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Abstract

We present a Chimera method for the numerical solution of incompressible flows past objects in relative motion. The

Chimera method is implemented as an iteration-by-subdomain method based on Dirichlet/Neumann(Robin) coupling.

The DD method we propose is not only geometric but also algorithmic, for the solution on each subdomain is obtained

on separate processes and the exchange of information between the subdomains is carried out by a master code. This

strategy is very flexible as it requires almost no modification to the original numerical code. Therefore, only the master

code has to be adapted to the numerical codes and the strategies used on each subdomain. As a basic flow solver, we a

use stabilized finite element method.
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1. Introduction

When one wants to simulate flows with moving bodies and when there is no possible way of prescribing

simple boundary conditions in any frame of reference, four main alternatives to track the body motions are

possible:

• the arbitrary-Lagrangian–Eulerian (ALE) method together with an automatic remeshing technique of

the computational domain adapts the fluid mesh to the spatial configuration in time;

• the fictitious domain method tracks moving solid boundaries inside a background mesh;
• the sliding mesh technique couples different meshes which are allowed to slide along their common

interfaces;

• the Chimera method couples the individual meshes of each moving component.
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These techniques are illustrated in Fig. 1.
When using the ALE description of the flow together with automatic remeshing, the mesh accommo-

dates the boundary displacements inside the computational domain (see for example [1–3]). On the one

hand, if the displacements are small, only nodal displacement may be sufficient, and the nodal connectivity

of the mesh remains unchanged; on the other hand, if the displacements are large, a complete remeshing is

necessary. The main drawback of the method is that the geometric parameters have to be computed at each

time iteration. See [4] for an example of application to the simulation of a mixed-flow pump. The ALE

technique has also been used for following free surfaces [5,6] and to simulate fluid/structure interactions [7].

In the fictitious domain method [8,9], a fixed mesh occupies the whole volume including that occupied by
the body. The method consists in including the boundary condition at the body boundary into the set of

flow equations for the whole volume by the way of Lagrange multipliers. In the particular case of Dirichlet

conditions imposed on the body, the Lagrange multiplier represents the jump in traction obtained at the

fluid–solid interface. This method enables one to use simple (structured) background meshes on which fast

solvers can be implemented. In [10], a fictitious domain method is presented to simulate two- and three-

dimensional flow problems with moving boundaries. The authors apply the method to the solution of a

Couette problem and a helical ribbon mixer; in [11], the fictitious method is applied to the solution of the

flow around a moving disk. In fictitious domain methods, the motion of the object needs not to be known a
priori, and aerodynamic forces can be taken into account to couple the fluid dynamics and the kinematics

of the rigid body. Pan [12] predicts the path of a ball falling in a viscous fluid (at low Reynolds numbers); in

[13], the authors solve the two-dimensional flow around an airfoil that is free to rotate around its center of

mass, the sedimentation of particles in a box, and a three-dimensional case involving two spherical par-

ticles. Using the same method, Ju�aarez [14] simulates the sedimentation of an elliptic body in a two-
dimensional viscous fluid. This fictitious domain method is also well suited for shape optimization problems

[15]. Although it has been shown that this method can efficiently solve the flow over moving objects, it

presents a serious drawback: at large Reynolds numbers, we have no simple way to refine the mesh near the
boundary without dropping the nice characteristic of the method. A possible technique is to use a h-type
refinement consisting in dividing successively elements of the region of interest into smaller and smaller

elements.

The sliding mesh technique regroups DD methods for which two adjacent subdomains are allowed to

slide along their common interface. In this work, we generalize this technique to any DD method involving

possibly moving overlapping subdomains for which the interface topologies do not change with time. As it
Fig. 1. Illustration of the most common methods to simulate flows around moving components.
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can be a hard task to ensure that the nodes of two adjacent sliding meshes coincide at each time step, the
sliding mesh method is generally used as a direct application of the mortar method [16,17] to moving

subdomains [18]. The mortar element method is a non-conforming domain decomposition method for

coupling non-matching grids. Instead of considering the continuity of the transmission variables point by

point by using a simple interpolation technique, the mortar element method performs an interface L2-
projection of the transmission conditions. When the mortar method is used together with a sliding mesh

technique, the subdomains are allowed to slide along their common interface. They are therefore necessarily

disjoint. See [19] for the application of the sliding mesh technique to the simulation of stirred reactors, and

[20] for the simulation of a two-dimensional rotor–stator interactions in a centrifugal pump. We also
mention the shear-slip mesh update method [21] (SSMUM) where regions in relative straight line trans-

lation or rotation are glued by the way of intermediate layers of elements, and where the connecting nodes

coincide. In order to avoid remeshing of the regions, only the elements of the intermediate layer are allowed

to be deformed and its computational domain to be remeshed when necessary. The advantage of this

method is that it is conservative as the composite mesh is always conforming. The main drawback is that

arbitrary motions are not possible.

The Chimera method appears to be the most flexible method to treat flow problems with moving bodies

[22–24]. In addition, it fits perfectly within the Chimera based iteration-by-subdomain method introduced
in this work. It was first envisaged as a tool for simplifying the mesh generation [39–41]. Independent

meshes are generated for each component of the computational domain, enabling a flexibility on the choice

of the type of element as well as on their orientation that could not be possible when meshing complex

three-dimensional geometries [42,43]. As a direct application, the Chimera method has also been used as a

mesh refinement technique [44]. In addition, if it is implemented efficiently, it is a very efficient tool to treat

flows with moving components [45]. Traditionally, the coupling is performed using a Dirichlet/Dirichlet

iteration-by-subdomain method. In this work we extend this to include also the possibility of using Di-

richlet/Neumann and Dirichlet/Robin couplings. We present a complete description of the formulation of
this method as well as of its implementation aspects, focusing on the treatment of flows with moving bodies.
2. Domain decomposition for stationary the Navier–Stokes equations

2.1. Problem statement: incompressible flow equations

We now give the expression of the Navier–Stokes equations expressed in a non-inertial frame of reference
[25]. We denote a as the linear acceleration of the frame of reference andx as its angular velocity. Let g be the
gravitational acceleration and x the position vector of a fluid point. LetX be an open bounded domain ofRnd

(nd ¼ 2 or 3). The stationary Navier–Stokes equations for the velocity u and the pressure p are:
ðu � rÞuþ 2x � u� 2mr � eðuÞ þ rp ¼ f in X;

r � u ¼ 0 in X;

where f is the vector of body forces, including the gravitational force, and the non-inertial terms

f ¼ g � a� x � ðx � xÞ � dx
dt

� x

and eðuÞ is the rate of deformation tensor given by
eðuÞ ¼ 1

2
ðruþrutÞ:

Obviously, if x is time dependent, so will be the velocity and the pressure, and the local acceleration otu will
have to be taken into account in the Navier–Stokes equations. However, for our purposes it is sufficient for
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the moment to consider the stationary problem. The transient case will be discussed later on. The Navier–

Stokes equations must be supplied with boundary conditions. We consider here the following two condi-

tions of Dirichlet and Neumann types:

u ¼ ug on CD;

r � n ¼ tn on CN ;
ð1Þ

where oX ¼ CN [ CD, n is the outward unit normal to oX, and r is the stress tensor given by

r ¼ �pI þ 2meðuÞ;
I being the nd-dimensional identity. We have chosen as Neumann condition the prescription of the traction
r � n because it usually enters naturally the variational form of the problem. However, we will also consider
a particular weak form for which the natural condition not only involves the traction. Note that a mixed

type of boundary prescriptions can also be considered. For example, in the numerical simulation of tur-
bulent flows, it is common to consider an impermeable wall condition (u � n ¼ 0) together with the pre-
scription of the tangential components of the traction to emulate the frictional effects of turbulent boundary

layers [26]. To simplify the exposition, such boundary conditions will not be considered. Likewise, only

laminar flows will be considered, although all what follows could be extended to include turbulence

modeling.

Before going on to the variational formulation, we introduce the linearized Navier–Stokes operator L
such that

Lðu; pÞ :¼ ðu � rÞuþ 2x � u� 2mr � eðuÞ þ rp
r � u

� �
; ð2Þ

with u ¼ u in the non-linear problem.
We now derive the variational formulation of our problem. Let us introduce the following functional

spaces:

V ¼ fv 2 H 1ðXÞnd jvjCD ¼ 0g;
Q ¼ L2ðXÞ;
U ¼ fv 2 H 1ðXÞnd jvjCD ¼ ugg;

P ¼ p 2 L2ðXÞ
Z

X
pdX

����
�

¼ 0 if CN ¼ ;
�
:

The first step to solve the Navier–Stokes equations is to linearize them. Let us denote denote by m the
iteration number of the iterative scheme. For the sake of clarity, we only consider here the Picard lineari-

zation, that is,

½ðu � rÞu�mþ1 � ðum � rÞumþ1:

We are going to consider two weak forms of the Navier–Stokes equations. The first one is obtained by

integrating by parts only the viscous term and is referred to as 0-weak formulation. The second one is

obtained integrating by parts the viscous term and half of the convective term and is referred to as 1/2-weak

formulation. We define a constant [ which can take the following values:

0-weak formulation : [ ¼ 0;
1=2-weak formulation : [ ¼ 1=2:

The variational formulation of the problem reads as follows. Given u0 2 U , for m ¼ 0; 1; . . . until con-
vergence, find ðumþ1; pmþ1Þ 2 U � P such that
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amðumþ1; vÞ � bðpmþ1; vÞ þ bðq; umþ1Þ ¼ lðvÞ ð3Þ
for all ðv� qÞ 2 V � Q, where

amðu; vÞ ¼ 2
Z

X
meðuÞ : eðvÞdX þ 2

Z
X
ðx � uÞ � vdX þ ð1� [Þ

Z
X
½ðum � rÞu� � vdX

� [

Z
X
½ðum � rÞv� � udX þ [

Z
CN

ðum � nÞu � vdC;

bðp; vÞ ¼
Z

X
pr � vdX;

lðvÞ ¼
Z

X
f � vdX þ

Z
CN

tn � vdC:
2.2. Domain decomposition method

To explain our basic DD strategy we can consider a simple setting. Let us perform a geometrical de-

composition of the original domain X into three disjoint and connected subdomains X3, X4 and X5 such
that

X ¼ intðX3 [ X4 [ X5Þ:
From this partition, we define X1 and X2 as two overlapping subdomains:

X1 :¼ intðX3 [ X4Þ; X2 :¼ intðX5 [ X4Þ:
Finally, we define Ca as the part of oX2 lying in X1, and Cb as the part of oX1 lying in X2, formally given by

Ca :¼ oX2 \ X1; Cb :¼ oX1 \ X2:

The geometrical nomenclature is shown in Fig. 2. Cb and Ca are the interfaces of the domain decomposition

method we now present. X4 is the overlap zone. In the following, index i or j refers to a subdomain or an
interface.

Let us denote Ka :¼ H 1=200 ðCaÞ. From the trace theorem (see e.g. [27,28]), we know that there exists a
unique linear continuous map Ta, called the trace operator restricted to Ca, such that:

Ta : H 1ðXÞnd ! Knd
a ; Tav ¼ vjCa 8v 2 H 1ðXÞnd :

In order to decouple the computation of the solution in the subdomains X1 and X2, we introduce a domain
decomposition method. As we will show, this DD method is based on a Dirichlet/Neumann(Robin) cou-
pling applied to overlapping subdomains. Let us define for i ¼ 1; 2, CDi :¼ CD \ oXi and CNi :¼ CN \ oXi.

Let us introduce the following functional spaces:
Fig. 2. Examples of decomposition of a domain X into two overlapping subdomains X1 and X2.
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Vi ¼ fv 2 H 1ðXiÞnd jvjCDi ¼ 0g;
V 0i ¼ fv 2 H 1ðXiÞnd jvjoXi ¼ 0g;
Qi ¼ L2ðXiÞ;
Ui ¼ fv 2 H 1ðXiÞnd jvjCDi ¼ ugg;

Pi ¼ p 2 L2ðXiÞ
Z

Xi

pdX

����
�

¼ 0 if CNi ¼ ;
�
;

P 02 ¼ L2ðX2Þ:

To simplify the notation, let us omit the iteration superscript, knowing that the advection velocity is

computed from the previous iteration. The algorithm we propose reads as follows: find ðu1; p1Þ 2 V1 � P1
and ðu2; p2Þ 2 V2 � P 02 such that

a1ðu1; v1Þ þ b1ðq1; u1Þ � b1ðp1; v1Þ ¼ l1ðv1Þ 8ðv1; q1Þ 2 V 01 � P1;
u1 ¼ u2 on Cb;
a2ðu2; v2Þ þ b2ðq2; u2Þ � b2ðp2; v2Þ ¼ l2ðv2Þ 8ðv2; q2Þ 2 V 02 � P2;
a2ðu2;E2laÞ þ a3ðu1;E3laÞ ¼ l2ðE2laÞ þ l3ðE3laÞ þ b2ðp2;E2laÞ þ b3ðp1;E3laÞ 8la 2 Knd

a ;

8>><
>>: ð4Þ

where Ei denotes any possible extension operator

Ei : Knd
a ! H 1ðXiÞnd ;

TaEila ¼ la 8la 2 Knd
a

and ai, bi, li are the forms introduced before with the integrals extended over Xi. Under some conditions, it

can be shown that this formulation is equivalent to the original stationary counterpart of Eq. (3). This holds

for the discrete case as well. See for example [29] for the Stokes problem with disjoint subdomains and [30]

for advection–diffusion problems with overlapping subdomains. However, the form of the system of
equations (4)1–4 is not convenient for our objective. To change it, we can make use of the fact that the

solution of the domain decomposition problem satisfies

r1 � n2 � [ðu1 � n2Þu1 ¼ r2 � n2 � [ðu2 � n2Þu2 on Ca; in the sense of Ka;

where oð�Þ=on2 ¼ n2 � rð�Þ, n2 being the outward unit vector normal to X2 on the interface Ca.

Let us prove this result. Note first that according to Green�s formula, we have for all la 2 Knd
a

a3ðu1;E3laÞ � b3ðp1;E3laÞ ¼ �hr1 � n2 � [ðu1 � n2Þu1; laiCa þ hr1 � n;E3laiCN1 þ hL1ðu1; p1Þ;E3laiX3 ;

ð5Þ

a2ðu2;E2laÞ � b2ðp2;E2laÞ ¼ hr2 � n2 � [ðu2 � n2Þu2; laiCa þ hr2 � n;E2laiCN2 þ hL1ðu2; p2Þ;E2laiX2 ; ð6Þ

where h�; �ix denotes the duality pairing in H 1 � ðH 1Þ0 if x is a nd-dimensional domain and in

H 1=200 ðCaÞ � H�1=2ðCaÞ if its dimension is nd � 1. The operator L1 is the first row of L in Eq. (2) with u ¼ u. In
addition, from Eqs. (4)1 and (4)3, we have, for q1 ¼ 0 and q2 ¼ 0,

L1ðu1; p1Þ ¼ f in X1; ð7Þ

L1ðu2; p2Þ ¼ f in X2; ð8Þ

in the sense of distributions. As a result, and using Eq. (1) for the definition of the traction on CN , Eqs. (5)

and (6) become

a3ðu1;E3laÞ � b3ðp1;E3laÞ ¼ �hr1 � n2 � [ðu1 � n2Þu1; laiCa þ htn;E3laiCN1 þ hf ;E3laiX3 ;
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a2ðu2;E2laÞ � b2ðp2;E2laÞ ¼ hr2 � n2 � [ðu2 � n2Þu2; laiCa þ htn;E2laiCN2 þ hf ;E2laiX2 :

Adding up the two equations, and substituting the result into Eq. (4)4, we find

h�r1 � n2 þ [ðu1 � n2Þu1 þ r2 � n2 � [ðu2 � n2Þu2; laiCa ¼ 0

and thus the claim is proved.
Eq. (4)4 represents therefore the continuity of the natural condition across the interface. In the case of

the 0-weak form, this condition is simply the traction; in the case of the 1/2-form, this is a more general

Robin condition.

2.3. Iteration-by-subdomain method

The DD method presented previously consists in solving two separate subproblems in X1 and X2 and
couple them to obtain a global solution on the original computational domain. The coupling is obtained by
imposing the continuity of the Dirichlet data on one interface and the continuity of the Neumann (or

Robin) data, appearing as a natural boundary condition, on the other interface. We now set up an iter-

ation-by-subdomain algorithm in order to decouple the solution of the subproblems. Suppose that we have

the solution ðum; pmÞ at the mth iteration step of the iterative scheme to deal with the non-linearity of the
problem, and we want to compute ðumþ1; pmþ1Þ. We propose to obtain this pair through a nested iterative
scheme, whose iteration counter is denoted by k. If r

mþ1;k
i is the stress computed from ðumþ1;ki ; pmþ1;ki Þ, for

i ¼ 1; 2 corresponding to the subdomains Xi, the iteration-by-subdomain algorithm reads as follows: given

umþ1;01 ¼ um1 2 U1 and umþ1;02 ¼ um2 2 U2, for each mP 0, find until convergence ðumþ1;kþ11 ; pmþ1;kþ11 Þ 2 U1 � P1
and ðumþ1;kþ12 ; pmþ1;kþ12 Þ 2 U2 � P 02 , for k ¼ 0; 1; 2; . . ., such that

am1 ðu
mþ1;kþ1
1 ; v1Þ þ b1ðq1; umþ1;kþ11 Þ � b1ðpmþ1;kþ11 ; v1Þ ¼ l1ðv1Þ 8ðv1; q1Þ 2 V 01 � P1;

umþ1;kþ11 ¼ umþ1;k2 on Cb;

am2 ðu
mþ1;kþ1
2 ; v2Þ þ b2ðq2; umþ1;kþ12 Þ � b2ðpmþ1;kþ12 ; v2Þ

¼ l2ðv2Þ þ hrmþ1;kþ11 � n� [ðumþ1;kþ11 � nÞumþ1;kþ11 ; v2iCa 8ðv2; q2Þ 2 V2 � P2:

8>>>>>>><
>>>>>>>:

ð9Þ

This iterative procedure is a Dirichlet/Neumann or Dirichlet/Robin iteration-by-subdomain method on

overlapping subdomains if we use the 0-weak form or the 1/2-weak form, respectively. In this iterative

procedure, we have chosen to nest the linearization and DD iterative loops, the inner loop being the DD
one. Letting um ¼ umþ1;k in the convective term, we couple both loops. In the discrete finite element problem,
it is computationally preferable to choose the DD loop as the inner loop, as, on the contrary, the matrix of

the discrete system would have to be computed at each iteration.

Note that if CN1 ¼ ;, then we must ensure to satisfy the compatibility condition in subdomain 1 which
requires thatZ

oX1

umþ1;kþ11 � ndC ¼ 0:

The initial Dirichlet transmission condition u0;02 on Cb must therefore be chosen such that we have zero flux

on oX1 at the first iteration. If this condition is satisfied, then it will be satisfied at further iterations, since
for the continuous problem mass conservation is verified pointwise.

Finally, let us note that we can introduce relaxation parameters to update the transmission conditions.

We will denote hD and hR the relaxation factors of the Dirichlet and Robin transmission conditions,
respectively.
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2.4. Summary of results for advection–diffusion problems

In [30], we introduced a Dirichlet/Robin iteration-by-subdomain method for the solution of advection–

diffusion-reaction problems on overlapping subdomains. For this linear scalar problem we were able to

perform a complete numerical analysis. The main results we proved are:

• The DD is well defined, that is, the solution of the decomposed problem using Dirichlet/Neumann

(Robin) transmission conditions with overlapping subdomains is the same as for the original problem.
• The unknowns at the interfaces are the unique solutions of problems involving generalizations of the

classical Steklov–Poincar�ee operators.
• The iteration-by-subdomain scheme converges linearly, provided the under-relaxation parameters are

sufficiently small.

Likewise, in [31], we considered the differential equivalent of the iteration-by-subdomain method and

tested it for a one-dimensional problem. An overlapping Dirichlet/Neumann method is also considered.

The main conclusions drawn in this case are:

• The Dirichlet/Robin method tends to the Schwarz method when the diffusion tends to zero, while it be-

haves like the Dirichlet/Neumann method in the diffusion-dominated range.

• The overlapping makes the Dirichlet/Neumann and Dirichlet/Robin methods more robust.

• In the hyperbolic limit, the overlap enables to diffuse the error much more rapidly than the D/N and D/R

methods do on disjoint subdomains.

• In the hyperbolic limit, it is well known that the standard Dirichlet/Neumann method does not converge

when the Neumann interface is placed at the inflow. In the presence of reaction, and as long as the over-
lap is greater than the artificial internal layer created at the interfaces, the Dirichlet/Neumann converges

independently of whether the transmission condition is placed at the inflow or not. Note that when using

a finite difference scheme to discretize the temporal derivative in the case of a transient problem, the ad-

ditional term takes the form of a reaction term. Therefore, we may conjecture that the mixed DD meth-

od will be more robust when applied to transient problems than stationary ones.

We expect these properties to be inherited by the present domain decomposition method applied to the

Navier–Stokes equations. However, a rigorous theoretical analysis of this problem is still open.
3. Discretization and implementation aspects

3.1. Discretization in time and space

We now consider the transient Navier–Stokes equations:

otuþ ðu � rÞuþ 2x � u� 2mr � eðuÞ þ rp ¼ f in X � ð0; T Þ;

r � u ¼ 0 in X � ð0; T Þ;

u ¼ ug on CD � ð0; T Þ;

r � n ¼ tn on CN � ð0; T Þ;

u ¼ u0 on X � f0g;
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where the force term and the boundary conditions can depend on time. The time interval where the problem

is to be solved is ð0; T Þ. The temporal derivative of the velocity has been denoted by otu, t being the time
variable.

The time discretization is carried out using the generalized trapezoidal rule, i.e. a finite difference scheme.

Let us introduce a uniform partition of the time interval ½0; T � and define, for h 2 ð0; 1�,

unþh :¼ hunþ1 þ ð1� hÞun; dt :¼ tn � tn�1; dtu
nþh :¼ unþh � un

hdt
;

where dt is the time step size and superscript n denotes the approximated solution at time ndt. According to
this integration rule, the time-discretized Navier–Stokes equations are solved as follows. Given an initial

condition u0, find unþ1 and pnþ1 for each nP 0 such that

dtu
nþh þ ðunþh � rÞunþh þ 2xnþh � unþh � 2mr � eðunþhÞ þ rpnþh ¼ f nþh;

r � unþh ¼ 0;

in X, with the following boundary conditions

unþh ¼ ug on CD at time tn þ hdt;

rnþh � n ¼ tn on CN at time tn þ hdt;

where rnþh ¼ �pnþhI þ 2meðunþhÞ. The unknown at time step nþ 1 is obtained using the fact that
xnþ1 ¼ xn þ ðxnþh � xnÞ=h for each unknown x of the problem. The choice h ¼ 1 corresponds to the back-
ward Euler scheme, unconditionally stable and of first order. The choice h ¼ 0:5 corresponds to the Crank–
Nicholson scheme, also unconditionally stable but of second order.
Let us consider now the space discretization. Let fXeg be a regular partition of the domain X, with index

e ranging from 1 to the number of elements ne. The finite element approximation we will consider is
conforming, that is, the discrete spaces of test functions and of trial solutions will be linear subspaces of the

corresponding spaces for the continuous problem, associated to the partition fXeg. We will denote them by
a superscript h.
We denote by xnþh;mþ1 the variable x considered at linearization step mþ 1 and time level nþ h. The

Galerkin formulation of the problem reads as follows. Given unþh;0
h ¼ unh 2 Uh, for each time step nP 0, find

for m ¼ 0; 1; . . . until convergence, ðunþh;mþ1
h ; pnþh;mþ1

h Þ 2 Uh � Ph such that

ðdtunþh;mþ1
h ; vhÞ þ anþh;mðunþh;mþ1

h ; vhÞ � bðpnþh;mþ1
h ; vhÞ þ bðqh; unþh;mþ1

h Þ ¼ lnþhðvhÞ;

for all ðvh � qhÞ 2 Vh � Qh, where the superscript nþ h in l denotes that the external forces are evaluated at
this time level, whereas the superscript nþ h;m in the bilinear form a indicates that it is computed with the
advection velocity unþh;m

h .

It is well known that the Galerkin formulation can lack stability for three major reasons. The first reason

is related to the compatibility of the finite element spaces for the velocity and the pressure which have to

satisfy the so-called Ladyzhenskaya–Brezzi–Babu�sska condition [32]. This condition is necessary to obtain a
stability estimate for the pressure; without requiring this condition, the pressure would be out of control.

The second reason is attributed to the relative importance of the viscous and convective effects. Finally, the
third one appears when the Coriolis force becomes important with respect to viscous effects. We will now

present a stabilized formulation, based on the algebraic variational subgrid scale (SGS) model first in-

troduced in [33]. The variational SGS model uses as a starting argument that the lack of resolution achieved

by the mesh is responsible for the numerical instabilities. Therefore, the model calculates in some ap-

proximate way the unresolved scales of the flow, i.e. the scales smaller than the mesh size. The method is

extensively described in [34] and [35].
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After time discretization and linearization, the problem can be re-written in a compact form as

½dtunþh;mþ1; 0�t þ Lnþh;mðunþh;mþ1; pnþh;mþ1Þ ¼ Fnþh in X;

where Lnþh;m is defined as

Lnþh;mðu; pÞ :¼ ðunþh;m � rÞuþ 2xnþh � u� 2mr � eðuÞ þ rp
r � u

� �

and the force term is defined as

Fnþh :¼ f nþh

0

� �
:

We finally define the residual of the Navier–Stokes equations Rnþh;mþ1 at iteration mþ 1 of the time step
nþ h as

Rnþh;mþ1ðunþh;mþ1
h ; pnþh;mþ1

h Þ :¼ ½dtunþh;mþ1
h ; 0�t þ Lnþh;mðunþh;mþ1

h ; pnþh;mþ1
h Þ � Fnþh:

The viscous term in the right-hand side can be evaluated in the interior of the elements. The stabilized weak

form reads: given unþ1;0h ¼ unh 2 Uh, for each time step nP 0, find for m ¼ 0; 1; . . . until convergence,
ðunþ1;mþ1h ; pnþ1;mþ1h Þ 2 Uh � Ph such that

ðdtunþh;mþ1
h ; vhÞ þ anþh;mðunþh;mþ1

h ; vhÞ � bðpnþh;mþ1
h ; vhÞ þ bðqh; unþh;mþ1

h Þ

�
Xne
e¼1

Z
Xe

L�nþh;mðvh; qhÞtseRnþh;mþ1ðunþh;mþ1
h ; pnþh;mþ1

h Þ ¼ lnþhðvhÞ;

8ðvh; qhÞ 2 Vh � Qh, where L
�nþh is the adjoint of Lnþh, given by

L�nþh;mðv; qÞ :¼ �ðunþh;m � rÞv� 2xnþh � v� 2mr � eðvÞ � rq
�r � v

� �
:

se is the matrix of stabilization parameters, computed in each element as [34]

se ¼ diagðs1I ; s2Þ; where

s1 ¼
c1m
h2e

�
þ c2junþh;mj

he
þ c3jxnþhj


�1

;

s2 ¼ c4
h2e
s1

:

s2 contributes to enforcing the incompressibility of the flow, which is excessively relaxed by the term
multiplied by s1. The values of the algorithmic constants we use are c1 ¼ 4, c2 ¼ 2, c3 ¼ 1, c4 ¼ 1 and he is
the characteristic element length. For quadratic elements, he is taken as half of the element size.

Remark 1. The iteration-by-subdomain method given by Eqs. (9)1–3 cannot be applied at the discrete level

without special care. We note that to obtain the iterative scheme (9)1–3 from Eqs. (4)1–4, we had to use Eqs.

(7) and (8). But in the discrete case, these two equations are not satisfied pointwise (in general). Thus, while

the original and the decomposed problem are equivalent at the continuous level (for smooth solutions),

their discrete counterparts are not. Nevertheless, we will see in the following subsection that we have a way

to keep the order of convergence in space of the algorithm using a simple scheme to calculate the derivatives
involved in the transmission condition. Now, if we want to go on to the transient case, we just have to apply

algorithm (9)1–3 at each time step.
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3.2. A Master/Slave-coupling algorithm

3.2.1. General algorithm

In this section we present an implementation algorithm for general iteration-by-subdomain methods. We

denote the subdomains i or j, with transmission conditions of Dirichlet, Neumann and Robin types, in-
volving overlapping and non-overlapping meshes. For the sake of clarity, we assume that the subdomains

are steady (not the flows). The iterative domain decomposition algorithm consists of three steps: the pre-

process, the process and the post-process.

• Pre-process: The pre-process consists in dividing the computational domain into overlapping and/or non-

overlapping subdomains. The nodes involved in the transmission process are called the interface nodes.

• Process: The DD method we propose is algorithmic because the solution on each subdomain is obtained

on separate processes and the exchange of information between the subdomains is carried out by a mas-

ter code. Communication between the master code and the slave codes (Navier–Stokes solver on each

subdomain) can be achieved by any of the communication libraries like PVM or MPI. Each subproblem

runs on different processes of the Navier–Stokes solver. The master code controls the iterative process
and has to perform the following operations:

� find the host elements of the interface nodes in the adjacent subdomain;

� interpolate the variables from one subdomain to another;

� update of the boundary condition of each one;

� pass the data (the new boundary condition) back and forth to the slaves (the processes of the finite

element code).

• Post-process: Eventually, the post-process defines the global solution. For example, in the case of over-

lapping grids, one has to define the solution in the regions in common.

We now describe the specific tasks to be carried out by the Master and the Slaves. Within a standard

implicit Navier–Stokes solver, the DD algorithm loop fits within a multi-loop algorithm as shown by

Algorithm 1.

Algorithm 1. Slaves point of view

for time steps do

for linearization steps do
for DD steps do

Import transmission condition update from Master

for solver steps do

Solve Algebraic system

end for

end for

Export new solution to Master

end for
end for

With respect to a classical solver, as shown by Algorithm 1, the DD algorithm is just an additive loop

that can be coupled with the others. For example, it may be convenient to couple it with the linearization

loop, which is the strategy employed in all the examples presented in this work. When using explicit codes,

the DD loop can also be coupled with the time loop.

Let us assume we want to couple ns subdomains. We denote by Cij the interface of subdomain i with
subdomain j. The ns slave processes are distributed via a multicoloring technique: each subdomain is
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assigned a color color(i) so that subdomains of the same color have no common interface. The colors are
ordered from 1 to nc, where nc is the total number of colors used. Subdomains of smaller color are run first.
The algorithm as seen from the master code is shown in Algorithm 2. The first task is to find the host

elements of all the interface nodes to enable further interpolation of the transmission conditions. When the

subdomains are steady, this operation must be performed only once, as a pre-process work. The search

technique used in this work will be described in Section 3.2.2.

The stopping criterion is based on some norm of the interface unknown changes between two successive

iterates, k and k þ 1. We define the interface L2 residual of variable x as the following quantity

Xns
i¼1

X
j

1

jCijj

Z
Cij

ðxkþ1i

 "
� xki Þ

2
dC

!#1=2 Xns
i¼1

X
j

1

jCijj

Z
Cij

ðxkþ1i Þ2 dC
 !" #�1=2

; ð10Þ

where jCijj is the measure of Cij and xki is the approximate solution on Cij obtained solving in subdomain i at
iteration k. The sum in j is extended to all subdomains connected to i.

Algorithm 2. Master�s point of view
Impose initial conditions

for time steps do

Set iteration number k ¼ 0
Find the host elements of all the Cij interface nodes of subdomain i in subdomain j
while stopping criterion not reached do

for color¼ 1 to nc do
Export transmission conditions to subdomains i such that color(i)¼ color
Run subdomains i in parallel
Import solutions from subdomains i
for subdomains j connected to subdomain i do
Interpolate and compute transmission conditions for subdomains j

end for

end for

k ¼ k þ 1
Check convergence of the DD scheme

end while
end for
3.2.2. Search algorithm

Once the domain decomposition has been performed, one of the first tasks of the Master is to find host

elements for all the interface nodes. The element search strategy (ESS) used in this work is based on a quad-

tree strategy (in 2D, and oct-tree in 3D). The strategy can be decomposed in two steps, the pre-process

(which constructs the tree-like structure) and the process (range searching). In the pre-process, the com-
putational domain is first embedded in a box, taking the minimum and maximum of the node coordinates

to define its corners. The algorithm recursively partitions the box(es) into smaller boxes, until each box

contains less than a prescribed number of nodes. A box is divided into four boxes in two dimensions (quad-

tree) and into eight boxes in three dimensions (oct-tree). If a box is not divided further because it contains

too few nodes, we start filling it with elements. To get the list of elements located inside a box, the node/

element connectivity is used; all the elements connected to the node of a box belong to this box. Note that

this criterion does not require any calculation of the intersections of the faces of elements and boxes. Fig. 3

shows a two-dimensional example of a quad-tree subdivision of a mesh of a NACA0012.



Fig. 3. A quad-tree division of a mesh (NACA0012). (Left) Mesh. (Right) Quad-tree structure.
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The process step is known as range searching. Knowing the coordinates of the test point we proceed

down through the tree until we find a box containing elements where the test point falls. Now we perform a

loop over the elements belonging to the box, compute the natural coordinates of the point in each of these
elements until we find the host element. The condition for an element to belong to a box (based on the

connectivity) can seem restrictive; in fact, an element can intersect a box without having any node in it.

Nevertheless, it has proved to be sufficient for most cases and the search almost never fails. In case a point

has no host element, a new search is performed using a less restrictive method.

3.2.3. Interpolation of Dirichlet, Neumann and Robin data

Up to now we have studied how the transmission conditions are passed from one subdomain to another

to set up the iterative algorithm. We now study the interpolation technique performed at the finite element
level. In the following, we assume we want to update the solution of subdomain i knowing the solution of
subdomain j. For the sake of clarity, we drop the superscripts referring to iterative loops as well as the
subscript h referring to discrete solutions.

3.2.3.1. Interpolation of Dirichlet data. The Dirichlet data are all the velocity components and their in-

terpolations are carried out as follows. From the element search strategy, we have identified the host ele-

ments jelem of each interface node ipoin, as well as the natural coordinates of ipoin in jelem; see

Fig. 4 (left). The new value of the velocity at ipoin is simply obtained by interpolating the velocity using
the classical Lagrange interpolation of element jelem.

Let us mention that this interpolation is ‘‘diffusive’’ as some information can be missed during the in-

terpolation. For example, this may be the case when the mesh of subdomain i is coarser than the mesh of
subdomain j; this point is known as conservation and will not be treated here. In addition if subdomain i is
confined, we may violate the mass conservation in Xi as we have no control over the mass interpolated from

Xj and passing through Cij. This is not the case in the continuous problem where mass is conserved
Fig. 4. Interpolation. (Left) Dirichlet data. (Right) Neumann and Robin data.
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pointwise. The solution to these deficiencies we use is explained in [36]. The idea is that instead of taking the
plain Lagrangian interpolation as transmission condition, we take the closest approximation (in the L2

sense) that satisfies some a priori restrictions (such as mass conservation, for example).
3.2.3.2. Interpolation of Neumann and Robin data. The Neumann or Robin data are involved in the natural

transmission conditions. In the last section, we mentioned in Remark 1 that the formulation of the DD

method given by Eqs. (9)1–3 could not be directly extended to the discrete case, the reason being that the

original differential equations are not satisfied pointwise.

The Neumann (or Robin) transmission condition of formulation of the DD method (Eqs. (9)1–3) consists
in calculating the following contour integral on the interface Cij:Z

Cij

ðrj � n� [ðuj � nÞujÞ � vi dC ¼
Z

Cij

ð2meðujÞ � n� pjn� [ðuj � nÞujÞ � vi dC; ð11Þ

where ðuj; pjÞ are known from the previous solution on Xj. We are interested here in the calculation of the

first-order derivatives of the velocity components involved in the strain rate tensor.

If formulae (5) and (6) are applied to the discrete finite element problem, the second derivatives in L1
must be understood in the sense of distributions. The d-like terms associated to the edges interior to the
subdomain considered contribute with the force term f , whereas the terms associated to the boundary edges
contribute to the normal component of the strain rate tensor in (11). The final result is that this term has

contributions from both sides of Cij, that is, from Xi and from Xj n Xi.

In the case of disjoint subdomains one could apply a technique similar to those employed to deal with

second-order terms in discontinuous Galerkin finite element methods (see e.g. [37]). However, it is not clear

how to do this in the general setting we consider. We will explain now two possibilities to compute eðujÞ in
Eq. (11), one based only on the values of the derivatives in the elements of Xj crossing Cij and the other on

the values of the derivatives in Xj obtained after a least-square smoothing, and thus involving a wider

region of at least two layers of elements in Xj around Cij, if the overlapping is wide enough. We will refer to
both approaches as the one-layer and the multi-layer interpolations.

We start by presenting the one-layer interpolation scheme. We first note that the velocity derivatives are

needed at the integration points of the boundaries in order to perform the numerical integration. Let us

consider the element boundary iboun and define igaub as an integration point on this boundary; see Fig.

4 (right) for notation. Once the host element jelem of igaub in subdomain j is found, we obtain the one-
layer interpolation by direct interpolation of the derivatives from the nodes (if available) or from the in-

tegration points of jelem to the boundary integration points. The strategy to compute the force term (11)

is shown in Algorithm 3. Note that for disjoint subdomains, the derivatives will come only from one side
of Cij, which leads to a poor approximation.

Algorithm 3. One-layer interpolation

for all boundary elements iboun do

for all integration points igaub do

Find host element jelem of igaub

Interpolate derivatives ruj from nodes jnode to igaub
Calculate outward unit normal n and test function vi at igaub
Calculate the product 2mn � eðujÞ � vi at igaub and multiply the result by the weight of the numerical
integration

Assemble result

end for

end for
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The interpolation of the other two terms involved in the transmission condition (11) does not pose any
particular difficulty, and we just discuss briefly the interpolation of the pressure. On the one hand, when

using continuous pressure spaces, the pressure is interpolated at the boundary integration points in a

classical way, i.e. like the velocity. On the other hand, when using discontinuous pressure spaces, the

pressure is first smoothed using the least-squares smoothing, before being interpolated from the nodes to

the boundary integration points.

Let us consider now the multi-layer approach. We explained previously that the interpolations of the

velocity derivatives need information from the background mesh on both sides of the interface. One way of

applying this is to perform a least-squares smoothing to compute the derivatives of the unknown at the
nodes of subdomain j. By doing so, the values of the derivatives at a node jnode will depend on the de-
rivatives calculated on all its neighboring elements, i.e. on the values of the function at all the nodes of the

elements connected to jnode. We showed in [31] that we could obtain a second-order convergence in one

dimension for linear elements; we expect that the method to be presented here for two and three dimensions

will maintain the expected space accuracy as well.

The least-square smoothing used here is standard; see for example [38]. The matrix system resulting from

the least-square smoothing involves a mass matrix. This system can be solved efficiently using a closed

quadrature rule, for which the integration points are located at the nodes. The associated mass matrix is
diagonal and therefore it can be trivially inverted.

Once the derivatives are obtained at the nodes of the background mesh, we proceed as in the case of the

one-layer interpolation, as shown in Algorithm 4. The (projected) velocity gradient obtained after smooth-

ing in Xj has been denoted PhðrujÞ.

Algorithm 4. Multi-layer interpolation

Perform least-squares smoothing for the derivatives

for all boundary elements iboun do
for all integration points igaub do

Find host element jelem of igaub

Interpolate smoothed derivatives PhðrujÞ from nodes inode to igaub
Calculate outward unit normal n and test function vi at igaub
Calculate the product 2mn � ½PhðrujÞ þ PhðrujÞt� � vi at igaub and multiply the result by the
weight of the numerical integration

Assemble result

end for
end for

Remark 2. In the case of non-overlapping subdomains, for which we only have information on one side of

the underlying mesh, the one-layer and multi-layer interpolations are equivalent and are both of first order.

The overlapping seems therefore necessary to obtain a higher accuracy.
3.3. Example

We present a simple example of application of the one-layer and multi-layer interpolations to the

solution of the Stokes equations. We solve the following system
� 2r � eðuÞ þ 2x � uþrp ¼ f ;

r � u ¼ 0;
ð12Þ
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in a two-dimensional domain X made of two concentric circles, where the force f is chosen so that the exact
solution of the problem is

ue ¼ 2y½r � 1=2�;
ve ¼ �2x½r � 1=2�;
pe ¼ r:

with ue ¼ ½ue; ve�t and r ¼ ðx2 þ y2Þ1=2. We construct subdomain 1 of inner diameter 0.5 and outer radius 1,
and subdomain 2 of inner radius 0.5 and outer radius 2. In order to test the interpolation technique of the

secondary variables, we first solve the problem in subdomain 2 using exact Dirichlet boundary conditions

on its boundary, and then update the Neumann condition on the outer circle of subdmomain 1. The so-

lution is a radial Poiseuille-like flow and does not depend on the rotation, although we are going to show

that the error of the finite element solution does. The rotation is first chosen to be sufficiently small as we
want to avoid any possible instability due to the Coriolis term, so we take x ¼ jxj½0; 0; 1�t with jxj ¼ 0:1.
Fig. 5 (top) (left) shows the rate of convergence of the error in subdomain 1 computed for the one-layer and

multi-layer interpolations, and confirms that the one-layer interpolation is of first order while the multi-

layer interpolation is of second order. Let us analyze what happens if we increase the rotation. Let us

denote by u and p an approximate solution, for example a finite element solution or the solution at a certain
iteration of a DD method. From the BB condition, we know that there exists b > 0 such that
Fig. 5. Concentric circles. L2 errors. (Top) (Left) jxj ¼ 10�1. (Top) (Right) h ¼ 1=60. (Bot.) (Left) jxj ¼ 104. (Bot.) (Right) Multi-layer
interpolation.
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kqkP ;X 6
1

b
sup
v2V

ðq;r � vÞ
kvkV ;X

8q 2 Q:

Taking q ¼ p � pe, and from Eq. (12) observing that

ðp � pe;r � vÞ ¼ ðrðu� ueÞ;rvÞ � ð2x � ðu� ueÞ; vÞ;
we obtain

kp � pekP ;X 6
1

b
sup
v2V

ðrðu� ueÞ;rvÞ þ ð2x � ðu� ueÞ; vÞ
kvkV ;X

6
1

b
sup
v2V

ðrðu� ueÞ;rvÞ
kvkV ;X

 
þ 2jxjku� uek�1;X

!
:

When x is high, the second term dominates, i.e.

kp � pekP ;X � 2jxj
b

ku� uek�1;X; ð13Þ

so we expect that the pressure becomes out of control when we have an error in the velocity. Hopefully,

when passing Neumann transmission conditions, the error in pressure remains and does not affect the

velocity. The mesh convergence for jxj ¼ 104 is shown in Fig. 5 (bot.) (left). We see that the pressure
convergence is entirely dominated by the rotation term. In addition, Fig. 5 (top) (right) gives the depen-

dence of the errors with respect to jxj. The velocity is not negatively affected by the rotation while the error
in pressure goes linearly with jxj, as predicted by Eq. (13). Finally, Fig. 5 (bot.) (right) gives the mesh
convergence of the multi-layer interpolation for the pressure and velocity. We observe that the velocity
error for jxj ¼ 104 is always below the velocity error for jxj ¼ 10�1 for the range of mesh sizes studied,
while that of the pressure is four orders of magnitude greater.
3.4. Chimera method

In this section we first describe the purpose of the Chimera approach by giving an overview of the

possibilities of the method. Then we introduce some terminology and explain the way that the Chimera

method can be implemented as an iteration-by-subdomain DD technique. In particular, we build a Chimera
method based on Dirichlet/Dirichlet and Dirichlet/Neumann(Robin) couplings on overlapping meshes.
3.4.1. Geometrical coupling and terminology

For the sake of clarity, we assume that the flow we solve only involves one object. The generalization to

multi-component flows is straightforward. We first define a background mesh containing all the compu-

tational domain, preferably structured. We also generate an independent mesh around the object and

dispose it onto the background mesh. This is the patch mesh. The set of the two overset grids is called the

composite grid, or composite mesh. The idea of the Chimera method is to remove some elements of the
background located inside the patch in order to define an apparent interface; this task is called hole cutting.

The hole cutting technique is not described here and the reader is referred for example to [23], or to [31]

for the particular method used in this work.

The Chimera method consists in exchanging suitable transmission conditions between the outer

boundary of the patch and the apparent interface just defined. The nodes forming the apparent interface are

called the fringe nodes. In the case of steady subdomains, the only nodes participating to the DD process are

the fringe nodes and the interior nodes of the hole, called the hole nodes, can be eliminated from the solution

process. In the case of moving subdomains, where hole nodes can become fringe nodes at a time step, they
cannot be eliminated and the fringe nodes as well as the hole nodes are interpolation nodes: they participate

to the DD coupling. Finally, some nodes can be excluded from the DD process in order to control the



Fig. 6. Chimera method: hole cutting and terminology.
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distance between the patch and background interfaces. These nodes are called overlapping nodes. This point

is treated further on. An example of construction of a Chimera coupling is presented in Fig. 6.

3.4.2. Transmission conditions

In Section 2.3, we studied an iteration-by-subdomain method based on an overlapping Dirichlet/

Neumann(Robin) coupling. We now generalize the overlapping Dirichlet/Neumann method applied to the

Chimera method, and propose a new Chimera/Neumann coupling (C/N) and Chimera/Robin coupling

(C/R). We also propose to study the classical Chimera method, referred to here as Chimera/Dirichlet

coupling (C/D). The background mesh is the ‘‘Chimera’’ subdomain for which the velocity is interpolated

at the fringe nodes; the patch mesh is assigned a Dirichlet, a Neumann or a Robin transmission condition
on its outer boundary. This choice is not arbitrary but practical. We could in fact envisage to assign the

apparent interface a Neumann transmission condition. But to do so, we would have to construct explicitly

the boundary on the apparent interface and to compute the normal exterior to it. On the contrary, it is

relatively easy to prescribe the velocity at the fringe nodes of the background mesh.

