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Abstract

When one wants to simulate flows with moving bodies and when there is no possible way of prescribing

simple boundary conditions in any frame of reference, one possibility is the use of domain decomposition

methods. The domain decomposition method we present in this work aims at coupling overlapping sub-

domains in relative motion using a Dirichlet/Neumann coupling. The method is applied to the solution of

incompressible and turbulent flows.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Classical domain decomposition methods can be divided into overlapping and non-overlapping
methods [12]. The Schwarz method [10] consists in solving two Dirichlet problems on overlapping
subdomains. The main advantage of Schwarz method is the easy way of dividing the subdomains
from a possibly complicated geometry. The main drawback is that the convergence of the itera-
tion-by-subdomain depends on the overlap. Contrary to the Schwarz method, non-overlapping
domain decomposition (DD) methods use necessarily two different transmission conditions on the
interface, in such a way that both the continuity of the unknown and its first derivatives are
achieved on the interface (for the advection–diffusion–reaction equation). The main advantage of
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these methods is that good convergence can be obtained, especially in the case of the Robin/Robin
method [11] for which the Robin coefficients can be adjusted to accelerate convergence. However,
these methods suffer from the need of coincidence of the subdomain boundaries.

In this work we propose to study a Dirichlet/Neumann (D/N) method allowing overlap be-
tween the subdomains. This method exhibits good convergence of the iteration-by-subdomain
schemes, and the limit of zero overlap is possible. In addition, it enables an easy division of the
computational subdomains as there is no need of coincidence of the subdomain boundaries. In
fact, the method introduced here has been successfully used by the authors [8] to devise a Chimera
method based on a Dirichlet/Neumann or Dirichlet/Robin (D/R) coupling for solving the in-
compressible Navier–Stokes equations. In [7], the convergence of the D/R method is proved for
the advection–diffusion–reaction equation solved on overlapping subdomains and the numerical
performance of the method is studied through numerical examples. In particular, the overlapping
versions of the D/N and D/R are compared to their disjoint counterparts as well as to the classical
Schwarz method. They show the gain in convergence achieved by overlapping the subdomains.
The present paper gives the extension of the D/N method to the solution of turbulent flows on
overlapping subdomains.
2. Problem statement and numerical model

2.1. Turbulent incompressible flow equations

We consider turbulent incompressible flows. In order to include turbulence effects into the
classical Navier–Stokes equations, we use the Reynolds averaging approach. This method leads to
the well-known Reynolds averaged Navier–Stokes (RANS) equations, which involve and extra
unknown, the Reynolds stress tensor. This tensor is modeled using the Boussinesq approximation,
which at its turn introduces a new unknown, the eddy viscosity mt. In this work, this eddy viscosity
is computed with a one-equation turbulence model, namely the Spalart–Allmaras (SA) model [13].

The momentum equations are expressed in a non-inertial frame of reference. We denote x as
the angular velocity of the frame of reference and x the position vector of a fluid point. Let X be
an open bounded domain of Rnd (nd ¼ 2 or 3) and (0; T ) be the time interval of study. The RANS
equations for the mean velocity u and mean pressure p are
Nðu; pÞ ¼F in X� ð0; T Þ;
with
N :¼ otuþ ðu � rÞuþ 2x� u� 2r � ½ðmþ mtÞeðuÞ� þ rp
r � u

� �
; F :¼ f

0

� �
;

where f ¼ �x� ðx� xÞ � dx=dt � x is the vector of body forces, including the non-inertial
terms and eðuÞ ¼ 1

2
ðruþrutÞ is the rate of deformation tensor.

The Navier–Stokes equations must be supplied with initial and boundary conditions. We
consider here conditions of Dirichlet, Neumann and mixed types:
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u ¼ ug on CD � ð0; T Þ;
r � n ¼ tn on CN � ð0; T Þ;

u � n ¼ 0; g1 � r � n ¼ t1; g2 � r � n ¼ t2 on CM � ð0; T Þ;
u ¼ u0 on X� f0g;
where C ¼ CN [ CD [ CM, n is the outward unit normal, g1 and g2 are the unit vectors spanning
the space tangent to CM, t1 ¼ tt � g1 and t2 ¼ tt � g2 are the components of the tangential traction tt
and r is the stress tensor given by r ¼ �pI þ 2ðmþ mtÞeðuÞ, I being the nd-dimensional identity.
We have chosen as Neumann condition the prescription of the traction r � n because it usually
enters naturally the variational form of the problem. The boundary condition of mixed type is
imposed on CM. For example, in the numerical simulation of turbulent flows, it is common to
consider an impermeable wall condition together with the prescription of the tangential compo-
nent of the traction tt to emulate the frictional effects of turbulent boundary layers. This will be
explained in Section 2.3.
2.2. Turbulence model

