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Abstract

We define stress and strain splittings appropriate to linearly elastic anisotropic materials with volumetric constraints.

The treatment includes rigidtropic materials, which develop no strains under a stress pattern that is a null eigenvector of

the compliance matrix. This model includes as special case incompressible materials, for which the eigenvector is hy-

drostatic stress. The main finding is that pressure and volumetric strain must be redefined as effective quantities. Using

this idea, an energy decomposition that exactly separates deviatoric and volumetric energy follows.
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Keywords: Elasticity; Anisotropy; Rigidtropy; Incompressibility; Isochoricity; Volumetric constraints; Stability; Constitutive equation;

Compliance; Deviatoric; Splitting

1. Introduction

An isotropic solid is called incompressible if it is susceptible only of isochoric motions [1, Sec. 77]. If the material is

linearly elastic the stress is specified by the strains only up to an arbitrary hydrostatic stress (pressure). This uncoupling

forms the basis of splittings into volumetric and deviatoric strains long used in the analytical and numerical modeling of

those materials.

The concept loses transparency for non-isotropic behavior because changes of shape and volume are generally

coupled. A generalization aimed at linearly elastic anisotropic solids is the rigidtropic model defined in Appendix A,

which summarizes key results from [2]. A rigidtropic material is infinitely rigid under a specific nonzero stress pattern.

The pattern is defined by the eigenvector that renders the compliance (strain–stress) matrix singular. If this eigenvector

happens to be hydrostatic stress, it is shown in Appendix A that the material is isochoric (volume preserving) under any

stress state. This specialization defines an incompressible anisotropic material.

With the generalization in place, useful splittings of stresses, strains and internal energy can be obtained for the

numerical treatment of anisotropic solids with a singular compliance. An auxiliary tool used in this development is the

concept of free–free flexibility and stiffness presented in [3,4]. These two singular matrices are the Moore–Penrose

generalized inverses of each other. They can be expressed as projected ordinary inverses of modified matrices.
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The splittings are worked out first for a general anisotropic material. They are then specialized to the orthotropic

and isotropic cases. The treatment of the isotropic case is included to illustrate the connection to existing splitting

methods.

2. Anisotropic material

We consider a linearly elastic anisotropic solid in three dimensions referred to axes fxig. Stresses rij and strains eij
will be arranged as six-component column vectors constructed from the tensors through the usual conventions of

structural mechanics:

r ¼ ½ r11 r22 r33 r23 r31 r12 �T; e ¼ ½ e11 e22 e33 2e23 2e31 2e12 �T: ð1Þ

The mean normal stress is rm ¼ 1
3
ðr11 þ r22 þ r33Þ. A hydrostatic stress state is defined by r11 ¼ r22 ¼ r33 ¼ rm, others

zero. The volumetric strain is ev ¼ e11 þ e22 þ e33.

2.1. Constitutive equations

The strain–stress constitutive equation is

e ¼

e11
e22
e33
2e23
2e31
2e13

2
6666664

3
7777775 ¼

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

symm C66

2
6666664

3
7777775

r11

r22

r33

r23

r31

r12

2
6666664

3
7777775 ¼ Cr: ð2Þ

Here Cij are compliance coefficients arranged into the symmetric compliance matrix C. All diagonal entries Cii are

assumed to be nonnegative with a positive sum. The compliance is called stable, semistable or unstable if C is positive

definite, positive semidefinite, or indefinite, respectively. In the semistable case it will be assumed that C has a rank

deficiency of at most one to simplify the analysis.

The eigenvalues of C are ci for i ¼ 1; 2; . . . ; 6, with vi the corresponding eigenvector normalized to length
ffiffiffi
3

p
. (This

nonstandard normalization simplifies linkage to the incompressible case.) Accordingly the spectral decomposition is

C ¼ 1

3

X6

i¼1

civiv
T
i ; vTi vj ¼ 3dij; ð3Þ

where dij is the Kronecker delta. The eigenvalues are arranged so that c1 ¼ cmin and c6 ¼ cmax are the algebraically

smallest and largest, respectively. The eigenvector v1 associated with c1 is often renamed w. For stable models, ci > 0 for

i ¼ 1; . . . ; 6. For semistable models c1 ¼ 0. Unstable models are not physically acceptable.

If C is stable its ordinary inverse is called E ¼ C
1. This matrix collects the moduli Eij and relates stresses to strains:

r ¼ Ee. It is called the elasticity or rigidity matrix in the continuum mechanics literature. If C is semistable (singular) a

generalized inverse is defined in Section 2.7.

The Rayleigh quotients of the vi are noted for later use:

ci ¼
vTi Cvi

vTi vi
¼ 1

3
vTi Cvi: ð4Þ

2.2. Volumetric constraints

The volumetric constraints defined in Section 1 are mathematically expressed in terms of C as

Rigidtropic: c1 ¼ 0; ci > 0; i ¼ 2; . . . ; 6: ð5Þ

Incompressible: rigidtropic and C1j þ C2j þ C3j ¼ 0; j ¼ 1; 2; 3: ð6Þ

In both cases

detðCÞ ¼ 0; Cw ¼ 0; with w � v1; wTw ¼ 3: ð7Þ
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If w is the hydrostatic stress mode ½ 1 1 1 0 0 0 �T the zero-column-sum condition (6) is verified and the material

is incompressible. In the sequel no particular attention is placed on incompressibility because it is a subset of the more

general rigidtropic model.

