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Abstract

In this paper we analyze a pressure stabilized, finite element method for the unsteady, incompressible Navier—
Stokes equations in primitive variables; for the time discretization we focus on a fully implicit, monolithic scheme.
We provide some error estimates for the fully discrete solution which show that the velocity is first order accurate
in the time step and attains optimal order accuracy in the mesh size for the given spatial interpolation, both in the
spaced.?(£2) andHol(Q); the pressure solution is shown to be oréexccurate in the time step and also optimal
in the mesh size. These estimates are proved assuming only a weak compatibility condition on the approximating
spaces of velocity and pressure, which is satisfied by equal order interpolati@@®1 IMACS. Published by
Elsevier Science B.V. All rights reserved.
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1. Introduction

The purpose of this paper is to provide some error estimates for a pressure stabilized, finite element
method for the numerical solution of the unsteady, incompressible Navier—Stokes equations in the
primitive variables velocity and pressure. The method was introduced in [7] as an extension to the
transient case of a technique initially developed for the Stokes problem [5] and then extended to the
steady, incompressible Navier—Stokes equations [6].
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The stabilization of the pressure in incompressible flow problems has received much attention in the
last decades. Numerical schemes have been developed which bypass the need for the approximatin
spaces of velocity and pressure to satisfy the compatibility condition met when using standard Galerkin
methods. Stabilized formulations were first introduced under the idBatafv—Galerkinmethods [17],
which then led tdGalerkin Least Squarg$LS) techniques. These were first developed in the context of
advection—diffusion equations [18], and then extended to the linearized, steady incompressible Navier—
Stokes equation in [9] (see also [10] and the references therein). More recently, the GLS technique has
evolved into the idea afubgrid-scale modelgsee [4,16]). All these techniques have been analyzed in
the literature for steady problems using arbitrary finite element interpolations. Error analysis both in
space and time for stabilized formulations of transient problems have been given in [19], for advection—
diffusion problems, and [13], for the incompressible Navier—Stokes equations. In this last reference, the
analysis was based on the assumption that the timésispf the same order as the mesh gizér ~ /.
Moreover, it was restricted to the case of piecewise linear elements.

On the other hand, some combinations of finite element spaces which satisfy the discrete compatibility
condition have been analyzed for the Stokes problem and proven to be stable and yield optimal order
accuracy of the solution (see, for instance, [3,22]). Assuming a (mixed) finite element pair which satisfies
the discrete compatibility condition, some analysis of methods for the unsteady problem have been given:
Heywood and Rannacher [14,15] proved second order error estimates in the time step and optimal orde
accuracy in the mesh size for a mixed method using a Crank—Nicholson time integration scheme; Boukir
et al. [1] also proved second order estimates in time and optimal order in space for a characteristic-basec
method under a stability restriction on the time step of the férrg 2¢/6, whered is the dimension of
space; finally, Guermond and Quartapelle [12] analyzed the classical fractional-step projection method of
A.J. Chorin and R. Temam in its incremental form, which yields a first order scheme which is also optimal
in space (a second order method can also be developed). Their analysis is based on the satisfaction of tr
LBB condition, which has traditionally been considered unnecessary in projection methods based on a
Poisson equation for the pressure. This condition can be avoided assimird™, wherel is the order
of the spatial interpolation, in the stability analysis of the non-incremental form of the method, but not in
the convergence one.

We analyze here a stabilized formulation of the unsteady problem which employs a finite element,
pressure gradient projectiotechnique [6] and a fully implicit, backward Euler scheme for the time
integration. We show that first order accuracy in time is maintained in the fully discrete method, which
attains optimal order accuracy in space for the given interpolation. The analysis is carried out assuming
only a weak compatibility condition on the approximating spaces of velocity and pressure, which was
proven to be satisfied by simplicial equal order finite element interpolations in [5]. The error estimates
obtained are given in terms of a certain norm of the velociti3(f2) andHol(.Q) and the pressure and its
gradient inL2(£2). We first analyze the temporal error by considering a semidiscrete approximation of the
problem, and then study the fully discrete method, with both a linearized and a nonlinear approximation
of the convective term.

It has to be remarked that the purpose of the technique employed here is to stabilize the pressure
solution; the instabilities due to the convective term at high cell Reynolds numbers are not addressed at
with this formulation. Moreover, the interest here relies on showing how the technique that we use to
stabilize the pressure, with respect to the spatial interpolation, can be analyzed in transient problems,
regardless of the particular time integration method employed. We concentrate on a fully implicit,
backward Euler scheme, which, although being only first order accurate, is unconditionally stable;
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however, other methods could also be considered (see [7]). The resulting scheme is computationally
feasible (see [7]), and also suitable as an iterative method to reach steady states.

Our presentation is split into two sections. In Section 2 we state the problem to solve, recall
some known properties of its solution and introduce some notation; we then present the semidiscrete
approximation considered and finally the fully discrete, stabilized finite element method. In Section 3
we state and prove our error estimates, first for the semidiscrete and then for the fully discrete problems.
We first recall a stability estimate which was proven in [7] under weak assumptions on the continuous
solution; then we prove some optimal order error estimates for the velocity, from which we obtain an
improved stability estimate as a side product. We finally analyze the pressure solution, for which we also
obtain optimal order error estimates.

2. Description of the method
2.1. Problem statement
The evolution of viscous, incompressible fluid flow in a bounded dom@ic R? (d = 2, 3)

is governed, in the primitive variable formulation, by the unsteady, incompressible Navier—Stokes
equations:

88_?+(uV)u_vAu+Vp:f |nQX(0,T), (1)
Vou—0 in 2 x (0, 7) (2)

on 2 x (0, T) (with T > 0 a given final time), where(x, r) € R¢ is the fluid velocity at positiorx € 2

and timer € (0, T), p(x,t) € R is the fluid kinematic pressure,> 0 is the kinematic viscosityf (x, t)

is an external forcey is the gradient operatoF - is the divergence operator am is the Laplacian
operator (here, and in what follows, boldface characters denote vector quantities). Boundary conditions
have to be given to complete the equation system (1)—(2). For the sake of simplicity, only homogeneous
Dirichlet type boundary conditions are considered here:

u=0 onI x(0,T), 3)
wherel” = 9£2. An initial condition must also be specified for the velocity:
u(x,0) =ug(x) inS2. (4)

The treatment of the above equations of motion requires of the usual Sobolev a3, m > 0,
consisting of functions with distributional derivatives up to ordembelonging toL?(£2). The scalar
product inH™($2) is denoted byu, v),, (the subscripin may be omitted when it equals 0) and its norm
by ||ul|,.. The closed subspacéﬁjl({z), consisting of functions irH(£2) with zero trace on”, and
L3(£2), made up with functions ih?(£2) with zero mean o2, will also be needed. Also, l&f ~1(£2)
denote the dual space 8} (£2), the duality between these two spaces being denoted hyand let:

W={uecH)R)|V- -u=0}

Assumingug € Hé(.Q) and f € L0, T; H™1(£2)), and if £2 is bounded and Lipschitz continuous,
problem (1)-(4) has at least one solutiane L>®(0, T; L?($2)) N L?(0, T; H}(£2)) (see [24]).
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Uniqueness and more regularity of the solution can be achieved by assuming more regulgfity on
up ands2. In particular, we assume hereafter that the continuous sol@tion) of (1)—(4) is unique and
satisfies:

(R1) u € L®(0,T; H*(£2)) N C°(0, T; W), p € L®(0, T; HY(£2)) N C°(0, T'; L3(£2)),

(R2) u, € L?(0, T; L3(R2)),

(R3) foT tlwg () ||%1 dr <C,

(R4) o llu(0)]3 0 < C.
The subscript is employed hereafter fdr/dz¢, and we use” as a generic constant dependingfqfu,
£2 andv, but not on the time stefr nor on the mesh sizk; also, W’ is the dual space di¥. Sufficient
conditions for (R1)—(R3) to hold can be found [14]; for (R4), see [20,21]. In particular, it is required that
f € L0, T; L?(£2)), which we assume from now on.

Letus callV = Hé(.Q) andQ = L%(.Q). In what follows the following notation will be used for the
weak form of the different terms in Egs. (1)—(2):

a(u,v) =v(Vu,Vv), u,veV,

b(g.v)=—(q,V-v), veV, qge 0,

cu,v,w)=((-V)v,w) + %((V ‘w)v,w), u,v,wev.
All these forms are continuous on the specified spaces, and the expression taken for the trilinear form
arising from the convective term in (1) is skew-symmetric in its last two arguments (see [24]); under the
incompressibility condition (2), this expression is equivalent to that obtained from the original convective

term in (1). Besidesg is coercive as a consequence of the Poincaré—Friedrics inequality, that is, there
exists a constark,, > 0 such that:

a(u,u)=v||Vul§>K,|ull}, VueV.

andb satisfies the (continuoug)f—supcondition, that is, there exists a const&npt > 0 such that:

. b(q,
inf (sup(qiv) >K,>0 (5)
7€Q \vev [|v]l1]lg]lo
(infima and suprema are always taken with respect to nonzero functions). Condition (5) is usually referred

to as theinf-supor LBB condition, after the work of O.A. Ladyzhenskaya, |. Babuska and F. Brezzi.
Finally, ¢ satisfies other continuity properties, some of which are (see, e.g., [8]):

Cllullallv]|2]|w]]1
Cllullollv]l2l|w]|1
Cllull2llv]|2l|wllo
Cllullolvl|2llw[|z ).

C(ua v, w) <

2.2. Finite element approximation

The numerical approximation of problem (1)—(2) that we analyze here was introduced in [7] as an
extension to the transient case of a finite element method originally developed for steady problems.
It is well known that discrete approximations of incompressible flow problems in primitive variables
are restricted by the discretef—sup condition, that is, the discrete counterpart of condition (5); this
prevents the use of many simple finite element combinations for the discrete spaces of the velocity and
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the pressure, such as equal order ones. The methods based on a pressure gradient projection circumve
this restriction by introducing the projection of the gradient of the discrete pressure onto the space of
discrete velocities as a new variable of the problem; this allows, in particular, the use of equal order

interpolations.

In the transient case, this methodology can be applied together with different time integration schemes;
we concentrate here on an implicit, monolithic scheme using the trapezoidal rule, but extensions to other
schemes such as fractional-step or multistep methods can be derived in a similar way (see [7] for a
description of some of them).

2.2.1. Semidiscrete problem

We consider a parametére (0, 1] and discretize Egs. (1)—(2) in time first by the following implicit
scheme, which we write in variational form: given a time step size- O, let N = [T /5¢t] — 1, for
ne{0,..., N}, lett, =ndt; givenu” € V andp” € Q, approximations ofi(z,) and p(z,), respectively,
find u"*! € V andp"*! € Q such that:

n+l _ n
<u . u ,v) +c(un+se’un+9’ v) +a(un+9’ v) + (Vpn+0’ v), = (fn+9’ v), (6)
b(q,u"+1) =0 (7)

for all (v, q) € V x Q, where for a given functiog the notationg”*? stands for:
gn+9 — 9g71+1 + (l _ 9)8"

The parametet which appears in the approximation of the nonlinear term in (6) can take the values 0O
and 1, corresponding to a linearized and a nonlinear approximation of convection, respectively. The first
option is suitable in the first order, backward Euler case 1, since the approximation it provides is

also first order accurate and it results in a lower computational cost of the fully discrete problem (which
is then linear in each time step); the second option, however, enhances stability for highly convective
flows and is compulsory in the Crank—Nicholson céase % to maintain second order accuracy. In this
sense, we use the expressign™*?, u"+? v) which differs from(c(u, u, v))"*? (the form to which strict
application of the trapezoidal rule would lead) by a second order term and is computationally simpler.
Moreover, we assume that the semidiscrete pressures sutigfi! € L?(£2); conditions onf and 2

for this assumption to hold can be found, for instance, in [11].

2.2.2. Fully discrete method

We now proceed to introduce a spatial approximation of the semidiscrete problem (6)—(#®, Let
denote a finite element partition of the doma&nof diameterz. We assume that all the element domains
K € ©), are the image of a reference eleménthrough polynomial mappings x, affine for simplicial
elements, bilinear for quadrilaterals and trilinear for hexahedrakQve define the polynomial spaces
Rk(l?) where, as usualk, = P, for simplicial elements an®, = Q, for quadrilaterals and hexahedra.
The finite element spaces we need are:

O, = {Qh € CO(Q)ng(Q) |Qh|K :é OF}l,é € qu(l?), K e @h},

Vi ={, € (CO2))! | vpx = Do FL, 9 e (R, (K))’, K €@y},
Vo= {vs € Vy|vr =0}.
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Notice that both the velocity and pressure finite element sp¥ggsand Q, are referred to the same
partition and both are made up with continuous functions. These finite element spaces satisfy the
following approximating properties (see, e.g., [23]): giveas H"(2),r > 2, andg € H*(£2), s > 1,
there existlT;, 1(v) € Vj.0, [Ty.2(q) € O, andIl, 3(Vq) € V,, such that:

v =M1, < C1h "o, »

I
lg — 17h,2(6])||,,,2 < C2h"2 72| gy,
Vg = M3(V)]|,,, < Cah'* ™"V q g,
forO<m; <k; (i =1, 2,3), where:
ki = min{r, k, + 1}, ky = min{s, kq + 1}, ks =min{s — 1, k, + 1}.

Let now « > O be a given parameter. Givetu}, p;,&,) € Vio x Qi x V,, approximations of
@", p", Vp"), we discretize (6)—(7) in space by findiag %, pi 1, &1 € Vi, 0 x Q) x V;, such that:

un+1 —u"
< h 5 h , vh) + C(MZ+€9, uz+9’ vh) +a(uz+9’ vh) + (VPZJFH, vh) — (fnJrH’ vh), (8)
- b(qh’ u;ll-’_l) + “((VPZH’ VQh) - (EZ—HS, th)) =0, 9)
— (Vo) + (&5 m,) =0 (10)

for all (vi, gn, m,) € Vio X Qn x Vi, where again eitheg = 0 or g = 1. Eq. (10) says thzﬁ;’l“ is the
L2-projection of Vp/ ™ onto the spacé/,; thus, the caseg = 0 andg = 1 correspond to an explicit

and an implicit approximation of the pressure gradient projection in the modified continuity equation (9),
respectively (see [7]).

In the formulation (8)—(10) we have used a ‘global’ parametevith the same value on all the element
domains; the numerical analysis of this method then requires of some regularity properties of the finite
element mesh such as gsiasi-uniformity However, this restriction can be relaxed by considering a set
of elemental parametetsy, K € @, and replacing thd.?-scalar products appearing in (9)—(10) by a
sum of products weighed in each elementdyy. This extension to local parameters was analyzed in
[6] for the steady, incompressible Navier—Stokes equations, and the analysis given there can be readily
applied to the transient case. We restrict our attention here to the global parameter case to simplify the
presentation.

3. Stability and error analysis

We now present a numerical analysis of the finite element method (8)—(10). For the time approxima-
tion, we restrict to the fully implicit, backward Euler cage= 1, which is first order accurate in the time
step. We split the errors of the method into a temporal error, due to the semidiscretization (6)—(7), and a
spatial error, due to the stabilized, fully discrete method (8)—(10). In the case oftstudy first order
accuracy in the time step for the semidiscrete velocity solution can be shown by standard arguments; we
include a proof of this result for completeness. We consider both the linearized meth@dand the
fully nonlinear scheme = 1. We then concentrate on the spatial approximation in the implicit pressure
gradient casg = 1.
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3.1. Error estimates for the semidiscrete solution

Let us define theontinuouserrors (as for the spatial variables) as

= u(ty2) — ",

n+1l __ n+1
rc - p(t71+1) - p ’
n+1l __ n+1
g, T =vVr/T.

We then have:

n+1
eC

Theorem 1. AssumgR1), (R2) and (R4) hold. Then, there is a consta@tindependent ofs such that

N
e 25+ vsr > |lertHf; < car2. (11)
n=0

If ¢ =1, (11) holds for sufficiently smalir.

Proof. We call R" the truncation error defined by

1
E (u (tn+1) - u(tn)) - VAu(tn+l) + (u(tn+1) : v)u(tn+1) + Vp(tn+1) = f(tn+1) +R" (12)

so that
In+1
R == / (t — 1)1ty (1) .
ot

In

Multiplying (12) by v € V and (2) (att = ¢,,1) by ¢ € Q, and subtracting (6) (with = 1) and (7) from
them, respectively, we find

en+1 —e"
<7 v) (Ve V) + (VL p)

ot
=(R",v) +c(u""*, 't v) — c(u(tys1), u(tyy1), v), (13)
b(q,e'™) =0. (14)

Takingv = 28te"*1in (13) andg = r"*1in (14), and using the identitys — b, 2a) = |a|?— |b|?>+|a —b|?,
we get

lezlg — lletllo+ lext® — efllg+ 25tv ]| Vertt o = 261 (R", el*1) + 25tNLT
where NLT stands for

NLT = c(u"™, u"™, ") — c(u(tyr1), ut,1), €.

For the Taylor residual term, one has (see, e.g., [20])
Iny1

)
251(R", er) < L verrti ot [ uf .
n

The treatment of the NLT is different in the cages 0 ande = 1.
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Linearized caseé/Nhene = 0, we have

28tNLT = 25t (c(w", u"™, &™) — c(u(tyy1), u(tyy1), €))

c

= 28t(—c(u", "™, &) —c(e, u(tyr1), €™) — c(u(typ) — u(ty), u(tyy1), e *H))

=T+ 71>+ T3,
whereT; = 0 due to the skew-symmetry of the trilinear foemand, due to its continuity properties and
the regularity property (R1) aof:

Ty = —28tc(e", u(t,11), € ™)

c

n n StV 12 .
< Cétllel|ollu i) [l ]ler ], < §||Vec“||o+05t||ec||w

T3 = —28tc(u(tyi1) — w(t), w(tyya), €4)
Tnt1

Sty
< Cot|u(tnra) — ut)[lollutaro)|l,]lel ™Iy < ?HW’Z“HSJrC&Z/ loe, |15 dl.

In

Therefore,
n 2 n2 n 2 n 2
Hec+1||0_ ec||0+ ||ec+1_ecHO+5tUHec+1H1
tht1 Ini1
<C5z2/ ||u,,||§v/dt+C8t2/ lue, |2 0 + C5t[e” 2. (15)

In In

Adding up (15) forn =0, ..., N, and using the regularity properties (R2) and (R4) of the continuous
solution, we get

N N N
e g+ llet ™ = etllg+8rv Y lertls < C8:° 4 ot Y ek
n=0 n=0 n=0
Applying the discrete Gronwall inequality, this implies

N N
leX o+ D lertt —elflg+srv Y ert§ < cor? (16)
n=0 n=0
and (11) follows.
Nonlinear caseWhene = 1 we have

28tNLT = 26t (c(w"™, u™™, ™) — c(u(tyy1), u(thra), € 1))
= 28t (—c(u"™, et et — (e u(ty 1), €))
=T+ T,
where agairf; = 0 due to the skew-symmetry of the trilinear formand

Ty = —28tc(e"™, u(t, 1), &™)

c

Sty
< Cotllel H|ollu i) | lle ], < ?HW’Z“Hfﬂr Cotller 5.
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Therefore,
et 15— llez]ls + [l ™ — el o+ srvlert|3
Int+1 ny1
<C5z2/ ||u,,||3v,dz+caz2/ lat, |20 + C5t]|er )2 17)
tn t)l
and

N N N
2 n w2 na1)2 w12
led™ o+ > _llet™ —elllg+8rv > _[lectHly < Car®+Car Y _|[le™|o-
n=0 n=0 n=0
Applying the discrete Gronwall inequality, this implies, for sufficiently sndall

N N
leX g+ D ller ™ —erllg +8rv Y [ler | < €812 (18)
n=0 n=0
and (11) follows again. O

Remark 1. The error estimates proved in Theorem 1 ensure that the semidiscrete velotittesre
first order accurate in the time step, in the following sense: given a Banach@pagd|), for s > 0 let
I*(X) denote the space of finite sequenges {z"™1}¥_, C X equipped with the norm

1 N 1/s
_ | = n+1||8
1zl = <N;I|z ||)

,,,,,

I2(H}($2)). This result proves, in particular, that these semidiscrete velocities are bouriefad#ig($2))
by a constant independent &f, since:

"y < fle s + fledHly < [l + (CODTE<C

due to Theorem 1 and the regularity assumed on the continuous solution. Moreover, we also have
lle" 1)1 < C8tY2. We will use these results later on.

We also have an error estimate for the semidiscrete pregstite

Proposition 1. Let (R1)—(R4) hold. Then, there is a constaGtindependent ofr such that
atzN:||rg+1||§ < Cét. (19)
If e = 1,n(:109) holds for sufficiently smallz.
Proof. By the continuous inf-sup condition (5), we have, using (13),
iy < csup™e )

veV ”v”l

1 (-1
= Csup—{— (et — e, v) —v(Vertt, Vo) + (R, v>} + NLT.
vev [[vll2 U 6t
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We bound each term as follows (for the Taylor residual term, see [21]):

1 C
m(‘fzﬂ —e;,v) < g”‘fzﬂ —e.||os
2
W(Veﬁ“, Vo) < Cv¥2|lel
12
L /

Int1
(R",v) <[[R"||_; < C</ r||u”||31dr>
1,

n

[vll2

The treatment of the NLT is again different foe= 0 and 1.
Linearized casdJsing the continuity properties of the trilinear foumthe regularity property (R1) of
u and the results of Theorem 1 and Remark 1, we have

1

NLT = W(c(u", u" ) —c(uty1), u(tyi1), v))
= ﬁ(—c(u”, e v) —c(el uty1), v) — c(utyrr) — u(ty), u(tys1), v))
=N+ TL+Ts
1= e e o) <l < e
T2 = o tclet ) < et vl < Cletl < Co.
T3 = ———c(utn1) — u(t,), u(ty1), v)

[vll2

tht1 1/2
< C|lu<tn+1>—u(tn>||o||u<rn+1)|l2<caﬁ/z( / ||ut||%dr) :
1,

n

Therefore,
h+1 Ini1

1
|w“%<poWM—4%+wﬁﬂﬁ+/mwwmﬂwﬂ+&/ww@ﬁ.

c

tn tn

Finally,
- n+1|2 13 n+1 n||2 z n+1(2
8tZ||rc ||O g c EZHeC _ec||0+vat2||ec ||1
n=0 n=0 n=0

T T
+5t/t||u,,||21dz+5t2+5t2/||u,||§,dz)
0 0

T T
< C8t+C6t/t||u”||:ildt+C6t2/||ul||3dt
0 0
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due to (16). Estimate (19) follows from the regularity properties (R2) and (Ri3) of
Nonlinear caseThis time we have:

1

NLT = v]l1 (c(@™ ™ v) — c(u(tpr), utyin), v))
N |Iv1||1 (—c(@, e v) —c(eit, u(tn), v))
=T+ 1>,

T, ﬁc(u"“,eﬁ“, v) < Cv2er .
I, = ﬁde?l, u(tn11),v) < C|lef |y < Cot

and (19) follows again. O
3.2. A priori stability estimate

We begin the analysis of the discrete problem recalling a stability estimate which was proven in
[7] under weak regularity assumptions on the continuous solution. When studying pressure-gradient-
projection methods for steady, incompressible flow problems, the following assumptions are encountered
(see [5]), all of which carry over to the unsteady case:

H1. There existv_ > O and« > O independent ok such that
o h? <o <aph? (20)

This assumption dictates the behaviour of the numerical parameter

H 2. The family of finite element partition®, is quasi-uniform, that is, there exists a constant- 0
independent ot such that, for allz > O:

min{diam(Bk) | K € @, } > o max{diam(Bx) | K € O}, (21)

where By is the largest ball contained in K. Conditiof21) is needed in order to have the following
inverse estimatésee[2]):

C
lvnlla < ﬁ”vh”m Vo, € V. (22)

This assumption can be weakened by using local parametefsee [6]).

H3. Asin[5,6], let VQ, denote the space
VO, ={vy € L*(2) | v = Vau, g1 € O}
and define the spacg, by
E, = Vi +VQ, C L} %)
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We consider three mutually orthogonal subspaggs of E;, defined by

Eni=Vio.  En2=VioNVi.  Enz=V; NE,
so that

Eyn=Ey1®Ey>® E)3.
Fori =1,2,3, we call P,; the Lz—projection of E, onto Ej, ;, and fori # j, P ;j = P,; + P, ; and
Eyij = Ep; @ Ep ;. In this notation,gz = Pp12 (Vp”“) We assume that there is a constdat
independent ok such that

IVanllo < Bol| Pr.13(Van)||o: (23)

that is to say, that the second component of the decomposition of @ygrin E, can be bounded in
terms of the other two. This condition can also be written in the form

( sup V4 1) ) >8>0, (24)
weE s 10allollVgnllo

in a similar way to the classical inf-sup conditiocondition (24), however, is weaker since the space
where the supremum is takel, 13, is larger than in the classical cas#), o = E; 1. Condition(24) was
analyzed if5], where it was shown to be satisfied by equal order simplicial finite element interpolations.

inf
qn€Qn

The scheme analyzed in [7] differs slightly from (8)—(10) in the interpretation of the parameter
and the pressure gradient projectie’fjn“; moreover, it is restricted to the case= 1. However, a
straightforward extension of the proofs in [7] leads to the following stability result:

Theorem 2. AssuméH1-H3hold; then, there exists a constafit> 0 independent oft and/ such that,
for small enougld::

e +1||o+v5fZ| Al +5ch|Vph“l <C. (25)

Remark 2. This theorem proves that the discrete velocities are stahl& (£2%(£2)) and lz(Hé(.Q)),
while the discrete pressure gradients (scaledYgre stable id(L2(£2)); this proves, in particular, that
the discrete problem is always well-posed. The result for the pressure can be impré¥ddf(®)) in
2D flows or for the linear Stokes case (see [7]). We improve this estimates latef6aHg(2)) for the
velocity andl2(L?(£2)) for the pressure as a consequence of the error estimates of the next section.

3.3. Error estimates for the velocity

We now proceed to obtain error estimates for the fully discrete velocity solutjgh as an
approximation of the semidiscrete soluti@ti! under stronger regularity assumptions on the continuous
problem. For simplicity, we assume that the dom@iris polyhedral, so that it can be exactly covered by
triangulations. We define and split teerors of the methods

+1
e" =u(lyr1) — Uy

= p(tn+1) -
gn+1 _ vp(thrl) _ n+1 — g?Jrl 4 gZJrl

n+1 n+1 4 en+1

n+1 _ rn+1 + rn+1’
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where thediscreteerrors are defined as

n+l _ . n+l n+1 n+1 n+1 n+l _ n+1 n+1
e, =u T —u =p" =yt gy =Vp'TT &

Subtracting (8) (withd = 1) from (6) and (9) (with8 = 1) from (7), it can be seen that these discrete
errors satisfy the following equations, which hold for amy, g,, n,,) € Vi.o X Qn X Vj:

n+1 n
(6)[1(37[% ) +a(e™ v) + (Ve v) — et ui ™ v) + e (@, u v,) =0, (26)
(V-eit™ qn) + (Vi Van) — (85 Van)) =0, (27)
- (VFZ}H’ ) + (gZH’ n,) =0. (28)
We also introduce the following notation. Givéw,, ¢,,, 1) € Vi,.0 X Q, x Vj, arbitrary, we call:
Io(un+1 v,) = Hun+1 Il(u”+1, vh) — Hun+1

Lo(p"™, qn )—IIP — ql|o- L(p™ ™t an) = IV = Vaul,
(Vp"™hm) = V"™ = mllo Guy1=||&5" — Voo

and

1
E,(h)= inf |[u"™— vhH1+Z inf Hu"“—vhHoJr |nf Hp”*1 anllo

veViho vR€Vio

+h |nf HVp”“—thHOJrh inf HVp”“—r;h
N, EVh

07
E(h)= max E (h). (29)

.....

We begin with a rather technical lemma:

Lemmal. AssumeH2 andH3 hold; then, forn =0, ..., N, for any (v,, g», n,,) € Vio X QO x V;, and
for small enougth:

1
Vg o < (Vpm) + 1l ) + e el 0

L1/2 .
+ G+ —— (el + lledl,)

2 n 2 n2
(H 53+ lleblls + ler s + HecHl)}- (31)
Proof. By the triangle inequality and the previous definitions, we have
IVre o < IVP" = Poaa(Vam o + | Pra(Van) = Poa (VP ™) lo
+[1Pn2(Van) = Pu2(V i) lo + 1 Pra (Vi) g
=T+ T+ T3+ T4

We bound each term separately. For the first term, we use a similar argument to that of [5] for the
corresponding term in the analysis of an approximation of the Stokes problem, to get

T1=||[Vp" = Pu12(Van)|lo < Io(VP" ™ m) + L(p™™ qn).
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For the second term, we have, due to the orthogonality of the projeBiien
7 = || Poa(Van) = Pua(Voi ) o
= (Pua(Van — V™), Poa(Van — V™))

= (Vg — Vp"™, Pua(Van — V™) + (Ve Poa(Van — V™))
oo+ Top

so that

Toa < I(p" ™ qn) | Paa(Van — Vi) o

Moreover, takingy, = P;.1(Vagy — V™) € Vi0in (26), we get

n+l
Tpp = — (% Pu1(Van — Vp”“)) — (Ve VP, 1 (Vg — Vpith)
+ C(u;'l+£ +1 Ph 1(th _ Vp"+1)) c(un+e n+1 Ph 1(th _ Vpn+1))
en+1 —e
= — (% Pu1(Van — Vp”“)) — (Ve VP, 1(Vg, — Vpith)
_ C(€Z+8 n+1 Ph 1(th _ Vpn+1)) c( Z-;—s n+1 Ph 1(th _ Vpn+1)).
Then,
_ eZ’Jrli_ed _ g ntl ntl ool
5 Pra(Van = Vi) He €illoll Pra(Van — Vi) o
—v(Vey ™, VP 1 (Vg — Vpith)) < Cvl/ ?lles ol Pea(Van = Vo)

1/2
< e, Pra(Var = Vo,

_C(eZJrs n+1 Ph 1(th _ vpn+1)) < CHenJreH HunJrlH HPh 1 th _ vpn+1)H1

1
<ci— i ol P (Van = Vi)l
C( Z"FS n+1 Ph 1(th . vpn-‘rl))
—C(€Z+£ n+1 Phl(vqh_vpn+l))+c( ZH_E n+1 Phl(vqh_vpn+1))
—c (u(zm) ei™ Poa(Van — Vi),

n-+e n+1 n+1
cle™, e, Pr1(Van — Vp,

< Clleq*[lylleq o[l Pra(Van = Vi )|,
< C—He’”gll e Iyl Pra(Van = Vi) o
< C (e 2+ lle 12 1Pra(Var = Vo)l
CHe”“H e 4/l Pna(Van = Vo )y
< C—He”“H e 13/ Pn.1(Van = Vi ) o

C(enJre n+1 Ph 1(th _ Vanrl

He"“HﬁHeZ“Hl)HPh 1(Var = Vi) o
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s e o (Vs — Vo)
Cllei ™ Pea(Van — Vit |,

—c(u(ture), €5, Poa(Van — Vi)

VAN

due to Remark 1 and the regularity of the continuous velocity. Assumidg v/2 in the last term, we
get

12
h
v n+1 n n+1 2 n
+ - (lle 15+ leslls + ller+: + IIec||1)>.
Moreover, due to condition (23) and sinfgs = Id — Py.12 andg;’l =P, 12(Vp”+1) we have

T3 = ||Py2(Van) — Pu2(V i) ||,

C([1Po1(Van) = Poa(Voi o + || Paa(Van) = Pas(Vei ™) o)
C(T2+ (| Pr3(Van) [l + |1 Poa(V i H)]lo)

C(Ta+|[Van = V" o+ [[VP"™ = Puaa(Vaw)|lo + Gta)
C(Ta+ Li(p"t, 1) + Ti+ Gopa).

o< (1" *han) + 5 e = el + (e + e )

IN NN

Finally,

To=||Pos(VPi™) o= Grsa
and (30) follows. O

In our convergence analysis we will also need the following assumption:

H4. There exist€ > 0 independent o and§r such that
5t > Ch?. (32)

This condition does not impose an upper bound on the time step, so that the method remains
unconditionally stable (see also Remark 5). Our main result of this section is the following:

Theorem 3. AssumgR1), (R2), (R4) andH1-H4hold; then, there exists a constait> 0 independent
of 8¢ and k4 such that, for small enoughand, ife = 1, small enougt®z,

\kfﬂb+v&§]k“ﬂh C((EM) + Emrd). 39

Proof. Let us call

n+l
A = <u n+1> + v(VeZH Ven+1) + (V cr[lJrl eZ+1) + (V.eZJrl’rc’}ﬂ)

&t
+a(vr:l1+l vrnJrl) (gn+1 Vrn+1) (ngrl vrnJrl) +Ot(g3+1,g?1+l)
1 n
= o (lles ™l — lleills + llest* — ehllo) + viles |z +«llgr™ — Vol

25t
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Given (v, g, ;) € Viox Qp x V;, arbitrary, we takey, —u ™, g, — pi ™t andy,, — &7 as test functions
in (26), (27) and (28), respectively, to get

en+1 —e"
A= <u, u'tt— vh> +v(Ver™ vt —vy))

ot
+ (V’,‘Il’l*f’l’ un+1 ) + C( n+e uz+1 uz+1 vh) _ C(un+e’ un+1’ uZJrl _ vh)
+(V-eit™t p" — ) +a (Vi — gt g, — V).
We bound each term as follows:
ettt _en 1 1 C 2
( d 5 d gl _ vh> Hen+1 _ eZHoIO(”Hlv vh) <— i Hen+1 Hg_i_ Elo(unﬂ’ vh) ’
v(VeZH,V(u"H )) < C"'HedﬂHl 't v, 10“ ”HHl—f—Cl ( n+1 vh)z’
v
(V- el pH— ) < olles  + Clo(p™ Y, i)
a(vr:l1+l - gZJrl th) — (X(Vpn+1 n+1’ n, — vqh)
<aGu1(lo(Vp™™h ) + L(p"™ an))
< