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Abstract. Robustness and stability of the Continuum Strong Discontinuity Approach (CSDA) 
to material failure are addressed. After identification of lack of symmetry of the finite element 
formulation and material softening in the constitutive model as possible causes of loss of 
robustness, two remedies are proposed: 1) a symmetric version of the elementary enriched 
finite element with embedded discontinuities, and 2) an implicit-explicit integration of the 
internal variable, in the constitutive model, that renders the tangent constitutive algorithmic 
operator positive definite and constant. The combination of both developments leads to finite 
element formulations with constant and non-singular tangent structural stiffness, these 
allowing dramatic improvements in terms of robustness and computational costs. After 
assessing the convergence properties of the new strategies, three-dimensional numerical 
simulations of failure problems illustrate the performance of the proposed procedures. 

 

1 INTRODUCTION  
 During the last years, the Strong Discontinuity Approach (SDA) has appeared as a 
promising tool to model material failure in quasi brittle materials [1-8]. As an specific branch, 
the Continuum Strong Discontinuity Approach (CSDA) offers some additional features 
already presented in a number of works [9-14]. In essence, they allow capturing both the 
volume and surface dissipative effects, taking place during the fracturing process, using a 
standard continuum (i.e. stress vs. strain) format for the constitutive model. Some applications 
of the CSDA to modelling fracture of concrete have been recently reported [15]. Although 
those previous works state the ability of the CSDA to deal with local material failure and 
fracture propagation, in two-dimensional and simple three-dimensional cases, its applicability 
to model the structural collapse and the ultimate loading capacity of actual three-dimensional 
structures at acceptable computational costs was still limited. The main reason for this is the 
appearance of instabilities, inherent to the numerical procedure, which translate into some 
lack of robustness of the computational tool. This demands the use of skillful solution 
procedures to trace the structural response (for instance, specific arc-length methods and 
automatic time stepping [13]), which translate into large computational costs.  



 Therefore, some new developments devoted to increase the robustness of 
computational procedures in the context of computational material failure and, in particular, 
of the CSDA seem to be lacking. This is the topic of this paper; recent developments of the 
authors in the context of the CSDA, addressed to increase the stability and robustness of the 
numerical simulations and to decrease the computational cost of material failure analyzes, are 
presented. First, in section 1.1 an overview of the foundations of the CSDA is presented. 
Then, in subsequent sections, two new developments concerning numerical aspects of that 
methodology are presented:  i) a specific implementation of a symmetric finite element with 
embedded discontinuities, and, ii) a new implicit/explicit integration algorithm for the 
constitutive model. The inclusion of both of them, results into very large improvements in 
terms of the robustness as well as of the computational costs, which, actually, open the way to 
the use of the CSDA in the material failure analysis and structural collapse modelling of 
three-dimensional structures. Finally, in the last sections of the paper, applications to 
representative examples are presented.  

1.1. Basic aspects of the continuum-strong discontinuity approach 
The CSDA is grounded on the classical continuum mechanics by generalizing the 

admissible displacement space and introducing a discontinuous field into the problem. The 
resulting kinematics, termed strong discontinuity kinematics, requires a reinterpretation of the 
constitutive model to make it capable of dealing with the unbounded strains emerging from 
those discontinuous displacement fields. In fact, from physical requirements the constitutive 
model should furnish bounded stresses even for unbounded strains. This can be achieved 
through the redefinition of only one parameter: the softening modulus, which has to be 
regularized in points where unbounded strains take place. The rest of ingredients and features 
of the continuum constitutive model remain unmodified. 

Therefore, we can synthesize the computational CSDA methodology by the following four 
points. 

1.1.1.  Strong discontinuity kinematics 

An admissible displacement field, )(xu , exhibiting displacement discontinuities can be 
described by (see Figure 1): 
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where )(xu is a smooth field and [ ][ ] )S xu (H  ( SH being the Heaviside/step function shifted to 
S ) captures the displacement jump field, [ ][ ] )xu ( , at the discontinuity interface S  of normal 
n , which divides the body Ω  into two disjoints parts, +Ω  and −Ω . The strain field that is 
kinematically compatible with the discontinuous displacement field is then: 
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For computational purposes the surface Dirac�s delta function Sδ in equation (2) is 
regularized in terms of a, very small, regularization parameter k  and a collocation function 

)(S xµ on the discontinuity interface S . Then, the regularized version of the strain field reads:  
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1.1.2. Continuum constitutive model with regularized strain softening 
The choice of the continuum (i.e. stress vs. strain) constitutive model must be done in 

accordance with the phenomenological behaviour of the material whose failure is being 
reproduced. However, there is no intrinsic limitation on the type or family of that constitutive 
model in the context of the CSDA: any non-linear (dissipative) constitutive model equipped 
with strain softening can be considered. For the sake of covering a wide range of quasi-brittle 
materials, in the remaining of this paper two families of those continuum models will be 
considered: 1) isotropic continuum damage models and 2) elasto-plastic models with strain 
softening.  The main ingredients of both models can be described as follows [16, 17]: 

 
 

 
 

   
Figure 1: Strong discontinuity kinematics. 
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 where ),( rεϕ  is the free energy depending on the strain tensor ε  (or the elastic part eε in the 
plastic model) and the internal variable r . The oϕ  term in the damage model is the elastic 

strain energy for the elastic (undamaged) material. ( ) I11C µ+⊗λ= 2e  is the elastic 
constitutive tensor, where λ and µ  are the Lame�s parameters and 1  and I  are the identity 
tensors of 2nd and 4th order, respectively. In equation (6), εσ :eC=   is the effective stress.  
Its positive counterpart is then defined as:  
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where >< iσ  stands for the positive part (Mac Auley bracket) of the i-th principal effective 
stress iσ  ( ii σσ >=< for 0σ >i  and 0σ >=< i  for 0σ <i ) and ip  stands for the i-th stress 
eigenvector. The initial elastic domain in the damage model is defined as 
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( 0=+σ ) so that damage becomes only associated to tensile stress states as it is usual for 
modelling tensile failure in quasi brittle materials like concrete. 