The following example matrix, referred to principal material axes, has the entry pattern appropriate to an hexagonal

(trigonal-pyramidal, rhombohedral) material governed by the C8 symmetry group [5, p. 89]

Chex ¼

C11 C12 C13 C14 C15 0

C11 C13 
C14 
C15 0

C33 0 0 0

C44 0 
2C15

C55 2C14

symm 2ðC11 
 C12Þ

2
6666664

3
7777775 ¼

12 
6 
12 
7 10 0


6 12 
12 7 
10 0


12 
12 48 0 0 0


7 7 0 20 0 
20
10 
10 0 0 20 
14

0 0 0 
20 
14 36

2
6666664

3
7777775: ð8Þ

The set of numerical entries are exact integers. The eigenvalues (listed to six places if not integer) are c1 ¼ 0,

c2 ¼ 1:70838, c3 ¼ 2:30953, c4 ¼ 36:2916, c5 ¼ 53:6905 and c6 ¼ 54. Thus (8) is semistable and rigidtropic. The null

eigenvector is v1 � w ¼ ð1=
ffiffiffi
3

p
Þ½ 2 2 1 0 0 0 �T, wTw ¼ 3.

2.3. Quasi-rigidtropic materials and the reference model

Models that satisfy (7) exactly or to high numerical accuracy are rare if entries come from experimental data. It is far

more common to find ‘‘quasi-rigidtropic’’ (QRT) behavior in the sense that C has a tiny positive compliance in a stress

eigenmode. Mathematically:

c1 > 0; c1 < �rc6; �r � 1: ð9Þ

Here �r is a preset tolerance, for example 10
3, which triggers treatment of the material model as QRT. Note that the

reciprocal 1=�r is a spectral condition number for C. A tiny but negative c1 may also occur due to experimental noise;

stabilization of such models is discussed in Section 2.6.

If (9) is verified, one proceeds to compute two auxiliary quantities: the reference rigidtropic model C and an effective

bulk modulus K. These are used to split the constitutive equations and internal energy in Sections 2.8ff.

The reference rigidtropic model C is that nearest C satisfying (5). But how to define ‘‘nearness’’? The answer is not

unique. Two methods for constructing C are described below: projection and scaling. The key relations of these two

methods are summarized in Fig. 1.

2.4. C by projection

To apply the projection method, compute the eigensystem of C. Pick the algebraically smallest eigenvalue c1, and
check whether the model classifies as QRT as per (9). (For a tiny but negative c1 see Section 2.6.) Call the associated

eigenvector w � v1, w
Tw ¼ 3. Redo the spectral decomposition (3) subtracting off c1:

C ¼ C
 1

3
c1ww

T ¼
X6

i¼2

1

3
civiv

T
i : ð10Þ

C = C

C (data)

Cχ

χ
−

−
C = C + γ  w w^

^

-

C = P C
−

T

T

T

1

1

(b) Scaling:

C (data) ^ C = C

C = P C = C −   γ  w w
−

−

(a) Projection:

1_
3

K    = w  C w

C w = C w = 0

−C w = 0

−1  
TK    = w  C w−1  

Fig. 1. Two methods for handling a QRT compliance: (a) projection and (b) scaling. Starting from the same given C they generally

produce different Cs.
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This is called a projection method since it is equivalent to pre- or post-multiplying C by an orthogonal projector P

defined by w:

C ¼ PC ¼ CP; P ¼ I
 1
3
wwT; P2 ¼ P; ð11Þ

where I is the 6
 6 identity matrix. The effective bulk modulus K is computed as

K
1 ¼ 3c1 ¼ wTCw: ð12Þ

The constitutive meaning of K as ratio of effective pressure to effective volumetric strain is discussed later after those

quantities are introduced.

To build an example QRT matrix, the nonzero entries of the example matrix (8) are perturbed on the order of 1% by

a random number generator. The results of the process is

C ¼

11:78029 
5:90183 
11:79849 
6:96337 10:14722 0

5:90183 11:93375 
11:82934 7:10696 
9:92362 0


11:79849 
11:82934 47:38653 0 0 0


6:96337 7:10696 0 20:01094 0 
19:85809
10:14722 
9:92362 0 0 20:04357 
13:97715

0 0 0 
19:85809 
13:97715 36:16219

2
6666664

3
7777775: ð13Þ

The eigenvalues are now c1 ¼ 0:04409, c2 ¼ 1:53218, c3 ¼ 2:50946, c4 ¼ 36:2653, c5 ¼ 53:2816 and c6 ¼ 53:6847. The

eigenvector corresponding to c1 ¼ 0:04409 is

w ¼ v1 ¼ ½ 1:20725 1:09464 0:57438 
0:02075 
0:10602 
0:05244 �T: ð14Þ

The projected reference model is

C ¼ C
 1

3
c1ww

T ¼

11:75887 
5:92125 
11:80868 
6:96300 10:14910 0:00093

5:92125 11:91614 
11:83858 7:10729 
9:92191 0:00084

11:80868 
11:83858 47:38169 0:00018 0:00089 0:00044

6:96300 7:10729 0:00018 20:01094 
0:00003 
19:85810
10:14910 
9:92191 0:00089 
0:00003 20:04340 
13:97723
0:00093 0:00084 0:00044 
19:85810 
13:97723 36:16215

2
6666664

3
7777775: ð15Þ

The eigenvalues of (15) are the same as those of C except for c1 ¼ 0. The eigenvectors do not change. The effective bulk

modulus is K ¼ 1=ð3c1Þ ¼ 1=ðwTCwÞ ¼ 7:56067.

2.5. C by scaling

Projection preserves eigenvectors (and all eigenvalues but c1) but generally changes all entries of C as can be ob-

served comparing (15) to (13). Occasionally it is desirable to keep the same diagonal entries or to preserve zero off-

diagonal entries resulting from material symmetries known as a priori.

In the scaling procedure the off-diagonal entries of the upper 3
 3 minor are multiplied by ð1þ vÞ, where v is a real

parameter:

Cv ¼

C11 ð1þ vÞC12 ð1þ vÞC13 C14 C15 C16

C22 ð1þ vÞC23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

symm C66

2
6666664

3
7777775: ð16Þ

Expand detðCvÞ as a polynomial in v. Solve det Cv ¼ 0 for the smallest real root v. Apply v to Cv to get C ¼ Cv.