The turbulence model chosen to compute the eddy viscosity is the Spalart–Allmaras turbulence
model. This model was devised ‘‘using empiricism and arguments of dimensional analysis, Gal-
ilean invariance, and selective dependence on molecular viscosity’’ [13]. It consists of a transport
equation for the eddy viscosity mt. For any details on the equation, see the original publication of
the authors [13]. We symbolically write the equation as
SðmtÞ ¼ 0 in X� ð0; T Þ;
with
SðmtÞ :¼ otmt þ u � rmt � cb1Smt �
1

r
r � ðmtrmtÞ
h

þ cb2ðrmtÞ
2
i
þ cw1

fw
m2t
d2

;

where cb1 , cb2 , r and cw1
are constants, S is the norm of the vorticity, fw is a function depending on

S, mt and the distance to the wall d. This equation is the high Reynolds number version of the
model. Additional corrections enable for example to compute low Reynolds number and tran-
sition effects. This equation must be supplied with appropriate initial and boundary conditions.
2.3. Wall function approach

The RANS and turbulence equations are solved using the wall function approach [2] on the
wall-type boundaries of the computational domain. In order to avoid solving for the large gra-
dients present in the boundary layer, the wall function approach implemented here consists in
assuming that the computational wall is located at a distance D sufficiently far from the real wall
where the no-slip condition for the velocity holds. Then the wall friction U� is estimated applying
the Log-law of the wall at D. For the momentum equations, the boundary condition on the walls
is a mixed condition where the normal component of the velocity is zero and where the tangential
component of the traction is given by tt ¼ �U 2

�u=juj. The wall condition for the eddy viscosity is
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computed using the classical mixing length hypothesis together with the Van-Driest damping
function, i.e. we impose that
mt ¼ l2mixjou=oyj;
where the mixing length is given by
lmix ¼ jdþ½1� expð�dþ=26Þ�;
with u being the tangential velocity, y the normal axis to the wall and dþ ¼ dU�=m the non-
dimensional distance to the wall (see for example [14]).
2.4. Numerical strategy

The RANS equations are solved using a Finite Element model based on a stabilized Galerkin
method. In fact, it is well-known that the Galerkin formulation can lack stability for three major
reasons. The first reason is related to the compatibility of the finite element spaces for the velocity
and the pressure which have to satisfy the so-called Ladyzhenskaya–Brezzi–Babu�sska (LBB)
condition. This condition is necessary to obtain a stability estimate for the pressure; without
requiring this condition, the pressure would be out of control. The second reason is attributed to
the relative importance of the viscous and convective effects. Finally, the third one appears when
the Coriolis force becomes important with respect to viscous effects. The stabilized formulation is
based on the algebraic variational subgrid scale (SGS) model first introduced in [9]. The varia-
tional SGS model uses as a starting argument that the lack of resolution achieved by the mesh is
responsible for the numerical instabilities. Therefore, the model calculates in some approximate
way the unresolved scales of the flow, i.e. the scales smaller than the mesh size. The method is
extensively described in [4]. Finally, the time discretization is carried out using the generalized
trapezoidal rule, i.e. a finite difference scheme.

In this work we will consider two types of elements using both equal order interpolation for the
velocity and the pressure. The Q1/Q1 element is continuous and bilinear (trilinear in three di-
mensions) in both velocity and pressure. We will also work with the P1/P1 element, continuous
and linear in velocity and pressure. These elements do not satisfy the LBB condition and therefore
require the use of stabilization.