The actual stresses σ  and the stress-like variable q  are determined via the state 
equations (6) and (9). The last equation defines the softening law in terms of the continuum 
softening parameter 0)( ≤rH  which may be either constant or an increasing function of r ,  

uσ  and E  are, respectively, the tensile strength (yield stress) and the Young modulus. 
Finally, equation (10) is the rate constitutive law in terms of the tangent constitutive operator 

tanC , which changes for loading ( lC ) and unloading ( uC ) processes.  
The constitutive model should be adapted to return bounded stresses when the singular 

(unbounded) strain field (2) is introduced into the standard continuum context. This 
regularization is reached by a reinterpretation of the continuum softening modulus, H , in 
equation (9), which is expressed, in the distributional sense [18], in terms of a discrete 
softening modulus H , considered a material property available in terms of the mechanical 
and fracturing properties of the material  (peak stress uσ , Young modulus E , and fracture 
energy fG , see [11, 19] for additional details).  
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1.1.3. Boundary value problem in a  strong discontinuity setting 

The rate form of the B.V.P. of a solid Ω  with boundary σΓΓ=Ω∂ Uu  (where uΓ and 

σΓ  stand, respectively, for the boundaries with prescribed displacements and tractions) and 
outward normal ν , experiencing a strong discontinuity of the displacement field ),( txu  in a 
failure surface S  with normal n (see Figure 1), in the time interval of interest [ ]T,0 , can be 
written as follows: 
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where equations  (13) (a)-(d) are the classical field conditions of a medium with a continuous 
displacement field, but (possibly) exhibiting a discontinuous stress field in S/Ω , and 
equation  (13)-(e) is an additional equation, specific for the strong discontinuity problem, 
stating the continuity of the traction field across the failure interface S . 



1.1.4. Finite elements with embedded discontinuities: 
Finite elements with embedded discontinuities have become a natural numerical 

ingredient in modeling material failure [3, 20-22] and are a fundamental tool within the 
CSDA . They consist of the addition, to the standard deformation modes of the basic element, 
of enriching deformation modes incorporating discontinuous displacement fields. The 
different families of those elements developed so far could be classified into the following 
categories: 

 
•  Nodal enrichment: The enriching modes have a nodal support i.e.: the set of 

elements sharing a specific node. The ones developed up to date are based on the 
X-FEM method, which, in turn, lie on the use of the partition of unity concept [23]. 
The additional degrees of freedom are attached to those regular nodes belonging to 
any element crossed by the discontinuity. Therefore, they cannot be condensed at 
the elemental level. 

•  Elemental enrichment: The enriching modes have an elemental support. The 
additional degrees of freedom representing the elemental displacement jump are 
attached to those elements crossed by the discontinuity [24]. They can be 
condensed at the elemental level and, thus, they do not substantially contribute to 
enlarge the computational cost of the analysis. 

 
Although advantages and disadvantages in both families have been reported [13, 24], the 

condensability properties of the second one are very appealing when focusing material failure 
in large three-dimensional problems Therefore, in the remaining of this work, only finite 
elements with  elemental enrichment will be considered. 
  

2 STABILITY ISSUES 
It is a very well known fact that finite element formulations for modelling material failure 

suffer, very often, from lack of robustness [24, 25]. Even if powerful continuation methods to 
pass structural unstable points are used (i.e.: arc length methods to traverse limit and turning 
points), it is noticed that, as the material failure progresses across the solid, the condition 
number of the structural tangent stiffness matrix deteriorates, the iterative Newton-Raphson 
procedure fails and, eventually, the numerical simulation cannot be continued. In not few 
occasions, this type of difficulties in the analysis has been attributed to ill-posedness of the 
B.V.P. or lack of uniqueness of the corresponding finite element solution. However, even if 
the problem is mathematically well posed and the solution is unique, one founds eventually 
those types of difficulties; although some times they can be circumvented for very small 
(academic, two-dimensional) problems by using skilful procedures, they show up again as 
large problems, essentially in three dimensions, are tackled.  

A first consideration should be made on the source of the problem: lack of uniqueness and 
global structural instability are not the only reasons for the classical lack of robustness of 
material failure simulations. Even if those problems are solved, the ultimate reason for lack of 



robustness in finite element simulations of material failure is the appearance of negative 
eigenvalues in the algorithmic elemental stiffness matrices that propagate through the mesh 
deteriorating, after the assembling procedure, the condition number of the global algorithmic 
stiffness matrix.  

A second consideration refers to the identification of two possible reasons for the 
appearance of those negative elemental eigenvalues: the lack of symmetry of the finite 
element formulations, and the use of strain softening in the constitutive models. Although 
those reasons (and the possible remedies) can be extended to a large variety of formulations 
for material failure, in next sections they will be examined in the context of the CSDA. 

2.1 A non-symmetric finite element formulation for finite elements with embedded 
discontinuities. 
Finite element formulations for solving the weak form of the problem  (13) have been 

presented in detail elsewhere [13]. Here, let us focus our attention on the non-symmetric 
formulation whose finite dimensional space of the discretized displacements is described by:  
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where iN  are the standard interpolation function, )(eM  is the unit ramp function [26] (see 

Figure 2), )(tid  stands for displacement at the regular nodes, i , and eβ&  are the elemental 
additional degrees of freedom representing the displacement jumps at those elements, e , 
crossed by S . In equation (14) )(e

i
N +  are the shape functions related to the elemental nodes 

belonging to +Ω .  