Although scaling keeps diagonal entries invariant and preserves zero off-diagonal ones, it will generally change all

eigenvalues and eigenvectors. Hence it is necessary to redo the eigensystem analysis to get the spectral decomposition

C ¼ 1

3

X6

i¼1

ci�vvi�vv
T
i ; �vvTi �vvi ¼ 3: ð17Þ
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Verify the rigidtropy and stability conditions: c1 ¼ 0, ci > 0 for i ¼ 2; . . . ; 6. If C is unstable the projection method

should be used as fall-back. If C is semistable, pick w � v1. The effective bulk modulus is computed via the Rayleigh

quotient of w on the original C:

K
1 ¼ 3
wTCw

wTw
¼ wTCw: ð18Þ

Why not scale all off-diagonal entries? The answer is that scaling is only recommended when rigidtropy is associated

with lateral contraction (Poisson) effects controlled by C12, C13 and C23, so it is applied where it is most effective. For

instance the null eigenvector w of the exact rigidtropic example compliance (8) has zeros in the last three components,

while in the QRT perturbed matrix (13) those are very small.

To scale (13), entries C12, C13 and C23 are multiplied by ð1þ vÞ. The determinant equation det Cv ¼ 0 has three roots:

v1 ¼ 
3:00511, v2 ¼ 
0:467716 and v3 ¼ 0:002822. Pick v ¼ v3 as that closest to zero, and substitute v to get

C ¼

11:78029 
5:91849 
11:83179 
6:96337 10:14722 0

5:91849 11:93375 
11:86272 7:10696 
9:92362 0


11:83179 
11:86272 47:38653 0 0 0


6:96337 7:10696 0 20:01094 0 
19:85809
10:14722 
9:92362 0 0 20:04357 
13:97715

0 0 0 
19:85809 
13:97715 36:16219

2
6666664

3
7777775: ð19Þ

This has eigenvalues c1 ¼ 0, c2 ¼ 1:54084, c3 ¼ 2:50934, c4 ¼ 36:273, c5 ¼ 53:3091 and c6 ¼ 53:685, which is acceptable

as regards stability. The null eigenvector w � �vv1 is

w ¼ �vv1 ¼ ½ 1:20524 1:09659 0:57545 
0:02113 
0:10313 
0:05146 �T: ð20Þ

The effective bulk modulus is K ¼ 1=ðwTCwÞ ¼ 7:55588. Comparing with the results of the projection method the

answers are seen to be very similar. The main visible difference between the reference models (15) and (19) is that zero

entries are exactly preserved in the latter.

2.6. Recommendations on method selection

Fig. 1 summarizes both methods in graphic form. Projection has the important advantage of being observer in-

variant since it works with the spectrum of C. If C is stable, C is guaranteed to be semistable since c2 through c6 are

unchanged. Scaling would produce different results as axes fxig are rotated; moreover it might be necessary to extend

the ð1þ vÞ factors to all off-diagonal components in some cases. For this reason scaling should be restricted to models

satisfying two conditions:

• The projection method would disturb zeros entries that are to be preserved to express material symmetries, as in the

example (13).

• Rigidtropy is due to lateral contraction (Poisson) effects governed by C12, C13 and C23.

Although the QRT presumption (9) excludes QRT unstable models, in practice discovering a tiny but negative c1 is

as likely as having a positive value. Experimental noise coupled to pre-selection of symmetry groups may cause that to

happen. The good news is that both projection and scaling are unaffected by the sign of c1: if negative the computation

of C can be viewed as a model stabilization step. For example, consider the unstable QRT compliance:

C ¼

12:15638 
6:00271 
12:09760 
6:95476 10:05482 0


6:00271 11:81220 
11:77289 7:11267 
10:14806 0

12:09760 
11:77289 47:27442 0 0 0


6:95476 7:11267 0 19:67066 0 
20:27321
10:05482 
10:14806 0 0 20:32512 
13:90944

0 0 0 
20:27321 
13:90944 35:68183

2
6666664

3
7777775; ð21Þ

with eigenvalues c1 ¼ 
0:05323, c2 ¼ 1:5004, c3 ¼ 2:0792, c4 ¼ 36:489, c5 ¼ 53:298 and c6 ¼ 53:607. The projected

matrix is
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C ¼ C
 1

3
c1ww

T ¼

12:17677 
5:97940 
12:08659 
6:95657 10:05598 
0:00058

5:97940 11:83887 
11:76030 7:11059 
10:14674 
0:00066

12:08659 
11:76030 47:28036 
0:00098 0:00062 
0:00031

6:95657 7:11059 
0:00098 19:67082 
0:00010 
20:27316
10:05598 
10:14674 0:00062 
0:00010 20:32519 
13:90948

0:00058 
0:00066 
0:00031 
20:27316 
13:90948 35:68185

2
6666664

3
7777775: ð22Þ

The eigenvalues of (22) are the same as those of (21) except for c1 ¼ 0. The scaling method gives

C ¼

12:15638 
5:98251 
12:05688 
6:95476 10:05482 0

5:98251 11:81220 
11:73326 7:11267 
10:14806 0


12:05688 
11:73326 47:27442 0 0 0


6:95476 7:11267 0 19:67066 0 
20:27321
10:05482 
10:14806 0 0 20:32512 
13:90944

0 0 0 
20:27321 
13:90944 35:68183

2
6666664

3
7777775; ð23Þ

with eigenvalues c1 ¼ 0, c2 ¼ 1:4925, c3 ¼ 2:0770, c4 ¼ 36:480, c5 ¼ 53:264 and c6 ¼ 53:607. This compliance matrix is

acceptable from the standpoint of stability.

2.7. The stress–strain matrices

From now on a compliance that exactly satisfies (5) will be called C. This has the spectral decomposition (17). This

matrix generally comes from adjusting a QRT compliance C by one of the methods discussed in the previous sections.

