First, the basis of the FIC method is given
for static quasi-incompressible solid mechanics problems. A stabilized formulation for linear
triangles and tetrahedra applicable to the full incompressible limit is derived. The stabilized
dynamic formulation is also presented and both semi-implicit and explicit monolithic solution
schemes are described. The analogies between the FIC formulation and alternative methods for
treating incompressible problems are discussed.

In the last part of the paper some examples of application of the new stabilized formulation
to a static problem as well to the 2D and 3D analysis of an impact problem and a bulk forming
situation using linear triangles and tetrahedra are given.
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2. BASIC CONCEPTS OF THE FINITE CALCULUS (FIC) METHOD

Let us consider the equations of equilibrium in a bar (Figure 1). The equilibrium of forces
over a segment of finite size belonging to the bar is

NA − NB = 0 (1)

where A and B are the end points of a finite size domain of length d. In Equation (1) NA

and NB represent the values of the axial forces at points A and B, respectively.
The axial forces NA and NB can be expressed in terms of values at an arbitrary interior

point C by the following Taylor series expansion:

NA = NC − d1
dN

dx

∣∣∣∣∣
C

+ d2
1

2

d2N

dx2

∣∣∣∣∣
C

+ O(d3
1 )

NB = NC + d2
dN

dx

∣∣∣∣∣
C

+ d2
2

2

d2N

dx2

∣∣∣∣∣
C

+ O(d3
2 )

(2)

Substituting Equations (2) into Equation (1) and neglecting cubic terms in d1 and d2 gives

dN

dx
− h

2

d2N

dx2
= 0 (3)

where h = d1 − d2 and all the terms are evaluated at the arbitrary point C.
Equation (3) is a finite increment form for the equilibrium equation in the domain AB. The

underlined term in Equation (3) introduces a non-locality effect in the standard equilibrium
equations (dN/dx = 0). Distance h is the characteristic length of the discrete problem and
its value depends on the material properties and the parameters of the discretization method
chosen (such as the grid size) [19–26]. Note that for h → 0 the standard infinitesimal form
of the balance equation (dN/dx = 0) is recovered.

The above process can be extended to derive the differential equations expressing balance
of momentum, mass, heat, etc. in a domain of finite size for any problem in mechanics as

ri − hk

2

�ri

�xk

= 0 (4)

Figure 1. Equilibrium forces in a finite segment of a bar.
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where ri is the standard form of the ith differential equation for the infinitesimal problem, hk

are the characteristic lengths of the domain where balance of fluxes, forces, etc. is enforced
and k = 1, 2, 3 for 3D problems. In Equation (4) and in the following, summation convention
for repeated indexes is assumed. Again, note that the underlined terms in Equation (4) can
be viewed as non-local forms of the original differential equations. These terms are essential
in order to introduce the necessary stabilization for the discrete solution of some problems
using whatever numerical technique. Details of the derivation of Equation (4) for steady state
and transient advective–diffusive and fluid flow problems can be found in References [19–22].
Applications of the FIC approach to the Galerkin finite element solution of these problems are
given in References [23–25]. A meshless method based on the FIC formulation is presented
in Reference [26].

The underlined stabilization terms in Equations (3) and (4) are a consequence of accept-
ing that the infinitesimal form of the balance equations is an unreachable limit within the
framework of a discrete numerical solution. Indeed Equations (3) and (4) are not useful for
obtaining a straightforward analytical solution following traditional integration methods based
on infinitesimal calculus theory. The meaning of the new differential equations makes, however,
full sense in the context of a discrete numerical method, yielding approximate values of the
solution at a finite collection of points within the analysis domain. Convergence to the exact
analytical solution value at these points will occur as the grid size tends to zero, which also
implies naturally an evolution towards a zero value of the characteristic length parameters.

The FIC procedure has been interpreted in Reference [28] as a general residual correction
method where a numerical solution is sought to a modified system of governing differential
equations. In the modified equations not only the original residuals but also the derivatives
of these residuals multiplied by characteristic length distances appear. A similar intepretation
of the FIC procedure as an equation modification method is presented in Reference [29].
A variational setting for the FIC equations in elasticity problems is presented in Reference
[30].

3. FIC FORMULATION FOR INCOMPRESSIBLE ELASTICITY

3.1. Equilibrium equations

Following the arguments of the previous section the equilibrium equations for an elastic solid
are written using the FIC technique as [19]

ri − hk

2

�ri

�xk

= 0 in �, k = 1, nd (5)

where nd is the number of space dimensions of the problems (i.e. nd = 3 for 3D)

ri := ��ij

�xj

+ bi (6)

In Equations (5) and (6) �ij and bi are the stresses and the body forces, respectively, and hk

are characteristic length distances of an arbitrary prismatic domain where equilibrium of forces
is considered.
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Equations (5) and (6) are completed with the boundary conditions on the displacements ui

ui − ūi = 0 on �u (7)

and the equilibrium of surface tractions

�ij nj − t̄i − 1
2hknkri = 0 on �t (8)

In the above ūi and t̄i are prescribed displacements and tractions over the boundaries �u

and �t , respectively, ni are the components of the unit normal vector and hk are again the
characteristic lengths.

The form of Equation (8) with the additional ‘residual’ term underlined is a consequence of
expressing the equilibrium of surface tractions in a boundary domain of finite size and retaining
higher order terms than those usually accepted in the infinitesimal theory [19].
3.2. Constitutive equations

As usual in quasi-incompressible problems the stresses are split into deviatoric and volumetric
(pressure) parts

�ij = sij + p�ij (9)

where �ij is the Kronnecker delta function. The linear elastic constitutive equations for the
deviatoric stresses sij are written as

sij = 2G
(
�ij − 1

3 �v�ij

)
(10)

where G is the shear modulus,

�ij = 1

2

(
�ui

�xj

+ �uj

�xi

)
and �v = �ii (11)

The constitutive equation for the pressure p can be written for an arbitrary domain of finite
size as

1

K
pav = �V

V
(12)

where K is the bulk modulus of the material and pav is the average value of the pressure over
any arbitrary domain of finite size of volume V .

