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Abstract

In this paper we analyze a pressure stabilized, finite element method for the unsteady, incompressible Navier–
Stokes equations in primitive variables; for the time discretization we focus on a fully implicit, monolithic scheme.
We provide some error estimates for the fully discrete solution which show that the velocity is first order accurate
in the time step and attains optimal order accuracy in the mesh size for the given spatial interpolation, both in the
spacesL2(Ω) andH 1

0 (Ω); the pressure solution is shown to be order1
2 accurate in the time step and also optimal

in the mesh size. These estimates are proved assuming only a weak compatibility condition on the approximating
spaces of velocity and pressure, which is satisfied by equal order interpolations. 2001 IMACS. Published by
Elsevier Science B.V. All rights reserved.
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1. Introduction

The purpose of this paper is to provide some error estimates for a pressure stabilized, finite element
method for the numerical solution of the unsteady, incompressible Navier–Stokes equations in the
primitive variables velocity and pressure. The method was introduced in [7] as an extension to the
transient case of a technique initially developed for the Stokes problem [5] and then extended to the
steady, incompressible Navier–Stokes equations [6].
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The stabilization of the pressure in incompressible flow problems has received much attention in the
last decades. Numerical schemes have been developed which bypass the need for the approximating
spaces of velocity and pressure to satisfy the compatibility condition met when using standard Galerkin
methods. Stabilized formulations were first introduced under the idea ofPetrov–Galerkinmethods [17],
which then led toGalerkin Least Squares(GLS) techniques. These were first developed in the context of
advection–diffusion equations [18], and then extended to the linearized, steady incompressible Navier–
Stokes equation in [9] (see also [10] and the references therein). More recently, the GLS technique has
evolved into the idea ofsubgrid-scale models(see [4,16]). All these techniques have been analyzed in
the literature for steady problems using arbitrary finite element interpolations. Error analysis both in
space and time for stabilized formulations of transient problems have been given in [19], for advection–
diffusion problems, and [13], for the incompressible Navier–Stokes equations. In this last reference, the
analysis was based on the assumption that the time stepδt is of the same order as the mesh sizeh: δt � h.
Moreover, it was restricted to the case of piecewise linear elements.

On the other hand, some combinations of finite element spaces which satisfy the discrete compatibility
condition have been analyzed for the Stokes problem and proven to be stable and yield optimal order
accuracy of the solution (see, for instance, [3,22]). Assuming a (mixed) finite element pair which satisfies
the discrete compatibility condition, some analysis of methods for the unsteady problem have been given:
Heywood and Rannacher [14,15] proved second order error estimates in the time step and optimal order
accuracy in the mesh size for a mixed method using a Crank–Nicholson time integration scheme; Boukir
et al. [1] also proved second order estimates in time and optimal order in space for a characteristic-based
method under a stability restriction on the time step of the formδt � hd/6, whered is the dimension of
space; finally, Guermond and Quartapelle [12] analyzed the classical fractional-step projection method of
A.J. Chorin and R. Temam in its incremental form, which yields a first order scheme which is also optimal
in space (a second order method can also be developed). Their analysis is based on the satisfaction of the
LBB condition, which has traditionally been considered unnecessary in projection methods based on a
Poisson equation for the pressure. This condition can be avoided assumingδt � hl+1, wherel is the order
of the spatial interpolation, in the stability analysis of the non-incremental form of the method, but not in
the convergence one.

We analyze here a stabilized formulation of the unsteady problem which employs a finite element,
pressure gradient projectiontechnique [6] and a fully implicit, backward Euler scheme for the time
integration. We show that first order accuracy in time is maintained in the fully discrete method, which
attains optimal order accuracy in space for the given interpolation. The analysis is carried out assuming
only a weak compatibility condition on the approximating spaces of velocity and pressure, which was
proven to be satisfied by simplicial equal order finite element interpolations in [5]. The error estimates
obtained are given in terms of a certain norm of the velocity inL2(Ω) andH 1

0 (Ω) and the pressure and its
gradient inL2(Ω). We first analyze the temporal error by considering a semidiscrete approximation of the
problem, and then study the fully discrete method, with both a linearized and a nonlinear approximation
of the convective term.

It has to be remarked that the purpose of the technique employed here is to stabilize the pressure
solution; the instabilities due to the convective term at high cell Reynolds numbers are not addressed at
with this formulation. Moreover, the interest here relies on showing how the technique that we use to
stabilize the pressure, with respect to the spatial interpolation, can be analyzed in transient problems,
regardless of the particular time integration method employed. We concentrate on a fully implicit,
backward Euler scheme, which, although being only first order accurate, is unconditionally stable;
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however, other methods could also be considered (see [7]). The resulting scheme is computationally
feasible (see [7]), and also suitable as an iterative method to reach steady states.

Our presentation is split into two sections. In Section 2 we state the problem to solve, recall
some known properties of its solution and introduce some notation; we then present the semidiscrete
approximation considered and finally the fully discrete, stabilized finite element method. In Section 3
we state and prove our error estimates, first for the semidiscrete and then for the fully discrete problems.
We first recall a stability estimate which was proven in [7] under weak assumptions on the continuous
solution; then we prove some optimal order error estimates for the velocity, from which we obtain an
improved stability estimate as a side product. We finally analyze the pressure solution, for which we also
obtain optimal order error estimates.

2. Description of the method

2.1. Problem statement

The evolution of viscous, incompressible fluid flow in a bounded domainΩ ⊂ R
d (d = 2,3)

is governed, in the primitive variable formulation, by the unsteady, incompressible Navier–Stokes
equations:

∂u

∂t
+ (u · ∇)u − ν�u + ∇p = f in Ω × (0, T ), (1)

∇ · u = 0 inΩ × (0, T ) (2)

onΩ × (0, T ) (with T > 0 a given final time), whereu(x, t) ∈ R
d is the fluid velocity at positionx ∈Ω

and timet ∈ (0, T ), p(x, t) ∈ R is the fluid kinematic pressure,ν > 0 is the kinematic viscosity,f (x, t)
is an external force,∇ is the gradient operator,∇· is the divergence operator and� is the Laplacian
operator (here, and in what follows, boldface characters denote vector quantities). Boundary conditions
have to be given to complete the equation system (1)–(2). For the sake of simplicity, only homogeneous
Dirichlet type boundary conditions are considered here:

u = 0 onΓ × (0, T ), (3)

whereΓ = ∂Ω . An initial condition must also be specified for the velocity:

u(x,0)= u0(x) in Ω. (4)

The treatment of the above equations of motion requires of the usual Sobolev spacesHm(Ω), m � 0,
consisting of functions with distributional derivatives up to orderm belonging toL2(Ω). The scalar
product inHm(Ω) is denoted by(u, v)m (the subscriptmmay be omitted when it equals 0) and its norm
by ||u||m. The closed subspacesH 1

0 (Ω), consisting of functions inH 1(Ω) with zero trace onΓ , and
L2

0(Ω), made up with functions inL2(Ω) with zero mean onΩ , will also be needed. Also, letH−1(Ω)

denote the dual space ofH 1
0 (Ω), the duality between these two spaces being denoted by〈 , 〉, and let:

W = {
u ∈ H 1

0(Ω) | ∇ · u = 0
}
.