The null eigenvector of C is always called w for brevity:

Cw ¼ 0; w ¼ ½w1 w2 w3 w4 w5 w6 �T; wTw ¼ 3: ð24Þ

The projected elasticity matrix is defined as the Moore–Penrose generalized inverse of C:

E ¼ P C

	
þ 1

3
wwT



1

¼ 1

3

X6

i¼2

1

ci
�vvi�vv

T
i ; P ¼ I
 1

3
wwT: ð25Þ

These expressions follow from the theory of the free–free flexibility developed in [3,4]. Matrix E is symmetric, singular

and positive semidefinite with null eigenvector w: Ew ¼ 0. It verifies EC ¼ CE ¼ P as well as other relations catalogued

in those references. Relation (25) is dual: it holds if C and E are switched and 1=ci replaced by ci.
As an example let us compute the E of (8), for which wT ¼ ½ 2 2 1 0 0 0 �=

ffiffiffi
3

p
:

Ehex ¼ I

	

 1

3
wwT



Chex

	
þ 1

3
wwT



1

¼ 1

30; 132

4891 
4829 
124 3402 
4860 0


4829 4891 
124 
3402 4860 0


124 
124 496 0 0 0
3402 
3402 0 8748 0 4860


4860 4860 0 0 8748 3402

0 0 0 4860 3402 4860

2
6666664

3
7777775: ð26Þ

As a visual check, the pattern of zero entries is exactly that of Chex. Furthermore E44 ¼ 1
2
ðE11 
 E12Þ, E46 ¼ 
E15, etc., as

appropriate for the hexagonal symmetry group [5, p. 89]. The ordinary inverse of Chex does not exist.

For future use define

bCC ¼ Cþ 1
9
K
1wwT; bEE ¼ Eþ KwwT: ð27Þ

These matrices have the useful properties

bEE bCC ¼ bCCbEE ¼ I; bCCw ¼ 1
3
K
1w; bEEw ¼ 3Kw; C ¼ PbCC ¼ bCCP; E ¼ PbEE ¼ bEEP: ð28Þ

Of course bEE blows up as K ! 1 but this matrix is never assembled as such; it is a convenient ‘‘splitting tool’’ in the

spirit of the delta function, which works behind the scenes and disappears once done.

If the projection method is used to get C, matrices bCC and bEE reduce to C and E, respectively.
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2.8. Effective pressure and volumetric strain

Define effective pressure p and effective volumetric strain h as

p ¼ 1
3
wTr ¼ 1

3
ðw1r11 þ w2r22 þ w3r33 þ w4r23 þ w5r31 þ w6r12Þ;

h ¼ wTe ¼ w1e11 þ w2e22 þ w3e33 þ 2w4e23 þ 2w5e31 þ 2w6e12:
ð29Þ

The ratio of p to h is called the effective bulk modulus:

p ¼ Kh; h ¼ K
1p: ð30Þ

The proof that K
1 ¼ wTCw is given in Section 2.10.

For the incompressible specialization w ¼ ½ 1 1 1 0 0 0 �T. In this case p and h reduce to the mean normal

stress and usual volumetric strain, respectively:

p ¼ 1
3
wTr ¼ 1

3
ðr11 þ r22 þ r33Þ ¼ rm; h ¼ wTe ¼ e11 þ e22 þ e33 ¼ ev: ð31Þ

Incompressibility may be also characterized by h ¼ divu ¼ oui=oxi ¼ 0 for any admissible motion, where u ¼
½ u1 u2 u3 �T is the displacement field.

2.9. Stress–strain splitting

The definitions (29) are used to introduce effective deviatoric stresses sij and deviatoric strains gij by

s ¼ r 
 wp; g ¼ e
 1
3
wh; ð32Þ

where vector arrangements mimic those of (1):

s ¼ ½ s11 s22 s33 s23 s31 s12 �T; g ¼ ½ g11 g22 g33 2g23 2g31 2g12 �T: ð33Þ

The key decoupling relations that follow from this definition are

wTs ¼ 0; wTg ¼ 0: ð34Þ

From these easily follow the projective properties

s ¼ Pr; g ¼ Pe; sTe ¼ sTg; gTs ¼ gTr; ð35Þ

in which P ¼ I
 1
3
wwT.

2.10. QRT constitutive equations

To derive the split constitutive equations of a QRT material, e ¼ Cr is replaced by e ¼ bCCr. The splitting (32) and the

bulk equation (30) are introduced, and the decoupling relations (34) and (35) used:

e ¼ bCCr ¼ C
�

þ 1
9
K
1wwT



ðsþ wpÞ ¼ Csþ 1

3
wK
1p ¼ gþ 1

3
wh: ð36Þ

Identifying gives g ¼ Cs. To work out the inverse relation, r ¼ Ee is replaced by r ¼ bEEe and use made of (28):

r ¼ bEEe ¼ ðEþ KwwTÞ g
�

þ 1
3
wh



¼ Egþ wKh ¼ sþ wp: ð37Þ

Identifying gives s ¼ Eg. Summarizing, the split constitutive equations for finite K are

g ¼ Cs ¼ Cr; s ¼ Eg ¼ Ee; h ¼ K
1p; p ¼ Kh ð38Þ

and in terms of total strains and stresses

e ¼ Csþ 1
3
wK
1p ¼ Cr þ 1

3
wK
1p; r ¼ Egþ wKh ¼ Eeþ wKh: ð39Þ

If the material is exactly rigidtropic, K ! 1, in which case (38) collapse to e ¼ Cs, s ¼ Ee, h ¼ 0, and the effective

pressure p is completely decoupled from deformations.
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We can now show that K
1 ¼ wTCw as follows. For the projection treatment of a QRT model:

K ¼ p
h
¼

1
3
wTr

wTe
¼

1
3
wTr

wTCr
¼

1
3
wTðsþ wpÞ

wT Cþ 1
3
c1wwT

� 

ðsþ wpÞ

¼ p
3c1p

¼ 1

3c1
¼ 1

wTCw
: ð40Þ

If C is obtained by scaling, K
1 ¼ wTCw is simply a definition suggested by the Rayleigh quotient approximation

properties. It is easily verified that for an isotropic material of elastic modulus E and Poisson�s ratio m, K reduces to the

ordinary bulk modulus 1
3
E=ð1
 2mÞ for any m.