The elemental strain rate field that is kinematically compatible with (13), can be 
written as:  
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Figure 2: Finite elements with elemental enrichment 



where )()( xeS
µ  stands for a collocation function ( 1)( =µ eS

 if )(eS∈x ; 0)( =µ eS
 otherwise), k  

is the regularization parameter considered in equation (3), and n  is the normal vector to the 
elemental failure interface )(eS , pointing to +Ω . 

In the non symmetric finite element approach, the field equations  (13) are written in 
weak form via a Petrov-Galerkin formulation, which enforces the first equations  (13)-(a) to  
(13)-(d) via a standard Galerkin procedure, whereas equation  (13)-(e) is locally enforced in 
strong form, at the center of every element. The resulting formulation can be then written as 
[13]: 
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where )(eS  stands for a measure of the elemental counterpart of the failure interface. After the 
assembling process the problem in equations (16) can be written as (see [13, 26] for more 
details):  
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where )(•A  stands for the assembling operator. The specific sub-matrices of the elemental 
tangent stiffness matrix )(eK are:     
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where alg
/ SΩC  and alg

SC  stand for the algorithmic counterparts, at the bulk S/Ω ,  and  at the 
failure interface S , respectively, emerging from the considered time integration procedure of 
the constitutive model. As the time step length tends to zero, they must converge to the 
tangent constitutive operators in equations (10). It can be noticed in equations (18) that, even 
if those constitutive operators are symmetric, the elemental stiffness )(eK  is unsymmetrical 
( Te

u
e

u )( )()(
ββ ≠ KK ; Tee )( )()(

ββββ ≠ KK excepting for the very particular case:  
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 For linear elements, this corresponds to the case of the elemental failure line/surface being 
parallel to one side/surface of the element (see Figure 3).  

 
Figure 3: Orientation of the failure interface in an enriched element  

 

2.2 Stability analysis 
On the light of the expressions of the elemental stiffness matrices in equations (18), one 

can identify two different sources of negative eigen-values in the elemental tangent 
stiffness )(eK : 

1) Even if the constitutive operators alg
/ SΩC  and alg

SC  are positive definite (as it happens in 
equation (10) for the elastic or unloading cases), still remains a reason for the eventual 
production of negative eigenvalues: the non symmetric character of the term 

)(alg
/

e
S ϕ⋅⋅ Ω ∇Cn  in equation (18)-(d). Unless the vectors n  and )(eϕ∇  are parallel (as it 

occurs in the very particular symmetric case presented in equation (19)), that term may 
contribute to produce negative eigenvalues as the angle between those vectors is large 
enough (see Figure 3). This problem has been mentioned some times in the literature 
as responsible for lack of uniqueness of the finite element solution [24] or for a bad 
tracing of the failure interface [7], but here it is analyzed from the stability and 
robustness point of view. At any case, it is clearly typical of unsymmetrical finite 
element formulations, as the one presented in section 2.1, and symmetric finite element 
formulations would totally preclude this source of instability. 

 
2) Even if the finite element formulation is symmetric, the strain softening in the 

constitutive model may be responsible for the appearance of negative eigenvalues at 
any of the constitutive operators alg

/ SΩC  or alg
SC  in equations (18) and becomes a 

possible source of negative eigenvalues in the elemental stiffness matrix. Neither 
imposition of an elastic behavior in the bulk, as it is done in many discrete 
formulations of the SDA based on using discrete traction-separation laws (equipped 
with displacement softening) at the failure interface, solves the problem. This would 
be equivalent to equate alg

/ SΩC  in equations (18) to the, positive definite, elastic 



constitutive operator eC  in equations (10), but  it still remains the term n
C

n ⋅⋅
k
S
alg

, in 

equation (18)-(d), exhibiting negative eigenvalues for loading processes  ( l
S CC =alg , in 

equations (10)) due to the negative value of the softening modulus H . On the light of 
the previous reasoning we conclude that this source of instability can be completely 
removed if the positive definite character of the algorithmic constitutive operators 

alg
/ SΩC  and alg

SC   is ensured at any point of either the bulk S/Ω  or the failure interface 
S . 

In summary, from the previous analysis it can be concluded that a symmetric formulation 
of the finite element with embedded discontinuities, combined with an integration procedure 
that renders the algorithmic tangent constitutive operator positive definite, would remove the 
identified sources of lack of robustness of the CSDA. Actions to achieve these goals are 
described in next sections.  

2.3 Symmetric (kinematically consistent) formulation. Rate approach. 
In order to render symmetric the finite element formulation presented in section 2.1, a 

complete Galerkin procedure has to be used, even to impose, in weak form, the inner traction 
continuity equation  (13)-(e). Let us consider the displacement field belonging to the finite 
dimensional space given in equation (14), and the following space for the test functions 
(virtual displacements): 
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The variational principle (Virtual work principle):  
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defines a formulation of a finite element with an embedded discontinuity that: a) belongs to 
the symmetric kinematically consistent class [24, 26], and  b)  is the weak form of the problem  
(13). The matrix form of the BVP resulting from this type of formulation is similar to the one 
in equations (17). Now, the sub-matrices of the elemental stiffness matrix )(eK read: 

[ ]

[ ]

[ ]