Assumingu0 ∈ H 1
0(Ω) and f ∈ L2(0, T ;H−1(Ω)), and if Ω is bounded and Lipschitz continuous,

problem (1)–(4) has at least one solutionu ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H 1
0(Ω)) (see [24]).
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Uniqueness and more regularity of the solution can be achieved by assuming more regularity onf ,
u0 andΩ . In particular, we assume hereafter that the continuous solution(u,p) of (1)–(4) is unique and
satisfies:

(R1) u ∈L∞(0, T ;H 2(Ω))∩C0(0, T ;W), p ∈ L∞(0, T ;H 1(Ω))∩C0(0, T ;L2
0(Ω)),

(R2) ut ∈ L2(0, T ;L2(Ω)),
(R3)

∫ T
0 t‖ut t (t)‖2−1 dt �C,

(R4)
∫ T

0 ‖ut t (t)‖2
W ′ dt � C.

The subscriptt is employed hereafter for∂/∂t , and we useC as a generic constant depending off , u0,
Ω andν, but not on the time stepδt nor on the mesh sizeh; also,W ′ is the dual space ofW . Sufficient
conditions for (R1)–(R3) to hold can be found [14]; for (R4), see [20,21]. In particular, it is required that
f ∈ L2(0, T ;L2(Ω)), which we assume from now on.

Let us callV = H 1
0(Ω) andQ= L2

0(Ω). In what follows the following notation will be used for the
weak form of the different terms in Eqs. (1)–(2):

a(u,v)= ν(∇u,∇v), u,v ∈ V,
b(q,v)= −(q,∇ · v), v ∈ V, q ∈Q,
c(u,v,w)= (

(u · ∇ )v,w)+ 1
2

(
(∇ · u)v,w), u,v,w ∈ V.

All these forms are continuous on the specified spaces, and the expression taken for the trilinear formc

arising from the convective term in (1) is skew-symmetric in its last two arguments (see [24]); under the
incompressibility condition (2), this expression is equivalent to that obtained from the original convective
term in (1). Besides,a is coercive as a consequence of the Poincaré–Friedrics inequality, that is, there
exists a constantKa > 0 such that:

a(u,u)= ν ‖∇u‖2
0 �Ka‖u‖2

1, ∀u ∈ V.
andb satisfies the (continuous)inf–supcondition, that is, there exists a constantKb > 0 such that:

inf
q∈Q

(
sup
v∈V

b(q,v)

||v||1||q||0

)
�Kb > 0 (5)

(infima and suprema are always taken with respect to nonzero functions). Condition (5) is usually referred
to as theinf–supor LBB condition, after the work of O.A. Ladyzhenskaya, I. Babuška and F. Brezzi.
Finally, c satisfies other continuity properties, some of which are (see, e.g., [8]):

c(u,v,w)�


C||u||1||v||1||w||1
C||u||0||v||2||w||1
C||u||2||v||1||w||0
C||u||0||v||1||w||L∞(Ω).

2.2. Finite element approximation

The numerical approximation of problem (1)–(2) that we analyze here was introduced in [7] as an
extension to the transient case of a finite element method originally developed for steady problems.
It is well known that discrete approximations of incompressible flow problems in primitive variables
are restricted by the discreteinf–supcondition, that is, the discrete counterpart of condition (5); this
prevents the use of many simple finite element combinations for the discrete spaces of the velocity and
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the pressure, such as equal order ones. The methods based on a pressure gradient projection circumvent
this restriction by introducing the projection of the gradient of the discrete pressure onto the space of
discrete velocities as a new variable of the problem; this allows, in particular, the use of equal order
interpolations.

In the transient case, this methodology can be applied together with different time integration schemes;
we concentrate here on an implicit, monolithic scheme using the trapezoidal rule, but extensions to other
schemes such as fractional-step or multistep methods can be derived in a similar way (see [7] for a
description of some of them).

2.2.1. Semidiscrete problem
We consider a parameterθ ∈ (0,1] and discretize Eqs. (1)–(2) in time first by the following implicit

scheme, which we write in variational form: given a time step sizeδt > 0, let N = [T /δt] − 1; for
n ∈ {0, . . . ,N}, let tn = nδt ; givenun ∈ V andpn ∈Q, approximations ofu(tn) andp(tn), respectively,
find un+1 ∈ V andpn+1 ∈Q such that:(

un+1 − un

δt
,v

)
+ c(un+εθ ,un+θ ,v)+ a(un+θ ,v)+ (∇pn+θ ,v),= (

f n+θ ,v
)
, (6)

b
(
q,un+1)= 0 (7)

for all (v, q) ∈ V ×Q, where for a given functiong the notationgn+θ stands for:

gn+θ = θgn+1 + (1− θ)gn.
The parameterε which appears in the approximation of the nonlinear term in (6) can take the values 0
and 1, corresponding to a linearized and a nonlinear approximation of convection, respectively. The first
option is suitable in the first order, backward Euler caseθ = 1, since the approximation it provides is
also first order accurate and it results in a lower computational cost of the fully discrete problem (which
is then linear in each time step); the second option, however, enhances stability for highly convective
flows and is compulsory in the Crank–Nicholson caseθ = 1

2 to maintain second order accuracy. In this
sense, we use the expressionc(un+θ ,un+θ ,v) which differs from(c(u,u,v))n+θ (the form to which strict
application of the trapezoidal rule would lead) by a second order term and is computationally simpler.
Moreover, we assume that the semidiscrete pressures satisfy∇pn+1 ∈ L2(Ω); conditions onf andΩ
for this assumption to hold can be found, for instance, in [11].

