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Chapter 1

Introduction

This report presents review of the state of the art of numerical modelling of polymers
and polymer coated metal laminates and gives details of selected numerical models
including those that will be used in the work in the project POLYCOAT. The first
sections of the report contain characteristics of polymers which are important for the
application studied in the project. Basic mechanical and thermal properties of the
polymers are reviewed. Then constitutive models developed for polymers are reviewed
based on literature and own work. Details of selected models are given. Deformation
behaviour of polymer coated metal laminates is considered with special attention to
the phenomena observed at the polymer–metal interface. The numerical models for
the interface are presented finally.

1



Chapter 2

Basic information about polymers

Polymers are material characterized with a structure created by large molecules with
long chains formed by the combination of many repeated structural units derived from
the polymerizing of a small molecule which is called the monomer.

Polymers can be classified based on:

• origin,

• polymerization reactions,

• polymer topology,

• thermophysical properties.

Based on the origin polymers can be classified into the following groups:

• natural polymers (proteins, polysaccharides),

• synthetic polymers.

There are two fundamental polymerization reactions:

• chain polymerization,

• step polymerization.

Based on the topology polymers can be classified into the following groups (Fig. 2.1):

• linear,

• nonlinear (branched),

• network.
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Figure 2.1: Topology of polymers: a) linear, b) nonlinear (branched), c) network

Based on thermophysical properties polymers can be classified into the following
groups:

• thermosets — each monomer has three or more links to other units, become
infusible and insoluble upon heating, and do not return to their original chemical
state upon cooling;

• thermoplastics — each monomer only links to two others to forms chains, soften
and flow upon heating and return to original state upon cooling;

• elastomers.

Based on the morphology thermoplastic polymers can be divided into

• amorphous or glassy (natural rubber, polycarbonate, acrylonitrile-butadiene-
styrene, polystyrene),

• semi-crystalline solids (polyamide, polyethylene tereplithalate – PET, nylon)

• crystalline solids (linear polyethylene, polypropylene).

Glassy polymers solely consist of an amorphous phase. Semi-crystalline polymers
contain an amorphous and a crystalline phase interacting with one another during
deformation. The crystalline polymers are characterized with higher tensile strength,
higher flexural modulus, hardness and creep resistance. Amorphous polymers have
higher impact resistance and less shrinkage.
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Chapter 3

Mechanical properties of polymers

3.1 Summary of basic mechanical parameters

Basic mechanical behaviour of polymeric materials can be defined by the following set
of properties:

• stress-strain curves

• elastic properties (Young modulus, shear and bulk moduli, Poisson’s ratio)

• plastic properties (yield stress, softening/hardening, toughness, tensile strength,
maximum elongation, hydrostatic pressure dependency)

• strain rate dependency (viscosity, creep and relaxation parameters)

• temperature dependency

[1, 2, 3]

3.2 Deformation behaviour

Deformation behaviour is usually characterized by the stress-strain curves obtained in
short-term mechanical tests (e.g. tension, compression, bending) in which the response
(strain) of a sample subjected to a loading that increases with time, at constant rate,
is measured. The deformation behaviour of polymer materials vary greatly. Figure 3.1
illustrates a great variation of deformation behaviour of polymers. Figure 3.1a shows
the stress-strain curves for hard, brittle materials, the curve in Fig. 3.1b represents a
ductile polymer and the curves in Fig. 3.1c are characteristic of elastomers.

The brittle behaviour shown in Fig. 3.1a is characteristic of amorphous polymers
at temperatures well below the glass transition temperatures. These materials fail
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Figure 3.1: Typical stress–strains curves for polymers (according [1])

at low strains with brittle fracture. Semicrystalline polymers and thermoset resins
in temperatures much lower than the glass transition temperatures also exhibit the
pattern shown in Fig. 3.1a.

Ductile polymer materials represented by the curve in Fig. 3.1b undergo yielding
before failure. The most ductile polymers undergo necking and cold drawing. Semicrys-
talline polymers at temperatures intermediate between melting and glass transition and
glass transition (e.g., polyethylene at room temperature) are typical examples that dis-
play this behaviour. Although very ductile plastics, like polyethylene, can reach strains
up to 250%, some fail immediately after yielding.

Stress–strain curves for different polymer materials obtained in short-term tensile
tests are shown in Fig. 3.2 together with tensile curves for steel and copper. It can be
seen that although polymers have much lower tensile strength, they exhibit much higher
strains at break. The shape of the stress-strain curves for a given polymer material
can be different depending on temperature, strain-rate and hydrostatic pressure. De-
pendence of polymer deformation on strain rate (viscosity), pressure and temperature
will be considered in the following sections.

In polymer materials it is difficult to distinguish between elastic (recoverable) and
plastic (nonrecoverable) deformation, since degree to which sample recovers its original
dimensions depends on temperature and time. High molecular mass thermoplastics can
return to their original dimensions from high strains if they are heated after the load
is removed.

The most important mechanisms that can lead to plastic deformation in polymers
are shear yielding and crazing.

3.3 Shear yield

During plastic deformation in polymers, zones of localised deformation are often ob-
served in the form of necking or shear bands. For polymers localisation usually spreads
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Figure 3.2: Tensile stress–strains curves for several polymer materials and metals (ac-
cording [4])

out over the specimen, caused by a specific molecular structure. This is called the
continuous mode of plastic deformation. It is often referred to as shearing or shear
yielding in the literature. Shear yielding takes place at constant volume and leads to
a large change in specimen shape.

Shear yielding is involved in a ductile failure of polymers. A typical stress–strain
curve for a ductile polymer is shown in Fig. 3.3. The first phase (0-A) represents a
linear response. At point A the curve changes slope until it reaches a maximum point,
called the yield point which corresponds to the yield initiation. After yielding the
softening follows until the point B. In the region BC the material is strained without
any apparent change of the stress, giving rise to the phenomenon called cold drawing.
At increasing strains from point C strain hardening occurs. Finally fracture of the
material occurs at point F.

The changes observed in the stress-strain curve are related to the change of shape of
the specimen. In the first region, in the linear range, the deformation occurs uniformly,
which is shown in Fig. 3.3a. When the yield point is reached the neck shown in Fig.
3.3b is formed. Once the neck forms, it extends along the sample at a fairly constant
stress. This process is called the cold drawing and is shown schematically in Fig. 3.3c.
The hardening observed at large strain occurs when the polymer chains are oriented
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Figure 3.3: Typical stress-strain curve for a ductile polymer (according [1])

along the load direction (Fig. 3.3d). The neck propagates through the length of the
specimen until it reaches the fracture point F.

When a glassy (amorphous) polymer undergoes shear yielding, the local shear strains
provoke the displacement of the polymer chains to new equilibrium positions, which are
stable in the absence of stresses. Above the glass transition temperature amorphous
polymers behave approximately as rubbers, without undergoing shear yielding.

Semicrystalline polymers must be considered as two-phase mixtures of amorphous re-
gions between lamellar crystals. The yield stress increases with increasing crystallinity
when the deformation occurs at temperature above the glass transition temperature of
the amorphous phase and below, but close to, the melting temperature of the crystalline
phase.

3.4 Crazing

The discontinuous mode of irreversible deformation is crazing. Crazing is a charac-
teristic of thermoplastic polymers in case of brittle fracture. Crazes are the result of
localised yield. Crazes are formed in the plane perpendicular to the maximum principal
stress. Crazes appear in the form of adjacent cavities separated by ligaments.

Figure 3.4 [2] explains schematically initiation and development of crazes. When
the load is applied small voids existing in weak regions of polymer material nucleate
crazes that lead to yielding or failure.
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Figure 3.4: Craze initiation and development (according [2])

3.5 Time dependence of polymer properties

Time dependent (viscous) properties are characteristic of long-chain structures.
Marked time dependence is found in thermoplastics. Heavily cross-linked polymers
show little time dependence at ambient temperatures.

Time dependent mechanical properties may become apparent in various ways, cf.
[5, 1]:

• strain rate dependency of short-time load load response – increase of stiffness and
strength under impact loading,

• creep and stress relaxation in long term response,

• phase difference between stress and strain in high-frequency dynamic loading.

3.5.1 Strain rate dependency in short term polymer response

Viscous effects are observed clearly in the short term mechanical response of an amor-
phous polymer material. Constant deformation rate loading tests are frequently used
to evaluate the effect of strain rate sensitivity. Figure 3.5 shows tensile stress-strain
curves for polystyrene at different strain rates, cf. [5]. A typical strain rate sensitivity
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Figure 3.5: Effect of strain rate on stress–strain characteristics of injection moulded
HIPS (according [5])

is illustrated. Stresses increase with an increase of strain rate. Viscous effects appear
in the elastic (increase of stiffness) as well as in the plastic range (increase of strength).
The tendency of brittleness increase with the strain rate increase is also observed.

3.5.2 Creep and stress relaxation

Creep and relaxation phenomena are another effect of viscoelasticity especially impor-
tant in in long-term polymer response. Creep is a time-dependent strain increase to a
constant applied stress.

Figure 3.6 [5] shows response of an elastic and a viscoelastic body to a step constant
loading shown at top of the figure that illustrates the creep behaviour of the viscoelastic
body. In the response of the viscoelastic body it is convenient to split the deformation
into elastic strain, delayed elastic strain and viscous flow, ε1, ε2 and ε3, respectively.

Stress relaxation is a time-dependent stress decay under constant strain conditions.
Figure 3.7 [5] shows response of an elastic and a viscoelastic body to a step deformation
shown at top of the figure. Response of the viscoelastic body shows the stress relaxation
phenomenon. In the response of the viscoelastic body it is convenient to split the stress
into the elastic and viscous components, σ1 and σ2, respectively.

The creep and stress relaxation polymer behaviour depends heavily on the material
temperature, having the highest rates of deformation around the glass transition (see
Sec. 3.6.1) [4]. Many plastics materials, however, creep readily at ambient or moderate
temperatures.
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Figure 3.6: Creep loading programmes a) for elastic material, b) for viscoelastic mate-
rial (according [5])

Figure 3.7: Stress relaxation loading programmes a) for elastic material, b) for vis-
coelastic material (according [5])
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3.6 Temperature dependency of polymer proper-

ties

Polymer mechanical properties are affected by the temperature changes, cf. [5].
Changes of greater magnitude are observed if deformation characteristics are considered
in the temperature range including thermal transitions.

3.6.1 Glass transition temperature

Figure 3.8 shows a typical temperature dependence of the deformation resistance
(characterized with selected modulus). At very low temperatures the polymer re-
sponse to loading is solid-like with high modulus. At low temperatures there maybe
so-called secondary transitions (γ- and β-transitions) involving small changes of the
polymer deformation resistance. At increasing temperatures there is one major tran-
sition (α-transition) called the glass transition accompanied by large decrease of the
resistance. Immediately above the glass transition temperature Tg the polymer prop-
erties change to those of a rubbery material. Depending on the molecular weight, the

Figure 3.8: Generalized relationship between modulus (deformation resistance) and
temperature for amorphous polymers (according [5])

rubber-like behaviour may persist for a certain temperature interval above the glass-
transition temperature, called the rubber plateau. At further increase of temperature
at melting temperature Tm linear and branched polymers change from solid to liquid
(crosslinked/network polymers have only glass transition).

Glass transition temperature Tg and melting temperature Tm are important data
characterizing polymers. Table 3.1 gives transition temperatures for typical polymers.
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Table 3.1: Typical transition temperatures

The glass transition temperature Tg is a decisive factor whether an amorphous polymer
is a thermoplastic or an elastomer. A general rule of thumb is that an amorphous
polymer with the glass transition temperature Tg below the room temperature is an an
elastomer and an amorphous polymer with the glass transition temperature Tg above
the room temperature is an a thermoplastic.

The glass transition temperature is also highly influential in semi-crystalline poly-
mers, cf. Fig. 3.9, where a brittle-tough (brittle-ductile) transition in solid phase is
often observed. The rate of change of modulus-temeprature characteristics across the
glass transition depends on the degree of crystallinity. Figure 3.9 shows that the de-
formation resistance of a semi-crystalline polymer decreases dramatically on traversing
the melting temperature Tm.

The mechanical properties of polymers can be modified by relaxation transitions
occurring over extended periods of time (physical ageing) during service life.

Traversing the glass transition temperature influences other polymer properties, as
well, cf. [6]. Time-dependent moduli characterizing creep and stress relaxation as well
as some thermal properties change significantly within the glass transition.

3.6.2 Effect of temperature on stress–strain relationships

Temperature determines not only dynamic, short term or low-strain moduli, but also
feasibility of plastics components undergoing yield, hardening or rubber-like deforma-
tion. Figure 3.10 [5] shows generalised stress–strain relationships for different tem-
peratures. The curves A–E corresponding to increasing temperatures can characterize
the same polymer. Curve A for the lowest temperature represents a brittle viscoelas-

12



Figure 3.9: Generalized relationship between deformation resistance and temperature
for amorphous (solid line) and semi-crystalline (dashed line) polymers (according [5])

Figure 3.10: Effect of temperature on stress–strain relationships (according [5])

tic response with failure occuring at maximum load and relatively low strain. Curve
B shows a distinct yield point with subsequent failure by neck instability. Curve C
exhibit yielding (with a characteristic load drop), stable neck growth through cold
drawing and orientation hardening and eventual failure at very high strain levels often
exceeding 300%. Curves D and E are characteristics of a sigmoidal rubber-elastic re-
sponse, typical of a amorphous or low cristallinity materials at temperatures just above
the glass transition temperature. These materials are characterised by a low drawing
process and are highly extensible. Deformation may be predominantly elastic, unless
stress-induced crystallisation occurs during the drawing process.
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3.6.3 Brittle–ductile transition

In the previous section a change of a polymer behaviour from brittle to ductile with
an increase of temperature has been discussed. At low temperature the fracture is
brittle, whereas at high temperatures the polymer shows yield and ductile failure.
The deformation of a thermoplastic is considered to be a competition between crazing
and shear yielding. If crazing dominates, the behaviour of the polymer is brittle. If
shear yielding occurs, the polymer is ductile [1]. The brittle–ductile transition can be
explained by considering that brittle fracture and and yield are independent processes
that differ in their dependence on temperature [7], as it is illustrated schematically in
Fig. 3.11. Both the brittle strength σB and the yield stress σy decrease with increasing

Figure 3.11: Brittle–ductile transition (according [7]); a) variation of the brittle
strength σB and the yield stress σy with temperature; b) effect of strain rate on TB,
solid line – low strain rate, dashed line – high strain rate.

temperature. There is a critical value of temperature, TB, at which σB = σy. At
temperature below TB, the yield stress exceeds the brittle fracture strength and the
process that takes place is the one requiring the lowest stress, i.e. brittle fracture. At
T > TB the situation is reversed and σy < σB, leading to yield and ductile failure. The
temperature TB is called the brittle–ductile transition temperature.

On the other hand it is expected that the strain rate also influences TB. It has
been found out that while brittle fracture is hardly affected, the yield stress changes
significantly with the strain rate, cf. Sec. 3.5.1. As a result as it is shown in Fig. 3.11b
the brittle–ductile transition temperature increases as the strain rate increases.

Although attempts have been made to relate TB to molecular relaxation processes,
in particular to the glass transition, Tg, no general relationship has been established yet
[1]. In some polymers, such as natural rubber and polystyrene, TB coincides with Tg,
but other polymers present ductile behaviour at T < Tg. The addition of plasticizers
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reduces σy and therefore also decreases σB. TB increases as the cross-linking and crys-
tallinity of the polymer increase. The fracture behaviour of semicrystalline polymers
presents some differences with respect to that of amorphous polymers. Semicrystalline
polymers can exhibit different morphologies, like oriented fibres or spherulites pro-
duced in isotropically crystallized polymers. Oriented polymers have high stiffness
and strength, while isotropic crystallized polymers are tough and flexible, especially at
T > Tg [1].

3.7 Pressure dependence of yield behaviour

Yield behaviour of polymers under tension and compression may be different. In gen-
eral for polymers the compressive yield stress is higher than the tensile yield stress, cf.
[1]. It can be seen in Fig. 3.12 [1] which shows stress–strain curves for polycarbonate
determined under uniaxial tension and compression. The behaviour of the material
given in Fig. 3.12 under tension and compression is different as far as possibility to
deform at large strains is considered, the material tested under tension fractures imme-
diately after reaching yield while can substain large deformation under compression.

Figure 3.12: Stress–strain curves for polycarbonate for uniaxial tension and compres-
sion, dashed line: nominal stress curve, solid lines: true stress curve (according [1])

The difference in yield stress for pressure and compression is a manifestation of
pressure dependency of yield behaviour of polymers. Yield stress of polymers increases

15



with hydrostatic pressure(absolute value of pressure). Figure 3.13 from [2] presents

Figure 3.13: Stress–strain curves of polypropylene at various pressures (according [2])

data for polypropylene which exhibits typical effect of hydrostatic pressure.
The influence of pressure on mechanical properties can be explained by the fact that

the phenomena are associated with a free volume in the polymer. Increase of pressure
results in decrease of free volume (or increase of the density of packing) – the effect is
similar to a temperature decrease.
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Chapter 4

Thermal properties of polymers

4.1 Introduction

The process of heat conduction through the polymer material depends on its thermal
properties such as specific heat, thermal conductivity, thermal diffusivity, heat transfer
coefficients and thermal expansion (or contraction). Thermal properties of polymers
are also strongly temperature dependent with the glass transition and melting temper-
atures being important points on the temperature scale.

4.2 Specific heat

The specific heat is the heat energy required to raise the temperature of a unit mass
by one degree. It can be measured at either constant pressure or constant volume.
The volume changes of a polymer have negligible effect so it can assumed for practical
purpose that specific heat at constant volume or at constant pressure are the same.

Specific heat of polymers changes little in the range of practical processing or design
tempeartures, cf. [4]. Figure 4.1 [4] shows specific heat vs. temperature curves for
three categories of polymers. The specific heat capacity of amorphous thermoplastics
changes slightly at temperatures close to the glass transition temperature, Tg. Semi-
crystalline thermoplastics show big changes in the value of specific heat at the melting
point of the crystallites. This jump in specific heat includes the heat require to melt
the crystallites, called the heat of fusion.

the chemical reaction that takes place during solidification of thermosets also leads
to considerable thermal effects. In a hardened state, their thermal data are similar to
those of amorphous thermoplastics.

17



Figure 4.1: Specific heat vs. temperature curves for three categories of polymers
(according to [4])

4.3 Thermal conductivity

Polymers are usually bad thermal conductors. Amorphous polymers show an increase
in thermal conductivity with increasing temperature, up to the glass transition tem-
perature. Above the glass transition temperature the thermal conductivity decreases
with increasing temperature, cf. [4]. Figure 4.2 [4] shows the thermal conductivity as a
function of temperature (below the glass transition temperature) for various amorphous
thermoplastics.

Crystalline polymers have higher thermal conductivity than amorphous plastics.
The dependence of thermal conductivity on crystallinity leads to change of conductivity
in the melting region (Fig. 4.3).

Another factor influencing the conductivity is orientation, which can lead to
anisotropic thermal conductivity. The effect of pressure on the thermal conductiv-
ity in the solid state is negligibly small, cf. [5], it is significant for melts, cf. [4].

18



Figure 4.2: Thermal conductivity as a function of temperature for various amorphous
thermoplastics, according to [4]).

Figure 4.3: Thermal conductivity as a function of temperature for various thermoplas-
tics, according to [4]).

4.4 Thermal expansion and contraction

With an increase of temperature material usually expands, and so do polymers. Ori-
entation of the crystalline polymers results in anisotropic expansion (or contraction).
Then the coefficients of linear expansion are usually given for the plane of orientation
and perpendicular to it. Sometimes despite inaccuracies anisotropic expansion and
contraction is assumed.

Expansion and contraction are similar to conductivity in the dependence on crys-
tallinity, the higher crystallinity the lower expansion. Similarly expansion and contrac-
tion are sensitive to temperature. This is illustrated in Fig. 4.4.
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Figure 4.4: Specific volume as a function of temperature for a semi-crystalline polymer,
according to [5]).
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Chapter 5

Properties of polyethylene
terephtalate (PET)

5.1 Introduction

Poly-Ethylene Terephtalate (PET) is a thermoplastic polyester copolymer. Because of
its mechanical, optical, thermal and chemical properties is used in various packaging
application. PET is a semi-crystalline polymer. Mechanical behaviour of the poly-
mer depends on its microstructure. The PET microstructure varies depending on the
thermal processing. In the forming process the microstructure depends on the process
conditions – temperature and stress and strain conditions.

5.2 Microstructure

Semi-crystalline polymer have a hierarchical microstructure. Three relevant length
scales can be identified: molecular, lamellar and spherulitic, cf. [8]. In a semi-crystalline
polymer two different phases, the amorphous and crystalline phases coexist, with the
crystalline phase confined to stacked layers separated by amorphous regions, the so-
called lamellae. The mean thickness of these crystalline layers Lc is called the crystal
thickness and the mean thickness of a crystalline and amorphous layers together Lc+a

is called lamellar thickness or long period.
During polymer crystallisation a part of random coil in the supercooled melt, or su-

perheated glass, that attaches to a crystal has to straighten out. Due to a large entropic
barrier associated with this process, thermodynamic equilibrium is never reached, and
Lc reflects the kinetics of the growth process. The size with the highest growth rate
at a certain Tc will prevail, cf. [9]. The growth of such lamellae is initiated at vari-
ous sites and proceeds radially, forming spherulites. The spherulites grow until they
impinge, forming more or less well-defined polygonal boundaries. The overall rate of
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crystallisation is determined by the nucleation rate and the crystall growth rate, cf. [9].

5.3 Crystallisation

PET has a glass transition temperature (Tg) of 70◦C and a melting temperature (Tm)
of 270◦C. Thus at room temperature, the amorphous part of semi-crystalline is a glass.

For PET the crystallisation rate is zero at Tg and Tm and reaches the maximum value
at Tmax ≈ 270◦C [10]. PET crystallise slowly and it can be quenched from the melt
to a glassy state. It is therefore possible to start crystallisation (glass-crystallisation)
from the glass or from the melt (melt-crystallisation). Structures obtained by glass-
and melt-crystallisation may be quite different. Melt crystallisation leads to larger
spherulites when compared to glass crystallisation. At the lamellar scale, crystals in
the melt-crystallised samples are larger and more perfectly formed (Fig. 5.1 [8]).

Figure 5.1: Microstructure of melt-crystallised (Me) and glass-crystallised (Gl) PET
samples at temperatures 135◦C and 210◦C, according to [8].
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5.4 Mechanical properties

The relation between structure and mechanical behaviour of a semi-crystalline poly-
mer has usually been explained using “two-phase” model distinguishing a high-density
crystalline phase and a low-density amorphous phase. The elastic moduli of the ma-
terial are then related to the volume fraction of the crystalline phase. However the
relationship between the crystalline fraction and large strain material parameters such
as yield stress and strain hardening modulus is not so straightforward.

Mechanical properties of PET depend on the thermal treatment. Results of com-
pression tests for PET specimens processed at different temperature conditions can be
found in [8]. Figure 5.2 [8] shows a temperature treatment given to the PET samples
when crystallising from glass or melt at a particular temperature Tc. These samples
where then used in uniaxial compression tests. Stress–strain relationships obtained in
these tests are shown in Figures 5.3 and 5.4 for the glass- and melt-crystallised PET
samples, respectively. Amorphous PET initially shows an elastic response which is
followed by yield which marks the onset of plastic deformation. Subsequently strain
softening occurs followed by the strain hardening.

In glass-crystallised PET (Fig. 5.3) similar values for the strain hardening modulus
and yield stress are found for Tc up to 120◦C. Between Tc = 120◦C and 135◦C, the
yield stress shows a large increase, which is accompanied by a simultaneous decrease
in strain hardening modulus, and a decrease in strain softening.

The melt-crystallised samples (Fig. 5.4) with low crystallinity, show a low yield
stress, a pronounced strain softening, and high strain-hardening modulus. The sam-
ples crystallized between 120◦C to 210◦C show an appreciably higher yield stress, by

Figure 5.2: Temperature treatment given to the PET samples when crystallising from
glass or melt at a particular crystallising temperature Tc, according to [8].
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Figure 5.3: Compression stress-strain relationships of glass-crystallised PET as a func-
tion of isothermal annealing temperature Tc, according to [8].

Figure 5.4: Compression stress-strain relationships of melt-crystallised PET as a func-
tion of isothermal annealing temperature Tc, according to [8].

a decreased strain softening. The sample cooled slowly from melt show a high crys-
tallinity and is brittle.

A sudden jump of the yield properties at certain value of Tc is explained in [8] using
the three-phase model, in which the amorphous phase is divided into a rigid amorphous
fraction and a mobile amorphous fraction.

Figure 5.5 shows tensile behaviour of amorphous and semi-crystalline PET at a room
temperature [8]. The curves for semi-crystalline PET samples correspond to different
crystallisation procedure resulting in different degree of crystallisation. The amorphous
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Figure 5.5: Tension stress-strain relationships of amorphous and glass-crystallised PET
as a function of isothermal annealing temperature Tc, according to [8].

PET exhibits typical ductile behaviour under tension whereas semi-crystalline PET
samples show brittle failure, soon after the neck is formed.
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Chapter 6

Properties and deformation
behaviour of the polymer–metal
laminate

6.1 Introduction

The mechanical properties of the polymer (PET in this case), metal (steel) and
polymer–metal interface together determine the strength of the laminate, cf. [8]. This
chapter gives an insight into the polymer–metal deformation behaviour, with mechan-
ical properties of the laminate looked upon as a result of the mechanical properties of
bulk properties of constituent materials, and the effect of interaction of the polymer
and metal.

6.2 Mechanical properties of steel

Steel used in the polymer–steel laminate used in packaging industry is one of the steel
grades with mechanical properties suitable for deep drawing process.

Figure 6.1 [8] shows stress–strain curves for two steel grades, ECCS and IF steel,
determined in a uniaxial tension test. ECCS steel shows macroscopically homogeneous
deformation until the tensile strength is reached at a stress (approximately 440 MPa),
after which ductile failure occurs at macroscopic strain of approximately 20%. During
preparation of a laminate, the steel has to undergo a treatment at relatively high
temperature (280◦C), which results in a change of the mechanical behaviour [8]. Even
a brief exposure of 3 sec of ECCS, to temperature as high as 280◦C was found to result
in an increase in yield stress and the appearance of a yield drop that leads to softening
behaviour of the material, causing localization of deformation on straining. IF steel
does not show any change in its mechanical behaviour even after heating at 280◦C for
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10 minutes. If steel can be deformed to strain of 25% before ductile failure occurs.

Figure 6.1: Tension stress-strain relationships of two steel grades; a) ECCS (Electro-
chemically Chromium Coated Steel) before and after exposure to 280◦C for 3 seconds
b) IF steel (From [8]).

6.3 Mechanical properties of PET

Mechanical properties of PET have been discussed more in detail in Sec. 5.4. In
uniaxial tension (see Fig. 5.5), amorphous PET first undergo elastic deformation (ap-
proxiamtely up to strains of 4%, cf. [8]), followed by yielding, strain softening and
strain hardening. Mechanical properties of semi-crystalline PET depend on the crys-
tallization process and the polymer structure formed by the three phases formed in
crystallization, crystalline fraction and dual amorphous phases, the rigid and mobile
amorphous fractions. The quantitative fractions of each phase and their individual
contributions will determine the mechanical behaviour exhibited by a semi-crystalline
PET. The most striking transition in mechanical behaviour and microstructure occurs
around 120◦C, when crystallizing PET from the glass, since this temperature signifies
the onset of thermal crystallization within 10 minutes interval. This transition has
great impact on the intrinsic mechanical properties of PET, and is thus also an impor-
tant factor influencing the deformation behaviour of the coating of the laminate (see
Sec. 5.4).

It can be expected that using amorphous PET coating on steel will result in more
stable deformation of the laminate than when using semi-crystalline PET exhibiting
brittle failure soon after the neck is formed.

27



6.4 Deformation mechanisms of the polymer-metal

laminate

Polymers and metals have greatly different material properties as it can be seen in Fig.
6.2. Macroscopic strain to fracture of both steels (ECCS and IF) represented in this
figure is larger than the macroscopic yield strain for PET, but much smaller than the
strain to break of PET. When the two materials materials are assembled to form a

Figure 6.2: Stress–strain of the laminate bulk materials: amorphous and semi-
crystalline PET and IF and ECCS steel in uniaxial compression and tension, (From
[8]).

composite material, the effective behaviour may be different from the laminate base
materials behaviour under similar conditions, cf. [8].

Figure 6.3 [8] illustrates schematically stress–strain curves for uniaxial tensile de-
formation for base materials of a typical PET-steel laminate. The deformation for
the separate materials can be divided into elastic and plastic regions. In the elastic
region deformation is homogeneous and in the plastic the deformation is essentially
inhomogenous. Although in case of hardening the deformation macroscopically may
be homogeneous, it is inhomogenous at the microscopic level.

Figure 6.3 [8] indicates different deformation regimes of the laminate. Region 1
corresponding to the elastic deformation of both base materials. In region 2 the metal
enters plastic deformation while the polymer is still deforming elastically. Finally, as
the strain increases, both the metal and polymer deform non-homogeneously, in region
3. Providing the adhesion at the interface is sufficient for the laminate to survive
deformation in region 1, deformation of the materials 2 and 3 will differ from that of
the free materials because of the boundary conditions posed on the deformation by the
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interface. In region 2 the PET must adapt to the highly localized deformation at the
interface. In region 3 the supported PET, if adheres, deforms to a macroscopic strains
that is intrinsically unstable in the free PET. During the deformation of a laminate,
however, the supported PET can be loaded to larger strains than a free film can. The
problem of necking (strain localization) is circumvented thanks to the load carrying by
adhesive bonds at the interface.

Figure 6.3: Stress-strain curves of the base materials (steel and polymer) of the lami-
nate; region 1: elastic deformation of polymer and metal; region 2: elastic deformation
of polymer and plastic deformation of metal; region 3: plastic deformation of polymer
and metal; according to [8].

6.5 Mechanism of the polymer–metal interface de-

formation

Figure 6.4 illustrates a possible mechanism of the polymer–metal interface deformation
with voids, localized deformation in the polymer, and new interface formation. Because
of the much higher moduli the metal will dominate the deformation of the interface.
At some scale the inhomogeneity of plastic deformation has to become apparent in the
deformation of the interface. This is illustrated in Fig. 6.4 by a number of microscopic
steps, that may result from single dislocations or from slip bands in the metal As a
result of the deformation inhomogeneity stresses and strains near the interface will
be distributed inhomogeneously. The resulting localization of stress and strain may
be relieved either by delamination or plastic deformation or cracking of the supported
polymer layer. Which mechanisms prevails depends on the adhesion and the properties
of the polymer layer. Since the metal starts deforming plastically before the polymer, it
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Figure 6.4: Mechanism of the polymer–metal interface deformation, according to [8].

might be expected that essentially plastic behaviour of the polymer will be locally trig-
gered by these stress concentrations at the deforming interface at macroscopic strains
that are below the macroscopic yield strain of the pure polymer. Once the deforma-
tion has reached the plastic yield strain of the polymer the adhesion at the interface
may have quite a different effect, because macroscopic localization (neck formation)
of the polymer is impossible. Since the polymer is intrinsically unstable (intrinsically
softening) above the yield strain some localizing plastic deformation mechanism has to
appear throughout the polymer. Two other interesting points about the plastic defor-
mation of the interface are the expected appearance of fresh metal at the interface and
possibly the appearance of voids or cracks. If the atoms at the interface are able to
bond to the metal, there need not to be voids, but if it is not the case, voids or cracks
must certainly appear, and could be unstable upon further deformation and initiate
macroscopic delamination.
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Chapter 7

Basic assumptions of the
constitutive model of the
polymer-metal laminate

7.1 Introduction

In a Draw Wall-Ironing (DWI) production process the sheet is subjected to a deep
drawing step followed by several wall-ironing steps depending on the required height
of the can. During forming process the polymer-metal laminate undergoes high defor-
mations at high deformation rates and high hydrostatic pressures for in a short time
period. Temperature fluctuations occur when passing under the punch and die. These
extreme forming process conditions result in large strains and stresses in the metal,
polymer and polymer–metal interface. High compressive stresses in polymer during
forming introduce changes in microstructure of the polymer. When modelling the de-
formation of the laminate, the mechanical response of bulk materials (polymer and
metal) as well as the response at the interface have to be taken into account. Failure
of either material or of the interface could lead to ultimate failure of the laminate.

7.2 Constitutive model of steel

Steel substrate of the laminate during can manufacturing process undergoes large defor-
mations at high deformation rates. Plastic deformation may bring about temperature
increase. Although the temperature may be considerably low for steel, but the same
level could be significant to cause changes of polymer properties. Therefore the thermo-
mechanical coupled analysis of the forming process of the laminate may be necessary.
Constitutive model of steel should take into account large elasto-plastic deformations.
Influence of temperature and the strain-rate effect should also be considered.
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7.3 Constitutive model of polymer coating

During mechanical forming processes, the laminates are exposed to large deformations
at high strain rates, high pressures and increased temperature.

Exact constitutive modelling would require identification of several process. In many
cases consideration of a dominant glass transition of the amorphous phase gives satis-
factory description of the material behaviour, cf. [11].

Polymer deformation can be split into visco-elastic and plastic part. The material
shows initially visco-elastic behaviour, followed by yield and a substantial intrinsic
softening, continued with strain hardening behaviour [12]. Plastic part is not recovered
after unloading during time equivalent to the loading time, while the visco-elastic part
is recovered under such conditions.

At the yield point polymer behaviour changes from the linear elastic with relatively
high modulus to rubber-like with a low modulus. To describe plastic flow in polymers
different theories have been developed. In the Eyring flow theory [?] plastic flow is
a macroscopic effect of the basic molecular processes involving the motion of chain
segments occurring with a frequency dependent on a potential energy barrier, which
changes upon stressing.

7.4 Constitutive model of the polymer–metal inter-

face

In the manufacturing process the interface is subjected to high stresses. It is crucial
that the adhesion between the polymer and the metal is strong enough to endure
tough forming conditions. Adhesion dictates the deformation of the laminate and
its ultimate performance. Constitutive model should properly calculate stresses at the
interface, take into account possible degradation of the interface strength and complete
delamination.

32



Chapter 8

Review of constitutive models of
polymers

8.1 Introduction

With the growing use of polymers in different structures, a lot of research effort was
dedicated to the development of constitutive models for polymeric materials.

Most research work was done for amorphous polymers. Special constitutive models
have also been developed for semi-crystalline polymers although the performance is not
so good. However, in many cases phenomenological constitutive models developed for
glassy polymers can be successfully used for semi-crystalline polymers, as well.

Review of different approaches to modelling of deformation of polymers can be found
in [13]. Rich bibliography on the numerical modelling of polymers is given in [14, 15].

8.2 General classification of material models

A complex deformation behaviour of polymers has been described using different consti-
tutive models and different theories based on elasticity, viscoelasticity, elasto-plasticity
or viscoplasticity [13, 14, 15]. At this stage it would be useful to introduce a general
classification of the material behaviour and corresponding constitutive models. This
will allow us to classify different constitutive models used for polymers.

Based on the experimental observation of stress–strain curves the following four
different categories of materials behaviour can be distinguished, cf. [16]:

• rate-independent without hystheresis,

• rate-independent with hystheresis,

• rate-dependent without hystheresis,
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• rate-dependent with hystheresis.

Illustration of these four categories is given in Fig. 8.1

Figure 8.1: Four categories of material behaviour (after [16])

The four categories of material behaviour distinguished are matched by four cate-
gories of mathematical models, namely the theories of elasticity, plasticity, viscoelas-
ticity and viscoplasticity as follows:

• rate-independent without hystheresis — theory of elasticity,

• rate-independent with hystheresis — theory of plasticity,

• rate-dependent without hystheresis — theory of viscoelasticity,

• rate-dependent with hystheresis — theory of viscoplasticity.

The rheological models corresponding to the four theoretical models are shown in Fig.
8.2. The rheological models consist of elastic springs, viscous dashpots and Coulomb
friction elements. Figure 8.2 does not intend to to denote a concrete model — it shows
only a possible representation of a given theoretical model.

Elasticity is the simplest of all constitutive models. Nonlinear elasticity is often
regarded as a suitable theory to describe deformation behaviour of elastomers, if the
hysteresis is sufficiently narrow to be neglected. Viscoelastic model takes into account
internal friction and dissipation, assuming equilibrium hysteresis is negligibly small.
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Figure 8.2: Four theories of material behaviour (after [16])

Rate independent behaviour taking into account the internal friction and hysteresis is
covered by plasticity. Viscoplasticity is the most general theory which can handle both
the internal friction and rate dependent equilibrium hysteresis.

8.3 Basic features of deformation behaviour of

polymers

When studying the deformation behaviour of glassy polymers a distinction can be
made between the linear viscoelastic region, the nonlinear viscoelastic response and
the yield behaviour at high stress levels (Fig. 8.3). The linear viscoelastic deformation
is adequately described using linear theory. The nonlinear regime has been described
using different theories. Yield of the polymer materials is classically described by using
yield criteria, of which the pressure and rate dependent Von-Mises criterion seems to
be most successful. Plastic flow curve is characterized with strain softening/hardening
behaviour. Initial softening often precedes hardening. Deformation behaviour of poly-
mers has been presented more in detail in previous sections.
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Figure 8.3: Three different stages in the deformation behaviour (after [13])

8.4 Linear viscoelastic models

Linear viscoelastic models can describe polymer deformation at the initial stage only.
Viscoelastic models are represented by different combinations of viscous dashpots and
elastic springs. The simplest viscoelastic models are the Maxwell model represented by
a dashpot and a spring in parallel (Fig. 8.4) and the Kelvin–Voigt model represented
by a dashpot and a spring in series (Fig. 8.5). In the linear case the spring represents

Figure 8.4: Schematic representation of the Maxwell model

the linear elastic (or Hookean) model

σ = Gε (8.1)

and the dashpot represents the viscous (Newtonian) model

σ = ηε̇ (8.2)

where G and η is the shear modulus and viscosity, respectively. Translating a rhe-
ological model into a one-dimensional stress–strain relationship is achieved using the
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Figure 8.5: Schematic representation of the Kelvin–Voigt model

geometric condition of compatibility in the case of elements in series and the mechan-
ical condition of the momentum balance in the case of elements in parallel. Thus for
the Maxwell model we have

ε = ε1 + ε2 (8.3)

and for the Kelvin–Voigt model
σ = σ1 + σ2 (8.4)

This procedure leads to differential equations relating stress σ(t) and strain ε(t). The
solution of the differential equation for the Maxwell model for the stress relaxation
problem gives, cf. [1]:

σ(t) = σ(0+) exp

(

− t

τ

)

(8.5)

where τ = η/G is called the relaxation time. The relationship (8.5) allows us to obtain
the expression for the relaxation modulus G(t) for the Maxwell model as

G(t) =
σ(t)

ε0
=
σ(0+)

ε0
exp

(

− t

τ

)

= G exp

(

− t

τ

)

(8.6)

The Kelvin–Voigt model is adequate to describe creep behaviour. The solution of the
creep problem in this case gives, cf. [1],

ε(t) = Jσ(0+)

[

1 − exp

(

− t

τ

)]

(8.7)

where J = 1/G is compliance and τ = η/G is the retardation time. The creep compli-
ance function is given by

J(t) =
ε(t)

σ0
= J

[

1 − exp

(

− t

τ

)]

(8.8)

The Maxwell model is unable to represent creep behaviour of viscoelastic materi-
als, nor can the Kelvin–Voigt model describe stress relaxation. To obtain a better
representation of a viscoelastic material more complex model must be used.
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Figure 8.6: Two equivalent schemes of the Zener’s solid

Figure 8.6 shows representation of the three-element standard solid (or Zener’s solid)
composed of either a Kelvin–Voigt element in series with a spring or, alternatively, a
Maxwell element in parallel with a spring. The Burgers model shown in Fig. 8.7 is a
combination of the Maxwell model with a Kkelvin–Voigt element.

Figure 8.7: Schematic representation of the Burgers model

The elementary models are characterized by a single relaxation or retardation time.
Real materials are characterized with a distribution of relaxation or retardation times.
One can obtain such a distribution by taking generalized models composed of many
Maxwell elements in parallel (Fig. 8.8a) or of a number of Kelvin–Voigt elements in
series (Fig. 8.8b). In Fig. 8.8a an elastic element has been added to account for the
instantaneous response. In Fig. 8.8b a Maxwell element has been added in series to
reflect liquid behaviour.

38



Figure 8.8: Generalized models a) Maxwell’s elements in parallel, b) Kelvin–Voigt
elements in series

The relaxation or retardation functions for these models in the case of a discrete
distribution of relaxation or retardation times are given by, cf. [1]:

G(t) = Ge +

n∑

i=1

Gi exp

(

− t

τi

)

(8.9)

J(t) = Jg +
n∑

i=1

Ji

[

1 − exp

(

− t

τi

)]

+
t

η0

(8.10)

8.5 Elastoplastic models

In the classical approach, solid polymers are considered to be ideally-plastic materials.
This implies a description of the yield behaviour by means of a yield criterion. The
yield stress of polymers depends on the hydrostatic pressure as it was stated in Sec.
3.7. The classical yield criteria, the Tresca criterion

σ1 − σ3 = 2τy , (assuming σ1 > σ2 > σ3) (8.11)

and the Mises–Huber criterion

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2 = 6τ 2

y , (8.12)
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do not take into account the pressure dependency of the yield stress. In the above Eqs.
(8.11) and (8.12) σ1, σ2 and σ3 are principal stresses and τy is the yield stress in pure
shear test. The relationship between shear yield stress τy and tensile yield stress σy is

σy = 2τy (8.13)

for the Tresca criterion and
σy =

√
3τy (8.14)

for the Mises–Huber criterion. The Tresca and Huber–Mises yield criteria can be easily
modified to take into account the pressure dependence. The shear yield stress τy can
be expressed as a function of hydrostatic pressure p as follows

τy = τ 0
y − µp (8.15)

where τ 0
y is yield stress at zero pressure, µ is a material constant that describes the

effect of pressure, and p is given by

p =
σ1 + σ2 + σ3

3
(8.16)

Here the hydrostatic pressure is assumed positive for tensile loading and negative for
compression. Modified yield surfaces for plane stress conditions (σ3 = 0) are shown in
Fig. 8.9.

Figure 8.9: Yield stress according the Tresca and Mises–Huber criteria accounting for
pressure dependency (according [1])

An elastoplastic constitutive model of cold drawing of polycarbonates has been
developed by Masud [17] and by Masud and Chudnovsky [18]. The model is based on
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the representation of cold drawing as a double glass transition, i.e. transition from a
glass into a rubbery state, when a certain yield surface in the stress space is reached,
and a transition back to the glassy state upon unloading or when a certain molecular
orientation (draw ratio) is achieved. The stretching process in the rubbery state is
modeled by a hyperelastic extension of the J2-flow theory to the finite strain range.
An appropriate yield surface and an associative flow rule (defined via the Kuhn–Tucker
optimality conditions) are presented to simulate this process. The isochoric constraint
during double glass transition is treated via en exact multiplicative decomposition of
the deformation gradient into volume preserving and spherical parts.

8.6 Nonlinear viscoelastic models

Elastoplastic models are typical for solid material models. Polymer deformation be-
haviour can be treated using a fluid-like approach in which solid polymers are treated
as strongly nonlinear viscoelastic fluids with very high relaxation times. In this ap-
proach the deformation behaviour is described using a nonlinear Maxwell element with
a single, temperature and stress-activated relaxation time. The idea dates back to
Tobolsky and Eyring [19], it was employed in a class of models, including the Haward
and Thackray model [20], the BPA model proposed by Boyce et al. [21], the “full chain
model” by Wu and van der Giessen [22], and the “modified Leonov model” proposed
by Tervoort [6]. In all these models, no explicit use is made of a yield criterion.

Schematic representation of the model proposed by Haward and Thackray [20] is
shown in Fig. 8.10. The initial elastic response is characterized by a linear spring,

Figure 8.10: Schematic representation of the model proposed by Haward and Thack-
ray [20]

the yield point is determined by a non-linear dashpot with a stress dependent Eyring
viscosity [23] and the strain hardening response is modelled by a hardening spring.
Use of a single relaxation time in the Haward and Hackaray model results in a sharp
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transition from solid-like to fluid-like behaviour, almost identical to an elastic-perfectly
plastic response employing a rate dependent yield criterion.

The Haward and Thackray model was generalised to three dimensions in the BPA
model proposed by Boyce et al. [21]. Similarly to the original one-dimensional version,
visco-elastic behaviour prior to yielding (which is observed in experiments) is not taken
into account, since only one stress dependent relaxation time is used.

To improve the description of the visco-elastic behaviour, Tervoort [6] proposed
the use of a spectrum of relaxation times. This can be looked upon as a number of

Figure 8.11: Schematic representation of the multi-mode model proposed by Ter-
voort [6]

Maxwell models in parallel (Fig. 8.11), each consisting of a linear spring and non-
linear dashpot in series. It is a compressible generalisation of the Leonov model [24]
proposed by Baaijens [25]. Tervoort separated the elastic hydrostatic stress and the
visco-elastic deviatoric stress in each Maxwell element and named such an element a
single “Leonov mode”. Plastic flow of polymers was described by Tervoort using non-
Newtonian viscous flow rule with the viscosity calculated from a generalised Eyring
equation, cf. Sec. 8.7. Strain hardening was modelled by a hardening spring parallel
to the Leonov modes (Fig. 8.11). Each of the Leonov modes is capable to describe rate
dependent yield behaviour at finite deformations (Fig. 9.6). The stress in the Leonov
mode, activating plastic flow, is called the driving stress, while the stress caused by
strain hardening is called the hardening or back stress. The contribution of the driving
stress and the hardening stress for an amorphous polymer is shown in Fig. 9.6.

8.7 The Eyring model of viscoelasticity

Plastic flow of polymers is often described using a non-Newtonian viscous flow rule
with the viscosity calculated from a generalised Eyring equation, cf. [6]. This section
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Figure 8.12: Simulation of a uniaxial compression test using a single Leonov mode with
a hardening spring in parallel

presents basic concepts of the Eyring model of viscoelasticity following [1].
The Eyring model [23] was developed to describe the viscous flow in liquids. The

ideas of this model can also be applied to describe yield behaviour of glassy polymers.
The model assumes that when a segment of a macromolecule has to move to an

adjacent site it must pass over an energy barrier represented as ∆E∗ (see Fig. 8.13a).
In the absence of stress, the segments of the polymer jump over the barrier infrequently,

Figure 8.13: Eyring’s model; a)

and they do so in random directions. The frequency with which the segments jump
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the barrier is represented by the Arrhenius equation,

ν0 = A′ exp

[

−∆E∗

KT

]

(8.17)

where A′ is a constant.
According to the Eyring model, the application of a shear stress modifies the barrier

height. In the direction of stress, the rate at which segments jump forward over the
barrier will be increased, and consequently the height of the barrier will be reduced. If
τ is the shear stress applied and A∗ is the effective area of the polymer segment, the
height of the barrier is reduced by by τA∗x, which corresponds to the work done in
moving a segment a distance x. This is illustrated in Fig. 8.13b. The frequency with
which the segments jump the new barrier in the forward direction is

ν1 = A′ exp

[

−∆E∗ − τA∗x

KT

]

== A′ exp

(

−∆E∗

KT

)

exp

(
τA∗x

KT

)

(8.18)

Since the frequency with which the polymer segments jump in the backward direction
is very low, the reverse jump rate can be neglected the net rate flow is assumed to be
given by Eq. (8.18). The product A∗x = V ∗ has the dimensions of volume and is called
the activation volume.

Yielding can be considered as viscous flow in which activation energy barrier ∆E∗

for load shear displacements of polymer segments is decreased by the applied stress τ .
The imposed strain rate, ε̇y can be considered proportional to the net rate flow, and
τ can be considered the maximum shear stress. Then τ = σy/2, σy being the tensile
yield stress. Consequently, Eq. (8.18) becomes

ε̇y = ε̇0 exp

(
∆E∗

KT

)

exp

(
σyV

∗

2KT

)

(8.19)

where ε̇0 is a constant.
Equation (8.19) can be rearranged as

σy =

[

2.303K log

(
ε̇y

ε̇0

)

+
∆E∗

T

](
2T

V ∗

)

(8.20)

Equation (12.21) describes the temperature and strain rate dependence of the yield
stress, σy.

Figure 8.14 shows the plots of σy vs. log ε̇y for polycarbonate (Tg = 140◦C) in the
range of temperature 21.5◦C < T < 140◦C. The data in this figure indicate that the
Eyring model accounts for many features of yielding in glassy polymers. The negative
temperature dependence of the yield stress σy is revealed. The plots show the positive
strain rate dependence of σy.
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Figure 8.14: Eyring plot of σy/T versus log ε̇ for polycarbonate (From [26])

Equation (12.21) fails when it is used to describe the yield behaviour of polymers
over a wide range of temperature. This has led to a modification of the model [27] by
an assumption that the deformation process involves two different flow processes that
have different values of ∆E∗ and V ∗. Another modification [28] includes the effect of
hydrostatic pressure.

8.8 Viscoplastic models

The theory of viscoplasticity describes rate-dependent material behaviour with equi-
librium hysteresis. Viscoplasticity is the most general material model. In principle, it
considers all macroscopically observable phenomena.

Basically, there are three different approaches to development of viscoplastic models,
cf. [16]:

• introducing static yield surface defining elastic domain

• a uniform formulation of evolution equations without yield surface

• decomposition of the total stress into rate-independent equilibrium stress and
rate-dependent overstress

The first concept was introduced by Perzyna [29]. In this approach states outside
the static yield surface lead to the evolution of inelastic deformations. It can be viewed
as a generalisation of the classical theory of plasticity, which is included as a special
case.

The second method of modelling viscoplasticity has no need for yield surfaces or
the case distinction connected with it. A system of nonlinear diferential equations
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describes material properties with internal variables used to describe process dependent
material behaviour in a uniform manner. These constitutive models are named unified
viscoplasticity models, eg. [30].

A third way of constructing constitutive models of viscoplasticity is built on the a
priori decomposition of the total stress into an equilibrium part (equilibrium stress) and
non-equilibrium part (overstress). In this concept, the relations between the equilib-
rium stress and overstress become uncoupled to large extent from each other, resulting
in a modular structure of the constitutive model. This kind of models were developed
by Krempl [31] and Krempl et al [32]. Their application to polymer materials is pre-
sented in [33]. Recent developments and application of this model to polymer materials
can be found in [34].

8.9 Conclusions and recommendations

The present work is concerned on the polymer coating of the sheet used for the can
manufacture. In this case deformation of the polymeric material at large plastic strains
is of greatest importance, small visco-elastic strains are of minor importance and the
viscous behaviour prior to yielding can be neglected. This means that in case of models
employing the Leonov modes, only one mode can be considered. This assumption
minimizes the number of model parameters necessary to determine.
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Chapter 9

Selected constitutive models

9.1 Introduction

This chapter presents selected constitutive models suitable to polymer modelling. First
the description of finite inelastic deformations employ is presented. This description is
generally accepted as the most suitable framework for the development of constitutive
models for large viscoelastic or elasto-plastic/viscoplastic deformation. Most of the
assumptions are common for the constitutive models of polymers presented later in
this chapter.

9.2 Kinematics of finite inelastic deformations

Figure 9.1: Decomposition of the continuum deformation
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The deformation of a continuum is shown schematically in Fig. 9.1. The transfor-
mation from the undeformed configuration C0 to the deformed one Cc is described by
the deformation gradient tensor F. An existence of a stress-free plastic intermediate
configuration Cp is postulated. This assumption leads to the multiplicative decopmo-
sition of the deformation gradient tensor F into an elastic and plastic part, Fe and Fp,
respectively

F = FeFp (9.1)

It is assumed that volume does not change during plastic deformation

Jp = detFp = 1 (9.2)

so
J = det Fp = detFe (9.3)

Following Simo [35] the elastic deformation can be decoupled into volumetric and iso-
choric (volume preserving) distortional deformation. Thus we have another interme-
diate configuration C̄ (Fig. 9.1) and the following multiplicative decomposition is
introduced

Fe = Fv
eF̄e (9.4)

where the tensor F̄e describes the isochoric deformation and

Fv
e = J1/3I (9.5)

represents the volumetric deformation. The elastic left Cauchy–Green tensor Be is
related to the left Cauchy–Green tensor for the isochoric deformation as follows B̄e

Be = FeF
T
e = J2/3F̄eF̄

T
e = J2/3B̄e (9.6)

The velocity gradient tensor L is given by

L =
∂v

∂x
= ḞF−1 (9.7)

using (9.1) can be split into an elastic and plastic part as

L = Le + Lp , Le = ḞeF
−1
e , Lp = FeḞpF

−1
p F−1

e (9.8)

The velocity gradient tensor L is often written as the sum of the symmetric deformation
rate tensor D

L = D + Ω , D = 1
2
(L + LT ) , Ω = 1

2
(L − LT ) (9.9)

which can be split into their respective elastic and plastic parts, De, Dp, Ωe and Ωp

D = De + Dp , Ω = Ωe + Ωp (9.10)
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where
De = 1

2
(Le + LT

e ) , Ωe = 1
2
(Le − LT

e ) (9.11)

Dp = 1
2
(Lp + LT

p ) , Ωp = 1
2
(Lp − LT

p ) (9.12)

The decomposition defined by Eq. (9.1) is not unique with respect to rotation
contribution. Different assumptions are possible regarding the rotations. The following
assumptions have been proposed by Boyce et al. [21, 36]:

I. Symmetric elastic deformation gradient tensor

In this case, the elastic rotation tensor Re resulting from the polar decomposition
of the elastic deformation gradient Fe

Fe = ReUe (9.13)

is chosen equal to the second order unit tensor

Re = I (9.14)

This assumption means that the relaxed configuration is obtained from the cur-
rent configuration by elastic unloading without rotation. This means

Fe = FT
e (9.15)

II. No elastic spin.

The elastic and plastic spin tensors are assumed as follows

Ωp = Ω , Ωe = 0 (9.16)

III. No plastic spin.

The elastic and plastic spin tensors are defined by

Ωp = 0 , Ωe = Ω (9.17)

This choice is employed for instance in the compressible Leonov model [6] pre-
sented in Sec. [?].

These options have been verified in different tests by Timmermans [11] and it was
demonstrated that the Leonov model with assumptions I and II lead to unrealistic
results.
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9.3 J2 plasticity model

Hyperelastic J2 plasticity formulation has been extended and applied to modelling
large deformations of polymers by Masud and Chudnovsky [18, 17]. This shows the
possibility of adaptation of standard elastoplastic algorithms successfully used in metal
modelling to model polymers. The theoretical model treats cold drawing of polycar-
bonates involving loading and unloading as the so-called double glass transition. In this
concept the necking phenomenon of a glassy polymer is a special type of transformation
involving a three-steps process:

(i) transformation from an isotropic glass (α state) to an isotropic rubber (rubbery
mesostate β) when the yield surface in the stress space is reached during loading,

(ii) a stretching of the rubbery state,

(iii) a transformation of the stretched rubbery state into an oriented glass upon un-
loading, or when a certain molecular orientation (draw ratio) is achieved.

These mechanisms are illustrated in Fig. 9.2.

Figure 9.2: The process of cold-drawing as transitions α → β → γ

In the kinematics description the multiplicative split of the deformation gradient
tensor F into elastic and inelastic (plastic) components is assumed according to Eq.
(9.1). The free energy potential is assumed in the following form:

φ(g,B−1
e ,q,F) = φ̄(g,B−1

e ,F) + χ(q) (9.18)

where g is the spatial metric tensor, Be is the elastic left Cauchy–Green tensor, and
q is a set of internal variables characterizing the inelastic (plastic) response. The
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hyperelastic stored energy function with uncoupled pressure relative to the intermediate
(unloaded) configuration is defined as

φ̄(g,B−1
e ,F) = U(J) + 1

2
µ(Ībe− 3) = 1

2
K(lg J)2 + 1

2
µ(Ībe− 3) (9.19)

where Ībe = J−2/3Be : g, K is the bulk modulus and µ is the shear modulus. The
Kirchhoff stress tensor can be obtained from

τ = 2ρo
∂φ̄(g,B−1

e ,F)

∂g
(9.20)

The Huber–Mises yield condition is assumed

f̄(g,B−1
e ,q,F) := ‖s‖ −

√
2
3
κ(ēi) ≤ 0 (9.21)

where s is deviatoric part of the Kirchhoff stress tensor, q = {ēi}, ēi being the equivalent
inelastic (plastic) flow. The associative flow rule is adopted. The state of stress during
transition from the initial unoriented state into the oriented one is given by:

κ(ēi) = σα
dr + (σγ

dr − σα
dr)
[
1 − exp (−δ1ēi)

]
+ (σγ

dr − σα
dr) exp

[
δ2(ē

i − lnλn)
]

(9.22)

where σα
dr, σ

γ
dr, δ1, δ2 and λn are material specific constants. λn is related to the so-

called maximum residual strain under uniaxial state and is termed as the draw-ratio.
σα

dr is the stress initiating necking (Fig. 9.2). σγ
dr represents the true draw stress, i.e.

σγ
dr = λnσ

α
dr. It is the stress that a material particle develops once it has reached

the second stable branch (i.e. the end of β state in Fig. 9.2). An example of the
stress–strain curve defined by Eq. (9.22) is shown in Fig. 9.3.

Figure 9.3: True stress–true strain curve defined by Eq. (9.22), from [18]
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9.4 The Arruda–Boyce (AB) Model

The Arruda–Boyce model was developed [37, 38, 21] for predicting the large strain,
time and temperature-dependent response of glassy polymers. The model incorporates
the behaviour of materials characterized by an initial linear elastic response followed
by yielding and then strain hardening at large deformations.

Description of large inelastic deformations is based on the multiplicative decomposi-
tion of the deformation gradient tensor F into elastic and plastic components as given
by Eq. (9.1). The rheological representation of the Arruda-Boyce model (Fig. 9.4) is
composed of two networks acting in series: an elastic network (e) and a plastic network
(p).

Figure 9.4: Rheological representation of the Arruda–Boyce model

Using the decomposition of the deformation gradient (9.1) the Cauchy stress is
calculated from the linear elastic relationship:

T =
1

Je
(2µeEe + λetr [Ee]I) (9.23)

where Ee = ln [Ve] is the logarithmic true strain, J e = det [Fe], and µe and λe are
Lamé constants. The stress driving the plastic flow is given by the tensorial difference
between the total stress and the convected back stress

T∗ = T − 1

Je
FeTpFeT (9.24)

where the deviatoric back stress is given by the incompressible 8-chain model which
can be written

Tp =
µp

λ̄p

L−1

(
λ̄p

λp
lock

)

L−1

(
1

λp
lock

)dev[Bp] (9.25)
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with µp and λp
lock being physically motivated material constants, Bp = FpF

T
p , λ̄p =

√

tr [Bp]/3 is the effective chain stretch based on the eight-chain topology assumption,
and L(x) = coth (x) − 1/x is the Langevin function.

In the original work the [37, 38] the plastic flow rate was given by

γ̇p = γ̇0 exp

[−As
kBθ

(

1 −
(τ

s

)5/6
)]

(9.26)

where γ̇0, A0, s are material constants, kB is the Boltzmann’s constant, and θ is the
absolute temperature. Taking the stress ecponent to be 1 instead of 5/6 and grouping
material constants together we obtain the expression for the plastic flow in the form
similar to the Eyring equation

γ̇p = γ̇0 exp

[
τ − s

τbase

]

= γ̇i exp

[
τ

τbase

]

(9.27)

where τbase = kBθ/A, and γ̇i = γ̇0 exp−s/τbase. The scalar equivalent stress is taken as
the Froenius norm of the deviatoric part of the driving stress τ = ‖dev [T∗]‖F , where
‖A‖F = (AijAij)

1/2. The rate of plastic deformation is given by

Dp =
γ̇p

τ
dev [T∗] (9.28)

and the plastic spin is taken to be zero, Ωp = 0, which uniquely specifies the rate
kinematics.

The AB model also allows for modeling of strain softening through an evolution
equation of the athermal shear resistance s.

9.5 The Bergström–Boyce (BB) Model

The Bergström–Boyce model was developed [39] for predicting time-dependence and
hystheresis of crosslinked polymers above the glass transition temperature, ie. elas-
tomeric materials.

The basic idea in the BB model is that the material response is governed by two
interacting networks: one network gives the equilibrium response and the second net-
work provides the independent deviation from the equilibrium state. The rheological
representation of the BB model is shown in Fig. 9.5. The spring element of network
A is modeled with 8-chain model, the spring element of network B is modeled with a
neo-Hookean hyperelasticity model, and the time-dependent element is modeled with
a reptation motivated representation.

In the constitutive framework the total deformation gradient Facts both on the
equilibrium network A and on the time dependent network B, ie. F = FA = FB.
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Figure 9.5: Rheological representation of the Bergström–Boyce model

The deformation gradient tensor F is decomposed into distortional (isochoric) and
dilatation (volumetric) parts:

F + J1/3F∗ (9.29)

where J = det (F). The Cauchy stress acting on network A can be obtained from the
eight-chain model:

JTA =
µA

λ̄∗

L−1

(
λ̄∗

λlock
A

)

L−1

(
1

λlock
A

)dev[B∗] +K[ln J ]I (9.30)

where µA is the initial shear modulus, λlock
A the limiting chain stretch, K the bulk

modulus, B∗ = J−2/3FFT , and λ̄∗ =
√

tr [B∗]/3 is the effective chain stretch based on
the eight-chain topology assumption.

The deformation gradient on network B is decomposed into elastic and viscous parts

FB = Fe
BFp

B (9.31)

The deviatoric part of the Cauchy stress acting on network B is obtained from the
neo-Hookean hyperelasticity model:

T′

B = µBdev [Be
B] (9.32)

where µB is the shear modulus,

Be
B = (Je

B)−2/3Fe
BFe

B
T , Je

B = det (Fe
B) (9.33)

In the proposed framwork the total stress in the system is given by TA + TB.
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9.6 Compressible Leonov model

9.6.1 Introduction

In this section the single mode compressible Leonov model — simplification of the
generalised compressible Leonov model developed by Tervoort [6, 40] is presented.

The rheological schematic model of the is shown in Fig. 8.11. It can be looked
upon as a number of Maxwell models in parallel, each consisting of a linear spring and
non-linear dashpot in series. Tervoort separated the elastic hydrostatic stress and the
visco-elastic deviatoric stress in each Maxwell element and named such an element a
single “Leonov mode”. Plastic flow of polymers was described by Tervoort using non-
Newtonian viscous flow rule with the viscosity calculated from a generalised Eyring
equation, cf. Sec. 8.7. Strain hardening was modelled by a hardening spring parallel
to the Leonov modes (Fig. 8.11).

The multi-mode Leonov model requires many parameters depending on the number
of Leonov modes used — the polycarbonate model [6] comprises eighteen modes to de-
scribe the glass transition spectrum and a single spring to capture the strain hardening
behaviour.

If one is interested in rate dependent yield behaviour, a useful approximation is
the single mode compressible Leonov model presented schematically in Fig. 9.6. The
single Leonov mode describes rate-dependent yield behaviour and the spring represents
the strain hardening response. The single-mode compressible Leonov model has been
successfully applied to modelling of polymer behaviour in forming processes of polymer
coated sheet [12].

Figure 9.6: Rheological schematic model of the single-mode compressible Leonov model

In accordance with the rheological scheme of the model presented in Fig. 9.6 the
Cauchy stress is additively decomposed in the driving stress s and the hardening stress
w

σ = s + w (9.34)
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9.6.2 Elastic behaviour

Large inelastic deformations are described using the multiplicative decomposition of
the deformation gradient tensor F into elastic Fe and inelastic Fp parts defined by Eq.
(9.1) and decoupling of the elastic deformation into volume preserving (isochoric) F̄e

and volumetric Fv
e denoted by Eq. (9.4).

Separation of volumetric and isochoric deformations is introduced into the free en-
ergy function Ψ

Ψ = Ψv + Ψiso (9.35)

The free energy is assumed to be a function of the invariants of the left Cauchy–Green
tensor for the isochoric deformation B̄e and the volume deformation factor J

Ψ = Ψ(J, IB̄e
, IIB̄e

) = Ψv(J) + Ψiso(IB̄e
, IIB̄e

) (9.36)

where
J = detF (9.37)

Decoupling of the free energy function (9.36) leads to the decomposition of the driving
stress s into the hydrostatic part sv and the deviatoric part sd:

s = sv + sd (9.38)

where, cf. [6]:

sv = J
∂Ψv

∂J
I , sd = 2ᾱ1B̄

d
e + 2ᾱ2tr (B̄e)B̄

d
e + 2ᾱ2(B̄e · B̄e)

d (9.39)

where ᾱi, i = 1, 2 are the derivatives of the free energy with respect to invariants of B̄e.
The strains must be updated by integration of appropriate evolution laws for B̄e

and J . For J we have
J̇ = J trD (9.40)

The evolution law for B̄e must be objective with respect to rigid material rotations,
which implies necessity of using an objective derivative. Originally in [6] the Jaumann
derivative has been used

◦

B̄e = (Dd − Dp) · B̄e − B̄e · (Dd − Dp) (9.41)

where
◦

B̄e is the Jaumann derivative of B̄e, D is the symmetric part of L and Dp is the
plastic deformation rate tensor (deviatoric).
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9.6.3 Plastic flow

In the evolution law for B̄e (9.41) the decomposition of deformation rate tensor D into
elastic and plastic parts (9.10)1 is employed. It is assumed in the model [6, 11] that
for polymers, plastic flow occurs at constant volume, described by a non-Newtonian
visocus flow rule

Dp =
1

2η
sd (9.42)

where sd is the deviatoric driving stress tensor and η is a variable viscosity.
An expression for the viscosity can be formulated starting from the generalised

Eyring equation as follows, cf. [6], Sec. 8.7:

η = η(sd, T ) = Aτ0
(τeq/τ0)

sinh(τeq/τ0)
= η0aσ(τeq) (9.43)

where A is a time constant, τ0 is characteristic stress, aσ is the so-called shift function,
η0 = Aτ0 is the zero-shear viscosity, and τeq is the equivalent stress

τeq =
√

sd : sd (9.44)

Material constants A and τ0 are given by

A = A0 exp

(
∆H

RT

)

, τ0 =
RT

V
(9.45)

where A0 is a material constant involving the fundamental vibration frequency, ∆H —
the activation energy, R — the universal gas constant, T — the absolute temperature,
and V — the shear activation volume.

The Eyring approach implies that deformation mechanisms of yielding are essen-
tially always present with the stress changing the rate of deformation. This is clearly
expressed by the functional dependence of the Eyring viscosity on stress expressed by
Eq. (9.43). There is a linear region at low stress (τeq � τ0), where the viscosity is
equal to the zero-shear viscosity η0 = Aτ0 and all the non-linear effects are incorporated
into the shift function aσ. According to the Eyring equation, deformation process are
accelerated by stress.

On a fitting level, the Eyring equation is almost indistinguishable from the Argon
equation [41] used in the BPA-model [21]. There are however conceptual differences.
The Argon theory regards yielding as a nucleation-controlled process.

The Eyring equation can be augmented in a straightforward way to allow for pressure
dependence and intrinsic softening effects. To account for pressure Ward [7] modified
the activation energy based upon an experimentally observed linear increase of the
activation energy with increasing pressure. The time constant A in Eq. (9.45) is then
given by

A = A0 exp

[
∆H + pΩ

RT

]

= A0 exp

[
∆H

RT
+
µp

τ0

]

(9.46)
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where p is the hydrostatic component of stress, Ω is the pressure activation volume,
and µ = Ω/V is a material parameter describing the pressure dependence.

Hasan et al. [42] included intrinsic softening including a parameter D into the time
constant A

A = A0 exp

[
∆H

RT
+
µp

τ0
−D

]

(9.47)

The current value of the softening variable D is determined from the evolution equation

Ḋ = h

(

1 − D

D∞

)

γ̇p (9.48)

with initial condition D = 0, h being the softening slope, D∞ the saturation value of
D, and γ̇p the equivalent plastic strain rate

γ̇p =
√

Dp : Dp =

√
sd : sd

2η
=
τeq
2η

(9.49)

During elastic deformation D is constant — material state does not change. During
plastic deformation D evolves to a saturation value D∞.

9.6.4 Strain hardening

The hardening stress is calculated in [6, 11] according to the neo-Hookean relation

sd = HB̄d (9.50)

where H is the hardening modulus (assumed temperature dependent). Contrary to
[21] the hardening stress is not related to the plastic deformation but to the total
deformation. This is explained by the assumption in the model presented both elastic
and plastic deformations are assumed to decrease the configurational entropy of the
polymer. In case of small elastic deformations these approaches are nearly identical.

9.6.5 Simplified model

If small volume changes can be assumed (J ≈ 1) the hydrostatic stress term sv in Eq.
(9.39)1 can be written as

sv = K(J − 1)I (9.51)

where K is the bulk modulus and I is the unit tensor. Further simplification can be
made by choosing ᾱ2 = 0 in Eq. (9.39)2 (this means assumption of a linear dependence
of sd on B̄e). The identifying 2ᾱ1 to the shear modulus G, the deviatoric part of the
driving stress is given by

sd = GB̄d
e (9.52)
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9.7 Generalised viscoelastic/elastoplastic model

9.7.1 Introduction

The model developed by M. Luege [43] is extension of the general viscoplastic model
[16] to finite deformations. In fact it combines viscoelasticity and elastoplasticity. The
model takes into account such important features of polymers like nolinear elastic
stress–strain relationship, plastic deformation and viscous effects. It is assumed it can
represent the PET deformation behaviour under isothermal conditions.

9.7.2 Basic assumptions

The rheological schematic model of viscoelasticty combined with elastoplasticity is
shown in Fig. 9.7. The developed elastoviscoplastic model is based on the following

Figure 9.7: Rheological model of combined viscoelasticity and elastoplasticity

assumptions:

• Multiplicative decomposition of the deformation gradient tensor F into a plastic
parts Fp and elastic equilibrium part Feq

F = FeqFp (9.53)

At the same time the non-equilibrium viscous deformation mechanism is assumed
so that we have another multiplicative decomposition of the deformation gradient
tensor into the viscous part Fi and the elastic non-equilibrium part Fe

F = FeFi (9.54)
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• Additive decomposition of the Helmholtz free energy Ψ into the elastic and plastic
parts, Ψe and Ψp, respectively

Ψ(C,Fi,Fp, α) = Ψe(C,Fi,Fp) + Ψp(α) (9.55)

where C = FT F is the right Cauchy–Green tensor and α is the equivalent plastic
deformation

• Additive decomposition of the Helmholtz elastic free energy Ψe into the equilib-
rium and non-equilibrium parts, ΨEQ and ΨNEQ, respectively

Ψ(C,Fi,Fp) = ΨEQ(Ceq(C,Fp)) + ΨNEQ(Ce(C,Fi)) (9.56)

where respective right Cauchy–Green tensors are defined as follows

Ceq = FT
eqFeq = F−T

p CF−1
p , Ce = FT

e Fe = F−T
i CF−1

i (9.57)

The constitutive model thermodynamically admissible must satisfy the equation of
the internal energy dissipation

Dint = S : 1
2
Ċ − Ψ̇ ≥ 0 (9.58)

where S is the second Piola–Kirchhoff stress tensor, C = FT F is the right Cauchy–
Green deformation tensor, F is the deformation gradient tensor and Ψ is the free
Helmholtz energy per unit volume in the reference configuration.

Taking into account relationships (9.53)–(9.57) and (9.58) the following relationships
can be obtained

S = 2
∂Ψe

∂C
, R =

∂Ψp

∂α
(9.59)

Dint =
∂ΨEQ

∂Ceq
: (lTp Ceq + Ceqlp) +

∂ΨNEQ

∂Ce
: (lTi Ce + Celi) − R : α̇ ≥ 0 (9.60)

where R is the thermodynamic force associated with the internal parameter α, and
lp = ḞpF

−1
p and li = ḞiF

−1
i are the plastic and viscous deformation velocity gradients,

respectively.
Detailed derivation of anterior equations is presented below. First deriving the free

energy function Ψ given by Eq. (9.55) with respect to time we obtain

Ψ̇ = Ψ̇e + Ψ̇p (9.61)

where

Ψ̇e =
∂ΨEQ

∂Ceq
:
∂Ceq

∂C
: Ċ +

∂ΨNEQ

∂Ce
:
∂Ce

∂C
: Ċ +

∂ΨEQ

∂Ceq
:
∂Ceq

∂Fp
: Ḟp +

∂ΨNEQ

∂Ce
:
∂Ce

∂Fi
: Ḟi (9.62)
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Ψ̇p =
∂Ψp

∂α
: α̇ (9.63)

From Eq. (9.57)1 we have

∂Ceq

∂Fp
: Ḟp =

˙
F−T

p CF−1
p + F−T

p C
˙

F−1
p

= −lTp F−T
p CF−1

p − F−T
p CF−1

p lp

= −lTp Ceq − Ceqlp (9.64)

where we take into account that with
d

dt
(FT

p F−T
p ) = 0 the following relationships are

satisfied

ḞT
p F−T

p = 0 + FT
p

˙
F−T

p = 0 (9.65)

lTp = − ˙
F−T

p FT
p (9.66)

Analogically from Eq. (9.57)2 we obtain

∂Ce

∂Fi
: Ḟi = −lTi Ce − Celi (9.67)

with li = ḞiF
−1
i and lTi = − ˙

F−T
i FT

i . Finally we

∂ΨEQ

∂Ce
:
∂Ce

∂C
: Ċ =

∂ΨEQ

∂C
: Ċ (9.68)

∂ΨNEQ

∂Ceq
:
∂Ceq

∂C
: Ċ =

∂ΨNEQ

∂C
: Ċ (9.69)

Substituting relationships (9.61)–(9.64) and (9.67)–(9.69) into Eq. (9.58) we obtain

Dint =

(

S − 2
∂Ψe

∂C

)

: 1
2
Ċ +

∂ΨNEQ

∂Ceq

: (lTp Ceq + Ceqlp)

+
∂ΨNEQ

∂Ce

: (lTi Ceq + Celi) −
∂Ψp

∂α
: α̇ ≥ 0 (9.70)

From Eq. (9.70) it results immediately the following

S = 2
∂Ψe

∂C
, R =

∂Ψp

∂α
(9.71)

Dint =
∂ΨEQ

∂Ceq
: (lTp Ceq + Ceqlp) +

∂ΨNEQ

∂Ce
: (lTi Ce + Celi) − R : α̇ ≥ 0 (9.72)
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where R is the thermodynamic force associated with the internal parameter α.
For the elastic free energy given by Eq. (9.56) Eq. (9.71) is written as follows

S = 2
∂ΨEQ

∂C
︸ ︷︷ ︸

SEQ

+ 2
∂ΨNEQ

∂C
︸ ︷︷ ︸

SNEQ

= 2
∂ΨEQ

∂Ceq
:
∂Ceq

∂C
+ 2

∂ΨNEQ

∂Ce
:
∂Ce

∂C
(9.73)

The Cauchy stress tensor is given by

σ := J−1FSFT = 2J−1F
∂Ψe

∂C
FT = 2J−1B

∂Ψe

∂B
(9.74)

where B := FFT is the left Cauchy–Green tensor. Developing Eq. (9.74) in terms of
the equilibrium and non-equilibrium parts we have

σ = 2J−1

[

Feq
∂ΨEQ

∂Ceq
FT

eq + Fe
∂ΨNEQ

∂Ce
FT

e

]

= J−1

[

Feq

(
∂ΨEQ

∂Feq

)T

+ Fe

(
∂ΨNEQ

∂Fe

)T
]

= 2J−1Beq
∂ΨEQ

∂Beq
︸ ︷︷ ︸

σEQ

+ 2J−1Be
∂ΨNEQ

∂Be
︸ ︷︷ ︸

σNEQ

= σEQ + σNEQ (9.75)

where the respective tensors of deformation Beq and Be are defined as

Beq := FeqF
T
eq Be := FeF

T
e (9.76)

The respective Kirchhoff stress tensors are given by

τEQ := 2Feq
∂ΨEQ

∂Ceq

FT
eq , τNEQ := 2Fe

∂ΨNEQ

∂Ce

FT
e (9.77)

where it is shown that

τEQ = JσEQ , τ NEQ = JσNEQ (9.78)

9.7.3 Free energy for elastic deformation

In the present section the forms of the free energy for elastic deformation are considerd.
Elastic deformation can be described using a suitable model of nonlinear elasticity. Here
the Ogden model for incompressible and quasi-incompressible material is considered.
First the formulation of the free energy for elastic materials is presented and then its
implementation in the viscoelastic-viscoplastic model is presented.
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Nonlinear elasticity for incompressible materials

If we consider the incompressible material, that is with the restriction

J = λ1λ2λ3 = 1 (9.79)

we can use the function of the free energy postulated by Ogden, cf. [?] given in terms
of the principal stretches λA, A = 1, 2, 3

Ψ = Ψ(λ1, λ2, λ3) =
N∑

p=1

µp

αp

(
λ

αp

1 + λ
αp

2 + λ
αp

3 − 3
)

(9.80)

In order to have a consistency with the linear (small deformation) theory the following
condition is imposed, cf. [?]:

2µm =
N∑

p=1

µpαp with µpαp > 0, p = 1, . . . , N (9.81)

where µm is the classical shear modulus.