The value of pav can be approximated as

pav = 1

V

∫
V

p dV = p − hk

2

�p
�xk

+ O(hk)
2 (13)

where p is the pressure at an arbitrary point within the domain V and hk are characteristic
lengths of such a domain; hk = dk

1 − dk
2 , where k = 1, 2, 3 for 3D and dk

1 and dk
2 are the 3D

extensions of distances d1 and d2 in Figure 1.
Similarly, the ratio �V/V can be expressed as

�V

V
= �v − hk

2

��v
�xk

+ O(hk)
2 (14)

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 59:1473–1500



1478 E. OÑATE ET AL.

Substituting Equations (13) and (14) into Equation (12) and neglecting second order terms in
hk gives the FIC constitutive equation for the pressure as(

1

K
p − �v

)
− hk

2

�
�xk

(
1

K
p − �v

)
= 0, k = 1, 2, 3 for 3D (15)

Note that for hk → 0 the standard relationship between the pressure and the volumetric strain
of the infinitesimal theory (p = K�v) is found.

For an incompressible material K → ∞ and Equation (15) yields

�v − hk

2

��v
�xk

= 0 (16)

Equation (16) expresses the limit incompressible behaviour of the solid. This equation is typical
in incompressible fluid dynamic problems there and arises from the mass continuity conditions
[19, 20].

By combining Equations (5), (6), (9), (10) and (16) a mixed displacement–pressure formu-
lation can be written as

�sij

�xj

+ �p
�xi

+ bi − hk

2

�ri

�xk

= 0 (17)

( p

K
− �v

)
− hk

2

�
�xk

( p

K
− �v

)
= 0 (18)

Substituting Equation (10) into (17) leads after some algebra to

��v
�xi

= 3

2G

[
r̂i − hk

2

�ri

�xk

]
(19)

where ri is defined by Equation (6) and

r̂i = �
�xj

(2G�ij ) + �p
�xi

+ bi (20)

Substituting Equation (19) into (18) gives( p

K
− �v

)
− hi

2

(
1

K

�p
�xi

− 3

2G
r̂i

)
−

(
3hi

8

hk

G

�ri

�xk

)
= 0 (21)

Each of the three bracketed terms in Equation (21) is identically zero for the exact analytical
solution. This is obvious for the first and third term. For the second term we have that
(1/K)�p/xj = ��v/xj for the exact solution and, hence, in the limit we recover

1

K

�p
�xi

− 3

2G
r̂i = ��v

�xi

− 3

2G
r̂i = −3

2G
ri (22)

which vanishes for the exact solution. Consequently, this term will be neglected in the subse-
quent derivation and only the term involving the derivatives of ri will be retained in Equation
(21). Note that this term can take high values in zones where sharp gradients of the numerical
solution error occur, despite the fact that the actual value of ri may be relatively low.
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Also, the terms involving products hihj for i �= j will be neglected in Equation (21) as
they have not been found to contribute to improving the quality of the numerical results.

3.3. Weighted residual forms

In conclusion, the following two governing equations will be used for a mixed displacement
pressure formulation:

�sij

�xj

+ �p
�xi

+ bi − hk

2

�ri

�xk

= 0 (23a)

( p

K
− �v

)
−

nd∑
i=1

�i

�ri

�xi

= 0 (23b)

with the boundary conditions given by Equations (7) and (8) and

�i = 3h2i
8G

(24)

The coefficients �i in Equation (23b) are also referred to as intrinsic time parameters. Note
that the value of �i in Equation (24) deduced from the FIC formulation basically coincides for
hi = hj = h with that of � = h2/2G heuristically chosen in other works [6, 14–18].

The weighted residual form of the new governing equations is

Equilibrium:∫
�

�ui

[
�sij

�xj

+ �p
�xi

+ bi

]
d� −

∫
�

�ui

hk

2

�ri

�xk

d� +
∫

�t

�ui

[
�ij nj − t̄i − hk

2
nkri

]
d� = 0

(25a)

Pressure constitutive equation:∫
�

q
( p

K
− �v

)
d� −

∫
�

q

(
nd∑
i=1

�i

�ri

�xi

)
d� = 0 (25b)

where �ui and q are arbitrary test functions representing virtual displacements and virtual
pressure fields, respectively.

Integrating by parts, the terms involving sij , p and ri in Equation (25a) and the term involving
ri in Equation (25b) and neglecting the space derivatives of the characteristic lengths leads to

Equilibrium:∫
�

��ij
(
sij + �ijp

)
d� −

∫
�

�uibi d� −
∫

�t

�ui t̄i d� −
∫

�

hk

2

��ui

�xk

ri d� = 0 (26a)

Pressure constitutive equation:∫
�

q
( p

K
− �v

)
d� +

∫
�

(
nd∑
i=1

�q

�xi

�i ri

)
d� −

∫
�

q�iniri d� = 0 (26b)
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The first three terms in Equation (26a) are the standard in the principle of virtual work in
solid mechanics [10]. Note that the term involving ri has vanished from the boundary integrals
after the integration by parts. The last integral in Equation (26a) is essential to stabilize the
numerical solution in convection-dominated problems [20, 24–26]. This term is not relevant for
solid mechanics problems and will be omitted hereafter.