‘‘Chimera’’ is not actually an appropriate term to define an interface type as it generally defines a

complete DD method in the scientific literature, but we hope its use in the present context is clear. The C/D

and C/N(R) couplings are illustrated in Fig. 7. The required overlap of the C/D is in general greater than

that required for mixed transmission conditions, for which, under certain conditions, the overlap is not
necessary to achieve convergence. This point is now treated.
Fig. 7. Chimera method. Hole and variables transmitted. (Left) Chimera/Dirichlet. (Right) Chimera/Neumann(Robin).
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3.4.3. The overlap

It is well known that the convergence of iteration-by-subdomain methods based on a Dirichlet/Dirichlet

coupling (Schwarz method) depends explicitly on the overlapping length [46]. In [31], we also showed the

explicit dependence of the convergence of mixed methods upon the overlapping length of two adjacent

subdomains; it is therefore interesting to be able to control the geometric length between interfaces. The

algorithm used to ensure a minimum overlap is trivial: if the distance of a background mesh node to the

patch interface is lower than the overlapping length desired, then the node cannot participate to the DD

coupling, i.e. its degrees of freedom are unknowns of the problem.
Aside from the geometric overlap, a certain number of elements of overlap may be required, which will

determine the convergence of the iterative procedure as well as its accuracy. The construction of the C/D

coupling requires special care, as a minimum overlap is required to avoid nodes from coinciding. If this

becomes the case, the interpolated variable would be frozen at its initial value on the coinciding nodes. In

addition, a minimum overlap of one layer of element is needed on each mesh participating to the C/D

coupling: this is a sufficient condition to ensure not only continuity of the velocity but also of its derivatives.

This is not the case in the C/N(R) method because the variables interpolated at the interpolation nodes

are different from those interpolated at the interface nodes. However, we saw in Section 3.2.3.2 that the
overlapping Dirichlet/Neumann(Robin) needs at least one element-layer of overlap to perform the least-

square smoothing.

The interpolation nodes that are eliminated to define a given overlap are called overlapping nodes. Fig. 6

shows an example of Chimera coupling where an overlap of one layer of elements on each mesh is achieved.

This composite mesh could therefore be used for the C/D method as well as for the C/N and C/R methods

using the least-square smoothing to compute the velocity strain rates.

3.4.4. The algorithm

The C/D, C/N and C/R methods fit perfectly into the framework of the Master/Slave coupling described

in Section 3.2. When dealing with various unconnected patch grids, the solution on each of these sub-

domains can be obtained in parallel, while keeping the sequential coupling with the background. To do so,

the same color is assigned to the patch subdomains.
4. Numerical examples

In the following examples we consider two types of element, both using equal order interpolation for the

velocity and the pressure. The Q1/Q1 element is continuous and bilinear (trilinear in three dimensions) in

both velocity and pressure. We also work with the P1/P1 element, continuous and linear in velocity and

pressure. These elements do not satisfy the BB condition and therefore they require the use of stabilization

described in Section 3.1.

4.1. Vortex shedding behind a cylinder

This example involves the flow past a cylinder, a widely solved benchmark problem. A circular cylinder

is immersed in a viscous fluid. The Reynolds number is based on the cylinder diameter D and the prescribed
uniform inflow velocity U . The geometry and boundary conditions are shown in Fig. 8. We set U ¼ 1 and
D ¼ 1.
For Re approximately less than 40, two symmetrical eddies develop behind the cylinder. These eddies

become unstable at higher Reynolds numbers and periodic vortex shedding occurs, leading to the so-called

Von Karman vortex street. We first consider the stationary state at Re ¼ 30. As a reference solution, we
solve the steady laminar flow on a relatively fine mesh composed of 5400 Q1/Q1 elements, shown in Fig. 9



Fig. 8. Vortex shedding. Geometry.

Fig. 9. Vortex shedding. Meshes. (Top) Fine mesh used for one-domain solution. (Bot.) Composite mesh of the Chimera method.
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(top). We want to compare here the results obtained with the C/D, C/N and C/R methods. As a background

mesh, we use a structured mesh composed of 1600 Q1/Q1 elements. The patch mesh contains the cylinder.

Its outer boundary, i.e. the interface of the DD method, is a circle of diameter 3. Its mesh is composed

of 400 Q1/Q1 elements. The resulting composite mesh is shown in Fig. 9 (bot.).



Fig. 10. Vortex shedding. Zoom of meshes. (Left) Composite mesh. (Right) Hole cutting for one element overlap.
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Fig. 10 shows a close up of the composite mesh in the cylinder region and the results of the hole cutting

operation. The right figure shows the hole created to obtain a one element overlap one each subdomain.

This composite mesh will be used for the C/D method as well as for the C/N and C/R method in order to

achieve a second-order method.

To solve the stationary problem, we use the Chimera method with one element overlap on each sub-
domain. Note that when considering the C/D method, the patch subdomain is confined. Therefore, in order

to have a well-posed problem on the patch subdomain at each iteration, we apply the interface constraining

of the mass conservation [36].

The test we now carry out consists in determining the range of relaxation parameters for which the

algorithm converges. To do so, we vary the relaxation parameters of both transmission conditions from 0.1

to 2. The C/D turns out to be the most robust method, i.e. the method for which we have the greatest

amplitude in the choice of relaxation parameters to achieve convergence. The C/N does not converge at all,

at least for the range of parameters tested. The C/R method converges but for restricted area in the re-
laxation space, as shown in Fig. 11 (left), where hD refers to the relaxation parameter of the Dirichlet
condition and hR refers to that of the Robin condition. Fig. 11 (right) compares the convergence histories
obtained with the C/D and C/R methods. For the C/D method no relaxation is used while for the C/R

method, we use hD ¼ hR ¼ 0:2. The figure shows that the convergence of the C/D method looks like

monotone while that of the C/R is more unstable. However, the residuals of the Dirichlet data obtained

with both methods are of the same order after 30 iterations.

Now, we have previously mentioned in Section 2.4 that a reaction type term in the ADR equation can

help mixed DD method to converge. So let us try to solve the transient problem until we obtain a stationary
solution, using the backward Euler time integration scheme with a increment step of 0.1. In order to control
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Fig. 11. Vortex shedding. (Left) Stability curve of the C/R method. (Right) Convergence histories of C/D without relaxation and C/R

with hD ¼ hR ¼ 0:2.
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as few parameters as possible in the iterative process, we couple the time, linearization and DD loops.

Results are shown in Fig. 12 for the C/N method which in this case converges (to the steady state).

Fig. 13 shows the stationary solutions obtained with the three domain decomposition methods compared

with the reference solution obtained on a fine mesh. We observe the good agreement of the mixed methods

with the reference solution; on the contrary, the solution of the C/D method differs notably from that of the

reference solution. This is attributed to the fact that Dirichlet conditions are much stiffer than Neumann
Fig. 13. Vortex shedding. (Left) Velocity module. (Right) Pressure. From top to bottom: one-domain solution, C/N, C/R, C/D.



Table 1

Vortex shedding (amplitude and period of the vertical pressure force)

One-domain C/D C/N C/R

Fine mesh Coarse mesh

Amplitude 0.170 0.196 0.044 0.110 0.132

Period 5.511 6.622 6.089 6.133 6.089
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conditions, i.e. a small error on Dirichlet conditions has much more influence than a small error on the
Neumann (or Robin) conditions.

We now go on to the transient case and set Re ¼ 100. Although the flow is unstable at this Reynolds
number, one can obtain a steady solution. This solution is used as initial condition of the transient sim-

ulation, on which we superimpose a small vortex near the cylinder. This is sufficient to trigger the unsteady

state. The time integration is carried out with the Crank–Nicholson scheme and dt ¼ 0:1.
As comparison criteria, we calculate the period and amplitude of the vertical pressure force acting on the

cylinder. Numerical references report values of the period between 5.6 and 6.0. See for example [48]. We test

the C/D, C/N and C/R methods using a one element overlap. The values of the amplitudes and frequencies
are reported in Table 1. As a reference, we also indicate the results obtained with the one-domain simu-

lation using the fine mesh defined earlier and a coarse mesh composed of 1200 Q1/Q1 elements. The C/R

method gives the closest results to the one-domain solution, the C/N method being a bit more diffuse. The

C/D is much more diffusive than the mixed methods in amplitude and frequency.

4.2. Missile launch from a submarine

In this example we propose to solve the transient and laminar flow around a moving missile [1], using the
Chimera/Robin method, i.e. the Chimera method using a Dirichlet/Robin coupling. The geometry is shown

in Fig. 14 (left). The missile is moving upward with a constant velocity U . The Reynolds number based on
the length H of the missile is

Re ¼ UH
m

¼ 1000:

We set U ¼ 1 and H ¼ 1. We are going to compare our results to those of Folch [3], obtained with an ALE
approach and an explicit flow solver described in [49]. As a background mesh we use a structured mesh of

6000 Q1/Q1 elements, shown in Fig. 15 (top), while the patch mesh is composed of 4173 P1/P1 elements.
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Fig. 14. Missile launch. Geometry and boundary conditions.