A similar numerical model is used to solve the equation for the turbulent viscosity mt, which is
interpolated like u and p. It is integrated in time using the generalized trapezoidal rule and the
algebraic SGS method is employed to stabilize the possible dominance of convective and reactive
terms. See [4] for further details.
3. Iteration-by-subdomain method

Let X1 and X2 be two overlapping subdomains, and define Ca as the part of oX2 lying in X1, and
Cb as the part of oX1 lying in X2, formally given by
Ca :¼ oX2 \ X1; Cb :¼ oX1 \ X2:
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Cb and Ca are the interfaces of the domain decomposition method we now present. In the fol-
lowing, subindices refer to the solution obtained on a subdomain.

Box 1. Domain decomposition algorithm
Set u01 ¼ u0jX1
, u02 ¼ u0jX2

For n ¼ 1; . . . ;N do (time steps)
Initialize un;01 ¼ un�11 , un;02 ¼ un�12

i ¼ 0
While (non-linear iteration not converged) do

i iþ 1
Initialize un;i;01 ¼ un;i�11 , un;i;02 ¼ un;i�12

k ¼ 0
While (DD iteration not converged) do
k  k þ 1

Nðun;i;k1 ; pn;i;k1 Þ ¼F;

Sðmn;i;kt1 Þ ¼ 0 in X1;

Boundary conditions on oX1 \ oX;

un;i;k1 ¼ un;i;k�12 ;

mn;i;kt1 ¼ mn;i;k�1t2 on Cb;

Nðun;i;k2 ; pn;i;k2 Þ ¼F;

Sðmn;i;kt2 Þ ¼ 0 in X2;

Boundary conditions on oX2 \ oX;

Uðun;i;k2 ; pn;i;k2 Þ ¼ Uðun;i;k1 ; pn;i;k1 Þ;
Wðmn;i;kt2 Þ ¼ Wðmn;i;kt1 Þ on Ca:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

end
The D/N method with overlapping we propose is given in Box 1. There, the functions U and W
are the traction and the eddy viscosity flux, given respectively by
Uðu; pÞ :¼ �pn2 þ 2ðmþ mtÞeðuÞ � n2;

WðmtÞ :¼
1

r
ðmtrmtÞ � n2;
with n2 being the outward unit normal to X2.
Algorithm of Box 1 is a sequential iteration-by-subdomain method using Dirichlet transmission

conditions on Cb and Neumann transmission conditions on Ca. In addition, we have introduced
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two relaxation parameters hD and hN for the Dirichlet and Neumann conditions, respectively.
That is, the Dirichlet conditions on Cb are replaced by
un;i;k1 ¼ hDu
n;i;k�1
2 þ ð1� hDÞun;i;k�11 ;
mn;i;kt1
¼ hDm

n;i;k�1
t2

þ ð1� hDÞmn;i;k�1t1
;

and the Neumann conditions on Ca are replaced by
Uðun;i;k2 ; pn;i;k2 Þ ¼ hNUðun;i;k1 ; pn;i;k1 Þ þ ð1� hNÞUðun;i;k�12 ; pn;i;k�12 Þ;
Wðmn;i;kt2
Þ ¼ hNWðmn;i;kt1

Þ þ ð1� hNÞWðmn;i;k�1t2
Þ:
Let us note that the RANS and turbulence equations are decoupled sequentially as described in
[1]. Likewise, the non-linear iteration and DD loops can be coupled.
4. Implementation aspects

We review here some implementation aspects of the Algorithm of Box 1. The points we are
going to expose are the following: master/slave algorithm; imposition of the transmission con-
ditions; conservation; element search strategy; treatment of moving subdomains. For any details,
see [8].

The iteration-by-subdomain method is implemented within a master/slave algorithm. Each
subdomain is solved independently using a fluid solver. The coupling between the subdomains is
performed by a master code, which is in charge of controlling the iterative process and performing
all the necessary operations to leave the slaves unworried. This method is very efficient as almost
no modification to the original fluid solver is necessary.

The main task of the master is the update of the transmission conditions. As a first approach,
the Dirichlet-type transmission conditions are imposed at the nodes of the interface using the
classical Lagrange interpolation functions. In order to avoid any possible loss of information
when passing Dirichlet data from one subdomain to another, an interface constraining is intro-
duced: continuity of the transmission conditions are constrained under a scalar conservation
equation. This approach is explained in [5], where an example of mass conservation is considered.
The Neumann-type transmission conditions are imposed as force terms in the momentum and
eddy viscosity equations. The force terms are the integrals of the traction and the eddy viscosity
flux along the interface, respectively. The strain rates as well as the eddy viscosity gradient are
therefore needed at some integration points. All the derivatives involved in these terms are cal-
culated using a least-square smoothing. In order to achieve a good approximation in space, these
derivatives need to be calculated with one layer of elements on each side of the interface. This is
explained in [6].