One final observation: the deviatoric relations g ¼ Cs and s ¼ Eg remain unchanged if any multiple of wwT is added

to either C or E. This device can be occasionally used to advantage to simplify their forms. For example the modified E

can be diagonalized for isotropic materials to derive the Lam�ee deviatoric–volumetric split, as done in Section 3.

2.11. Energy splitting

Insertion of (32) into the internal energy density U ¼ 1
2
rTe produces an exact split into deviatoric and volumetric

energies

2U ¼ 2Ud þ 2Uv ¼ sTgþ ph ¼ sTeþ ph ¼ rTgþ ph; ð41Þ
in which the last two transformations follow from (35). Substitution of the constitutive equations (38) or (39) and use of

orthogonality properties permits selective replacements. For example

2Ud ¼ sTe ¼ sTCs ¼ rTCr ¼ gTEg ¼ eTEe; 2Uv ¼ ph ¼ p2

K
¼ Kh2: ð42Þ

In Ud, deviators g may be replaced by e as in sTg ¼ sTe, etc., according (35). Likewise s can be replaced by r as in

sTg ¼ rTg, etc. In displacement FEM formulations it is often convenient to use total strains.

In exact rigidtropy the volumetric energy vanishes.

3. Isotropic material

The foregoing derivations are specialized to isotropic linear elasticity to illustrate connections to conventional

splitting methods. The strain–stress relations are

e ¼

e11
e22
e33
2e23
2e31
2e12

2
6666664

3
7777775 ¼ 1

E

1 
m 
m 0 0 0

1 
m 0 0 0

1 0 0 0
2ð1þ mÞ 0 0

2ð1þ mÞ 0

symm 2ð1þ mÞ

2
6666664

3
7777775

r11

r22

r33

r23

r31

r12

2
6666664

3
7777775 ¼ Cr; ð43Þ

where E is the elastic modulus and m is Poisson�s ratio. The determinant of C is 8ð1þ mÞ5ð1
 2mÞ=E6. For nonnegative m
this vanishes for m ¼ 1

2
. Ordinary inversion of (43) yields

r ¼

r11

r22

r33

r23

r31

r12

2
6666664

3
7777775 ¼ Em

1
 m m m 0 0 0
1
 m m 0 0 0

1
 m 0 0 0
1
2
ð1
 2mÞ 0 0

1
2
ð1
 2mÞ 0

symm 1
2
ð1
 2mÞ

2
6666664

3
7777775

e11
e22
e33
2e23
2e31
2e12

2
6666664

3
7777775 ¼ Ee; ð44Þ

where Em ¼ E=ðð1
 2mÞð1þ mÞÞ. Coefficient Em ‘‘blows up’’ if m ! 1
2
. This is a well known problem in the numerical

analysis of such models by displacement-based finite element methods. For this application it has been addressed by

splittings into deviatoric stresses and pressure since the mid 1960s [6].

Let C be C evaluated at m ¼ 1
2
. This matrix projects any r onto the space of traceless (divergence free) strain tensors.

The null eigenvector of C is

w ¼ ½ 1 1 1 0 0 0 �T: ð45Þ

This represents hydrostatic pressure; consequently rigidtropic and incompressible models coalesce. In fact, (45) is an an

eigenvector of the compliance matrix (43) for any m. It is easily verified that
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wTCw ¼ 3ð1
 2mÞ
E

¼ K
1; ð46Þ

where K is the conventional bulk modulus. Hence c1 ¼ 1
3
K
1 exactly for any m. The orthogonal projector P is

P ¼ I
 1

3
wwT ¼ 1

3

2 
1 
1 
1 
1 
1


1 2 
1 
1 
1 
1


1 
1 2 
1 
1 
1

1 
1 
1 2 
1 
1


1 
1 
1 
1 2 
1


1 
1 
1 
1 
1 2

2
6666664

3
7777775: ð47Þ

The generalized inverse of C defined by (22) becomes

E ¼ PðCþ wwTÞ
1 ¼ E
9

4 
2 
2 0 0 0

2 4 
2 0 0 0


2 
2 4 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3

2
6666664

3
7777775 ¼ 2ð1þ mÞ

3
PE ¼ 2ð1þ mÞ

3
EP; ð48Þ

E projects any strain e onto the space of traceless stress tensors. Since all relations survive if C and E are interchanged,

they are dual of each other. In particular, exchanging C and E in (48) recovers C as expected:

C ¼ PðEþ wwTÞ
1 ¼ 1

2E

2 
1 
1 0 0 0

1 2 
1 0 0 0


1 
1 2 0 0 0

0 0 0 6 0 0

0 0 0 0 6 0
0 0 0 0 0 6

2
6666664

3
7777775 ¼ 3

2ð1þ mÞPC ¼ 3

2ð1þ mÞCP: ð49Þ

The mean-deviatoric splitting of strains and stresses is r ¼ sþ wp and e ¼ gþ 1
3
wh, with

p ¼ 1
3
wTr ¼ 1

3
ðr11 þ r22 þ r33Þ; h ¼ wTe ¼ e11 þ e22 þ e33; p ¼ Kh: ð50Þ

Here s and g are the deviatoric stresses and strains arranged as per (30), p is the mean normal stress and h the con-

ventional volumetric strain. The induced decomposition of the constitutive relations reads

e ¼ Cr ¼ Csþ w1
3
K
1p ¼ Csþ 1

3
wh; r ¼ Ee ¼ Egþ wKh ¼ Egþ wp: ð51Þ

The deviatoric constitutive equations reduce to

g ¼ Cs ¼ 2ð1þ mÞ
3

Cr ¼ 2ð1þ mÞ
3

Cs; s ¼ Eg ¼ 3

2ð1þ mÞEe ¼
3

2ð1þ mÞEg; ð52Þ

where those involving E stay bounded as m ! 1
2
.