Also, the third integral in Equation (26b) along the domain boundary will not be taken into
account hereafter as its effect on the stabilization of the pressure equation is negligible.

With these modifications the set of integral equations to be solved are

Equilibrium: ∫
�

��ij (sij + �ijp) d� −
∫

�
�uibid� −

∫
�t

�ui t̄i d� = 0 (27a)

Pressure constitutive equation:∫
�

q
( p

K
− �v

)
d� +

∫
�

(
nd∑
i=1

�q

�xi

�i ri

)
d� = 0 (27b)

Remark
Note that even though the terms involving the characteristic lengths have been removed
from Equation (26a), these terms are essential to provide the necessary stabilization terms
in Equation (27b). Consequently, the finite calculus formulation of both the equilibrium and
the pressure constitutive equations given by Equations (17) and (18), respectively, is
needed.

The key stabilizing term in Equation (27b) is the second integral. From Equations (6) and
(9) we can write the expression of ri as

ri = �p
�xi

+ �i (28a)

where

�i = �sij

�xj

+ bi (28b)

Note that �i is the part of ri not containing the pressure gradient and may be interpreted as
the negative of a projection of the pressure gradient. In a discrete setting the terms �i can
be considered as belonging to a sub-scale space orthogonal to that of the pressure gradient
terms.

In the infinitesimal limit ri = 0 and (�p/xi)+�i = 0. This limit relationship between �p/xi

and �i can be weakly enforced by means of the following weighted residual forms:∫
�

wi�i

(
�p
�xi

+ �i

)
d� = 0, i = 1, nd; no sum in i (29)

where wi are appropriate weighting functions (wi ≡ ��i) and the term �i is introduced in order
to ensure symmetry of the final system of equations.
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With the above assumptions the set of governing equations can be written as∫
�

��ij (sij + �ijp) d� −
∫

�
�uibid� −

∫
�t

�ui t̄i d� = 0 (30a)

∫
�

q
( p

K
− �v

)
d� +

∫
�

[
nd∑
i=1

�q

�xi

�i

(
�p
�xi

+ �i

)]
d� = 0 (30b)

∫
�

wi�i

(
�p
�xi

+ �i

)
d� = 0, no sum in i (30c)

with i, j = 1, nd.

4. FINITE ELEMENT DISCRETIZATION

We will choose C0 continuous linear interpolations of the displacements, the pressure and the
pressure gradient projection �i over three-node triangles (2D) and four-node tetrahedra (3D).
The linear interpolations are written as

ui =
n∑

j=1
Nj ū

j
i (31a)

p =
n∑

j=1
Nj p̄

j (31b)

�i =
n∑

j=1
Nj �̄

j
i (31c)

where n = 3(4) for 2D(3D) problems and ( ·̄ ) denotes nodal variables. As usual Nj are the
linear shape functions [1].

Substituting approximations (31) into Equations (30) leads to the following system of Galerkin
discretized equations (for �ui = q = wi = Ni):


A G 0

GT −(C + L) −Q

0 −QT −C̄






ū

p̄

�̄


 =



f

0

0


 (32)

where the element contributions are given by (for 3D problems)

Aij =
∫

�e
BT

i DdBj d�, Gij =
∫

�e
(∇∇∇∇∇∇∇∇∇∇∇∇∇∇Ni)Nj d�

Lij =
∫

�e
∇∇∇∇∇∇∇∇∇∇∇∇∇∇TNi[�]∇∇∇∇∇∇∇∇∇∇∇∇∇∇Nj d�, Cij =

∫
�e

1

K
NiNj d�
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C̄=



C̄1 0 0

0 C̄2 0

0 0 C̄3


 , C̄k

ij =
∫

�e
�kNiNj d�

Q= [Q1,Q2,Q3], Qk
ij =

∫
�e

�k

�Ni

�xk

Nj d�

fi =
∫

�e
Nib d� +

∫
�

Ni t̄ d�, i, j = 1, nd

(33)

In the above b = [b1, b2, b3]T and t̄ = [t̄1, t̄2, t̄3]T,

∇∇∇∇∇∇∇∇∇∇∇∇∇∇ =




�
�x1

�
�x2

�
�x3




, [�] =



�1 0

�2

0 �3


 (34)

B is the standard infinitesimal strain matrix and Dd is the deviatoric constitutive matrix [1].
The intrinsic time parameters �i are computed by Equation (24). The consistent definition of
the characteristic length parameters is still an open question. In advective–diffusive and fluid
flow problems it is usual to accept that the characteristic length vector has the direction of the
velocity vector (this is the so-called streamline upwind Petrov–Galerkin or SUPG assumption
[26, 31, 32]). A method for computing the characteristic lengths in terms of the element residuals
for advective–diffusive and fluid flow problems is described in References [21–25]. In the quasi-
static example presented in this paper we have obtained good results using a simpler definition
of the characteristic lengths with hi = hj = [�(e)]1/nd where �(e) is the element area or
volume for 2D and 3D problems, respectively. The computation of the intrinsic time parameter
for dynamic problems is discussed in Section 6.

There are a number of possibilities for solving Equations (32). The simultaneous solution of
Equation (32) involves seven d.o.f per node for 3D problems (three displacements, one pressure
and three projected pressure gradient variables). A reduced system of equations can be obtained
as follows. Using the last row of Equation (32) the pressure gradient projection variables can
be formally expressed in terms of the nodal pressures as

�̄ = −C̄−1QTp̄ (35)

Substituting this equation into the second row of Equation (32) leads to the following system
of equations in terms of the velocity and pressure variables only:[

A G

GT −(C + L − S)

] {
ū

p̄

}
=

{
f

0

}
(36)
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where

S = QC̄−1QT (37)

Note that S is a symmetric matrix as C̄ is symmetric.
For the fully incompressible case K → ∞, C = 0 and the resulting system is

[
A G

GT −(L − S)

] {
ū

p̄

}
=

{
f

0

}
(38)

The diagonal term L − S provides the necessary stability to the system of equations in order
to find the nodal values of ū and p̄.