3366 G. Houzeaux, R. Codina / Comput. Methods Appl. Mech. Engrg. 192 (2003) 3343–3377
According to the C/R method, the velocity of the background mesh is prescribed at the interpolation nodes,

while the patch mesh is assigned a Robin transmission condition on its outer boundary. Note that the

missile subdomain does not contain any information on its own velocity as the force imposed as trans-

mission condition would be the same in any Galilean frame of reference; all the information on the velocity

of the missile is passed through the transmission conditions imposed on the background subdomain, and

according to the tensorial transformation described in the Appendix A.

The transient simulation is carried out using the backward Euler scheme with a time step dt ¼ 0:01. We
perform a maximum of 30 domain decomposition/linearization iterations at each time step using as
stopping criterion 10�4 for the interface residual of the Dirichlet data, the velocity components, given by

Eq. (10). The relaxation parameters are hD ¼ hR ¼ 0:5. Each problem is solved using a direct solver. The
convergence of the problem is shown in Fig. 14 (right).

Fig. 15 shows the composite mesh at time t ¼ 0:20, near the missile bottom right corner and at the

submarine exit corner.

Fig. 16 presents the velocity vectors obtained at different time steps. They show the development of the

vortices created by the suction of air from both sides of the missile.
Fig. 15. Missile launch. (Top) Background mesh. (Bot.) Composite mesh at t ¼ 0:2. (Bot.) (Left) Bottom right corner of missile. (Bot.)
(Right) Submarine exit.



Fig. 16. Missile launch. Velocity vectors. (Top) (Left) t ¼ 0:2. (Top) (Right) t ¼ 0:4. (Bot.) (Left) t ¼ 0:6. (Bot.) (Right) t ¼ 0:8.
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Figs. 17 and 18 compare the results of the present simulation to those of Folch [3] at different time steps.

The first figure presents the streamlines while the next figure presents some pressure contours. They show

that both methods give very similar profiles. We notice that an asymmetry develops after the missile leaves

the cavity, shown in Figs. 17 (right) and 18 (right). The fact that the asymmetry of the flow develops on the

same side for both simulations is just a coincidence. The zig-zags of the streamlines outside of the cavity are

due to the large size of the mesh in this region.

4.3. Stirred tank

In this example, we apply the Dirichlet/Neumann method to the solution of a stirred tank. The stirred

tank we consider is made of an axial flow impeller and four wall-welded baffles in the tank. The impeller

has four pitched blades at a 45� angle designed to draw in the liquid from above and direct it down-
wards to the bottom of the tank. Actually, the flow is discharged both axially and radially depending on

the angle and Reynolds number; for example at low Reynolds numbers the flow is principally radial, as

the simulations will show. Stirred tanks are in general very efficient for blending miscible materials and
solids suspension. In order to increase the vertical mixing, break up the circular flow around the tank,

and possibly to generate turbulence more rapidly, four baffles are disposed around the tank. The baffles

are welded to the wall although off-set baffles may be preferable to avoid stagnation zones in the

corners.



Fig. 17. Missile launch. Streamlines. (Top) Present simulation. (Bot.) Folch�s results [3]. From left to right, t ¼ 0:22, t ¼ 0:55, t ¼ 0:88,
t ¼ 1:65.

Fig. 18. Missile launch. Pressure. (Top) Present simulation. (Bot.) Folch�s results [3]. From left to right, t ¼ 0:22, t ¼ 0:55, t ¼ 0:88,
t ¼ 1:65.
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Fig. 19. Stirred tank. Geometry.
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The geometry is based on the stirred tank described in [19], and is shown in Fig. 19. The tank has a

diameter T ¼ 0:3 m, while the impeller diameter is D ¼ T=3. The blades have a width W ¼ D=5, and the
impeller to bottom clearance is C ¼ T=3. The four baffles are B ¼ T=12 wide.
The non-inertial subdomain is attached to the impeller and is assigned a Neumann transmission con-

dition. The fixed subdomain is the tank and is assigned a Dirichlet transmission condition. The impeller

subdomain is meshed with 93332 P1/P1 elements and the tank subdomain with 23135 P1/P1 elements; they

are shown in Fig. 20. These meshes are too coarse to describe accurately the physics of the flow, but they are

enough to show the performance of the DD strategy we propose. The Dirichlet subdomain is confined so

we apply the interface constraining of the mass conservation.

The impeller rotational speed is N ¼ 225 r.p.m. which corresponds to an angular velocity jxj ¼ 23:6
rad/s. The agitator tip speed is U ¼ jxjD=2 ¼ pDN ¼ 1:18 m/s, providing a low agitation. The Reynolds
number is defined as:
Fig. 20. Stirred tank. Composite mesh. (Left) Overwhole view. (Top) (Right) Top of the tank. (Bot.) (Right) Impeller and baffle.
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Re ¼ ND2

m
¼ 90;

while according to this choice the Eckman number is simply Ek ¼ 1=2Re. The time integration is carried out
using the backward Euler scheme with a time step dt ¼ 0:005 s. Each problem is solved using an iterative
solver (GMRES with diagonal preconditioning).
Fig. 21 (left) shows the convergence of the DD method in the first steps of the simulation. Due to the

high viscosity of the fluid, the flow becomes very rapidly periodic. Fig. 21 (right) presents the power

spectrum of the x-viscous force exerted on the impeller. We recognize the rotation frequency at 3.75 Hz, but
we cannot distinguish any other important frequency.

Fig. 22 shows the pressure contours on the impeller blades. The contours are smooth and confirm the

good stabilization of the numerical scheme. On the left blade the pressure is low: this is the suction face

which draws the fluid from above. Fig. 23 (top) (left) shows the pressure contours on a vertical cut outlining

the low pressure above the impeller and high pressure below the impeller. On the right blade, the pressure
is higher and pushed the flow downwards.

The fluid vertical swirl is confirmed by Fig. 23 (top) (right) which shows a vertical cut of the velocity

vectors. Fig. 23 (bot.) (left) shows the instantaneous streamlines, winding around the tank from top to

bottom and bottom to top. Finally, Fig. 23 (bot.) (right) shows vertical velocity contours on two horizontal

cuts.

This example demonstrates the usefulness of coupling domains in relative motion through a domain

decomposition strategy. Likewise, it also serves to show the efficiency of the Dirichlet/Neumann coupling

when there is is a small overlap between the subdomains involved.
Fig. 22. Stirred tank. Pressure on impeller. Left blade: low pressure. Right blade: high pressure.



Fig. 23. Stirred tank. (Top) (Left) Pressure. (Top) (Right) Velocity vectors on vertical cut. (Bot.) (Left) Streamlines. (Bot.) (Right)

Vertical velocity.
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5. Conclusions

We have proposed and studied an iteration-by-subdomain method on overlapping subdomains, based

on Dirichlet/Neumann and Dirichlet/Robin transmission conditions, and applied to the solution of the

transient Navier–Stokes equations. These methods are extensions of some existing DD methods on disjoint

subdomains to the case of overlapping subdomains; the transmission conditions on the interfaces are

mixed, i.e. they are of different type on each side of the interfaces; the solutions on the subdomains are

coupled iteratively until convergence is achieved.
In the view of a practical implementation for the solution of the Navier–Stokes equations, we built up a

Master/Slave algorithm to couple efficiently the numerical solution obtained on different subdomains. A

master code is in charge of controlling the iterative process and performing all the necessary operations to

leave the slaves unworried. Therefore, very few modifications of the original finite element solver are re-

quired. We then discussed the importance of the way the Neumann data is calculated: we identified the need

for using the solution from the underlying mesh on both sides of the Neumann-type interface. This is not

possible when using disjoint subdomains as the solution is only available on one side. From this remark, we
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derived a scheme based on a least-square smoothing of the derivatives. This scheme requires at least a one-
element overlap between the subdomains. In order to solve incompressible flows in complex geometries, we

introduced a Chimera strategy. We applied the iteration-by-subdomain algorithm to the solution of flows

around moving objects by deriving tensorial transformations (see the Appendix A) and an accurate time

integration algorithm.

From the numerical examples presented, and also from the numerical experience obtained with other

problems not presented here, we may conclude that the Dirichlet/Robin method (and also the associated

C/R version) offers the best compromise between accuracy, robustness and flexibility. In particular:

• For flows with convection, it is preferable to the Dirichlet/Neumann method. We saw in the example of

Section 4.1 that the C/N did not converge, whereas the C/R method did.

• It is more flexible that the Dirichlet/Dirichlet coupling, since very small (or zero) overlap is possible.

• It is more accurate that the Dirichlet/Dirichlet coupling. In particular, we have observed that it is less

diffusive. However, this may in turn affect robustness, since overly diffusive schemes have obviously bet-

ter numerical behavior in iterative schemes. This was also noted in the example of Section 4.1.
Appendix A. Tensorial transformations

If subdomains i and j are in relative motion, tensorial transformations must be performed each time a
variable is obtained in i from j and when a host element is to be found. Let us denote Ek the basis vector in

the kth direction of an absolute frame of reference and X the coordinate vector of a point measured in it.
Assume we know or we have a way to calculate the translation vector T i and the rotation matrix Hi of

subdomain i as well as those of subdomain j (T j and Hj respectively), as shown in Fig. 24.