Nonlinear elasticity for quasi-incompressible materials

For elastic materials with small compressibility the free energy Ψ can be decomposed
into the volumetric and isochoric parts, Ψv and Ψiso, respectively

Ψ(B) = Ψiso(B̄) + Ψv(J) (9.82)

The tensor B̄ is the left Cauchy–Green tensor for the distorsional (preserving volumen)
deformation. It can be deduced from the multiplicative decomposition of the deforma-
tion gradient F into the distortional and volumetric parts, F̄ and J1/3I, respectively

F = J1/3IF̄ (9.83)

Introducing the above decomposition into the definition of the left Cauchy–Green tensor
gives

B = FFT = J2/3F̄F̄T = J2/3B̄ (9.84)

where B̄ = F̄F̄T .
For the isochoric part of the free energy the Ogden equation (9.80) can be used in

terms of the principal stretches of the isochoric part of the deformation λ̄A, eigenvalues
of the tensor F̄. Then Eq. (9.82 takes the form:

Ψ(λ1, λ2, λ3) = Ψiso(λ̄1, λ̄2, λ̄3) + Ψv(J) (9.85)
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where the volumetric and deviatoric components are defined as

Ψiso(λ̄1, λ̄2, λ̄3) =
N∑

p=1

µp

αp

(
λ̄

αp

1 + λ̄
αp

2 + λ̄
αp

3 − 3
)

(9.86)

Ψv(J) = 1
2
K(J − 1)2 (9.87)

The Cauchy stress tensor is given now by:

σ = 2J−1B
∂Ψe

∂B
= 2J−1B

∂Ψiso

∂B
+ 2J−1B

∂Ψv

∂B
(9.88)

Considering the following decomposition

σ = devσ + pI , with p = 1
3
tr[σ] (9.89)

it can be easily demonstrated that

devσ = 2J−1B
∂Ψiso

∂B
, p =

∂Ψv

∂B
(9.90)

9.7.4 Free elastic energy for the viscoelastic/elastoviscoplastic

model

For the viscoelastic/elastoviscoplastic model it is assumed that the free elastic energy
Ψe is composed of the isochoric and volumetric parts, Ψiso and Ψv, respectively

Ψe = Ψiso + Ψv (9.91)

The volumetric part is assumed in the following form

Ψv(J) = 1
2
K(J − 1)2

The isochoric part is assumed to be composed of the equilibrium and non-equilibrium
parts, Ψiso

EQ and Ψiso
NEQ, respectively

Ψiso = Ψiso
EQ(λ̄eq1, λ̄eq2, λ̄eq3) + Ψiso

NEQ(λ̄e1, λ̄e2, λ̄e3)

where the equilibrium and non-equilibrium parts are taken in the form proposed by
Ogden

Ψiso =
N∑

p=1

µp

αp

(
3∑

A=1

λ̄
αp

eqA − 3

)

+
N∑

p=1

µvp

αvp

(
3∑

A=1

λ̄
αvp

eA − 3

)

where λ̄eA and λ̄eqA are respective eigenvalues of the tensors B̄e and B̄eq, defined
analogically to Eq. (9.84)

B̄eq = J−2/3Beq , B̄e = J−2/3Be (9.92)
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From Eq. (9.74) the Cauchy stress tensor for the model developed is obtained as

σ = 2J−1B
∂Ψe

∂B
= 2J−1B

∂Ψiso

∂B
+ 2J−1B

∂Ψv

∂B

= 2J−1Beq

∂Ψiso
EQ

∂B̄eq

:
∂B̄eq

∂Beq
︸ ︷︷ ︸

devσEQ

+ 2J−1Be

∂Ψiso
NEQ

∂B̄e

:
∂B̄e

∂Be
︸ ︷︷ ︸

devσNEQ

+K(J − 1)I
︸ ︷︷ ︸

σ
v

= devσEQ + devσNEQ + σ
v

= J−1(devτEQ + devτNEQ) + σ
v

= J−1devτ + σ
v (9.93)

9.7.5 Evolution of the internal variable

The evolution law for the internal variable should be assumed in the form satisfying
the the dissipation inequality (9.72). It is convenient to transform the dissipation
inequality (9.72) into the following form:

Dint = −devτEQ : 1
2
Lχ[beq]b

−1
eq − devτNEQ : 1

2
Lχ[be]b

−1
e − Rα̇ ≥ 0 (9.94)

where Lχ[a] identifies the Lie derivative of the tensor a. The Lie derivative is defined
as

Lχ[a] := χ
∗

[
d

dt

(
χ

∗−1[a]
)
]

(9.95)

where χ
∗−1[a] := F−1aF−T indicates the pull-back operation of the spatial field to the

reference configuration χ
∗[a] := FaFT and denotes the push-forward operation of the

material field.
Below the transformation of Eq. (9.72) into the form (9.94) is explained following

[?]. Starting from the equation

Beq = FeqF
T
eq = FF−1

p F−T
p FT (9.96)

the temporal derivative of the tensor Beq is evaluated as follows

Ḃeq =
d

dt
(FF−1

p F−T
p FT ) =

d

dt
(FC−1

p FT )

= ḞC−1
p FT + F

˙
C−1

p FT + FC−1
p ḞT

= ḞF−1FC−1
p FT + F

˙
C−1

p FT + FC−1
p FT F−T ḞT

= lBeq + Lχ[Beq] + Beql
T (9.97)

where the Lie time derivative of the tensor Beq is defined by

Lχ[Beq] := F
d

dt

(
F−1BeqF

−T
)

= F
˙

C−1
p FT (9.98)
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Given
˙

C−1
p = −F−1

p (lp + lTp )F−T
p , we have the Lie derivative

Lχ[Beq] = −Feq(lp + lTp )FT
eq (9.99)

Analogically using expression for the tensor Be

Be = FeF
T
e = FF−1

i F−T
i FT = FC−1

i FT (9.100)

we have
Ḃe = lBe + Bel

T + Lχ[Be] (9.101)

with

Ḃe = F
d

dt
(F−1BeF

−T )FT = F
˙

C−1
i FT

= −Fe(li + lTi )FT
e (9.102)

Taking into account Eqs. (9.99) and (9.102), definitions of devτ EQ and devτ NEQ in
Eq. (9.93) in Eq. (9.72) we can transform it into the form (9.94).

9.7.6 Dissipative potential

The dissipative potential is assumed in the following form:

Φ =
1

ηD
devτ NEQ : devτ NEQ + IE(τEQ, R) (9.103)

where IEis the indicator function of the elastic domain E defined as

E = {(τEQ, R) : F ≤ 0, R ≥ 0} (9.104)

and F is the yield function given by the Huber–Mises criterion

F(τEQ, R) = ‖devτEQ‖ −
√

2
3
ŷ (9.105)

with
ŷ = σy +R (9.106)

where σy is the initial yield stress and R is the thermodynamic force associated with
the internal variable α. The evolution laws are derived from Eq. (9.103), assuming the
evolution law for the non-equilibrium elastic part in the form

−1
2
(Lχ[Be])B

−1
e =

∂Φ

∂τ NEQ
=

1

ηD
τNEQ (9.107)
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while for the equilibrium elastic part and the associated plasticity we have

(
−1

2
Lχ[Beq]B

−1
eq ,−α̇

)
∈ ∂IE (9.108)

where ∂IE is subdiferential of the functional IE. Equation (9.108) is equivalent to the
following conditions:

−1
2
(Lχ[Beq])B

−1
eq = λ̇

∂F
∂devτEQ

= λ̇
devτ EQ

‖devτ EQ‖
= λ̇n (9.109)

α̇ =
√

2
3
λ̇ (9.110)

λ̇ ≥ 0 ; F ≤ 0 ; λ̇F = 0 . (9.111)

If instead of the plastic part the Perzyna viscoplastic deformation were assumed Eq.
(9.109) would be replaced by

−1
2
(Lχ[Beq])B

−1
eq = γ

(〈devτ EQ − ŷ〉
ŷ

)
∂F

∂devτ EQ

(9.112)

where γ is the viscoplastic material parameter, and 〈devτ EQ − ŷ〉 represents overstress.

9.7.7 Integration of the constitutive equation

The numerical algorithm proposed for the combined viscoelastic/elastoplastic model
[?] employ the integration method of elastoplasticity proposed by Simo [44] and the
integration method of viscoelastic model developed by Reese and Govindjee [45]. Ba-
sically the algorithms employed make use of the operator splitting which consists of
the elastic predictor made in the first step and the inelastic correction performed in
the second step. The extension proposed by M. Luege [?] consists in consideration of
elastoplasticity combined with viscoelasticity.

The material derivatives of the tensors Beq and Be can be split into elastic and
inelastic parts

Ḃeq =
d

dt
(FC−1

p FT ) = lBeq + Beql
T

︸ ︷︷ ︸

elastic

+Lχ[Beq]
︸ ︷︷ ︸

plastic

(9.113)

Ḃe =
d

dt
(FC−1

i FT ) = lBe + Bel
T

︸ ︷︷ ︸

elastic

+Lχ[Be]
︸ ︷︷ ︸

viscous

(9.114)

Given the state of material at time tn−1 and the total deformation at time tn defined
by Fn = F∆Fn−1 the algorithm presented below allows us to determine Bn

eq, Bn
e and

αn in the following steps.
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Step 1: Elastic prediction

Given:

Fn−1,B
n−1
e ,Bn−1

eq , αn−1

Ft
∆ = FtF−1

n−1 with F∆ = FnF
−1
n−1 for t = tn

Determine Btrial,t
eq , Btrial,t

e , αtrial,t assuming that the deformation gradient tensors defin-
ing inelastic deformations, Fp and Fi remain constants (with values the same as at time
tn−1)

Btrial,t
eq = Ft

∆Bn−1
eq (Ft

∆)T → B̄
trial,t
eq = J−2/3Btrial,t

eq

Btrial,t
e = Ft

∆Bn−1
e (Ft

∆)T → B̄
trial,t
e = J−2/3Btrial,t

e

αtrial,t = αn−1 → Rtrial,t = R(αtrial,t)

devτ
trial,t
EQ = 2J−1Btrial,t

eq

∂Ψiso
EQ(B̄

trial,t
eq )

∂B̄eq

→ F trial,t(devτ
trial,t
EQ , Rtrial,t)

(9.115)

where J = detFt.

Step 2a: Viscous correction

The viscous correction is defined by the solution of the following system:

Ḃe = Lχ[Be] = − 2

ηD
devτNEQBe

Be(tn−1) = Btrial,n
e

devτNEQ := 2Be

∂Ψiso
NEQ(B̄e)

∂Be

An approximate solution is obtained applying the algorithm of exponential mapping
which predicts for the time tn the following solution

Bn
eq = exp

[

−2
∆t

ηD

devτ
n
NEQBtrial,n

e

]

(9.116)

Step 2b: Plastic correction

The plastic correction, independent of the viscous correction is obtained as the solution
of the following system

Ḃeq = 2λ̇
devτ EQ

‖devτ EQ‖
B̄eq
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α̇ = 2
3
λ̇

devτ EQ := 2Beq

∂Ψiso
EQ(B̄eq)

∂Beq
, R = R(α)

with the complementary Kuhn–Tucker conditions

λ̇ ≥ 0 ; F(devτEQ, R) ≤ 0 ; λ̇F = 0 .

and the following initial conditions

Beq(tn−1) = Btrial,t
eq

α(tn−1) = αtrial,t

The solution is as follows.
If F trial,n < 0 the elastic solution defines the solution for the time tn

Bn
eq = Btrial,n

eq , αn = αtrial,n , τ
n
EQ = τ

trial,n
EQ , Rn = Rtrial,n

Otherwise the plastic correction is performed according to return mapping algorithm
obtained as a solution of the following system:

Bn
eq = exp[−2∆λnn]Btrial,t

eq

αn = αtrial,t
√

2
3
∆λ

devτ EQ := 2Beq

∂Ψiso
EQ(B̄

n
eq)

∂Beq
,

Rn = R(αn)

nn =
c

∥
∥devτ

n
EQ

∥
∥

with the complementary Kuhn–Tucker conditions

∆λ ≥ 0 ; F(devτ
n
EQ, R

n) ≤ 0 ; ∆λF(devτ
n
EQ, R

n) = 0 .

Verifying the condition

F(devτ
n
EQ(∆λ), Rn(∆λ)) = 0 .

the value of ∆λ is found. The iterative Newton–Raphson method can be used to solve
(9.7.7):

k = 0 , ∆λk=0 = 0 , Fk=0 = F trial .
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k = k + 1 ,

δ∆λk = − Fk−1

∂F
∂(∆λ)

∣
∣
∣
∣
k−1

∆λk = ∆λk−1 + δ∆λk

Fk = F(∆λk)

The iteration process is terminated if F k < tol. Then the variables for t = tn are
updated.
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Chapter 10

Constitutive properties of the
polymer–metal interface

10.1 Introduction

Adhesion across the polymer–metal interface is a key factor in the good performance of
polymer coated metal laminates in packaging industry. Polymer coated steel laminate
are obtained by coating a polymer (PET) film on to electro-chemically coated steel
(ECCS) by a co-extrusion process. The polar nature of polypethylene terephtalate
(PET) makes it an excellent material for achieving adhesion with metals. ECCS has a
thin coating of metallic chromium followed by a chromium-oxide layer, both together
not thicker than 14 nm, which acts as an adhesion layer between steel and PET.

In the manufacturing process the interface is subjected to high stresses. It is crucial
that the adhesion between the polymer and the metal is strong enough to endure tough
forming conditions. Adhesion dictates the deformation of the laminate and its ultimate
performance.

10.2 Polymer-metal interface

Adhesion is not a sharp boundary between the two materials, but can be more real-
istically regarded as the transition zone between the metal substrate and the polymer
having its volume and distinct physical properties. The interface properties depend
on their binding of chemical nature as well as on the geometric characteristics of the
substrate surface.

71



10.2.1 Adhesion bonding between polymer and metal

The polar nature of PET also makes it an excellent metarial for achieving adhesion
with metals. A polymer molecule can be bonded to a metal in more than one site. The
strength of a polymer depends on the strength of inter-chain Van der Waal’s forces.
The total force of adhesion between phases depends on the single bonds associated
with the type of intermolecular and interatomic interactions across the interface, the
number of interaction sites and range of bonds. Comparing the range of intermolecular
forces to the interaction of H-bonds, other weaker forces are negligible, we can assume
that H-bonds play a dominant role in adhesion.

10.3 Polymer-metal adhesion under deformation

and delamination

The purpose of the forming process is to obtain the product of required shape without
fracturing and loss of adhesion. During the forming operation the adhesion layer does
not remain intact, due to continuous formation of new polymer and metal surfaces
at the interface. It is important to consider the influence of the deformation of the
laminate on the adhesion at the polymer–metal interface.
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Chapter 11

Modelling the interface as the
contact problem with adhesion

11.1 Interfaces in finite element modelling

The finite element method has been used for many years for the analysis of contact
interfaces. Most of the earlier work was done using the assumption of perfect bonding
between the two different materials. with compatibility of displacements at the inter-
face (which is equivalent to the assumptions of the infinite strength of the interface).
The models with rigid bonds across the interface do not describe properly not only a
mechanism of the interface but the load transfer in the mechanical system, as well.

Standard contact formulation neglects tensile stresses at the interfaces and allows the
shear stresses only when the contact pressure is compressive. Accurate modelling of the
polymer–metal interface requires taking into account adhesion between two contacting
materials allowing us to transmit tensile forces at the interface as well as the tangential
interaction produced by adhesive bonds.

In the next section some fundamental notions related to adhesion are recalled. Next
a general approach to the formulation of unilateral contact allowing adhesive forces is
proposed. This will allow us to create a realistic finite element model of the polymer–
metal interface.

11.2 Adhesion: some basic notions

According to [46] there is a difference between adhesion at the molecular level and
adhesion in engineering. The lack of adhesion that we observe in engineering circum-
stances is rather an aberration that depends on the mechanisms of contact than on
molecular adhesion. If we define the molecular forces through the work of adhesion
per unit area of contact, equations for the mechanical force of adhesion in particular
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geometries are now briefly examined. Primarily, however, we observe that adhesion
between two solids may be due to ionic, covalent metallic, hydrogen or van der Waals
forces; for more details the reader is referred to [46, 47, 48]. To cut these bonds and to
reversibly separate the two solids 1 and 2 in contact on unit area, energies γ1 and γ2

are needed to create the unit areas 1 and 2, whereas the excess energy γ12 (interfacial
energy) is recovered. The quantity

w = γ1 + γ2 − γ12, (11.1)

is the Dupré energy of adhesion or the thermodynamic work of adhesion. We observe
that for a single crystal one has γ12 = 0; between two grains of polycrystal γ12 is the
grain boundary energy (γGB = γ/3) or the twin boundary energy (γTB = γ/50).