[ ] )(

)(

)(

)(

)()()(

)()(

)()(

)()(

alg

/
)(alg

/
)(

/
alg

/
)(

/
)(alg

/

/
alg

/

ddS
k

d

cdΝ

bdΝ

adΝΝ

eee

ee

ee

ee

S
S

S
e

S
ee

S jS
e

j
e

u

S
e

Sii
e
u

S jSiij
e
uu

∫ ⋅⋅+∫ ∇⋅⋅∇=

∫ ∇⋅⋅∇−=

∫ ∇⋅⋅∇−=

∫ ∇⋅⋅∇=

n
C

nCK

CK

CK

CK

Ω

Ω

Ω

Ω

Ω Ω

Ω Ω

Ω Ω

Ω Ω

ϕϕ

ϕ

ϕ

ββ

β

β

 (22)



Notice that the finite element formulation displayed in equations (20) to (22) fits into 
the original versions of that symmetric finite elements with embedded discontinuities in [27-
29] except for the rate format of the virtual work principle in equation (21). In fact, the 
element, as it was originally formulated in total form, fails to pass the patch test for 
elementary piecewise constant stress fields (as in elastic solutions). As a result, the enriching 
incompatible modes for a given element activate even before the material failure and this 
substantially affects the accuracy of the results at stages prior to the material failure. This 
could be the reason because this particular symmetric element has not been profusely used in 
the literature. However, the rate format presented here, combined with an appropriated time 
integration scheme, allows overcoming this problem as it is shown in next section. 

2.3.1 Time integration:  Incremental implementation. 

In the context of a quasi-static problem ruled by the time-like parameter t  during a 
discrete number of time steps, intn , of typical length t∆ : 
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the variational principle (21) can be integrated leading to the following non linear problem in 
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Substitution of the test functions of equation (14) and some additional manipulation, 
gives rise to the following set of non linear equations:     
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The specific (incremental) format of the second set of equations (25) allows bypassing 
the aforementioned problem in passing the patch test. In fact, from the expression of 

)()( xeM  in equation (14) it can be readily shown that:  
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unlike what is required for that elastic patch test criterion. However, the incremental character 
of equation (26) reveals that: 
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and, therefore, that the patch test criterion tends to be fulfilled with decreasing time steps 
( 0→∆t ). Consequently, refinement in the time-like domain leads to the fulfilment of the 
patch test in the space domain. In a subsequent manipulation, equations (25) can be modified 
as:  
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where )(e
Bt  stands for the time of the onset of the material failure at element e . This precludes 

the activation of the incompatible discontinuous modes during the elastic regime and returns 
to the element its original accuracy at stages prior to the onset of material failure. 

2.3.2 Convergence test 

Unlike the nonsymmetrical formulation in section 2.1 the symmetrical weak formulation 
does not enforce the inner traction continuity equation  (13)-(e) in strong form. However, the 
equivalence of the weak form (21) and the totality of the field equations in the B.V.P  (13) can 
be rigorously proven (see, for instance [20]). Therefore, it is expected that, in the present 
symmetric formulation, mesh refinement will determine a correct trend (convergence) to the 
fulfillment of those equations. The test in Figure 4 constitutes a simple corroboration of this 
fact, taking the linear triangle as the underlying element, and provides an assessment of the 
order of convergence of that symmetric finite element with embedded discontinuities. 

 The test consists of a homogeneous rectangular strip pulled from this right end with a 
force P , imposing a displacement ∆ , up to the formation of an inclined failure line and, then, 
continued to the total failure and release of the stresses. Due to the induced constant stress 
field, the considered bi-linear stress-strain law for the constitutive model should translate into 
a bilinear force-displacement ( ∆P − ) curve. To check the convergence to the right slope of 
the descending branch and, therefore, to he right energy dissipation Gf , a homogeneous mesh 
refinement, parameterized in terms of  the element size h , is performed.  Figure 4 (left) shows 
the results, for increasingly fine meshes, converging to the exact solution (the curve limiting 
the gray zone). The errors in the dissipated energy (fracture energy) for the different levels of 
discretization are displayed in Figure 4 (right), where the linear convergence of the element is 
observed.  

It is worth mentioning that this symmetric element, although convergent, exhibits a 
accuracy smaller than its unsymmetrical counterpart, according to the formulation in section 
2.1, for this type of homogeneous/constant stress problem. Indeed, it can be proven that, for 
this particular case, the unsymmetrical element provides the exact solution with only one 
element.   



 
Figure 4: Symmetric finite element formulation: convergence test 

 

2.4  Implicit-explicit integration scheme for the constitutive model  

2.4.1 Consistent algorithmic operator of the implicit integration procedure   

Let us focus on the damage constitutive model in the left equations (4) to (10). Implicit 
integration of the rate equations (5) and (9) leads to the following solutions, at time 1+nt , for 
the internal variables 1+nr  , 1+nq  and the stress 1+nσ  in terms of the current strains 1+nε  (see 
[19]):  
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In addition, from equation (30) it can be obtained the so-called algorithmic consistent 
tangent operator alg

1+nC  defined through: 
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which assures quadratic convergence of the iterative Newton-Raphson procedure when 
solving the resulting non-linear problem. A similar, slightly more complex, procedure can be 
performed to integrate implicitly the plasticity model in the right equations (4) to (10). After 
some algebraic operations one gets [16]:   
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The algorithmic plastic multiplier, 1+λ∆ n ,  can be solved by imposing, for loading 
cases, the yield criterion (7) (consistency) at time 1+nt : 
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Some additional manipulations lead to the algorithmic tangent operator alg
1+nC : 
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Inspection of the algorithmic constitutive operators alg
1+nC  in (31) and (34) reveals that 

(u) alg
1+nC is always positive definite, but (l) alg

1+nC  may lose the positive character as strain softening 
( )0<H  is considered. Indeed, this is the case that one faces in computational material 
failure: as it is well known, loss of strong ellipticity of the algorithm tangent operator algC  at 
increasing parts of the analyzed domain Ω , deteriorates the positive character of the structural 
tangent stiffness K of the discrete problem (24), even using the symmetric formulation, 
which, eventually, becomes singular. This translates into enormous problems of convergence 
and robustness in the resulting solving process. 