2.2.2. Fully discrete method
We now proceed to introduce a spatial approximation of the semidiscrete problem (6)–(7). LetΘh

denote a finite element partition of the domainΩ of diameterh. We assume that all the element domains
K ∈Θh are the image of a reference elementK̂ through polynomial mappingsFK , affine for simplicial
elements, bilinear for quadrilaterals and trilinear for hexahedra. OnK̂ we define the polynomial spaces
Rk(K̂) where, as usual,Rk = Pk for simplicial elements andRk =Qk for quadrilaterals and hexahedra.
The finite element spaces we need are:

Qh = {qh ∈ C0(Ω)∩L2
0(Ω)

∣∣ qh|K = q̂ ◦ F−1
K , q̂ ∈Rkq

(
K̂
)
, K ∈Θh},

Vh = {
vh ∈ (C0(Ω)

)d ∣∣ vh|K = v̂ ◦ F−1
K , v̂ ∈ (Rkv(K̂))d, K ∈Θh},

Vh,0 = {
vh ∈ Vh|vh|Γ = 0

}
.
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Notice that both the velocity and pressure finite element spacesVh,0 andQh are referred to the same
partition and both are made up with continuous functions. These finite element spaces satisfy the
following approximating properties (see, e.g., [23]): givenv ∈ H r (Ω), r � 2, andq ∈ Hs(Ω), s � 1,
there existΠh,1(v) ∈ Vh,0,Πh,2(q) ∈Qh andΠh,3(∇q) ∈ Vh such that:∥∥v −Πh,1(v)

∥∥
m1

� C1h
k1−m1‖v‖k1,∥∥q −Πh,2(q)

∥∥
m2

� C2h
k2−m2‖q‖k2,∥∥∇q −Πh,3(∇q)

∥∥
m3

�C3h
k3−m3‖∇q‖k3,

for 0�mi � ki (i = 1,2,3), where:

k1 = min{r, kv + 1}, k2 = min{s, kq + 1}, k3 = min{s − 1, kv + 1}.
Let now α > 0 be a given parameter. Given(unh,p

n
h, ξ

n
h) ∈ Vh,0 × Qh × Vh, approximations of

(un,pn,∇pn), we discretize (6)–(7) in space by finding(un+1
h ,pn+1

h , ξn+1
h ) ∈ Vh,0 ×Qh × Vh such that:(

un+1
h − unh
δt

,vh

)
+ c(un+εθh ,un+θh ,vh

)+ a(un+θh ,vh
)+ (∇pn+θh ,vh

)= (
f n+θ ,vh

)
, (8)

−b(qh,un+1
h

)+ α((∇pn+1
h ,∇qh)− (ξn+βh ,∇qh))= 0, (9)

− (∇pn+1
h ,ηh

)+ (ξn+1
h ,ηh

)= 0 (10)

for all (vh, qh,ηh) ∈ Vh,0 ×Qh × Vh, where again eitherβ = 0 or β = 1. Eq. (10) says thatξn+1
h is the

L2-projection of∇pn+1
h onto the spaceVh; thus, the casesβ = 0 andβ = 1 correspond to an explicit

and an implicit approximation of the pressure gradient projection in the modified continuity equation (9),
respectively (see [7]).

In the formulation (8)–(10) we have used a ‘global’ parameterα, with the same value on all the element
domains; the numerical analysis of this method then requires of some regularity properties of the finite
element mesh such as itsquasi-uniformity. However, this restriction can be relaxed by considering a set
of elemental parametersαK , K ∈ Θh, and replacing theL2-scalar products appearing in (9)–(10) by a
sum of products weighed in each element byαK . This extension to local parameters was analyzed in
[6] for the steady, incompressible Navier–Stokes equations, and the analysis given there can be readily
applied to the transient case. We restrict our attention here to the global parameter case to simplify the
presentation.

3. Stability and error analysis

We now present a numerical analysis of the finite element method (8)–(10). For the time approxima-
tion, we restrict to the fully implicit, backward Euler caseθ = 1, which is first order accurate in the time
step. We split the errors of the method into a temporal error, due to the semidiscretization (6)–(7), and a
spatial error, due to the stabilized, fully discrete method (8)–(10). In the case of studyθ = 1, first order
accuracy in the time step for the semidiscrete velocity solution can be shown by standard arguments; we
include a proof of this result for completeness. We consider both the linearized methodε = 0 and the
fully nonlinear schemeε = 1. We then concentrate on the spatial approximation in the implicit pressure
gradient caseβ = 1.
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3.1. Error estimates for the semidiscrete solution

Let us define thecontinuouserrors (as for the spatial variables) as

en+1
c = u(tn+1)− un+1,

rn+1
c = p(tn+1)− pn+1,

gn+1
c = ∇rn+1

c .

We then have:

Theorem 1. Assume(R1), (R2) and(R4) hold. Then, there is a constantC independent ofδt such that:

∥∥eN+1
c

∥∥2
0 + νδt

N∑
n=0

∥∥en+1
c

∥∥2
1 � Cδt2. (11)

If ε = 1, (11) holds for sufficiently smallδt .

Proof. We callRn the truncation error defined by

1

δt

(
u(tn+1)− u(tn)

)− ν�u(tn+1)+ (u(tn+1) · ∇)u(tn+1)+ ∇p(tn+1)= f (tn+1)+ Rn (12)

so that

Rn = 1

δt

tn+1∫
tn

(t − tn)ut t (t)dt.

Multiplying (12) by v ∈ V and (2) (att = tn+1) by q ∈Q, and subtracting (6) (withθ = 1) and (7) from
them, respectively, we find(

en+1
c − enc
δt

,v

)
+ ν(∇en+1

c ,∇v
)+ (∇rn+1

c ,v
)

= 〈
Rn,v

〉+ c(un+ε,un+1,v
)− c(u(tn+1),u(tn+1),v

)
, (13)

b
(
q, en+1

c

)= 0. (14)

Takingv = 2δten+1
c in (13) andq = rn+1

c in (14), and using the identity(a−b,2a)= |a|2−|b|2+|a−b|2,
we get∥∥en+1

c

∥∥2
0 − ∥∥enc∥∥2

0 + ∥∥en+1
c − enc

∥∥2
0 + 2δtν

∥∥∇en+1
c

∥∥2
0 = 2δt

〈
Rn, en+1

c

〉+ 2δtNLT

where NLT stands for

NLT = c(un+ε,un+1, en+1
c

)− c(u(tn+1),u(tn+1), e
n+1
c

)
.

For the Taylor residual term, one has (see, e.g., [20])

2δt
〈
Rn, en+1

c

〉
� δtν

3

∥∥∇en+1
c

∥∥2
0 +Cδt2

tn+1∫
tn

∥∥ut t∥∥2
W ′ dt.