The separation never occurs as a whole, but by progression of a crack. During this
propagation interface bonds are broken, elastic energy is released and irreversible work
is dissipated at the crack tip.

Work of adhesion is a useful quantity because it distinguishes the two states, contact
and separation. This work is done over a very small distance for van der Waals forces,
99% of the work is achieved when the surfaces are pulled 1 nm apart. For other types
of bonding, such as ionic and covalent, even smaller distances are involved. Thus, the
precise shape of the force separation curve need not be known to understand many
phenomena. Indeed, the precise shape may even not be measurable because of the
instability of the spontaneous jumping of smooth surfaces into contact.

The available expressions for the calculation of the mechanical force F needed to
separate two contacting bodies depicted in Fig. 11.1 [46].

The force F needed to separate from molecular contact two identical spherical par-
ticles of diameter D and work of adhesion w (Fig. 11.1A) is given by

F = kwD , (11.2)

where k is a constant near unity. For elastic spheres k = 3π/8.
A polymer film peeling from a rigid substrate is also described by Eq. (11.2), but

with D replaced by the film width (Fig. 11.1B).
In more complex situations, where the joint is stretched significantly during breakage

as in the lap joint of Fig. 11.1C, the elastic modulus E and thickness d of the materials
become important and the adhesion criteria for fracture becomes

F = (4wEd)1/2b , (11.3)

which has the same form as Griffith’s cracking equation for glass.
These equations are instructive because they show that adhesion force can vary

substantially with geometry and material stiffness, as well with the molecular surface
quantitied by w.

Kendall discussed also the influence of fluid molecules on contacting solid surfaces
[46]. Other interacting adhesion mechanisms are adhesive drag, hysteresis, stringing
and clustering.
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Figure 11.1: (A) Two identical spheres in contact under van der Waals attraction with
a force F applied to separate them. (B) peeling of an elastic film from a rigid surface.
(C) Cracking of a lap joint. (D) Comparison of the adhesion force and gravity for very
smooth and rough spheres of different diameteres, after [46]
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11.2.1 Modelling unilateral contact with adhesion

A general framework for the study of contact problems with adhesion has been devel-
oped in [49, 50]. The main idea consists in introducing the intensity of adhesion β(x, t)
where x ∈ Γc and t stands for the time variable. Here Γc is the surface of potential
contact. To simplify the presentation, let us first consider the unilateral contact with
adhesion of a deformable body, occupying a domain Ω of R

3 in its undeformed con-
figuration, with a rigid obstacle. Contact of deformable bodies simulating the system
bone-prosthesis or bone-cement-prosthesis will also be considered.

The intensity of adhesion β is such that:

(i) if β = 1 all the bonds are active,

(ii) if β = 0 all the bonds are broken or the adhesion is absent,

(iii) if 0 < β < 1, a part β of the the bonds remain active, the remaining bonds are
broken, the adhesion is partial.

Let Γ = ∂Ω consists of three parts: Γ0, Γ1 and Γc such that Γ = Γ̄0 ∪ Γ̄1 ∪ Γ̄c. Here
the bar denotes the closure of set. Consider a linear elastic body satisfying

σij,j + fi = 0 in Ω , (11.4)

u = 0 on Γ0 , (11.5)

σijnj = gi on Γ1 , (11.6)

σijnj = Ri on Γc , (11.7)

σij = aijkleij(u) , (11.8)

where

eij(u) = u(i,j) =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)

. (11.9)

The elastic moduli aijkl are functions from L∞(Ω) and satisfy the following condition

∃c1 ≥ c0 > 0 , ∀ε ∈ E
3
s c0εijεij ≤ aijkl(x)εijεkl ≤ c1εijεij (11.10)

for almost every x ∈ Ω. Here E
3
s stands for the space of symmetric 3 × 3 matrices,

whilst n = (ni) denotes the outward unit normal to Γ. Obviously, the functions g
and f are prescribed. Our assumptions allow for the body to be made of anisotropic
material. Let w = (wi) denote displacement field of the rigid foundation. We set

[[u]] = u − w . (11.11)

The jump [[u]] and the adhesion intensity β are not independent since they satisfy

0 ≤ β ≤ 1 , β[[u]] = 0 , [[u]] · n ≤ 0 on Γc . (11.12)
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The condition (11.12) implies that for [[u]] 6= 0 there is no interaction between the
structure and the foundation, i.e., β = 0.

It is natural to introduce the following nonconvex set of constraints

K = {(γ,v) | 0 ≤ γ ≤ 1 , γv = 0 , v · n = 0 on Γc} . (11.13)

From now on we set w = 0. By IK we denote the indicator function of the set K, cf.
[?]

IK(γ,v) =

{
0 if (γ,v) ∈ K ,
+∞ otherwise .

(11.14)

Many possibilities are offered to model the contact with adhesion between Ω and the
foundation. Consider now some physical motivated cases:

(i) the adhesion is described by using the generalized potential ϕ(β,u); for instance

ϕ(β,u) =

∫

Γc

(
k

2
|u|2 − wβ

)

dΓ + IK(β,u) , (11.15)

where k is a nonnegative constant and w stands for Dupré’s energy, introduced
earlier.

In general, adhesion action on Γc consists of the interior force F with the di-
mension of a surface work and the external force A. For instance, A may be
the electrostatic force modifying the contact. In the case of the contact bone–
prosthesis A may model the forces existing in a thin membrane, which develop
between the bone and the prosthesis, cf. [?].

Anyway, we have
F = A (11.16)

In many practical situations A disappears. It is natural to split F into reversible
Fe and irreversible part Fi (on Γc). We have

(Fe,R) ∈ ∂ϕ(β,u) , (11.17)

where ∂ϕ denotes the local subdifferential of the the potential ϕ, cf. [49, 50].
We observe that IK is not a convex function. Consequently, in the constitutive
relationship (11.17) ∂ϕ cannot be the usual subdifferential, cf. [?]. Alternatively,
∂ϕ can be interpreted as Clarke’s subdifferential [?]. The last notion was not
employed by [49, 50].

To describe the irreversible part Fi of F , we introduce a convex, positive func-
tional Φ of β̇ = dβ/dt, such that Φ(0) = 0. Then

Fi ∈ ∂Φ(β̇) , (11.18)
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where ∂Φ denotes the subdifferential of Φ. We recall that

∂Φ(β̇) = {G |Φ(γ) − Φ(β̇) ≥
∫

Γc

G(γ − β̇) dΓ for everyγ} . (11.19)

For instance, a nonlinear viscous potential of Norton–Hoff type is given by

Φ(β̇) =

∫

Γc

1

p

[

(ω ∗ β̇)β̇
]p/2

dΓ =
1

p

(

〈ω ∗ β̇, β̇〉
)p/2

. (11.20)

Here ∗ denotes the convolution product and ω is a C∞-function, which is positive,
and p > 1. For p = 2 we have

Φ(β̇) =
1

2
〈ω ∗ β̇, β̇〉 =

1

2

∫

Γc

(ω ∗ β̇)β̇ dΓ , (11.21)

and

Fi = ω ∗ β̇ =

∫

Γc

ω(x − y)β̇(y) dy . (11.22)

Introducing the energy release rate denoted by H in [49, 51, 50], one can consider
all possible situation occurring during contact, i.e., the total adhesion (u = 0,
β = 1, on Γc), partial adhesion (u = 0, 0 < β < 1), contact without adhesion
(u = 0, β = 0), and lack of adhesion (u 6= 0, β = 0).

We omit the details. It is worth noting, however, that for u 6= 0 and β = 0 we
have

Rn + kun ≤ 0 , (Rn + kun)un = 0 , RT + kuT = 0 , on Γc (11.23)

where Rn = Rini, un = uini, RT = R − Rnn, uT = u − unn. If Fi is given
by (11.22), then Fi(x) does not necessarily vanishes even for x belonging to the
decohesion zone.

(ii) Consider now the contact with adhesion and friction. The potential (11.15) is
replaced by

ϕ(β,u, u̇T ) =

∫

Γc

(
k

2
u2

n − wβ

)

dΓ +

∫

Γc

D (Rn,−u̇T ) dΓ + IK(β,u) . (11.24)

Here D denotes the friction dissipation density, cf. [?]. It may be assumed that
D depends additionally on β. The function D(Rn, ·) is assumed to be convex,
thus D is subdifferentiable in the second argument. We recall that D(Rn, ·) is
finite and lower semicontionuous. The reaction R is written as follows

R = Rn + RT = Rnn + RT .
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Instead of the relationship (11.17) we have

(Fe,Rn,RT ) ∈ ∂ϕ1(β,u, u̇T ) . (11.25)

Now the condition (11.23)3 is to be replaced by

RT ∈ ∂2D(Rn,−u̇T ) , (11.26)

and expresses the friction law. Here ∂2D(Rn,−u̇T ) stands for the partial subdif-
ferential with respect to the second argument. In the case of Coulomb’s friction
we have

RT = −λu̇T , λ0 ≥ 0 . (11.27)

(iii) Consider now the viscous behaviour with impossible bond restitution. Let M
−(Γc)

be the set of negative measures on Γc. The function β can be discontinuous. The
space of functions with bounded variation constitutes a proper mathematical
framework for β, cf. [?, ?]. We introduce the following potential for F i:

Φ1(β̇) =
1

2
〈ω ∗ β̇, β̇〉 + I

M
−(β̇) , (11.28)

where

I
M

−(β̇) =

{
0 if β̇ ∈ M

− ,
+∞ otherwise .

(11.29)

Denote by O the interior of the support of β̇, then

Fi(x) = (ω ∗ β̇)(x) , ifx ∈ O , (11.30)

Fi(x) ≥ (ω ∗ β̇)(x) , ifx /∈ O . (11.31)

Also in this case one can consider the unilateral frictionless contact or unilateral
contact with friction. In the former case ϕ is given by (11.15) whilst in the latter
the constitutive modelling involves ϕ1 given by (11.17).

(iv) One can envisage much more complicated contact modelling involving adhesion
and friction. For instance, it is possible to develop a first gradient theory involving
∇β, cf. [51]. The reversible part Fe of F may be modelled by a non-quadratic,
or even non-convex expression instead of 1

2
k|u|2. Having in mind cementless

prostheses, their coated parts can be modelled by using fractals. It would also be
interesting and very useful to include influence of wear debris on loss of adhesion,
cf. [?].

(v) Consider now the contact of two deformable bodies, cf. Fig. 11.2. Γc is now the
surface of potential contact. Now [[u]] = u(1) −u(2), R = R(1) = −R(2). The unit
normal vector n is taken as exterior to Ω1.
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Figure 11.2: Two deformable bodies in contact

The set K of constraints is to be replaced by

K1 =
{
(γ, [[u]]), [[u]] = u(1) − u(2) | 0 ≤ γ ≤ 1 , γ[[u]] = 0 , [[u]] ≤ 0 on Γc

}
,

(11.32)
In the formulae (11.15), (11.17), (11.24), (11.25) u is to be replaced by [[u]] whilst
in (11.23) un, uT by [[un]], [[uT ]], respectively. The friction law takes the form

RT ∈ ∂2(Rn, [[u̇T ]]) . (11.33)

11.2.2 Formulation of the initial–boundary value problem
with adhesion

Let consider the situation depicted in Fig. 11.2. Both solids are assumed to be made
of linear elastic, anisotropic and nonhomogeneous materials. The system of equations
(11.4)–(11.7) is to be replaced by

σ
(α)
ij,j + f

(α)
i = 0 in Ω(α) , (11.34)

u(α) = 0 on Γ
(α)
0 , (11.35)

σ
(α)
ij n

(α)
j = g

(α)
i on Γ

(α)
1 , (11.36)

σ
(1)
ij n

(1)
j = −σ(2)

ij n
(2)
j = Ri on Γc , (11.37)

σ
(α)
ij = a

(α)
ijkleij(u

(α)) , (11.38)

where α = 1, 2. All the quantities appearing in Eqs. (11.34)–(11.38) depend on spatial
variables and time t ∈ [0, T ]. Here and below there is no summation over α. The initial

80



conditions are specified by

β(0,x) = β0(x) , x ∈ Γc , (11.39)

u(α)(0,x(α)) = u(α)β0(x
(α)) , x(α) ∈ Ω(α) . (11.40)

We assume that adhesion is modelled by the functional (11.20) and

ϕ(β, [[u]]) = −
∫

Γc

wβ dΓ + IK1
(β, [[u]]) , (11.41)

where K1 is defined by (11.32). The presence of the indicator function IK1
makes the

functional ϕ nondifferentiable. Having in mind approximate solutions we regularize it
as follows, cf. [52].

ϕ2(β, [[u]]) = −
∫

Γc

w

[

β dΓ +
1

4ε

∫

Γc

2β2 |[[u]]|2 +
∣
∣(β − 1)+

∣
∣
4
+
∣
∣β−
∣
∣
4
+ 2

∣
∣[[un]]+

∣
∣
2
]

dΓ ,

(11.42)
where ε > 0 and a+ stands for the positive part of a whilst a− for the negative part;
similarly [[un]]+ = [[un]]+n.

We set

a(α)(u(α),v(α)) =

∫

Ωα

a
(α)
ijkl(x)eij(u

(α))ekl(v
(α)) dΩα , (11.43)

l(α)(v(α)) =

∫

Ωα

f
(α)
i · v(α)

i dΩα +

∫

Γα
1

g
(α)
i v

(α)
i dΓ . (11.44)

The approximate problem reads: find u(α) (α = 1, 2) vanishing on Γ
(α)
0 and βε such

that

a(1)(u(1),v(1)) + a(2)(u(2),v(2)) +
1

ε

∫

Γc

(
β2[[u]] + [[un]]+

)
· [[v]] dΓ = l(1)(v(1)) + l(2)(v(2)) ,

(11.45)

for each v(α) vanishing on Γ
(α)
0 , and

(

〈ω ∗ β̇, β̇〉
)p/2−1

ω ∗ β̇ = w + A
1

ε

[

β |[[u]]|2 +
∣
∣(β − 1)+

∣
∣3 −

∣
∣β−
∣
∣3
]

on Γc , (11.46)

β(0,x) = β0(x) on Γc

u(α)(0,x) = u
(α)
0 (x) , x ∈ Ωα .

(11.47)

Obviously, both β and u(α) depend on ε. We observe that the quantity

−
{

1

ε
β2[[u]] +

1

ε
[[un]]+

}
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is an approximation of R whilst

−
{

w − 1

ε

[

β |[[u]]|2 +
∣
∣(β − 1)+

∣
∣
3 −

∣
∣β−
∣
∣
3
]}

is an approximation of Fi. It is also wort noting, that precise formulation of the exact
problem involves the notion of hemivariational inequality, which here we want to avoid.
Remark 7.1. To solve approximately adhesion problem with friction one has to regu-
larize the functional of the total friction dissipation defined by

J(Rn, [[u̇T ]]) =

∫

Γc

D(Rn, [[u̇T ]]) dΓ .

This fact is well known in the numerical study of contact problems with friction, cf.
[?].
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Chapter 12

Constitutive contact models

12.1 Frictional contact model

First we will consider the frictional contact model. The contact conditions are consid-
ered using master/slave approach.