As observed in Section 2.10, one can add a multiple of wwT, say bwwT, to E while still verifying s ¼ ðEþ
bwwTÞg ¼ Ebg. Taking b ¼ 2E=3 ¼ 2G, where G ¼ E=3 is the shear modulus, reduces Eb to the diagonal form:

diagð2G; 2G; 2G;G;G;GÞ. This yields the Lam�ee deviatoric split:

sij ¼ 2Ggij; ð53Þ

which in fact is valid for any Poisson�s ratio [5, p. 210].

The strain energy density splits exactly into deviatoric and volumetric parts for any m:

2U ¼ rTe ¼ sTgþ ph ¼ sTeþ ph ¼ rTgþ ph: ð54Þ

This decomposition is the basis of energy methods (in particular finite element methods) for incompressible and near-

incompressible materials. For example, in a displacement–pressure formulation

2U ¼ 3

2ð1þ mÞ e
TEeþ p2

K
: ð55Þ
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Here e comes from displacements. Displacement–pressure coupling terms, such as pdivu, are added to establish mixed

variational principles [7]. For an incompressible material K ! 1 and the p2=K term vanishes.

4. Orthotropic materials

In this section we study an orthotropic material with the xi aligned with the principal material axes. This case is

worth separate consideration on account of the technical importance of such materials and because several important

results can be obtained in closed form.

4.1. Rigidtropy and incompressibility conditions

The principal elastic moduli are E1, E2 and E3, whereas the principal shear moduli are G1, G2 and G3. The six moduli

are assumed to be positive. Three Poisson ratios are defined symmetrically with respect to the geometric means
ffiffiffiffiffiffiffiffiffiffi
E1E2

p
,ffiffiffiffiffiffiffiffiffiffi

E2E3

p
and

ffiffiffiffiffiffiffiffiffiffi
E3E1

p
, a device that circumvents the widespread but confusing practice of carrying six Poisson ratios linked

by three symmetry constraints. Accordingly the compliance matrix is written

C ¼

1=E1 
m12=
ffiffiffiffiffiffiffiffiffiffi
E1E2

p

m13=

ffiffiffiffiffiffiffiffiffiffi
E1E3

p
0 0 0

1=E2 
m23=
ffiffiffiffiffiffiffiffiffiffi
E2E3

p
0 0 0

1=E3 0 0 0
1=G1 0 0

1=G2 0

symm 1=G3

2
6666664

3
7777775: ð56Þ

The determinant of C is ð1
 ðm2
12 þ m223 þ m213Þ þ 2m12m23m13Þ=ðE1E2E3G1G2G3Þ. This vanishes if

m2
12 þ m2

23 þ m2
13 þ 2m12m23m13 ¼ 1: ð57Þ

If m12 ¼ m23 ¼ m13 ¼ m condition (57) reduces to m 
 1
2

� 

ðm þ 1Þ2 ¼ 0, which has the positive root m ¼ 1

2
and the negative

double root )1. This result is more general than the isotropic material studied in Section 3 because it holds for arbitrary

E1, E2 and E3. Many rational solutions of (57) exist. The simplest one with three different positive ratios is m12 ¼ 9=16,
m23 ¼ 3=4, m13 ¼ 1=8, and cyclic permutations thereof; furthermore the signs of two Poisson ratios may be simulta-

neously switched.

Eq. (57) is only a necessary condition for rigidtropy. It remains to check stability. One eigenvalue of C is 0 and three

others are simply 1=Gi > 0. Two roots remain. An inertia analysis of the uppermost 3
 3 principal minor shows that

both roots are positive if and only if


1 < m12 < 1; 
1 < m13 < 1; 
1 < m23 < 1; ð58Þ

for any E1 > 0, E2 > 0 and E3 > 0. Consequently (57) and (58) are necessary and sufficient conditions for rigidtropy.

Poisson�s ratios over that range may be realized in composite materials.

The incompressibility conditions are far more restrictive: C11 þ C12 þ C13 ¼ C12 þ C22 þ C23 ¼ C13 þ C23 þ C33 ¼ 0.

Given E1, E2, and E3 as data, these can only be satisfied if the Poisson ratios become m12 ¼ 1
2
ðE
1

1 þ E
1
2 
 E
1

3 Þ
ffiffiffiffiffiffiffiffiffiffi
E1E2

p
,

m13 ¼ 1
2
ðE
1

3 þ E
1
1 
 E
1

2 Þ
ffiffiffiffiffiffiffiffiffiffi
E1E3

p
and m23 ¼ 1

2
ðE
1

2 þ E
1
3 
 E
1

1 Þ
ffiffiffiffiffiffiffiffiffiffi
E2E3

p
. If E1 ¼ E2 ¼ E3 ¼ E this gives m12 ¼ m13 ¼ m23 ¼ 1

2

as can be expected. But if the moduli are widely different, at least one of the Poisson ratios may stray out of the stable

region (58). As a consequence the compliance matrix becomes unstable, meaning that incompressible orthotropic

models are physically impossible if the ratios E1=E2 and E1=E3 depart sufficiently away from unity. Appendix A pro-

vides the appropriate analysis along with a stability chart.

4.2. Spectral analysis

Suppose the rigidtropy conditions (57) and (58) exactly hold so that C is renamed C. The null eigenvector of

squared-length 3 is as usual called w, which has the configuration

w ¼ ½w1 w2 w3 0 0 0 �T; wTw ¼ w2
1 þ w2

2 þ w2
3 ¼ 3: ð59Þ

A closed form solution for the first three entries is:
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w1 ¼ v1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3E1=S

p
; w2 ¼ v2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3E2=S

p
; w3 ¼ v3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3E3=S

p
;

v1 ¼ ð1þ m23Þð1þ m12 þ m13 
 m23Þ; v2 ¼ ð1þ m13Þð1þ m12 
 m13 þ m23Þ;
v3 ¼ ð1þ m12Þð1
 m12 þ m13 þ m23Þ; S ¼ E1v21 þ E2v22 þ E3v23:

ð60Þ

The effective pressure and volumetric strain are defined as explained in Section 2.8:

p ¼ 1
3
wTr ¼ 1

3
ðw1r11 þ w2r22 þ w3r33Þ; h ¼ wTe ¼ w1e11 þ w2e22 þ w3e33: ð61Þ

The projected elasticity matrix, split constitutive equations and split energies are obtained as described previously.