The treatment of the NLT is different in the casesε = 0 andε = 1.
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Linearized case.Whenε = 0, we have

2δtNLT = 2δt
(
c
(
un,un+1, en+1

c

)− c(u(tn+1),u(tn+1), e
n+1
c

))
= 2δt

(−c(un, en+1
c , en+1

c

)− c(enc ,u(tn+1), e
n+1
c

)− c(u(tn+1)− u(tn),u(tn+1), e
n+1
c

))
= T1 + T2 + T3,

whereT1 = 0 due to the skew-symmetry of the trilinear formc, and, due to its continuity properties and
the regularity property (R1) ofu:

T2 = −2δtc
(
enc ,u(tn+1), e

n+1
c

)
� Cδt

∥∥enc∥∥0

∥∥u(tn+1)
∥∥

2

∥∥en+1
c

∥∥
1 � δtν

3

∥∥∇en+1
c

∥∥2
0 +Cδt∥∥enc∥∥2

0,

T3 = −2δtc
(
u(tn+1)− u(tn),u(tn+1), e

n+1
c

)
� Cδt

∥∥u(tn+1)− u(tn)
∥∥

0

∥∥u(tn+1)
∥∥

2

∥∥en+1
c

∥∥
1 � δtν

3

∥∥∇en+1
c

∥∥2
0 +Cδt2

tn+1∫
tn

‖ut‖2
0 dt.

Therefore,∥∥en+1
c

∥∥2
0 − ∥∥enc∥∥2

0 + ∥∥en+1
c − enc

∥∥2
0 + δtν∥∥en+1

c

∥∥2
1

� Cδt2
tn+1∫
tn

‖ut t‖2
W ′ dt +Cδt2

tn+1∫
tn

‖ut‖2
0 dt +Cδt∥∥enc∥∥2

0. (15)

Adding up (15) forn= 0, . . . ,N , and using the regularity properties (R2) and (R4) of the continuous
solution, we get

∥∥eN+1
c

∥∥2
0 +

N∑
n=0

∥∥en+1
c − enc

∥∥2
0 + δtν

N∑
n=0

∥∥en+1
c

∥∥2
1 �Cδt2 +Cδt

N∑
n=0

∥∥enc∥∥2
0.

Applying the discrete Gronwall inequality, this implies

∥∥eN+1
c

∥∥2
0 +

N∑
n=0

∥∥en+1
c − enc

∥∥2
0 + δtν

N∑
n=0

∥∥en+1
c

∥∥2
1 �Cδt2 (16)

and (11) follows.
Nonlinear case.Whenε= 1 we have

2δtNLT = 2δt
(
c
(
un+1,un+1, en+1

c

)− c(u(tn+1),u(tn+1), e
n+1
c

))
= 2δt

(−c(un+1, en+1
c , en+1

c

)− c(en+1
c ,u(tn+1), e

n+1
c

))
= T1 + T2,

where againT1 = 0 due to the skew-symmetry of the trilinear formc, and

T2 = −2δtc
(
en+1
c ,u(tn+1), e

n+1
c

)
� Cδt

∥∥en+1
c

∥∥
0

∥∥u(tn+1)
∥∥

2

∥∥en+1
c

∥∥
1 � δtν

3

∥∥∇en+1
c

∥∥2
0 +Cδt∥∥en+1

c

∥∥2
0.
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Therefore,∥∥en+1
c

∥∥2
0 − ∥∥enc∥∥2

0 + ∥∥en+1
c − enc

∥∥2
0 + δtν∥∥en+1

c

∥∥2
1

� Cδt2
tn+1∫
tn

‖ut t‖2
W ′ dt +Cδt2

tn+1∫
tn

‖ut‖2
0 dt +Cδt∥∥en+1

c

∥∥2
0 (17)

and ∥∥eN+1
c

∥∥2
0 +

N∑
n=0

∥∥en+1
c − enc

∥∥2
0 + δtν

N∑
n=0

∥∥en+1
c

∥∥2
1 �Cδt2 +Cδt

N∑
n=0

∥∥en+1
c

∥∥2
0.

Applying the discrete Gronwall inequality, this implies, for sufficiently smallδt ,

∥∥eN+1
c

∥∥2
0 +

N∑
n=0

∥∥en+1
c − enc

∥∥2
0 + δtν

N∑
n=0

∥∥en+1
c

∥∥2
1 �Cδt2 (18)

and (11) follows again. ✷
Remark 1. The error estimates proved in Theorem 1 ensure that the semidiscrete velocitiesun+1 are
first order accurate in the time step, in the following sense: given a Banach space(X,‖z‖), for s > 0 let
ls(X) denote the space of finite sequencesZ = {zn+1}Nn=0 ⊂X equipped with the norm

|Z|s =
(

1

N

N∑
n=0

∥∥zn+1∥∥s)1/s

for s < ∞ and |Z|∞ = maxn=0,...,N ‖zn+1‖. Then,un+1 is first order accurate inl∞(L2(Ω)) and in
l2(H 1

0(Ω)). This result proves, in particular, that these semidiscrete velocities are bounded inl∞(H 1
0(Ω))

by a constant independent ofδt , since:∥∥un+1∥∥
1 �

∥∥u(tn+1)
∥∥

1 + ∥∥en+1
c

∥∥
1 �

∥∥u(tn+1)
∥∥

1 + (Cδt)1/2 � C
due to Theorem 1 and the regularity assumed on the continuous solution. Moreover, we also have
‖en+1
c ‖1 �Cδt1/2. We will use these results later on.

We also have an error estimate for the semidiscrete pressurepn+1:

Proposition 1. Let (R1)–(R4) hold. Then, there is a constantC independent ofδt such that

δt

N∑
n=0

∥∥rn+1
c

∥∥2
0 � Cδt. (19)

If ε = 1, (19) holds for sufficiently smallδt .

Proof. By the continuous inf–sup condition (5), we have, using (13),∥∥rn+1
c

∥∥
0 � C sup

v∈V
(∇rn+1

c ,v)

‖v‖1

= C sup
v∈V

1

‖v‖1

{−1

δt

(
en+1
c − enc ,v

)− ν(∇en+1
c ,∇v

)+ 〈Rn,v
〉}+ NLT.
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We bound each term as follows (for the Taylor residual term, see [21]):

1

δt‖v‖1

(
en+1
c − enc ,v

)
� C

δt

∥∥en+1
c − enc

∥∥
0,

ν

‖v‖1

(∇en+1
c ,∇v

)
�Cν1/2∥∥en+1

c

∥∥
1,

1

‖v‖1

〈
Rn,v

〉
�
∥∥Rn

∥∥−1 � C
( tn+1∫
tn

t‖ut t‖2
−1 dt

)1/2

.