The inversion of matrix C̄ can be simplified by considering a lumped matrix C̄d = diag C̄
as an approximation to C̄.

The solution for ū and p̄ can also be found iteratively using the previous iteration values
of the projected pressure gradient. Starting from Equation (36) the iterative algorithm can be
written as

[
A G

GT −(C + L)

] 

ū(i)

p̄(i)


 =

{
f

Q�̄(i−1)

}
(39a)

with

�̄(i−1) = −C̄−1QTp̄(i−1) (39b)

where again advantage can be taken of a diagonal form of M. This algorithm has been suggested
by Chiumenti et al. [17, 18], who have proposed a similar formulation for elastic and elasto-
plastic problems based on the SGS method. As noted in Reference [17] the computational cost
due to the iterative algorithm is negligible in a non-linear context where the projected pressure
gradient can be computed within the equilibrium iterations induced by the non-linearity.

Note that the algorithm of Equation (39a) is also applicable for the full incompressible case
when K = ∞ and C = 0.

4.1. Simplification and analogies with other formulations

It is interesting to note that the form of Equation (36) is very similar to that obtained using
the CBS method [7, 8, 11]. The FIC and CBS forms can be made in fact identical if the time
increment in the CBS method is chosen to be coincident with the intrinsic time parameter. Note,
however, that the FIC equations have been derived here without the need of a split process.

An analogy can also be found between Equation (36) and the stabilized system of equa-
tion resulting from the GLS method. A comparison of the CBS and GLS formulations for
incompressible fluid flow problems can be found in Reference [33].

A simpler stabilized formulation can be derived by neglecting the effect of the projected
pressure gradient terms. As deduced from Equation (28b) these terms are formally zero for
a linear displacement interpolation and the absence of body forces. The resulting system of
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equations for ū and p̄ in this case is deduced from Equation (32) as[
A G

GT −(C + L)

] {
ū

p̄

}
=

{
f

0

}
(40)

This formulation was presented by the authors in Reference [24].
An identical form to Equation (40) was obtained by Brezzi and Pitkäranta [6] for Stokes

flows and extended to elasticity by Zienkiewicz and Taylor [1]. In both these approaches the
weighted form of the standard pressure constitutive equation is augmented with a pressure
Laplacian term emanating from the divergence of the momentum equations.

Equation (40) for [�] = �I also coincides with the GLS formulation using a linear interpo-
lation for u and p [33].

The full form of Equation (32) for [�] = �I is identical to that derived by Chiumenti
et al. [17, 18] using a sub-grid approach where the projected pressure gradient � is taken
as an approximation of the non-resolvable sub-grid scales assumed to be orthogonal to the
finite element space. This method was first proposed by Codina [15, 16] for the stabilization
of convection and incompressibility effects in fluid flow problems.

The formulation proposed here has distinct features from the methods mentioned above:

• The general form of Equation (32) emerges naturally from the governing equations derived
using the finite calculus (FIC) formulation.

• The ‘stabilization’ properties of the discretized equations appear already at the continuum
level (Equations (17) and (18)) and they are a consequence of the intrinsic properties of
the new governing equations deduced from the FIC method.

• The FIC formulation leads to the identification of the stabilization parameters as a function
of the material properties and the characteristic length distances (Equation (24)).

• The effect of the space change in the intrinsic time parameters can be easily taken into
account by incorporating the appropriate derivative terms in the integrals of Equations
(26).

• A refined FIC method can be considered by incorporating the effect of the last integrals
in Equations (26). This can be simply implemented within an iterative solution scheme.

• The FIC approach is readily applicable to any interpolation order for u, p and �. The
form of the resulting equation system will be identical to Equation (32) (as long as
the last two integrals of Equations (26) are still neglected). Application of the FIC
method to the formulation of a four-node quadrilateral element with linear interpolation
for all variables adequate for quasi and fully incompressible situations is reported in
Reference [28].

Note finally that if the element is BB stable, the introduction of stabilization is not
necessary [1].

5. NON-LINEAR TRANSIENT DYNAMIC FORMULATION

The static formulation can be readily extended for the transient dynamic case accounting
for geometrical and material non-linear effects. Indeed in many situations of this kind,
typical of forming processes, impact and crashworthiness problems, among others, material
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quasi-incompressibility develops in specific zones of the solid due to the accumulation of
plastic strains. It is well known that in these cases the use of equal order interpolations for
displacements and pressure leads to locking solutions unless some precautions are taken. A
stabilized finite element formulation based on the CBS method allowing for linear triangles
and tetrahedra for transient dynamic analysis of quasi-incompressible solids was reported by
the authors in References [7, 11]. A similar formulation based on the FIC approach which does
not require the split process is described next.

The transient equilibrium equations using the FIC method can be written in an identical
form to Equation (5) (neglecting time stabilization terms [19, 24, 25]) as

ri − hj

2

�ri

�xj

= 0 (41a)

with

ri := −�
�2ui

�t2
+ ��ij

�xj

+ bi (41b)

where � is the density and t the time.
Equation (41a) is completed with the constitutive equations for the deviatoric stresses

(Equation (10)) and the pressure (Equation (15)), as well with the boundary conditions (7)
and (8) and the initial conditions for t = 0.