For the QRT case the reference model C can be obtained by projection or scaling. Since the last three components of

the eigenvector v1 should be zeros, both methods preserve the off-diagonal zero entries and consequently the orthotropy

pattern. Hence as discussed in Section 2.6 the projection method is preferable.

4.3. Example

As an example, consider the QRT orthotropic compliance:

C ¼ 1

144

144:00396 
53:99340 
26:99208 0 0 0


53:99340 36:01100 
2:98680 0 0 0


26:99208 
2:98680 16:01584 0 0 0

0 0 0 288 0 0
0 0 0 0 720 0

0 0 0 0 0 432

2
6666664

3
7777775: ð62Þ

The reference model is obtained by the projection method. The eigenvalues of C are c1 ¼ 0:03080, c2 ¼ 25:93059,
c3 ¼ 170:06941, c4 ¼ 288, c5 ¼ 432 and c6 ¼ 720. The eigenvector corresponding to c1, normalized to squared-length 3

is

w ¼ v1 ¼ ½ 0:621059 1:035098 1:242118 0 0 0 �T: ð63Þ

from which C ¼ C
 1
3
c1ww

T giving

C ¼ 1

144

144 
54 
27 0 0 0


54 36 
3 0 0 0


27 
4 16 0 0 0

0 0 0 288 0 0
0 0 0 0 720 0

0 0 0 0 0 432

2
6666664

3
7777775 ¼

1 
3=8 
3=16 0 0 0


3=8 1=4 
1=48 0 0 0


3=16 
1=48 1=9 0 0 0

0 0 0 2 0 0
0 0 0 0 5 0

0 0 0 0 0 3

2
6666664

3
7777775: ð64Þ

The eigenvalues are the same as C except for c1 ¼ 0. The bulk modulus is K ¼ 1=ðwTCwÞ ¼ 1=ð3c1Þ ¼ 10:8225.
The nice result (64) should come as no surprise since (62) was ‘‘cooked’’ by a spectral shift of c1 ¼ 77=2500 of the C

matrix fabricated with E1 ¼ 1, E2 ¼ 4, E3 ¼ 9, G1 ¼ 1=2, G2 ¼ 1=5, G3 ¼ 1=3, m12 ¼ 3=4, m13 ¼ 9=16 and m23 ¼ 1=8. The

exact null eigenvector is wT ¼ ½ 3 5 6 0 0 0 �
ffiffiffiffiffiffiffiffiffiffi
3=70

p
.

The projected elasticity matrix is

E ¼ P C

	
þ 1

3
wwT



1

¼ 1

7350

6432 2880 
5616 0 0 0
2880 21; 600 
19; 440 0 0 0


5616 
19; 440 19; 008 0 0 0

0 0 0 3675 0 0

0 0 0 0 1470 0
0 0 0 0 0 2450

2
6666664

3
7777775: ð65Þ

The eigenvalues of E are l1 ¼ 0, l2 ¼ 5:55329, l3 ¼ 0:846713, l4 ¼ 0:5, l5 ¼ 0:333333, and l6 ¼ 0:2. These are the

reciprocals of the corresponding eigenvalues of C, except for c1 ¼ 0, which maps to l1 ¼ 0.

The effective pressure and volumetric strain are

p ¼ 1

3
wTr ¼

ffiffiffiffiffiffiffiffi
1

210

r
ð3r11 þ 5r22 þ 6r33Þ; h ¼ wTe ¼

ffiffiffiffiffi
3

70

r
ð3e11 þ 5e22 þ 6e33Þ: ð66Þ

The calculation of a similar C by scaling is left as an exercise.
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5. Conclusions

We have examined a wide class of volumetric constraints applicable to linearly elastic anisotropic solids. Our main

objective is to obtain splittings appropriate for downstream numerical treatment.

The constraints are subsumed under the ‘‘umbrella’’ of rigidtropic behavior, in which the material does not deform

under a stress pattern characterized by the null eigenvector of the compliance matrix. This model includes incom-

pressible behavior as special case when that pattern is hydrostatic stress. Anisotropic incompressibility, however, is

relatively rare in comparison to the isotropic case. Further, if enforced for highly anisotropic materials, incompress-

ibility may lead to unstable models as shown in Appendix A.

The main findings of this study are:

1. Rigidtropic behavior can be characterized by a spectral analysis of the compliance matrix. The incompressibility sub-

set is defined by a specialization of the null eigenvector.

2. QRT models, which represent the extension of the quasi-incompressible models of isotropic materials, can be han-

dled by decomposition into a exactly rigidtropic reference model and the bulk behavior. Two methods: projection

and scaling, for effecting this decomposition have been described. Both methods can also be used for fixing slightly

unstable compliances due to noisy experimental data.

3. Correct splitting of the constitutive equations and internal energy requires a redefinition of pressure and volumetric

strain as effective quantities.

4. The concept of bulk modulus can be generalized as a ratio between effective pressure and effective volumetric strain.

Using the splittings derived here, mixed variational principles appropriate for constructing finite element models

have been derived in a separate paper [8].
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Appendix A. Three flavors of anisotropic incompressibility

This Appendix studies three volumetric constraint models of a linearly elastic anisotropic solid, summarizing results

of [2]. The following terminology is introduced.

A material is called rigidtropic if it does not deform (i.e., experiences zero strains) under a specific stress pattern,

which is a null eigenvector of the strain–stress (compliance) matrix. The term ‘‘rigidtropic’’ is used in the sense of

‘‘rigidity in a certain way’’ as defined by that eigenvector.