The situation can be summarized as follows: the use of classical implicit integration 
algorithms for constitutive models equipped with strain softening, results into accurate results 
even for large time steps. However, it also results into ill conditioning of the stiffness matrix 
of the resulting problem which, in turn, enforces small time steps and computationally costly 
procedures to get convergence (very often, even no convergence is obtained). In view of this 
observation, the question of the worthiness to renounce to some of the accuracy of the purely 



implicit integration procedures to benefit the robustness of the solving procedure arises. This 
motivates the implicit-explicit integration procedure presented in next section. 

2.4.2 Implicit- explicit integration. Effective algorithmic operator.  

 The procedure consists of using two integration schemes per time step: one is the 
implicit (Backward-Euler) sketched in equations (29) to (34) furnishing �implicit� values for 
the variables of the problem,  )( 1+nr ε , )( 1+nq ε , )( 11 ++ nn εσ ,  in terms of the current strains 

1+nε .  A second explicit integration is performed at the same time step, furnishing other 
�explicit� values )(~

1+nr ε , )(~
1+nq ε , )(~

11 ++ nn εσ  for the variables of the model. The variational 
problem (24) is then solved using the explicit stresses 1

~
+nσ , and the algorithmic constitutive 

operator, consistent with the integration scheme in the variational problem, is termed the 
effective algorithmic operator, )(~

11
eff

1 1 +++ +
∂= nnn n

εσεC  (to be distinguished from the one in the 

implicit integration procedure )( 11
alg

1 1 +++ +
∂= nnn n

εσεC ).  Some interesting properties of the 
effective operator are displayed next for the continuum damage and the elasto-plastic models. 

a) Isotropic Continuum Damage model.  

 According to the evolution equations (5) and (8) ( 0≥= λ&&r ) the strain like variable r  
is a non-decreasing function of the pseudo-time t  (see Figure 5). This makes it quite suitable 
for extrapolations at relatively low error. Let us, then, consider the following linear explicit 
extrapolation of  that variable at time step 1+nt  in terms of the implicitly computed values of 
that variables at times nt and 1−nt . 
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which can be considered a first order approximation of the Taylor´s expansion of 1+nr  around 
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Two considerations emerge from equations (35)  and (36): 
− 1

~
+nr  constitutes a prediction for the value of the internal value at time step 1+n  that 

can be computed at the end of the time  step n  and, thus, is independent of the value of 
the current strains 1+nε . 

− Indeed, there is an additional error introduced by computing the stresses at time step 
1+n  in terms of the value 1

~
+nr  instead of the implicit value 1+nr . However, this error 



can be reduced (or controlled) either by decreasing the time step length or by 
increasing the order of the extrapolation procedure. 

  

 
Figure 5: Implicit/explicit integration algorithm. Left: extrapolation of the strain-like 
internal variable. Right: prediction/correction phases of the implicit-explicit integration 
procedure. 
 

Once 1
~

+nr  is known, from equation (35), the stresses at the current time 1+nt  can be 
computed using equations (6) and  (9) as: 
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where it should be noticed that neither 1
~

+nq  nor 1
~

+nr  depend on the current strains 1+nε  and, 
therefore, the algorithmic stresses 1

~
+nσ  only depend, linearly, on the strains. Thus, the 

algorithmic tangent operator emerging from the above implicit-explicit integration procedure 
(from now on termed the effective algorithmic operator) reads: 
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which is constant during the time step 1+n . In addition, due to the positive character of 1

~
+nq , 

1
~

+nr  and eC ,  one can conclude that  eff
1+nC  is always  positive definite. 



b) Elasto-plastic material model.  
Similarly, for the elasto-plastic rate independent model in equations (4)-(10), 

extrapolation of the strain-like internal variable 1+nr  reads: 
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where nλ∆ is the implicitly integrated value of the plastic multiplier at time step n . Then, 
from equation (9): 
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Once the predictions 1
~

+λ∆ n  and 1
~

+nq  are available, the stress field can be computed 
from equation (33) as:  
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where nσ is the implicit stress at time step n . The corresponding effective algorithmic tensor 
reads : 
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It should be noticed that, for the thermodynamically consistent plasticity models, the 
tensor 1+nA  in equations (33) and (42) is positive definite (as part of the requirements for 
convexity of the yield (or the potential) surface ),( qg σ  in equation (7), in the generalized 
stress ( { } Tq,σΣ ≡ ) space [16]. In addition, as a requirement for the dimensional consistency 
of )(Σg , the yield function must be an homogeneous, of a certain order, function of Σ  which, 
with a simple algebraic treatment, can be appropriately reduced to one of  second order. In 
summary: 1+nA  in equation (43) can be always made constant and positive definite and, 
therefore, so is the effective algorithmic tensor eff

1+nC . 

2.4.3 Remarks on the implicit/explicit integration scheme 

The following aspects should be noticed about the proposed implicit/explicit integration 
scheme in equations (35) to (43): 



 
1. Since the extrapolated values, 1

~
+nr , are obtained in terms of the implicitly integrated 

values, nr  and 1−nr , one can expect that the well-known stability properties of the 
implicit integration procedures are being inherited by their explicit extrapolations (35) 
and (40). In other words, the integration errors will not amplify even for relative large 
time steps, unlike it typically happens for purely explicit schemes. 