A gap/penetration function g is defined for each point xs belonging to a slave surface
as

g = (xs − x̄m) · n (12.1)

where x̄m is the closest point projection of the slave node on the master surface and
n is the unit normal vector, normal to the master surface defined at the point x̄m and
directed outwards. The contact force p at the node xs is decomposed into the normal
and tangential components, pn and pT , respectively

p = pn + pT = pnn + pT (12.2)

The gap/penetration g and normal contact force pn are related by the following Kuhn–
Tucker conditions

g ≥ 0 , pn ≤ 0 , gpn = 0 (12.3)

which represent the constraints for the contact in normal direction.
Tangential contact due to friction is described in turn by a similar set of stick/slip

conditions
λ ≥ 0 , φ ≤ 0 , λφ = 0 (12.4)

where φ is the slip criterion and λ is defined by the non-associated slip rule

u̇T = −λ pT

‖pT ‖
(12.5)

where u̇T is the relative tangential velocity at the contact point. For the Coulomb
friction law the slip criterion takes the following form

φ = ‖pT‖ − µ|pn| (12.6)
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Figure 12.1: Friction force vs. relative tangential displacement a) Coulomb law, b)
regularized Coulomb law

where µ is the Coulomb friction coefficient.
Our numerical implementation is based on the regularization of contact constraints

using the penalty method. The normal impenetrability condition is enforced by

pn = −kng
− (12.7)

where kn is the normal penalty and g− denotes the negative part of g. The regular-
ization of frictional constraints is carried out by introducing the tangential penalty kT

into the slip rule (12.5)

u̇T + λ
pT

‖pT‖
=

1

kT

LvpT (12.8)

where LvpT is the Lie derivative of pT . The regularization becomes exact when kn → ∞
and kT → ∞, in the explicit dynamic formulation, however, high values of penalty
would limit critical time step. To avoid this the values of penalty are taken as a certain
fraction of values allowed for the critical time step evaluated for the sheet elements.

The relationships between the friction force ‖FT‖ and the relative tangential dis-
placement urT for the classical and regularized Coulomb models (for a constant normal
force Fn) are shown in Fig. 12.1a and b. The non-regularized relationship would
produce non physical oscillations of the friction force in the numerical solution due
to possible changes of the direction of sliding velocity. The regularization procedure
prevents this non-physical behaviour.
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12.2 Constitutive models of contact with cohesion

12.2.1 Elastic perfectly brittle model

The elastic perfectly brittle contact model is characterized by linear elastic behaviour
when cohesive bonds are active. An instantaneous breakage of these bonds occurs when
the interface strength is exceeded. When two particles are bonded the contact forces
in both normal and tangential directions are calculated from the linear constitutive
relationships:

σ = knun , (12.9)

τ = kt ut , (12.10)

where σ and τ are the normal and tangential contact force, respectively, kn and kt are
the interface stiffness in the normal and tangential directions and un and ut the normal
and tangential relative displacements, respectively.

Cohesive bonds are broken instantaneously when the interface strength is exceeded
in the tangential direction by the tangential contact force or in the normal direction
by the tensile contact force. The failure (decohesion) criterion is written (for 2D) as:

σ ≤ Rn , (12.11)

|τ | ≤ Rt , (12.12)

where Rn and Rt are the interface strengths in the normal and tangential directions,
respectively.

In the absence of cohesion the normal contact force can be compressive only, i.e.

σ ≤ 0 (12.13)

and the (positive) tangential contact force is given by

τ = µ|σ| (12.14)

if σ < 0 or zero otherwise. The friction force is given by Eq. (12.14) expressing the
Coulomb friction law, with µ being the Coulomb friction coefficient.

Contact laws for the normal and tangential directions for the elastic perfectly brittle
model are shown in Figs. 12.2 and 12.3, respectively. The failure surface for the elastic
perfectly brittle model defined by conditions (12.11) and (12.12) is shown in Fig. 12.4.
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Figure 12.2: Normal contact force in the elastic perfectly brittle model

ut

t

R t

Figure 12.3: Tangential contact force in the elastic perfectly brittle model (tensile
normal contact force)

Figure 12.4: Failure surface for the elastic perfectly brittle model
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12.2.2 Elasto-plastic contact model with linear softening

A contact law relates the contact force acting between two spheres to their relative dis-
placement. The model developed is based on the analogous elasto-plastic relationships
established for the normal and tangential directions:

σ = kn(un − up
n) , (12.15)

τ = kT (ut − up
T ) , (12.16)

where σ and τ are the normal and tangential contact force, respectively, kn and kT

are the interface stiffness in the normal and tangential directions, un and uT are the
normal and tangential relative displacements, and up

n and up
T are the plastic parts of

the normal and tangential relative displacements, respectively.
For combined tension and shear the following yield criterion has been adopted

F (σ, τ, α) =
√
σ2 +m2τ 2 − σY (α) = 0 , (12.17)

where σY is the yield stress for pure tension, m defines the ratio between interface
strengths in the normal and tangential directions

m =
σ0

Y

τ 0
Y

, (12.18)

and α is the softening parameter defined as follows

α =

∫ t

0

√

(u̇p
n)2 +m2(u̇p

T )2 dt . (12.19)

Yielding under the combined compression and shear is described by the Coulomb–Mohr
criterion written as

F (σ, τ, α) = |τ | + µ|σ| − τY (α) = 0 , (12.20)

where µ is the Coulomb friction coefficient and τY (α) defines the interface cohesion.
The complete yield surface defined by Eqs. (12.17) and (12.20) is shown in Fig.

12.5.
Elasto-plastic force-displacement relationships for normal and tangential directions

are shown in Figs. 12.6 and 12.7. The elasto-plastic contact laws with linear softening

σY = σ0
Y −Hnu

p
n = σ0

Y −Hnα , (12.21)

τY = τ 0
Y −HTu

p
T = τ 0

Y − HT

m
α , (12.22)

are assumed for the shear and normal tensile contact forces, Hn and HT being the
softening moduli for the tensile and shear yield stresses, respectively.

Flow rule

The plastic strain increments of relative displacements are calculated from the following
flow rules:
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• associative flow rule for the combined tension and shear

u̇p
n = γ

∂F

∂σ
, u̇p

T = γ
∂F

∂τ
, (12.23)

where F is given by Eq. (12.17)

• non-associative flow rule for the combined compression and shear

u̇p
n = γ

∂G

∂σ
, u̇p

T = γ
∂G

∂τ
, (12.24)

which with the plastic flow potential

G = |τ | . (12.25)

gives
u̇p

n = 0 , u̇p
T = γ sign(τ) . (12.26)

Figure 12.5: Yield surface for elasto-plastic model
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Figure 12.6: Elasto-plastic contact law with softening for the normal direction

Figure 12.7: Elasto-plastic contact law with softening for the tangential direction
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12.2.3 Contact model with elastic damage

The elastic perfectly brittle model can be easily extended to account for elastic damage
by assuming a softening behaviour defined by a softening modulus H introduced into
the force-displacement relationship (Fig. 12.8).

compression tension

u

s

nkn

- u n max

kn

H

kn

D

Rn

Figure 12.8: Normal contact force in the contact model with elastic damage

The constitutive relationship for 1D elastic damage is given by:

σ = kD
n un = (1 − ω)knun (12.27)

where kD
n is the elastic damaged secant modulus and ω the scalar damage variable.

The scalar damage variable ω is a measure of material damage. For the undamaged
state ω = 0 and for a damaged state 0 < ω ≤ 1. The scalar damage variable ω can be
written in the following form:

ω =
ψ(un) − 1

ψ(un)
(12.28)

where ψ(un) is a function of total relative displacement. For linear strain softening
ψ(un) is defined by

ψ(un) =







1 for un ≤ Rn

kn

k2
nun

HRn + knRn −Hknun
for

Rn

kn
≤ un ≤ Rn

kn
+
Rn

H

∞ for un ≥ Rn

kn

+
Rn

H

(12.29)

where Rn is the initial tensile strength and H is the softening modulus (taken as
positive).

A similar contact force–displacement law with damage (Fig. 12.9) can be introduced
for the tangential direction. Then the bond decohesion can occur either due to tension
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or shear. Although the interactions in the normal and tangential directions are decou-
pled, the damage of the contact interface due to action in one direction, results in the
complete breakage of the cohesive bonds in the other direction as well.

u

t

t

u t max

k t

H

k t

D

R t

Figure 12.9: Tangential contact force in the contact model with elastic damage

An optional failure criterion has been implemented with a failure criterion based on
the tensile contact force only. This criterion models better fracture of brittle materials,
as the macroscopic failure is due to brittle rupture of atomic bonds in tension. This
microscopic mechanism explains the macroscopic strain softening behaviour both under
compression and tension states.

After the contact bonds are broken due to damage (ω = 0) standard frictional
contact can occur between the spherical elements.

12.3 Mixed-mode damage model of decohesion

12.3.1 Single mode decohesion

We will rewrite the elastic damage interface model presented above following the for-
mulation presented in [53]. For pure Mode I and pure Mode II or Mode III loading
the bi-linear softening constitutive behaviour represented in Fig. 12.10 is used. A high
initial stiffness (penalty stiffness, K) is used to hold the two bonded surfaces together
in the linear elastic range. For pure Mode I, II or III loading, after the interfacial
normal or shear tractions attain their respective interlaminar tensile or shear strengths
(point 2 in Figure 2), the stiffnesses are gradually reduced to zero. The onset dis-
placements are obtained as: δo

3 = N/K, δo
2 = S/K and δo

1 = T/K, where N is the
interface tensile strength, and S and T are the interlaminar shear strengths. The area
under the traction-relative displacement curves is the respective (Mode I, II or III)
fracture toughness (GIC , GIIC and GIIIC respectively) and defines the final relative
displacements, δf

3, δ
f
2 and δf

1, corresponding to complete decohesion:
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Figure 12.10: Interface constitutive relationships for pure modes, from [53]

∫ δf
3

0

τ3 dδ3 = GIC (12.30)

∫ δf
2

0

τ2 dδ2 = GIIC (12.31)

∫ δf
1

0

τ1 dδ1 = GIIIC (12.32)

The final displacements are obtained as

δf
3 =

2GIC

N
, δf

2 =
2GIIC

S
, δf

1 =
2GIIIC

T
(12.33)

The loading conditions are formulated in terms of a state variable defined as the max-
imum relative displacement δmax:

δmax
i = max {δmax

i , |δi|} , i = 1, 2 , for Mode II or III (12.34)

δmax
3 = max {δmax

3 , δ3} , with δmax
3 ≥ 0 , for Mode II or III (12.35)

A loading function F defined as

F (|δi| − δmax
i ) =

〈|δi| − δmax
i 〉

|δi| − δmax
i

, i = 1, 2 (12.36)

for Mode II or III and

F (δ3 − δmax
3 ) =

〈δ3 − δmax
3 〉

δ3 − δmax
3

, with δmax
3 ≥ 0 (12.37)
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for Mode I is introduced. The operator 〈x〉 is defined by

〈x〉 =

{

0 ⇐ x ≤ 0

x⇐ x > 0
(12.38)

The irreversible, bi-linear, softening behaviour is defined as

τi =







Kδi ⇐ δmax
i ≤ δ0

i

(1 − di)Kδi ⇐ δ0
i < δmax

i < δf
i

0 ⇐ δmax
i ≥ δf

i

(12.39)

di =
δf
i (δmax

i − δ0
i )

δmax
i (δf

i − δ0
i )
, i = 1, 2, 3; di ∈ [0, 1] (12.40)

Non-penetration condition is imposed by the following condition:

τ3 = Kδ3 ⇐ δ3 ≤ 0 (12.41)

The properties required to define the interfacial behaviour are the penalty stiffness,
K, the corresponding fracture toughness, GIC , GIIC and GIIIC , and the corresponding
interface normal tensile or shear strengths, N , S or T , respectively.

12.3.2 Mixed mode decohesion

Under mixed-mode loading damage onset and the corresponding softening behavior
may occur before any of the traction components involved reach their respective al-
lowables. A mixed-mode criterion accounting for the effect of the interaction of the
traction components in the onset of delamination is proposed in [53]. It is assumed
that the initiation of the softening process can be predicted using the quadratic fail-
ure criterion, considering that compressive normal tractions do not affect delamination
onset (〈τ3〉

N

)2

+
(τ2
S

)2

+
(τ1
T

)2

(12.42)

The total mixed mode relative displacement δm is defined as

δm =

√

δ2
1 + δ2

2 + 〈τ3〉2 =

√

δ2
shear + 〈τ3〉2 (12.43)

where δshear represents the norm of the vector defining the tangential relative displace-
ments of the element.

Using the same penalty stiffness in Modes I, II and III, the traction before softening
is:

τi = Kδi , i = 1, 2, 3 (12.44)
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Assuming S = T the single mode relative displacements at softening onset are:

δ0
3 =

N

K
(12.45)

δ0
1 = δ0

2 = δ0
shear =

S

K
(12.46)

For an opening displacement δ3 > 0 the mode mixity β is defined as

β =
δshear

δ3
(12.47)

The mixed mode relative displacement corresponding to the onset of softening, δ0
m,

is defined by substituting and solving for δm, which gives

δ0
m =







δ0
3δ

0
1

√

1 + β2

(δ0
1)

2 + (βδ0
3)

2
⇐ δ3 > 0

δ0
shear ⇐ δ3 ≤ 0

(12.48)

The most widely used criterion to predict delamination propagation under mixed-
mode loading, the power law criterion, is established in terms of an interaction between
the energy release rates [54]:

(
GI

GIC

)α

+

(
GII

GIIC

)α

(12.49)

In order to accurately account for the variation of fracture toughness as a function
of mode ratio in epoxy composites, the mixed-mode criterion proposed by Benzeggagh
and Kenane [55] is used here (B–K criterion). This criterion is expressed as a function
of the Mode I and Mode II fracture toughness and a parameter η being a function of
different mode ratios:

GIC + (GIIC −GIC)

(
GII

GT

)η

= GC , (12.50)

with GT = GI +GII . If Mode III loading occurs the criterion is:

GIC + (GIIC −GIC)

(
Gshear

GT

)η

= GC , (12.51)

with GT = GI +Gshear.
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The energy release rates corresponding to total decohesion are obtained from:

GI =

∫ δm
3f

0

τ3 dδ3 (12.52)

GII =

∫ δm
2f

0

τ2 dδ2 (12.53)

GIII =

∫ δm
1f

0

τ1 dδ1 (12.54)

Using (12.39), (12.43) and (12.47) in equations (12.52)–(12.54) and substituting in
(12.50) or in (12.47) the criterion for total decohesion can be established in terms of
δm and η. Solving the equation for δm, the mixed-mode displacements corresponding
to total decohesion, δf

m, are obtained for the B-K criterion as:

δf
m =







2

Kδ0
m

[

GIC + (GIIC −GIC)

(
β2

1 + β2

)η]

⇐ δ3 > 0

√

(δf
1 )2 + (δf

2 )2 ⇐ δ3 ≤ 0

(12.55)

and for the power law criterion as:

δf
m =







2(1 + β2)

Kδ0
m

[(
1

GIC

)α

+

(
β2

GIIC

)α]−1/α

⇐ δ3 > 0

√

(δf
1 )2 + (δf

2 )2 ⇐ δ3 ≤ 0

(12.56)

The constitutive equation for mixed-mode loading is defined by the penalty pa-
rameter K, the damage evolution function d, the mixed-mode relative displacements
corresponding to damage initiation and total decohesion, δo

m and δf
m, respectively, as:

τs = Dsrδr (12.57)

Dsr =







δ̄srK ⇐ δmax
m ≤ δ0

m

δ̄sr

[

(1 − d)K +Kdδ̄s3
〈−δ3〉
−δ3

]

⇐ δ0
m < δmax

m < δf
m

δ̄s3δ̄3r
〈−δ3〉
−δ3

⇐ δmax
i ≥ δf

i

(12.58)

In order to define the loading and unloading conditions the state variable maximum
mixed-mode relative displacement, δmax

m , and the loading function, F , are defined as:

δmax
m = max {δmax

m , δm} (12.59)
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F (δm − δmax
m ) =

〈δm − δmax
m 〉

δm − δmax
m

(12.60)

The mixed-mode softening law can be illustrated in a single three-dimensional map
by representing Mode I on the Y − Z plane, and Shear Mode in the X − Z plane, as
shown in Fig. 12.11.

Figure 12.11: Mixed-mode softening law, from [53]
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