Following the arguments of the static case, the stabilized constitutive equation for the pressure
can be expressed in terms of the residuals of the momentum equations by an expression identical
to Equation (23b). This equation is now written in an incremental form more suitable for non-
linear transient analysis.

The set of stabilized equations to be solved are now:

Equilibrium:

ri − hj

2

�ri

�xj

= 0 (42a)

Pressure constitutive equation:

�p

K
− �(�ui)

�xi

−
nd∑
i=1

�i

�ri

�xi

= 0 (42b)

where �p = pn+1−pn and �ui = un+1
i −un

i are the increments of pressure and displacements,
respectively. As usual (·)n denotes values at time tn and �i = 3h2i /8G.

In the derivation of Equation (42b) we have accepted that �ri = rn+1
i ≡ ri as the infinitesimal

equilibrium equations are assumed to be satisfied at time tn (and hence rn
i = 0).

Similar to the static case, the residual ri is now split as

ri = �i + �p
�xi

(43a)
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where

�i = −�
�2ui

�t2
+ �sij

�xi

+ bi (43b)

Following the same steps of the static case the weighted residual form of the governing
equations (42a), (42b) and (43a) can be written in the form

∫
�

�ui�
�2ui

�t2
d� +

∫
�

��ij�ij d� −
∫

�
�uibi d� −

∫
�

�ui t̄i d� = 0 (44a)

∫
�

q

(
�p

K
− �(�ui)

�xi

)
d� +

∫
�

[
nd∑
i=1

�q

�xi

�i

(
�p
�xi

+ �i

)]
d� = 0 (44b)

∫
�

[
nd∑
i=1

wi�i

(
�p
�xi

+ �i

)]
d� = 0 (44c)

The finite element discretization of the displacements, the pressure and the pressure gradient
projections is expressed by Equations (31) with the nodal variables now being a function of
the time t . Substituting approximations (31) into Equations (44) gives the following system of
discretized equations:

M ¨̄u + g − f = 0 (45a)

GT�ū − C�p̄ − Lp̄ − Q�̄ = 0 (45b)

QTp̄ + C̄�̄ = 0 (45c)

where ¨̄u is the nodal acceleration vector,

Mij =
∫

�e
�NiNj d� (46)

is the mass matrix

g =
∫

�
BT� d� (47)

is the internal nodal force vector and the rest of the matrices and vectors are defined in
Equation (33). Note that the expression of g of Equation (47) is adequate for non-linear
structural analysis.

A four-step semi-explicit time integration algorithm can be derived from Equations (45) as
follows:

Step 1: Compute the nodal velocities ˙̄un+1/2

˙̄un+1/2 = ˙̄un−1/2 + �tM−1
d (fn − gn) (48a)
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Step 2: Compute the nodal displacements ūn+1

ūn+1 = ūn + �t ˙̄un+1/2
(48b)

Step 3: Compute the nodal pressures p̄n+1

p̄n+1 = [C + L]−1[�tGT ˙̄un+1/2 + Cp̄n − Q�̄n] (48c)

Step 4: Compute the nodal projected pressure gradients �̄n+1

�̄n+1 = −C̄−1
d QTp̄n+1 (48d)

In the above, all matrices are evaluated at tn+1, (·)d = diag (·) and

gn =
∫

�e
[BT�]n d� (49)

where the stresses �n are obtained by consistent integration of the adequate (non-linear) con-
stitutive law [48].

Note that steps 1, 2 and 4 are fully explicit as a diagonal form of matrices C and C̄ has
been chosen. The solution of step 3 with a diagonal form for C still requires the inverse of
a Laplacian matrix. This can be an inexpensive process using an iterative equation solution
method (e.g. a preconditioned conjugate gradient method).

A three-step approach can be obtained by evaluating the projected pressure gradient variables
�̄n+1 at tn+1 in a fully implicit form in Equation (48c). Eliminating �̄n+1 from the fourth step
using Equation (48d) and substituting this expression into Equation (48c) leads to

p̄n+1 = [C + L − S]−1[�tGT ˙̄un+1/2 + Cp̄n] (50)

where

S = QC̄−1
d QT (51)

Recall that for the full incompressible case K = ∞ and C = 0 in all the above equations.
The critical time step �t is taken as that of the standard explicit dynamic scheme [10, 28].

5.1. Fully explicit algorithm

A fully explicit four-step algorithm can be obtained by computing p̄n+1 from step 3 in Equation
(48c) as follows:

p̄n+1 = C−1
d [�tGT ˙̄un+1/2 + (Cd − L)p̄n − Q�̄n] (52a)

Elimination of �̄n from Equation (48d) leads to the following explicit expression of p̄n+1 for
the three-step scheme:

p̄n+1 = C−1
d [�tGT ˙̄un+1/2 + (Cd − L + S)p̄n] (52b)

Obviously, the solution of Equations (52) breaks down for K = ∞ as C = 0 in this case.
Therefore, the explicit algorithm is not applicable in the full incompressible limit. The explicit
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form can, however, be used with success in problems where quasi-incompressible regions exist
adjacent to standard ‘compressible’ zones. Examples of this kind are shown in the second and
third examples of the next section. In both cases the semi-implicit and explicit schemes gave
identical results with important savings in both computer time and memory storage requirements
obtained when using the explicit form.

6. ABOUT THE COMPUTATION OF THE INTRINSIC TIME PARAMETER FOR
NON-LINEAR TRANSIENT PROBLEMS

The expression of the intrinsic time parameter is given by �i = 3h2i /8G (see Equation (24))
where hi are characteristic length parameters and G is the shear modulus. The computation
of the characteristic lengths hi is a critical step in stabilized methods. In practice, it is usual
to accept that all hi are identical and constant within each element and given by hi = h(e) =
[V (e)]1/3 where V (e) is the element volume (or the element area for 2D problems). This
expression for hi does not take into account the element distortions along a particular direction
during the deformation process.