 
2. The ability of the constitutive model to reproduce material instability and failure, via 

the loss of the positive character of the tangent constitutive operator, still holds. The 
implicit/explicit integration procedure is, in fact, an algorithmically stable (robust) 
integration procedure to approach the instable response of the material and of the 
constitutive model. This fact is emphasized in Figure 5 (right) where the 
implicit/explicit integration of the constitutive model can be understood as composed 
of a prediction stage, at the end of time step n , followed by a linear correction, 
characterized by  the constant and positive definite operator eff

n 1+C , during time step 
1+n . 

 
3. The algorithmic tangent constitutive operator, alg

1+nC  in equations (31) and (34), 
consistent with the implicit integration scheme can be still calculated at every time 
step and its spectral properties used to determine the onset of local material failure and 
the directions of propagation of material failure.  

 
4. The constant and positive definite character of the effective algorithmic operator eff

1+nC  
in equations (39) and (43), will now have the following effects on the iterative 
procedure for solving the non-linear problem:  

 
− The stiffness matrix of the problem will always be semi-positive definite. No 

singularities, due to the constitutive behavior, should then be expected at any 
time.  

− Still structural instabilities, at limit points, turning points or bifurcation points 
can appear, and they should be faced with standard tools (arc-length, 
continuation methods etc.). Anyway, the robustness of the analysis should be 
dramatically increased. 

− Since the structural tangent stiffness matrix is now constant and well 
conditioned, the Newton-Raphson procedure, applied to equations (28), should 
converge in just one iteration per time step.  

 
5. In compensation, smaller accuracies for relatively large time steps, in comparison with 

the ones obtained with the purely implicit integration procedure, should be expected. 
Consequently, the time advancing procedure should be combined with a procedure for 
controlling the integration errors in equations (36) and (40). 



 

3 REPRESENTATIVE NUMERICAL SIMULATIONS 

3.1  Tests on the convergence of the implicit/explicit integration  
The goal of these tests is to evaluate and compare the accuracy, and the required 
computational cost, when using either the implicit or the implicit/explicit integration scheme. 
Comparisons are done using a number of structural failure tests, considering both plasticity 
and continuum damage material models, either in 2D or 3D problems. The accuracy of the 
implicit/explicit scheme is evaluated by comparing the solutions, obtained using constant step 
lengths, without any control of the integration error, with those obtained with the purely 
implicit integration procedure.  

3.1.1 Continuum damage model: Four-point bending test on a concrete specimen  
The four-point bending test is a well-known problem that has widely been used in the 
literature as a numerical benchmark. Here, the experiment reported by Arrea et al. [30] is 
simulated as a 2D problem assuming plane stress conditions. The structure is a notched 
concrete beam subjected to the load system described in Figure 6.  The geometry and material 
data are also displayed there. The finite element mesh has approximately 1900 triangular 
elements.  
 

 

Figure 6: Four-point bending test 
 
The material has been modelled using the constitutive damage model in equations (4)-

(10) and its parameters are defined in Figure 6. The experimental solution shows a curved 
crack, propagating from the notch tip toward the load point D. 

In Figure 6 (right) the load versus crack mouth sliding displacement (CMSD) curves, 
obtained with the implicit integration procedure and three different time step lengths for the 
implicit/explicit one, are displayed. The last three cases were obtained by imposing an 



incremental CMSD of values yu∆4 , yu∆2  and yu∆ , respectively, whereas the implicit 
solution was obtained with an automatic time step procedure (shortening the time step as the 
convergence is not achieved in a given number of iterations)  imposing the initial value yu∆ .  

Table I: Four Point bending test. Comparative computational costs using the 
implicit/explicit and the purely implicit integration schemes 

 
Table I compares the computational times in all cases. We note that, as expected, the 

implicit/explicit scheme only requires one iteration per step. From Figure 6, we also observe a 
clear convergence, by reducing the time step length, of the implicit/explicit solutions to the 
purely implicit one. In particular, for the case that the incremental step is fixed to yu∆ , the 
implicit/explicit integration renders a solution indistinguishable from the implicit one, 
whereas the required computational cost is five times smaller. 

3.1.2 Elasto-plastic model: slope instability problem. 
The slope instability problem taken from [31] is analyzed in this test, by using the elasto-

plastic material model in equations (4)-(10). A vertical load is applied to a rigid foot staying 
on the top of an embankment, as shown in Figure 7. The geotechnical structure is assumed to 
respond as a J2 plasticity material model whose parameters are: Young�s modulus, 

MPaE 10= , Poisson�s ratio, 4.0=ν , uniaxial peak stress, MPau 1.0=σ , initial continuum 
softening modulus MPaH 2.0−=  and intrinsic softening modulus: 133.0 −⋅−= mMPaH . The 
geometrical data and boundary conditions of the problem are shown in Figure 7. Plane strain 
conditions are assumed.  

The standard underlying elements are quadrilaterals, enriched with a B-bar technology to 
account for the locking effects in J2 plasticity models [16]. The finite element mesh is made 
of approximately 400 of those finite elements, enriched with embedded discontinuities and the 
symmetric formulation described in section 2.3. 

Results in all cases have been obtained by controlling the downward displacement 
component in the rigid foot middle point. Figure 7 plots the loads vs. vertical displacement 
curves obtained with the implicit/explicit integration procedure and four different 



incrementally imposed displacements of values yu∆8 , yu∆4 , yu∆2  and yu∆ . These solutions 
are compared with the ones obtained with the purely implicit integration procedure (which are 
indistinguishable in the plots for the different considered time step lengths). Again, we can 
observe the clear convergence of the results from the implicit/explicit integration procedure to 
the ones obtained with the implicit integration.  