A.1. Expressions for the position, velocity and strain rates

We want to express the position, the velocity and the strain rates in subdomain i in terms of the variables
measured in j. We have

xj ¼ HjðX � T jÞ;
xi ¼ HiðX � T iÞ:

Knowing that the rotation matrix is orthogonal, we easily get xi in terms of xj:

xi ¼ HiðHt
jxj þ T j � T iÞ: ðA:1Þ
Fig. 24. Two moving frames of reference in the absolute one.
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Differentiating this equation with respect to time, we find the velocity ui in terms of the velocity uj measured
in j:

ui ¼ _xxi ¼ _HHiðHt
jxj þ T j � T iÞ þ Hið _HHt

jxj þ Ht
juj þ _TT j � _TT iÞ; ðA:2Þ

where ð_�Þ ¼ dð�Þ=dt and _TT j and _TT i are the velocities of subdomains j and imeasured in the absolute frame of
reference Ek.

We now derive the transformation of the strain rates, i.e. we want to express the strain rates eiðuiÞ
measured in subdomain i as a function of the strain rates ejðujÞ measured in subdomain j. We have

oui
oxi

¼ oui
oxj

oxj
oxi

:

By substituting Eq. (A.2), and knowing that

oxj
oxi

¼ HjH
t
i;

we obtain

oui
oxi

¼ _HHiH
t
jHjH

t
i þ Hið _HHt

jHjÞHt
i þ HiH

t
j

ouj
oxj

HjH
t
i:

Due to the orthogonality of the rotation matrices, Ht
jHj ¼ I so the last equation gives

oui
oxi

¼ _HHiH
t
i þ Hið _HHt

jHjÞHt
i þ HiH

t
j

ouj
oxj

HjH
t
i;

and

oui
oxi

� 
t
¼ Hi

_HHt
i þ HiðHt

j
_HHjÞHt

i þ HiH
t
j

ouj
oxj

� 
t
HjH

t
i:

Now we add up the latter two equations and divide the result by two to obtain the equation for the strain

rate:

eiðuiÞ ¼
1

2

oui
oxi

� 
�
þ oui

oxi

� 
t�

¼ d

dt
ðHiH

t
iÞ þ Hi

d

dt
ðHt

jHjÞHt
i þ ðHiH

t
jÞejðujÞðHiH

t
jÞ
t

¼ dI
dt

þ Hi
dI
dt

Ht
i þ ðHiH

t
jÞeðujÞðHiH

t
jÞ
t
:

The first two terms are zero so we finally find that the velocity strain rate tensor transforms like:

eiðuiÞ ¼ ðHiH
t
jÞejðujÞðHiH

t
jÞ
t
: ðA:3Þ

We observe that the velocity strain rate undergoes a rotation but no scaling, contrary to the velocity.

We can also check that this expression is symmetric.
A.2. A second-order time integration of the basis vectors

In order to close the transformation of the position, velocity and strain rates expressed by Eqs. (A.1),

(A.2) and (A.3), we need to compute the rotation matrices Hj and Hi at each time. Let us denote by H the
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rotation matrix of a frame of reference of basis vectors eks with respect to the absolute frame of reference,
given by

H ¼ e1 e2 e3½ �t

and assume we know the angular velocity vector x of the frame, which is a function of time. At each

instant, the change of the basis vectors satisfies:

_eekðtÞ ¼ xðtÞ � ekðtÞ ¼ WðtÞekðtÞ; ðA:4Þ

where Wpq ¼ �epqrxr is given in the basis Ek; epqr is the permutation (alternating) tensor with value zero if two
indices are repeated, and with value 1 or )1 if p; q; r are in cyclic order or not, respectively. In the following,
we use the matrix form given by Eq. (A.4). Let us consider a partition 0 ¼ t0 < t1 < � � � < tN ¼ T of the time
interval ½0; T � of interest. In order to integrate Eq. (A.4), we propose the following approximation:

_~ee~eekðtÞ ¼ Wn
�

þ 1
2
_W nW n dt

�
~eekðtÞ; for tn6 t6 tnþ1; ðA:5Þ

where superscript n denotes variables considered at time tn, the tilde indicates that the solution is ap-
proximated and dt ¼ tnþ1 � tn. We are now going to show that the approximation given by Eq. (A.5) is
of second order in time. By direct integration of Eq. (A.5), we find that

~eekðtnþ1Þ ¼ exp Wn dt
�

þ 1
2
_WnWn dt2

�
~eekðtnÞ: ðA:6Þ

Let us develop the exact solution of Eq. (A.4) in Taylor series around time tn:

ekðtnþ1Þ ¼ ekðtnÞ þ _eekðtnÞdt þ 1
2
€eekðtnÞdt2 þ Oðdt3Þ

¼ ½I þWn dt þ 1
2
_W nW n dt2 þ 1

2
ðWnÞ2 dt2�ekðtnÞ þ Oðdt3Þ:

Performing the same expansion for the approximate solution given by Eq. (A.6), we get

~eekðtnþ1Þ ¼ ½I þW n dt þ 1
2
_WnWn dt2 þ 1

2
ðW nÞ2 dt2 þ Oðdt3Þ�~eekðtnÞ þ Oðdt3Þ:

We simplify the latter two equations by introducing

An ¼ I þW n dt þ 1
2
_WnWn dt2 þ 1

2
ðW nÞ2 dt2;

so that we have

ekðtnþ1Þ ¼ AnekðtnÞ þ Oðdt3Þ;
~eekðtnþ1Þ ¼ An~eekðtnÞ þ Oðdt3Þ:

Therefore

~eekðtnþ1Þ � ekðtnþ1Þ ¼ Anð~eekðtnÞ � ekðtnÞÞ þ Oðdt3Þ
¼ AnAn�1ð~eekðtn�1Þ � ekðtn�1ÞÞ þ Oðdt3Þ þ Oðdt3Þ

..

.

¼ AnAn�1 � � �A0ð~eekðt0Þ � ekðt0ÞÞ þ Oðdt2Þ:

Assuming the basis vectors are given at t ¼ 0, we have ~eekðt0Þ � ekðt0Þ ¼ 0. Therefore, we have that ~eekðtnþ1Þ�
ekðtnþ1Þ ¼ Oðdt2Þ.



G. Houzeaux, R. Codina / Comput. Methods Appl. Mech. Engrg. 192 (2003) 3343–3377 3375
In order to find the ~eeks at tnþ1, we apply Eq. (A.6) recursively:

~eekðtnþ1Þ ¼ exp
Xn
m¼0

Wm dt
�"

þ 1
2

_WmWmdt2

#

Ek ðA:7Þ

¼ ðHnÞtEk ðby definitionÞ; ðA:8Þ

where we have assumed that ~ee0k ¼ Ek. The last expression for the rotation matrix is not convenient, so we try

to derive a nicer equation for the coefficients of Hn at time tn. By definition, we have

W m
pq ¼ �epqrx

m
r ;

_WW m
pq ¼ �epqr _xx

m
r :

Let B be the argument matrix of the exponential function of Eq. (A.7), that is,

B ¼
Xn
m¼0

Wm dt
�

þ 1
2

_WmWm dt2


;

whose coefficients are

Bpq ¼ �epqr
Xn
m¼0

xm
r dt

�
þ 1
2
_xxm
r dt2



:

We define the vector rn and the unit vector r̂rn as

rn ¼
Xn
m¼0

xm dt
�

þ 1
2
_xxm dt2



;

r̂rn ¼ rn

jrnj ;

so the coefficients of matrix B become

Bpq ¼ �epqrr̂rnr jrnj:
Let us introduce a matrix C and a scalar h defined by

Cpq ¼ �epqrr̂rnr ;

h ¼ jrnj:
ðA:9Þ

According to these definitions, Eq. (A.7) can be re-written as

~eekðtnþ1Þ ¼ expðhCÞEk:

In addition, it can be shown that for a matrix C given by (A.9) with r̂rn being a unit vector, we have

ðexpðhCÞÞpq ¼ r̂rnp r̂r
n
q þ ðdpq � r̂rnp r̂r

n
qÞ cos h þ Cpq sin h

¼ r̂rnp r̂r
n
q þ ðdpq � r̂rnp r̂r

n
qÞ cos jrnj � epqrr̂rnr sin jrnj:

By definition of the rotation matrix Hn we have

ðHnÞ ¼ ðexpðhCÞÞt;
so the coefficients of the previous exponential form are given by:

Hn
pq ¼ r̂rnp r̂r

n
q þ ðdpq � r̂rnp r̂r

n
qÞ cos jrnj þ epqrr̂rnr sin jrnj:

We recognize here the expression for the matrix coefficient of a rotation through an angle jrnj about an axis
whose direction is given by the unit vector r̂r; see for example [47].
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The derivative of the rotation function is given by

_HHn ¼ _~ee~ee1ðtnÞ _~ee~ee2ðtnÞ _~ee~ee3ðtnÞ
� �t

:

Using (A.5) evaluated at time tnþ1 and (A.8) it is found that

_~ee~eekðtnþ1Þ ¼ W n
�

þ 1
2
_WnWn dt

�
ðHnÞtEk;

from where it follows that

_HHnþ1 ¼ Hn Wn
�

þ 1
2
_WnWn dt

�t
:
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