The correct value of the shear modulus in the expression of �i is another sensitive issue
as, obviously, for non-linear problems the value of G will differ from the elastic modulus.
This fact has been identified by Cervera et al. [34] for non-linear analysis of incompressible
problems using linear triangles.

A useful alternative to compute �i for explicit non-linear transient situations is to make use
of the value of the speed of sound in an elastic solid, defined by

c =
√

E

�
(53)

where E is the Young’s modulus. The stability condition for explicit dynamic computations is
given by the Courant condition defined as [10]

�t (e) ��t (e)c = h(e)

c
(54)

where �t
(e)
c is the critical time step for the element and h(e) is a representative element

dimension along the direction of the velocity vector.
Accepting that G � E/3 for the incompressible case and using Equations (24), (53) and

(54) (assuming the identify in Equation (54)) an alternative expression for the element intrinsic
time parameter in terms of the critical time step can be found as

�(e) ∼= [�t
(e)
c ]2
�

(55)

Equation (55) shows clearly that the intrinsic time parameter varies across the mesh as a
function of the critical time step for each element.

Equation (55) is used to compute the intrinsic time parameter for each element in the
dynamic examples presented in the next section using both the semi-explicit and the fully
explicit forms.
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7. NUMERICAL RESULTS

7.1. Driven cavity

We consider the problem of a square region in which the top is displaced horizontally by a
unit displacement. This is a standard problem in fluid mechanics known as the driven cavity
problem in which a velocity is specified at the top instead of a displacement. The cavity has
a unit length for both the horizontal and vertical sides. The material properties are Young’s
modulus, E, of 3 and Poisson’s ratio, �, of 0.49999995. This gives shear modulus of near unity,
a ratio of the bulk to shear modulus (K/G) approximately equal to 107 and thus represents a
quasi-incompressible solid. To represent the driven cavity all boundaries have zero displacement
in both the normal and tangential directions except the top face which has a unit horizontal
displacement at all nodes except the corner ones which are set to zero. For the solution reported
here the pressure at the centre of the bottom face is set to zero. The problem is solved using
different meshes ranging from 10 elements per side to 40 elements per side. The 10×10 mesh
is shown in Figure 2.

To illustrate the effects of the sub-scale �i terms we plot the pressure along the horizontal
centreline in Figure 3. The curve labelled T1P1 ignores the �i terms in all equations and this
leads to a form which includes only the displacements u and the pressure p at each node. In
this form the equations are identical to that introduced originally by Brezzi and Pitkäranta [6].
In Figure 4, we show the same result for a 40 × 40 mesh. These results have been computed
with the monolithic equations (Equation (32)) in which all five degrees of freedom (u1, u2, p, �1
and �2) are included in a single solution. The value for the intrinsic time parameter is set as
�i ≡ � = �h2/(2G) where h2 is taken as twice the area of each triangle and � = 0.75 as given
by the finite calculus derivation.

Figure 2. 10 × 10 Mesh of triangles.
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Figure 3. Pressure on horizontal centreline, 10 × 10 mesh.
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Figure 4. Pressure on horizontal centreline, 40 × 40 mesh.

The above solution was repeated using the iterative solution in which the displacement and
pressure variables are solved separately from the �i variables. Figures 5 and 6 show the results
for iterations 1, 3 and 5. The result for the 10× 10 mesh was iterated to convergence and the
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Figure 5. Pressure on horizontal centreline, 10 × 10 mesh and iterative solution.
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Figure 6. Pressure on horizontal centreline, 40 × 40 mesh and iterative solution.
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Figure 7. Convergence of pressure p and � = |�| at upper left corner vs iteration number.
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Figure 8. Dependence of pressure on the value of � = 2G�/h2 for 20 × 20 mesh:
(a) solution without �i ; and (b) solution with �i .

behaviour for the results for p and � = |�| at the upper left corner is shown in Figure 7 (note
that |�| is multiplied by 1000 to permit graphical display).

Figure 8 shows the sensitivity of the pressure at the mid-height for different values of the
parameter �. It is evident that much less dependence on this value results from the addition of
the added �i stabilization terms.
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Figure 9. Dependence of u-displacement at x = 0 with mesh subdivision:
(a) solution without �i ; and (b) solution with �i .
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Figure 10. Dependence of v-displacement at y = 0 with mesh subdivision:
(a) solution without �i ; and (b) solution with �i .

Finally, in Figures 9–11 the convergence of the centreline displacements and pressure is
presented for different uniform mesh divisions with 10, 20, 40 and 80 elements per side. Again
it is evident that much less sensitivity results from the addition of the �i terms.

7.2. Impact of a cylindrical bar

The first dynamic problem analysed is the impact of a cylindrical bar with initial velocity of
227 m/s into a rigid wall. The bar has an initial length of 32.4 mm and an initial radius of
3.2mm. Material properties of the bar are typical of copper: density � = 8930 kg/m3, Young’s
modulus E = 1.17 × 105 MPa, Poisson’s ratio � = 0.35, initial yield stress �Y = 400 MPa and
hardening modulus H = 100 MPa. The period of 80 �s has been analysed.
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Figure 11. Dependence of pressure at y = 0 with mesh subdivision:
(a) solution without �i ; and (b) solution with �i .

(a) (b)

Figure 12. Final deformed mesh for standard displacement solution with locking: (a) 2D solution
using axisymmetric triangular elements; and (b) 3D solution using tetrahedra elements.