 

 

Figure 7:  Slope instability problem 
 
The accuracy and robustness exhibited by the implicit integration method in this 

example (no step shortening was necessary in any case) would not make crucial the use of the 
implicit/explicit integration method. However, as it is shown in Table II, the implicit/explicit 
methods leads, for the same time step length, to substantial reductions in the required CPU 
time (at the cost of a reduction in the accuracy for large time steps).  
 

 
Table II: Slope instability problem. Comparative computational cost 
using the implicit/explicit and the purely implicit integrations. 



3.1.3 Continuum damage model: 3D double-notched beam test. 
  The double-notched concrete beam experiment reported in [32] is also a well-known 
problem in concrete fracture mechanics simulation. The test, which consists of a concrete 
beam with two symmetric notches loaded as shown in Figure 8, has been widely simulated as 
a 2D problem (in plane-stress conditions). However, in the present simulation the 3D 
modelling, a much more challenging problem, in terms of robustness, is considered. Two 
cracks propagate across the beam, from the notch roots toward the loading points, but only 
one of them remains in a loading state (active) after the structural peak load. 

 

Figure 8: 3D double-notched concrete beam test 
 
The solutions in Figure 8, in terms of the load F  versus CMOD curves, have been 

obtained using the implicit/explicit integration algorithm, and the symmetrical finite element 
formulation, in a mesh of 2967 tetrahedra. The load control method consists of imposing a 
given arc-length of sizes s∆ , s∆2 , s∆4  and s∆8  in each case. With this type of control, 
convergence of the purely implicit integration procedure fails in all the cases, even using 
automatic reductions of the time step, before reaching the end of the analysis. This is an 
example, also observed by the authors in many other cases, of the loss of robustness of the 3D 
simulations, based on implicit integrations, as compared with the corresponding 2D 
simulations. On the contrary, for the implicit/explicit procedure, stable analysis, showing a 
clear convergence with shortening of the incremental displacement control, can be done at no 
difficulty. 

Implicit/explicit Steps CPU time [sec] 
s∆8  450 764 
s∆4  900 1577 
s∆2  1800 2943 

s∆  3600 5302 
Implicit Not converged 

Table III: 3D double-notched beam test. Computational cost using the 
implicit/explicit integration algorithm. (2967 tetrahedra, 2580 d.o.f.) 



 
a) 

 

b)   

c) 

 

d) 

 

e) 

 
Figure 9: 3D double-notched beam: a) numerically obtained failure surfaces (cracks), b) 
amplified deformation mode and crack patterns, c), d) and e) evolution, along time, of 
damage at the cracking surfaces. 

 
Figure 9 shows the crack pattern provided by the simulation, exhibiting the two 

experimentally observed cracks, and the evolution of the cracking across the detected failure 
surfaces. There, it can also be observed as the crack generated at the upper notch arrests, 
whereas the other crack progresses determining the final failure mode. 

3.2 Additional representative 3D simulations  
In order to illustrate the potential of the CSDA in modelling realistic structural failure 

mechanisms, applications of the preceding methodology to several three dimensional failure 
problems are presented next. Both continuum constitutive models of section 1.1 (continuum 
damage and elasto-plasticity) are considered to represent failure. In all the cases, the 
symmetric finite element with elemental enrichment of section 2.3 and the implicit/explicit 
integration method of section 2.4 have been used. 

3.2.1  Brazilian test 
The splitting test in a cylindrical specimen (Brazilian test, see [33]), compressed along 

two diametrically-opposed lines, as shown in Figure 10, is modelled using the continuum 
damage model. The expected failure surface is a diametric vertical crack plane containing the 
two load lines. Figure 10 (right) shows the load vs. transversal deformation curve, scaled in 
terms of the peak load (Pmax). The load decreases after the peak (up to approximately 80% of 
Pmax), due to the complete propagation of the primary crack system,  which compares well 
with the experimental results in [33]. The analysis was stopped at the subsequent raising 



branch as the two split halves start resisting in compression.  
  

 
Figure 10: Splitting test in a cylindrical specimen: material data and load vs. transversal 
deformation curve. 

Also in the curve in Figure 10 (right) the propagation of the cracking during the load 
process is displayed. This exemplifies the potential of three-dimensional simulations, as the 
one presented here, as providers of unusual and useful information about the failure 
propagation mechanisms (from the exterior to the interior and from the centre to the loading 
lines as it is shown in the figure). 

Figure 11 shows the considered finite element mesh of tetrahedra, and the 
(exaggerated) deformed shape of the specimen at the end of the analysis.  

 

 

Figure 11: Splitting test: Finite element mesh, deformed mesh and displacement contours. 
 

3.2.2 Pull out of a bar anchored to a concrete specimen 
The extraction of a steel rod (assumed elastic) anchored to a cylindrical mass of 

concrete, is modeled. The reference experimental test is that presented in [34, 35]. Numerical 
results of a similar test have previously been presented using a 2D model with the axial-
symmetric assumption ([36]). Here a complete 3D analysis is performed.  



 

 
Figure 12: Pull out of a bar anchored to a concrete specimen: Left) problem description, 
Right) Load vs. displacement curve 
 
 

 

 

Figure 13: Pull out of a bar anchored to a concrete specimen: a) finite element mesh, b) and 
c) numerically obtained failure (cracking) surface d) external view of the (amplified) 
deformation pattern showing the localized elements, e) internal view (cross section) of the 
deformation pattern together with the contours of the displacement field. 
 