The treatment of the NLT is again different forε = 0 and 1.
Linearized case.Using the continuity properties of the trilinear formc, the regularity property (R1) of

u and the results of Theorem 1 and Remark 1, we have

NLT = 1

‖v‖1

(
c
(
un,un+1,v

)− c(u(tn+1),u(tn+1),v
))

= 1

‖v‖1

(−c(un, en+1
c ,v

)− c(enc ,u(tn+1),v
)− c(u(tn+1)− u(tn),u(tn+1),v

))
= T1 + T2 + T3,

T1 = −1

‖v‖1
c
(
un, en+1

c ,v
)
� C

∥∥un∥∥1

∥∥en+1
c

∥∥
1 � Cν1/2∥∥en+1

c

∥∥
1,

T2 = −1∥∥v∥∥1

c
(
enc ,u(tn+1),v

)
�C

∥∥enc∥∥0

∥∥u(tn+1)
∥∥

2 � C
∥∥enc∥∥0 � Cδt,

T3 = −1

‖v‖1
c
(
u(tn+1)− u(tn),u(tn+1),v

)
� C

∥∥u(tn+1)− u(tn)
∥∥

0

∥∥u(tn+1)
∥∥

2 � Cδt1/2
( tn+1∫
tn

‖ut‖2
0 dt

)1/2

.

Therefore,

∥∥rn+1
c

∥∥2
0 � C

(
1

δt2

∥∥en+1
c − enc

∥∥2
0 + ν∥∥en+1

c

∥∥2
1 +

tn+1∫
tn

t‖ut t‖2
−1 dt + δt2 + δt

tn+1∫
tn

‖ut‖2
0 dt

)
.

Finally,

δt

N∑
n=0

∥∥rn+1
c

∥∥2
0 � C

(
1

δt

N∑
n=0

∥∥en+1
c − enc

∥∥2
0 + νδt

N∑
n=0

∥∥en+1
c

∥∥2
1

+ δt
T∫

0

t‖ut t‖2
−1 dt + δt2 + δt2

T∫
0

‖ut‖2
0 dt

)

� Cδt +Cδt
T∫

0

t‖ut t‖2
−1 dt +Cδt2

T∫
0

‖ut‖2
0 dt
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due to (16). Estimate (19) follows from the regularity properties (R2) and (R3) ofu.
Nonlinear case.This time we have:

NLT = 1

‖v‖1

(
c
(
un+1,un+1,v

)− c(u(tn+1),u(tn+1),v
))

= 1

‖v‖1

(−c(un+1, en+1
c ,v

)− c(en+1
c ,u(tn+1),v

))
= T1 + T2,

T1 = −1

‖v‖1
c
(
un+1, en+1

c ,v
)
�Cν1/2∥∥en+1

c

∥∥
1,

T2 = −1

‖v‖1
c
(
en+1
c ,u(tn+1),v

)
�C

∥∥en+1
c

∥∥
0 � Cδt

and (19) follows again. ✷
3.2. A priori stability estimate

We begin the analysis of the discrete problem recalling a stability estimate which was proven in
[7] under weak regularity assumptions on the continuous solution. When studying pressure-gradient-
projection methods for steady, incompressible flow problems, the following assumptions are encountered
(see [5]), all of which carry over to the unsteady case:

H1. There existα− > 0 andα+ > 0 independent ofh such that:

α−h2 � α � α+h2. (20)

This assumption dictates the behaviour of the numerical parameterα.

H2. The family of finite element partitionsΘh is quasi-uniform, that is, there exists a constantσ > 0
independent ofh such that, for allh > 0:

min
{
diam(BK) |K ∈Θh}� σ max

{
diam(BK) |K ∈Θh}, (21)

whereBK is the largest ball contained in K. Condition(21) is needed in order to have the following
inverse estimate(see[2]):

‖vh‖1 � C

h
‖vh‖0, ∀vh ∈ Vh. (22)

This assumption can be weakened by using local parametersαK (see [6]).

H3. As in[5,6], let ∇Qh denote the space

∇Qh = {
vh ∈ L2(Ω) | vh = ∇qh, qh ∈Qh}

and define the spaceEh by

Eh = Vh + ∇Qh ⊂ L2(Ω).
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We consider three mutually orthogonal subspacesEh,i ofEh defined by

Eh,1 = Vh,0, Eh,2 = V ⊥
h,0 ∩ Vh, Eh,3 = V ⊥

h ∩Eh
so that

Eh =Eh,1 ⊕Eh,2 ⊕Eh,3.
For i = 1,2,3, we callPh,i theL2-projection ofEh ontoEh,i , and for i �= j , Ph,ij = Ph,i + Ph,j and
Eh,ij = Eh,i ⊕ Eh,j . In this notation,ξn+1

h = Ph,12(∇pn+1
h ). We assume that there is a constantβ0

independent ofh such that

‖∇qh‖0 � β0
∥∥Ph,13(∇qh)

∥∥
0, (23)

that is to say, that the second component of the decomposition of every∇qh in Eh can be bounded in
terms of the other two. This condition can also be written in the form

inf
qh∈Qh

(
sup

vh∈Eh,13

(∇qh,vh)
‖vh‖0‖∇qh‖0

)
� β1> 0, (24)

in a similar way to the classical inf–sup condition; condition (24), however, is weaker since the space
where the supremum is taken,Eh,13, is larger than in the classical case,Vh,0 =Eh,1. Condition(24) was
analyzed in[5], where it was shown to be satisfied by equal order simplicial finite element interpolations.

The scheme analyzed in [7] differs slightly from (8)–(10) in the interpretation of the parameterα

and the pressure gradient projectionξn+1
h ; moreover, it is restricted to the caseε = 1. However, a

straightforward extension of the proofs in [7] leads to the following stability result:

Theorem 2. AssumeH1–H3hold; then, there exists a constantC > 0 independent ofδt andh such that,
for small enoughδt :∥∥uN+1

h

∥∥2
0 + νδt

N∑
n=0

∥∥un+1
h

∥∥2
1 + δth

N∑
n=0

∥∥∇pn+1
h

∥∥
0 �C. (25)

Remark 2. This theorem proves that the discrete velocities are stable inl∞(L2(Ω)) and l2(H 1
0(Ω)),

while the discrete pressure gradients (scaled byh) are stable inl1(L2(Ω)); this proves, in particular, that
the discrete problem is always well-posed. The result for the pressure can be improved tol2(L2(Ω)) in
2D flows or for the linear Stokes case (see [7]). We improve this estimates later on tol∞(H 1

0(Ω)) for the
velocity andl2(L2(Ω)) for the pressure as a consequence of the error estimates of the next section.

3.3. Error estimates for the velocity

We now proceed to obtain error estimates for the fully discrete velocity solutionun+1
h as an

approximation of the semidiscrete solutionun+1 under stronger regularity assumptions on the continuous
problem. For simplicity, we assume that the domainΩ is polyhedral, so that it can be exactly covered by
triangulations. We define and split theerrors of the methodas

en+1 = u(tn+1)− un+1
h = en+1

c + en+1
d ,

rn+1 = p(tn+1)− pn+1
h = rn+1

c + rn+1
d ,

gn+1 = ∇p(tn+1)− ξn+1
h = gn+1

c + gn+1
d ,
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where thediscreteerrors are defined as

en+1
d = un+1 − un+1

h , rn+1
d = pn+1 − pn+1

h , gn+1
d = ∇pn+1 − ξn+1

h .

Subtracting (8) (withθ = 1) from (6) and (9) (withβ = 1) from (7), it can be seen that these discrete
errors satisfy the following equations, which hold for any(vh, qh,ηh) ∈ Vh,0 ×Qh × Vh:(

en+1
d − end
δt

,vh

)
+ a(en+1

d ,vh
)+ (∇rn+1

d ,vh
)− c(un+εh ,un+1

h ,vh
)+ c(un+ε,un+1,vh

)= 0, (26)(∇ · en+1
d , qh

)+ α((∇rn+1
d ,∇qh)− (gn+1

d ,∇qh))= 0, (27)

− (∇rn+1
d ,ηh

)+ (gn+1
d ,ηh

)= 0. (28)

We also introduce the following notation. Given(vh, qh,ηh) ∈ Vh,0 ×Qh × Vh arbitrary, we call:

I0
(
un+1,vh

)= ∥∥un+1 − vh
∥∥

0, I1
(
un+1,vh

)= ∥∥un+1 − vh
∥∥

1,

I0
(
pn+1, qh

)= ∥∥pn+1 − qh
∥∥

0, I1
(
pn+1, qh

)= ∥∥∇pn+1 − ∇qh
∥∥

0,

I0
(∇pn+1,ηh

)= ∥∥∇pn+1 − ηh
∥∥

0, Gn+1 = ∥∥ξn+1
h − ∇pn+1

h

∥∥
0

and

En(h)= inf
vh∈Vh,0

∥∥un+1 − vh
∥∥

1 + 1

h
inf

vh∈Vh,0
∥∥un+1 − vh

∥∥
0 + inf

qh∈Qh
∥∥pn+1 − qh

∥∥
0

+h inf
qh∈Qh

∥∥∇pn+1 − ∇qh
∥∥

0 + h inf
ηh∈Vh

∥∥∇pn+1 − ηh
∥∥

0,

E(h)= max
n=0,...,N

En(h). (29)

We begin with a rather technical lemma:

Lemma 1. AssumeH2 andH3 hold; then, forn= 0, . . . ,N , for any(vh, qh,ηh) ∈ Vh,0 ×Qh × Vh and
for small enoughh:∥∥∇rn+1

d

∥∥
0 � C

{
I0
(∇pn+1,ηh

)+ I1(pn+1, qh
)+ 1

δt

∥∥en+1
d − end

∥∥
0

+Gn+1 + ν1/2

h

(∥∥en+1
d

∥∥
1 + ∥∥end∥∥1

)
+ ν

h

(∥∥en+1
d

∥∥2
1 + ∥∥end∥∥2

1 + ∥∥en+1
c

∥∥2
1 + ∥∥enc∥∥2

1

)}
.

(30)

(31)

Proof. By the triangle inequality and the previous definitions, we have∥∥∇rn+1
c

∥∥
0 �

∥∥∇pn+1 − Ph,12(∇qh)
∥∥

0 + ∥∥Ph,1(∇qh)− Ph,1(∇pn+1
h

)∥∥
0

+ ∥∥Ph,2(∇qh)− Ph,2(∇pn+1
h

)∥∥
0 + ∥∥Ph,3(∇pn+1

h

)∥∥
0

= T1 + T2 + T3 + T4.

We bound each term separately. For the first term, we use a similar argument to that of [5] for the
corresponding term in the analysis of an approximation of the Stokes problem, to get

T1 = ∥∥∇pn+1 −Ph,12(∇qh)
∥∥

0 � I0
(∇pn+1,ηh

)+ I1(pn+1, qh
)
.
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For the second term, we have, due to the orthogonality of the projectionPh,1,

T 2
2 = ∥∥Ph,1(∇qh)− Ph,1(∇pn+1

h

)∥∥2
0

= (
Ph,1

(∇qh − ∇pn+1
h

)
,Ph,1

(∇qh − ∇pn+1
h

))
= (∇qh − ∇pn+1,Ph,1

(∇qh − ∇pn+1
h

))+ (∇rn+1
d ,Ph,1

(∇qh − ∇pn+1
h

))
= T2,a + T2,b

so that

T2,a � I1
(
pn+1, qh

)∥∥Ph,1(∇qh − ∇pn+1
h

)∥∥
0.

Moreover, takingvh = Ph,1(∇qh − ∇pn+1
h

) ∈ Vh,0 in (26), we get

T2,b = −
(

en+1
d − end
δt

,Ph,1
(∇qh − ∇pn+1

h

))− ν(∇en+1
d ,∇Ph,1(∇qh − ∇pn+1

h

))
+ c(un+εh ,un+1

h ,Ph,1
(∇qh − ∇pn+1

h

))− c(un+ε,un+1,Ph,1
(∇qh − ∇pn+1

h

))
= −

(
en+1
d − end
δt

,Ph,1
(∇qh − ∇pn+1

h

))− ν(∇en+1
d ,∇Ph,1(∇qh − ∇pn+1

h

))
− c(en+εd ,un+1,Ph,1

(∇qh − ∇pn+1
h

))− c(un+εh , en+1
d ,Ph,1

(∇qh − ∇pn+1
h

))
.

Then,

−
(

en+1
d − end
δt

,Ph,1
(∇qh − ∇pn+1

h

))
� 1

δt

∥∥en+1
d − end

∥∥
0

∥∥Ph,1(∇qh − ∇pn+1
h

)∥∥
0,

−ν(∇en+1
d ,∇Ph,1(∇qh − ∇pn+1

h

))
� Cν1/2∥∥en+1

d

∥∥
1

∥∥Ph,1(∇qh − ∇pn+1
h

)∥∥
1

� Cν
1/2

h

∥∥en+1
d

∥∥
1

∥∥Ph,1(∇qh − ∇pn+1
h

)∥∥
0,

− c(en+εd ,un+1,Ph,1
(∇qh − ∇pn+1

h

))
� C

∥∥en+εd

∥∥
1

∥∥un+1∥∥
1

∥∥Ph,1(∇qh − ∇pn+1
h

)∥∥
1

� Cν
1/2

h

∥∥en+εd

∥∥
1

∥∥Ph,1(∇qh − ∇pn+1
h

)∥∥
0,

− c(un+εh , en+1
d ,Ph,1

(∇qh − ∇pn+1
h

))
= c(en+εd , en+1

d ,Ph,1
(∇qh − ∇pn+1

h

))+ c(en+εc , en+1
d ,Ph,1

(∇qh − ∇pn+1
h

))
−c (u(tn+ε), en+1

d ,Ph,1
(∇qh − ∇pn+1

h

))
,

c
(
en+εd , en+1

d ,Ph,1
(∇qh − ∇pn+1

h

))
� C

∥∥en+εd

∥∥
1

∥∥en+1
d

∥∥
1

∥∥Ph,1(∇qh − ∇pn+1
h

)∥∥
1

� C ν
h

∥∥en+εd

∥∥
1

∥∥en+1
d

∥∥
1

∥∥Ph,1(∇qh − ∇pn+1
h

)∥∥
0

� C ν
h

(∥∥en+εd

∥∥2
1+
∥∥en+1
d

∥∥2
1

)∥∥Ph,1(∇qh − ∇pn+1
h

)∥∥
0,

c
(
en+εc , en+1

d ,Ph,1
(∇qh − ∇pn+1

h

))
� C

∥∥en+εc

∥∥
1

∥∥en+1
d

∥∥
1

∥∥Ph,1(∇qh − ∇pn+1
h

)∥∥
1

� C ν
h

∥∥en+εc

∥∥
1

∥∥en+1
d

∥∥
1

∥∥Ph,1(∇qh − ∇pn+1
h

)∥∥
0

� C ν
h

(∥∥en+εc

∥∥2
1+
∥∥en+1
d

∥∥2
1

)∥∥Ph,1(∇qh − ∇pn+1
h

)∥∥
0,
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− c(u(tn+ε), en+1
d ,Ph,1

(∇qh − ∇pn+1
h

))
� C

∥∥u(tn+ε)∥∥2

∥∥en+1
d

∥∥
1

∥∥Ph,1(∇qh − ∇pn+1
h

)∥∥
0

�C
∥∥en+1
d

∥∥
1

∥∥Ph,1(∇qh − ∇pn+1
h

)∥∥
0

due to Remark 1 and the regularity of the continuous velocity. Assumingh� Cν1/2 in the last term, we
get

T2 � C
(
I1
(
pn+1, qh

)+ 1

δt

∥∥en+1
d − end

∥∥
0 + ν1/2

h

(∥∥en+1
d

∥∥
1 + ∥∥end∥∥1

)
+ ν

h

(∥∥en+1
d

∥∥2
1 + ∥∥end∥∥2

1 + ∥∥en+1
c

∥∥2
1 + ∥∥enc∥∥1

))
.

Moreover, due to condition (23) and sincePh,3 = Id − Ph,12 andξn+1
h = Ph,12(∇pn+1

h ), we have

T3 = ∥∥Ph,2(∇qh)− Ph,2(∇pn+1
h

)∥∥
0

� C
(∥∥Ph,1(∇qh)− Ph,1(∇pn+1

h

)∥∥
0 + ∥∥Ph,3(∇qh)−Ph,3(∇pn+1

h

)∥∥
0

)
� C

(
T2 + ∥∥Ph,3(∇qh)∥∥0 + ∥∥Ph,3(∇pn+1

h

)∥∥
0

)
� C

(
T2 + ∥∥∇qh − ∇pn+1∥∥

0 + ∥∥∇pn+1 − Ph,12(∇qh)
∥∥

0 +Gn+1
)

= C
(
T2 + I1(pn+1, qh

)+ T1 +Gn+1
)
.

Finally,

T4 = ∥∥Ph,3(∇pn+1
h

)∥∥
0 =Gn+1

and (30) follows. ✷
In our convergence analysis we will also need the following assumption:

H4. There existsC > 0 independent ofh andδt such that:

δt � Ch2. (32)

This condition does not impose an upper bound on the time step, so that the method remains
unconditionally stable (see also Remark 5). Our main result of this section is the following:

Theorem 3. Assume(R1), (R2), (R4) andH1–H4hold; then, there exists a constantC > 0 independent
of δt andh such that, for small enoughh and, ifε = 1, small enoughδt ,

∥∥eN+1
d

∥∥2
0 + νδt

N∑
n=0

∥∥en+1
d

∥∥2
1 � C

((
E(h)

)2 +E(h)δt2). (33)

Proof. Let us call

A =
(

en+1
d − end
δt

, en+1
d

)
+ ν(∇en+1

d ,∇en+1
d

)+ (∇rn+1
d , en+1

d

)+ (∇ · en+1
d , rn+1

d

)
+ α(∇rn+1

d ,∇rn+1
d

)− α(gn+1
d ,∇rn+1

d

)− α(gn+1
d ,∇rn+1

d

)+ α(gn+1
d ,gn+1

d

)
= 1

2δt

(∥∥en+1
d

∥∥2
0 − ∥∥end∥∥2

0 + ∥∥en+1
d − end

∥∥2
0

)+ ν∥∥en+1
d

∥∥2
1 + α∥∥ξn+1

h − ∇pn+1
h

∥∥2
0.
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Given(vh, qh,ηh) ∈ Vh,0×Qh×Vh arbitrary, we takevh−un+1
h , qh−pn+1

h andηh−ξn+1
h as test functions

in (26), (27) and (28), respectively, to get
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We bound each term as follows:(
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whereα− was defined in (20). Moreover, due to Lemma 1 we have(∇rn+1
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We split the convective terms the following way:

c
(
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Due to the continuity properties of the trilinear formc, its skew symmetry in its last two arguments, the
results of Theorem 1, the regularity assumed for the continuous solutionu and Young’s inequality, we
have
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Taking all the previous inequalities into account, and using (20), we find

∥∥en+1
d

∥∥2
0 − ∥∥end∥∥2

0+
∥∥en+1
d − end

∥∥2
0 + νδt∥∥en+1

d

∥∥2
1 + δth2G2

n+1

� Cδt
(
I1
(
un+1,vh

)2 + h2I1
(
pn+1, qh

)2 + h2I0
(∇pn+1,ηh

)2
+ 1

h2
I0
(
un+1,vh

)2 + I0(pn+1, qh
)2)+CI0(un+1,vh

)2
+ δtν(∥∥en+1

d

∥∥2
1 + ∥∥end∥∥2

1

)C
h
I0
(
un+1,vh

)+ δtν
(∥∥en+1

c

∥∥2
1 + ∥∥enc∥∥2

1

)C
h
I0
(
un+1,vh

)
+Cδt2ν∥∥en+εd

∥∥2
1 +Cδt∥∥en+εd

∥∥2
0 +Cδtν

1/2

h

∥∥end∥∥1I0
(
un+1,vh

)
+Cδtν∥∥en+εd

∥∥2
1I1
(
un+1,vh

)2 +Cδtν∥∥en+εc

∥∥2
1I1
(
un+1,vh

)2
.

Taking the infimum with respect to(vh, qh,ηh) ∈ Vh,0 ×Qh × Vh, we get
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Adding up (34) fromn = 0 to N , using assumption H4, the definition ofE(h) and the estimates of
Theorem 1, we get
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sinceE(h) � Ch, (E(h))2 � E(h) for h small enough and|Z|l1(X) � C|Z|l2(X) for anyZ andX (see
Remark 1). For sufficiently smallh, the second term in the right hand side can be passed over to the left
hand side, sinceE(h) tends to 0 ash tends to 0. By the discrete Gronwall inequality, this implies, for
sufficiently smallδt in the caseε = 1,
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and (33) follows. ✷
Remark 3. For equal order interpolations of degreek, the spatial error functionE(h) behaves like
hk, the worst case being that of linear (P1) and multilinear (Q1) elements. In general, one always has
E(h)� Ch; due to assumption (32), this result proves in particular that the discrete velocities are bounded
in l∞(H 1
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This is the key point to obtain improved stability estimates in the next section.

Remark 4. The last term in the estimate (33) for the discrete velocity is due to the presence of the
convective term in the equations (it is not present in an analysis of the linear Stokes case) and arises from
the estimates of the semidiscrete problem. Again, sinceE(h) � Ch, this extra term is always smaller
thanδt2, and the method remains first order accurate in time for the velocity.

3.4. Improved stability estimate

As a consequence of the convergence analysis of the previous section, the stability results of
Section 3.2 can be improved as follows:

Proposition 2. Assume(R1), (R2), (R4) and H1–H4 hold; then, there exists a constantC > 0
independent ofδt andh such that, for small enoughh and, ifε = 1, small enoughδt ,
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Proof. In a similar way to [7], takingv = un+1
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From (36), it is found that
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bounded; due to assumption (23), it only remains to boundPh,1(∇pn+1
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the continuity of the formsa andc, the inverse estimate (22) and the result of Remark 2, we have∥∥Ph,1(∇pn+1
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Dividing this estimate by‖Ph,1(∇pn+1
h )‖0, squaring the result, multiplying byδth2 and adding up for

n= 0, . . . ,N , we find
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due to the assumed behaviour (32) on the time step size.✷
3.5. Error estimates for the pressure

We begin this section with an estimate for the discrete pressure gradient:

Proposition 3. Assume(R1), (R2), (R3), (R4)and H1–H4 hold; then, there exists a constantC > 0
independent ofδt andh such that, for small enoughh and, ifε = 1, small enoughδt ,
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Thus,
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Taking the infimum with respect toηh andqh and using (32), this implies

δth2
N∑
n=0

∥∥∇rn+1
d

∥∥2
0 � C

{
δt

N∑
n=0

(
En(h)

)2 +
N∑
n=0

∥∥en+1
d − end

∥∥2
0 + νδt

N∑
n=0

∥∥en+1
d

∥∥2
1 + δth2

N∑
n=0

(Gn+1)
2

}
,

and (38) follows from (35) and the definition ofE(h), (29). ✷
Since we have obtained error estimates for the fully discrete pressure gradient and the semidiscrete

pressure itself, we now present some estimates for the fully discrete pressure solution, which are based
on a classical duality argument:

Proposition 4. Assume(R1)–(R4)andH1–H4hold; then, there exists a constantC > 0 independent of
δt andh such that, for small enoughh and, ifε= 1, small enoughδt ,
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Furthermore,
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∥∥en+1
d − end

∥∥
0

(‖z − zh‖0 + ‖z‖0
)

� 1

δt

∥∥en+1
d − end

∥∥
0

(
Ch‖z‖1 +C‖z‖1

)
� 1

δt

∥∥en+1
d − end

∥∥
0

∥∥rn+1
d

∥∥
0,

ν
(∇en+1

d ,∇zh
)
� Cν1/2∥∥en+1

d

∥∥
1‖zh‖1 �Cν1/2∥∥en+1

d

∥∥
1

∥∥rn+1
d

∥∥
0,

−c(un+εh ,un+1
h ,zh

)+ c(un+ε,un+1,zh
)= c(un+ε, en+1

d ,zh
)+ c(en+εd ,un+1

h ,zh
)

�C
(∥∥un+ε∥∥1

∥∥en+1
d

∥∥
1 + ∥∥en+εd

∥∥
1

∥∥un+1
h

∥∥
1

)‖zh‖1

�C
(∥∥en+1

d

∥∥
1 + ∥∥en+εd

∥∥
1

)(‖z − zh‖1 + ‖z‖1
)

�Cν1/2(∥∥en+1
d

∥∥
1 + ∥∥en+εd

∥∥
1

)∥∥rn+1
d

∥∥
0.

Estimate (39) is obtained dividing by‖rn+1
d ‖0 throughout, squaring the result, multiplying byδt2 and

adding up fromn= 0 toN , due to (35) and (38).

3.6. Global error behaviour

As a consequence of the previous results, we have:

Corolary 1. Assume(R1)–(R4)and H1–H4hold; assume also that, forn = 0, . . . ,N , un+1 ∈ H r (Ω),
r � 2 andpn+1 ∈Hs(Ω), s � 1, and that they are uniformly bounded in these spaces. Then, there exists
a constantC > 0 independent ofδt andh such that, for small enoughh and, ifε = 1, small enoughδt ,

∥∥eN+1∥∥2
0 + νδt

N∑
n=0

∥∥en+1∥∥2
1 + δt2

N∑
n=0

∥∥rn+1∥∥2
0 � C

(
δt2 + h2k), (43)

wherek = min(r − 1, s, kv, kq + 1).

Proof. This estimate follows from Theorems 1 and 3, Propositions 1 and 4, assumption (32), the
regularity assumed of the semidiscrete solution(un+1,pn+1) and the approximating properties of the
finite element spaces considered.✷
Remark 5. The conditionδt � Ch2 arises due to the proof technique employed, which deals with the
temporal error first and then the spatial error. However, according to the results of Corollary 1, accuracy
considerations indicate that, when equal order interpolation of degreek is used,δt should be of orderhk ;
for linear (P1) and bilinear (Q1) elements, one hask = 1, so that assumption H4 is fulfilled. Even for
quadratic (P2) and biquadratic (Q2) elements, one still hask = 2, making H4 acceptable.
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