Figure 12 shows 2D and 3D locking solutions using linear triangles and tetrahedra with the
standard displacement formulation. Figure 13 shows the numerical results for the pressure and
effective plastic strain distribution obtained using a mesh of 216 four node quadrilaterals (259
nodes) with a standard explicit mixed velocity–pressure formulation [1]. Figure 14 shows the
results obtained with a mesh of 432 linear triangles (259 nodes) and the proposed semi-explicit
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Figure 13. 2D explicit quasi-incompressible solution using four-node quadrilaterals and a mixed
formulation: (a) deformed mesh; (b) pressure distribution; and (c) effective plastic distribution.

Figure 14. 2D semi-explicit solution using the FIC formulation: (a) deformed mesh;
(b) pressure distribution; and (c) effective plastic distribution.
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Figure 15. 2D fully explicit solution using the FIC formulation: (a) deformed mesh;
(b) pressure distribution; and (c) effective plastic distribution.

Figure 16. 3D explicit using the FIC formulation: (a) deformed mesh;
(b) pressure distribution; and (c) effective plastic distribution.
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Figure 17. Sidepressing of a cylinder: (a) initial tetrahedral mesh; and (b) initial hexahedral mesh.

Figure 18. Sidepressing of a cylinder—results obtained using mixed formulation:
(a) pressure distribution; and (b) effective plastic distribution.

algorithm. The initial and final time steps for this case were 0.76 × 10−7 and 0.49 × 10−8,
respectively. Figure 15 shows very similar results obtained using a fully explicit formulation at
a considerable smaller storage and computing cost (the time steps for this case were the same
as for the semi-explicit solution).
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Figure 19. Sidepressing of a cylinder—results obtained with the FIC algorithm for mesh of 22 186
elements: (a) pressure distribution; and (b) effective plastic distribution (� = (�t)2/�).

Note that values for the equivalent plastic strain obtained with the FIC method coincide
well with those given by the mixed formulation. The pressure values also coincide reasonably
well in the compression zone, although some differences are found in the peak pressure values
induced by tensile (negative) stresses. These differences also occur for solutions obtained with
linear triangles and the CBS method [7, 11].

Finally, Figure 16 shows the analysis of the same problem using a mesh of 5832 linear tetra-
hedra (1369 nodes) and the fully explicit formulation. Good stable results are again obtained.
This shows that the explicit formulation can be effectively used to solve non-linear dynamic
problems of this type.

7.3. Sidepressing of a cylinder

A cylinder 100 mm long with a radius of 100 mm is subjected to sidepressing between two
plane dies. It is compressed up to 100 mm. The material properties are the following: E =
217 GPa, � = 0.3, � = 7830 kg/m3, �0 = 170 MPa, H = 30 MPa, friction coefficient = 0.2.
The die velocity is assumed to be 2 m/s. A quarter of a cylinder was discretized using two
meshes of 22 186 linear tetrahedra (4369 nodes) and 1296 hexahedra (1641 nodes) as shown in
Figure 17. Figure 18 shows the numerical results obtained with the four-node hexahedral mesh
and an explicit mixed velocity–pressure formulation. Figure 19 shows the pressure and effective
plastic strain distributions obtained with the mesh of linear tetrahedra and the fully explicit
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algorithm presented. The maximum and minimum time steps for this solution were 0.5× 10−5

and 0.25× 10−5, respectively. Good agreement between the results obtained with the FIC and
the mixed formulation is achieved.

Very similar results were obtained with the linear tetrahedral mesh using the more expensive
semi-explicit scheme.

8. CONCLUSIONS

The FIC approach is a natural procedure for deriving stabilized finite element methods using
equal order interpolation for displacements and pressure for analysis of quasi and fully incom-
pressible solid mechanics problems. The use of projected pressure gradient variables ensures the
consistency of the residual terms in the stabilized equation for the pressure and also improves
the accuracy of the numerical solution.

When combined with a transient dynamic scheme the FIC formulation provides straightfor-
ward semi-implicit and explicit schemes for analysis of non-linear dynamic problems typical of
impact and crashworthiness problems and forming processes, among others. The accuracy of
the numerical solution can probably be improved by a more rigorous evaluation of the intrinsic
time parameter.

ACKNOWLEDGEMENTS

The authors are thankful to Profs S. Idelhson and C. Felippa for many useful discussions.

REFERENCES

1. Zienkiewicz OC, Taylor RL. The Finite Element Method. The Basis, (V edn). vol. 1. Butterworth-Heinemann:
Oxford, 2000.

2. Babuška I. The finite element method with Lagrangian multipliers. Numerische Mathematik 1973; 20:179–192.
3. Brezzi F. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange

multipliers. Rev. Française d’Automatique Inform. Rech. Opér., Ser. Rouge Anal. Numér. 1974; 8(R-2):129–151.
4. Zienkiewicz OC, Qu S, Taylor RL, Nakazawa S. The patch test for mixed formulations. International Journal

for Numerical Methods in Engineering 1986; 23:1873–1883.
5. Zienkiewicz OC, Taylor RL. The finite element patch test revisited: a computer test for convergence, validation

and error estimates. Computer Methods in Applied Mechanics and Engineering 1997; 149:523–544.
6. Brezzi F, Pitkäranta J. On the stabilization of finite element approximations of the Stokes problem. In

Efficient Solution of Elliptic Problems, Notes on Numerical Fluid Mechanics, Hackbusch W (ed.), vol. 10.
Vieweg: Wiesbaden, 1984.

7. Zienkiewicz OC, Rojek J, Taylor RL, Pastor M. Triangles and tetrahedra in explicit dynamic codes for
solids. International Journal for Numerical Methods in Engineering 1998; 43:565–583.