The material properties of the damage model relative to the concrete bulk, are 
MPa.29000=Ε ;  MPau 1.3=σ ; 2.0=v  and mNG f /150= . The dimensions of the 

specimen are shown in Figure 12  together with the obtained load versus displacement curves. 

a)

d) 

c)

e)

b) 



The tetrahedral finite element mesh and the typical conical failure surface obtained from the 
numerical simulations are presented in Figure 13 

3.2.3 Collapse analysis of a concrete dam 
The structural collapse of a gravity-arch concrete dam is modelled. The geometry of 

the concrete dam has been taken from [37]. The analysis is done on the solid-foundation 
domain shown in Figure 14, where a reduced part of the foundation (rock) is considered. The 
material properties for the concrete correspond to an artificially made brittle material, in order 
to induce a clear failure mode that tests the ability of the CSDA to reproduce it. Both, the 
concrete dam and the rock foundation, have been modeled by the damage model in equations 
(4) to (10) but now considering a limited strength in both tension and compression regimes. 
The material properties are displayed in Table IV.  

The final goal of the analysis is to reproduce the structural collapse mode and to 
determine the theoretical safety factor in front of the classical load action on the dam: the 
hydrostatic loading acting on the up-stream face. Therefore, the typical triangular pressure 
distribution has been affected by a load factor evolving along the pseudo-time (here the 
central lateral displacement at the crest). Lateral surfaces, marked as E1 and E2 in Figure 14-
a)-b), and the bottom of the foundation, are assumed clamped. A global tracking procedure, 
allowing for multiples failure surfaces has been considered [12]. 
 

 CONCRETE ROCK FOUNDATION 

Elastic Modulus 20000 MPa 15000 MPa 
Mass density 2300 kg/m3 - 
Poisson Coefficient 0.2 0.2 
Compressive Strength 11.6 MPa 10.0 MPa 
Tensile Strength 1.0 MPa 1.0 MPa 
Fracture Energy 100 N/m 100 N/m 
Table IV: Dam analysis: Mechanical parameters of concrete and rock 

  
Figure 14-c) shows the load factor vs. the horizontal displacement at the crest (point P in 
Figure 14-a)). The peak load determines the safety factor (here around 3.0) and the final 
failure mode displays the formation of three large vertical cracks at points A, B and C of the 
loading process. 



 
Figure 14: Collapse analysis of a concrete dam. a) finite element mesh  b) final deformed 
(amplified) mesh showing the collapse mode; c) load factor vs. horizontal displacement at 
point P. 

3.2.4 Landslide simulation 
 The problem of a landslide modelling through the CSDA is considered here. A soft 
layer of soil is assumed to rest on the hard bedrock and its collapse, under increasing values of 
the soil density, through formation of a slip surface, is simulated by considering a J2 plasticity 
model. The geometry and material data are shown in Figure 15. In order to overcome the 
stress-locking problems associated to J2 plasticity models, the basic element is the 
hexahedron modified according to the B-bar formulation [16]. 
 

 
Figure 15: Landslide: Load factor versus vertical displacement and discontinuity surface 
propagation. 
 



The obtained, three-dimensional, collapse mode is presented in Figure 16. There can 
be checked that the typical slip surface, observed in landslides (pure slip mode), is 
appropriately reproduced by the CSDA. 

Figure 16: Landslide: a) finite element mesh b) deformed (amplified) finite element mesh 
showing the obtained collapse mode; c) external view of the detected (slip) failure surface d) 
internal view (cross section) of the deformation pattern and contours of the displacement field

 
In Figure 15 (right), additional details of the simulation are presented. The load factor vs. 

displacement curve is plotted together with the corresponding evolution, at different points of 
the loading process, of the material failure at the slip surface. 

3.3 Computational costs of 3D simulations using the CSDA  
For the simulations presented in the preceding sections Table V displays the computational 
costs based on a single Pentium® 4 processor, at 3.2 GHz, and 1Gb. of RAM memory. As it 
can be observed there, the computational costs, for the different simulations, are very 
affordable and range from less then one hour to a maximum of about three hours of CPU. 
 

Section (problem)  Number of 
DOF 

Number of 
elements 

Number of 
time steps 

CPU time
[seconds] 

3.2.1 

 

9771 16751 
 (tetrahedra) 236 11012 

3.2.2 
 

11505 18872 
(tetrahedra) 89 7154 

3.2.3 
 

15639 24481 
(tetrahedra) 118 11082 

3.2.4 
 

12264 3354 
(hexahedra) 90 2016 

Table V: Computational cost of the 3D simulations 



4 CONCLUDING REMARKS 
Throughout the preceding sections, some fundamental issues about the robustness and 

stability of the Continuum Strong Discontinuity Approach (CSDA) to material failure have 
been addressed. After identification of lack of symmetry of the finite element formulation, 
and the material softening in the constitutive model, as possible causes of loss of robustness, 
two remedies have been proposed. The first one is the use of a symmetric version of the 
(variationally consistent and elementary enriched) finite element with embedded 
discontinuities. The incremental format of the proposed implementation allows overcoming 
the classical failure in passing the patch test of this family of elements. On the other hand, 
from the authors� experience, this results into a larger robustness of the finite element 
simulations. However, this seems not to be enough for large-scale (three-dimensional) 
computations. The second proposed ingredient is an implicit-explicit integration procedure of 
the continuum constitutive model that results into the so-called effective algorithmic operator, 
as the corresponding tangent constitutive operator, which is constant and positive definite. 
The use of these procedures guaranties the positive definite character and the constancy of the 
algorithmic stiffness of the problem during any time step, and results into a substantial 
increase of the robustness of the simulation, as well as into a dramatic reduction on the 
required computational time. In compensation, some reduction on the accuracy can be 
expected but convergence to the exact solution is assessed. As it is shown in the presented 
examples, the proposed methodology allows tackling three-dimensional simulations of 
material failure in small computers in very affordable times.  
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