A material is called isochoric if it does not change volume under any applied stress system [1, Sec. 77]. Alternatively:

the volumetric strain is zero under any stress state.

A material is called hydroisochoric if it is isochoric under hydrostatic stress. Isochoric materials are hydroisochoric

but the converse is not necessarily true.

The three models coalesce for an isotropic material. For an arbitrary anisotropic solid, however, it will be shown

below that imposing a isochoric or hydroisochoric constraint may produce a compliance matrix that has at least one

negative eigenvalue. This means that under some stress system the material is able to create energy, contradicting the

laws of thermodynamics. Such model cannot represent a physically stable material. On the other hand, for rigidtropic

behavior it is easier to control material stability for any type of anisotropy because constraints are posed directly on the

spectral form.

The mathematical expressions of the foregoing constraints on the strain–stress matrix relation (2) are

Rigidtropic: c1 ¼ 0; ci > 0; i ¼ 2; . . . ; 6:

Hydroisochoric: C11 þ C22 þ C33 þ 2C12 þ 2C13 þ 2C23 ¼ 0:

Isochoric: C1j þ C2j þ C3j ¼ 0; j ¼ 1; 2; 3:

ðA:1Þ

We now examine some key properties of these models.
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A.1. Hydroisochoric model

Assume that the material modeled by (5) is hydroisochoric. Let rp represent a hydrostatic pressure stress system with

rij ¼ dijp. According to the foregoing definition

Crp ¼

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

symm C66

2
6666664

3
7777775

p
p
p
0

0
0

2
6666664

3
7777775 ¼

pðC11 þ C12 þ C13Þ
pðC12 þ C22 þ C23Þ
pðC13 þ C23 þ C33Þ

2e23
2e31
2e12

2
6666664

3
7777775 ¼

e11
e22
e33
2e23
2e31
2e12

2
6666664

3
7777775; ðA:2Þ

with ev ¼ e11 þ e22 þ e33 ¼ pðC11 þ C22 þ C33 þ 2C12 þ 2C13 þ 2C23Þ ¼ 0.

(The value of the shear strains is of no interest.) The complementary energy density produced by rp is

U�
p ¼ 1

2
rT
pCrp ¼ 1

2
pðe11 þ e22 þ e33Þ ¼ 1

2
pev ¼ 0: ðA:3Þ

But cp ¼ U�
p=ðrT

p rÞ ¼ U�
p=ð3p2Þ ¼ 0 is the Rayleigh quotient of rp with C. According to the Courant–Fisher theorem [9],

cp must lie in the closed interval ½cmin; cmax�:
c1 6 cp ¼ 06 c6: ðA:4Þ

If rp is not an eigenvector of C : Crp 6¼ 0, the leftmost equality in (A.4) is not possible. Consequently

c1 < 0; ðA:5Þ

and the model is unstable.

If Crp ¼ 0 the sum of the first three columns (or rows) of C must vanish. The hydroisochoric model then coalesces

with the isochoric one, which is analyzed next.

A.2. Isochoric model

The model is isochoric if the sum of the first three rows (or columns) of C is the null 6-vector. Equivalently rp is a

null eigenvector of C. The Rayleigh quotient test (A.4) does not offer sufficient information on stability and a deeper

look at C is required. A sufficient criterion for instability can be derived by considering the upper 3
 3 principal minoreCC. From the last of (A.1), eCC must have the form:

eCC ¼
C11 C12 C13

C22 C23

symm C33

2
4

3
5 ¼

C11
1
2
ðC33 
 C11 
 C22Þ 1

2
ðC22 
 C11 
 C33Þ

C22
1
2
ðC11 
 C22 
 C33Þ

symm C33

2
4

3
5: ðA:6Þ

This matrix is singular. Taking a ¼ C11=C22 and b ¼ C11=C33 for convenience, an eigenvalue analysis shows that eCC is

indefinite if

2
1

a

	
þ 1

b



< 1þ 1

a

	

 1

b


2

; ðA:7Þ

and is positive semidefinite if the inequality is reversed. If eCC is indefinite, so is C and the model is unstable. If eCC is

semidefinite, an eigenvalue analysis of the complete C is required to decide on stability. The stability regions of eCC are

shown in Fig. 2, where ‘‘potentially semistable’’ indicates that confirmation by a analysis of the full C is required. An

exception is an orthotropic material referred to principal material axes, in which case no further tests are necessary if

C44, C55 and C66 are positive.

Fig. 2 illustrates that a wide range of diagonal compliances in eCC is detrimental to stability. For example if a ¼ b,
instability is guaranteed to happen for a > 4.

A.3. Rigidtropic and isotropic models

If C is nonnegative with c1 ¼ 0 and w � v1 is the only null eigenvector, the material is rigidtropic under that stress

mode. For an isotropic material w ¼ ½ 1 1 1 0 0 0 �T ¼ rp=p, which is the hydrostatic stress mode. For an an-

isotropic material, however, mode w generally will contain shear stresses. Introducing effective pressure as p ¼ 1
3
wTr
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and effective volumetric strain as ev ¼ wTr, the volumetric and deviatoric energies can be uncoupled as discussed in

Sections 2.9 and 2.11.

If the rigid stress mode is rp, rigidtropic behavior reduces to isochoric behavior. This inclusion is depicted in Fig. 3.

An isotropic material is defined by the strain–stress relation (43). Under hydrostatic stress rp, ev ¼ 3ð1
 2mÞp=E,
which vanishes for m ¼ 1

2
. It is easy to verify that if m ¼ 1

2
, ev ¼ 0 for any r and the material is isochoric. Furthermore

rp=p is the only null eigenvector of C. Consequently cp ¼ c1 ¼ 0 and C has no negative eigenvalues. The definitions of

rigidtropic, incompressible and isochoric behavior coalesce for this model.
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