8. Zienkiewicz OC, Codina R. A general algorithm for compressible and incompressible flow—Part I. The
split, characteristic-based scheme. International Journal for Numerical Methods in Fluids 1995; 20:869–885.

9. Zienkiewicz OC, Morgan K, Satya Sai BVK, Codina R, Vazquez M. A general algorithm for compressible
and incompressible flow. Part II. Tests on the explicit form. International Journal for Numerical Methods
in Fluids 1995; 20:887–913.

10. Zienkiewicz OC, Taylor RL. The Finite Element Method. Solid Mechanics. (V edn), vol. 3. Butterworth-
Heinemann: Oxford, 2000.

11. Rojek J, Zienkiewicz OC, Oñate E, Taylor RL. Simulation of metal forming using new formulation of
triangular and tetrahedral elements. In 8th International Conference on Metal Forming 2000, Kraków,
Poland, Balkema: Rotterdam, 2000.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 59:1473–1500



1500 E. OÑATE ET AL.

12. Hughes TJR, Franca LP, Hulbert GM. A new finite element formulation for computational fluid dynamics:
VIII. The Galerkin/least-squares method for advective–diffusive equations. Computer Methods in Applied
Mechanics and Engineering 1989; 73:173–189.

13. Bonet J, Marriot H, Hassan O. Stability and comparison of different linear tetrahedral formulations for nearly
incompressible explicit dynamic applications. International Journal for Numerical Methods in Engineering
2001; 50:119–133.

14. Bonet J, Marriot H, Hassan O. An average nodal deformation tetrahedron for large strain explicitly dynamic
applications. Communications in Numerical Methods in Engineering 2001; 17:551–561.

15. Codina R, Blasco B. Stabilised finite element method for transient Navier–Stokes equations based on pressure
gradient projection. Computer Methods in Applied Mechanics and Engineering 2000; 182:287–300.

16. Codina R. Stabilisation of incompressibility and convection through orthogonal sub-scales in finite element
methods. Computer Methods in Applied Mechanics and Engineering 2000; 190:1579–1599.

17. Chiumenti M, Valverde Q, Agelet de Saracibar C, Cervera M. A stabilized formulation for incompressible
elasticity using linear displacement and pressure interpolations. Computer Methods in Applied Mechanics and
Engineering 2002; 191:5253–5264.

18. Chiumenti M, Valverde Q, Agelet de Saracibar C, Cervera M. A stabilized formulation for incompressible
plasticity using linear triangles and tetrahedra. International Journal of Plasticity, 2002, submitted.

19. Oñate E. Derivation of stabilized equations for advective–diffusive transport and fluid flow problems. Computer
Methods in Applied Mechanics and Engineering 1998; 151:233–267.

20. Oñate E. A stabilized finite element method for incompressible flows using a finite increment calculus
formulation. Computer Methods in Applied Mechanics and Engineering 2000; 182:355–370.

21. Oñate E, García J, Idelhson S. Computation of the stabilization parameter for the finite element solution of
advective–diffusive problems. International Journal for Numerical Methods in Fluids 1997; 25:1385–1407.

22. Oñate E, García J, Idelhson S. An alpha-adaptive approach for stabilized finite element solution of advective–
diffusive problems. In New Advances in Adaptive Computer Methods in Mechanics, Ladeveze P, Oden JT
(eds). Elsevier: Amsterdam, 1998.

23. Oñate E, Manzan M. A general procedure for deriving stabilized space–time finite element methods for
advective–diffusive problems. International Journal for Numerical Methods in Fluids 1999; 31:203–221.

24. Oñate E, García J. A finite element method for fluid–structure interaction with surface waves using a finite
calculus formulation. Computer Methods in Applied Mechanics and Engineering 2001; 191(6–7):635–660.

25. García J, Oñate E. An unstructured finite element solver for ship hydrodynamic problems. Journal of Applied
Mechanics 2003; 70:18–26.

26. Oñate E, Sacco C, Idelhson S. A finite point method for incompressible flow problems. Computing and
Visualisation in Science 2000; 3:67–75.

27. Oñate E, Rojek J, Taylor RL, Zienkiewicz OC. Linear triangles and tetrahedra for incompressible problem
using a finite calculus formulation. In Proceedings of European Conference on Computational Mechanics,
Cracow, Poland, 2001, on CD-ROM.

28. Oñate E, Taylor RL, Zienkiewicz OC, Rojek J. A residual correction method based on finite calculus.
Engineering Computations 2003; 20:629–658.

29. Felippa CA. Equation modification methods. Personal communication, CIMNE, Barcelona, 2002.
30. Oñate E, Felippa CA. Variational formulations of the finite calculus equations in solid mechanics. Research

Report CIMNE IT 416, Barcelona, January 2004.
31. Brooks A, Hughes TJR. Streamline upwind/Petrov–Galerkin formulation for convection dominated flows with

particular emphasis on the incompressible Navier–Stokes equations. Computer Methods in Applied Mechanics
and Engineering 1982; 32:199–259.

32. Hughes TJR, Mallet M. A new finite element formulations for computational fluid dynamics: III. The
generalised streamline operator for multidimensional advective–diffusive systems. Computer Methods in Applied
Mechanics and Engineering 1986; 58:305–328.

33. Codina R, Zienkiewicz OC. CBS versus GLS stabilization of the incompressible Navier–Stokes equations and
the role of the time step as stabilization parameter. Communications in Numerical Methods in Engineering
2002; 18:99–112.

34. Cervera M, Chiumenti M, Valverde Q, Agelet de Saracibar C. Mixed linear/linear simplicial elements for
incompressible elasticity and plasticity. Computer Methods in Applied Mechanics and Engineering 2003;
192:5249–5263.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 59:1473–1500