The element search task consists in finding the host element of a node or integration point of
the interface on the underlying mesh. If the subdomains are moving, this task may be expensive
and an efficient algorithm is required. The method we use here is based on a quad(oct)-tree de-
composition of the underlying mesh.
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Finally, when subdomains are moving, tensorial transformations are necessary to compute
variables from one subdomain to another. These variables are: coordinates, velocity, strain rates
and eddy viscosity gradient. In order to integrate frames of reference with possibly complicated
rotation vectors, we use a second order scheme in time.
5. Numerical examples

5.1. Backward facing step

We solve the turbulent backward facing step using the overlapping D/N method and compare
the results with a one-domain solution and with the results of a D/N method applied to disjoint
subdomains. The step height is H , the channel height 2H , the channel entrance is 6H -long and the
total length of the computational domain is 50H . The inlet velocity profile is uniform such that
u ¼ ðU ; 0Þ. The Reynolds number based on H and U is Re ¼ 70000.

We decompose the domain vertically into two overlapping subdomains and two disjoint sub-
domains, for which the interfaces fall inside the recirculation zone. For the overlapping D/N
method, the overlap is 0:5H . Through this example we want to appreciate the effects of the overlap
on the convergence of the algorithm, even when the transmission conditions are placed indiffer-
ently with respect to the flow direction. The meshes of each subdomain are such that they ap-
proximately mimic the mesh used for the one-domain solution. The left-hand side subdomain is
meshed with 880 Q1/Q1 elements for the overlapping configuration and with 800 Q1/Q1 elements
for the disjoint configuration. The right-hand side subdomain is the same for the overlapping and
disjoint methods and comprises 1600 Q1/Q1 elements. The mesh used for the one-domain solution
comprises 2000 Q1/Q1 elements. A zoom around the step corner of the composite meshes and
one-domain mesh are shown in Fig. 2(top left), (top middle) and (top right). The problem is
solved using the wall function approach with D=H ¼ 4:0%, where D is the distance of the com-
putational wall to the real wall. The inflow eddy viscosity is mt=m ¼ 100.

The interface of the left subdomain is of Neumann type while that of the right subdomain is of
Dirichlet type. Fig. 1(left) and (right) show the convergence history of the overlapping method
obtained for two combinations of the relaxation parameters hD and hN. Both combinations lead to
convergence of the overlapping D/N method. For the sake of comparisons, Table 1 compares the
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Fig. 1. Backward facing step. Convergence history. (Left) hD ¼ 1:0, hN ¼ 0:3. (Right) hD ¼ 1:0, hN ¼ 1:0.



Table 1

Number of iterations to achieve convergence

hD hN Disjoint Overlapping

0.3 0.3 45 22

0.3 1.0 – 22

1.0 0.3 – 26

1.0 1.0 – 29

Fig. 2. Backward facing step. From left to right: overlapping D/N, disjoint D/N, one-domain. From top to bottom:

mesh, velocity contours, eddy viscosity contours.
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number of iterations needed to achieve convergence for different relaxation parameters using the
disjoint and overlapping methods. Convergence is achieved when the Euclidean norm of the in-
terface residual of the velocity is below 10�1%. We observe the positive effects of the overlapping
on the convergence of the method. The minus sign indicates that the method does not converge.

Fig. 2 compares the contours of velocity module and eddy viscosity obtained with the two D/N
methods and the one-domain simulation. The profiles are identical and confirm the good con-
vergence of the DD algorithm.
5.2. Centrifugal fan

We propose to solve a two-dimensional section of a domestic centrifugal fan. The geometry as
well as the data are based on the CK-40 fan of Soler-i-Palau (a fan manufacturer), shown in Fig.
3(left). The dimensions of the impeller and the casing of the fan are R1 ¼ 80 mm, R2 ¼ 40 mm,
R3 ¼ 31 mm, L1 ¼ 126 mm, L2 ¼ 88 mm, L3 ¼ 50 mm, L4 ¼ 94 mm, L5 ¼ 106 mm, L6 ¼ 125 mm.

The mass flow rate is imposed at the inflow, through the specification of the velocity, and zero
traction is imposed at the outflow, which corresponds to a zero pressure if the flow is fully de-
veloped. The inflow velocity U is imposed normal to the circular inlet of radius R3, as sketched in
Fig. 3(right). The Reynolds number based on the inflow velocity jU j ¼ 1:97� 103 mm/s and the



Fig. 3. CK-40 fan. (Left) Pictures of the fan. (Right) Two-dimensional section.
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length of the inlet D ¼ 2pR3 ¼ 201:06 mm is Re ¼ 2:65� 104, m being the kinematic viscosity of
air, m ¼ 15 mm2/s. The angular speed is jxj ¼ 246:09 rad/s.

Due to the high Reynolds number, the flow is solved using the Spalart–Allmaras turbulence
model together with the wall function approach. The inflow turbulence viscosity is mt=m ¼ 100 and
the distance from the computational wall to the real wall is set to D=D ¼ 2:1% for the inner
subdomain and to D=D ¼ 0:6% for the outer subdomain.

The fan is divided into two subdomains, one attached to the impeller and the other attached to
the casing. In order to couple the subdomains, we assign the impeller a Neumann transmission
condition while the casing interface is of Dirichlet type and we impose an overlap of the sub-
domains of at least one element layer. The impeller domain is meshed with 12 782 P1/P1 elements
and the casing subdomain is meshed with 7345 P1/P1 elements. Fig. 5(top) and (bottom) (left)
show a zoom of the composite mesh near the casing corner at some time steps. In addition to the
SGS stabilization technique, an anisotropic discontinuity capturing technique is used. The method
is described in [3].

The time integration is carried out by the backward Euler scheme, with a time step of
2.32· 10�4 s so that we impose approximately 10 times steps between two blade passings. We set
both the relaxation parameters of the Dirichlet and Neumann conditions to 0.3 and perform 20
iterations per time step. As initial conditions, the inner subdomain is solved with zero traction and
zero eddy viscosity flux. Then the outer subdomain is calculated by interpolating Dirichlet con-
ditions from the solution on the inner subdomain. Note that for this example, the total time used
by the master code is 3.7% of the total CPU time used to solve this problem. Fig. 4(top left) shows
the good convergence of the problem.

Let us first check that the non-dimensional distance to the wall yþ along the walls has rea-
sonable values. Fig. 4(bottom left) and (bottom right) show the distribution of yþ along one blade
of the impeller and along the casing wall, obtained at time t ¼ 1:44� 10�2 s, once the periodic
regime is achieved. We observe that as an average the computational wall falls within the tur-
bulent zone of the boundary layer (yþ > 30) and never reaches high values (yþ < 80).

Fig. 4(top right) gives the variation of the pressure coefficient cp ¼ 2p=qjU j2 along the casing
wall, at time t ¼ 1:44� 10�2 s. The starting point of the curve is the casing corner, while the upper
left part of the curve is the outflow where the pressure is ‘‘weakly’’ zero. The figure shows the
static pressure expansion undergone by the fluid as it flows along the casing wall to the outlet.
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Fig. 5 aims at showing the incoming and outcoming character of the flow near the interface
region. Fig. 6 shows the pressure and eddy viscosity contours.



Fig. 6. CK-40 fan. (Left) Pressure contours. (Right) Eddy viscosity contours. (Top) t ¼ 5:75� 10�2 s. (Bottom)

t ¼ 5:82� 10�2 s.
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6. Conclusions

In this paper we have extended the overlapping Dirichlet/Neumann DD method proposed in a
previous work to turbulent incompressible flows. With respect to disjoint methods, overlapping
methods allow simpler divisions in subdomains, which is the case for example of the Chimera
method. In addition, the proposed method has proved to be more robust than its disjoint
counterpart. The method which uses here Dirichlet and Neumann transmission conditions can be
extended straightforwardly to other mixed methods such as the Dirichlet/Robin method which
exhibits better convergence properties [7,8]. In particular, in the case of disjoint subdomains, the
convergence of the D/N method does depend on which interface we impose the Dirichlet con-
dition while the D/R method inhibits this dependence.
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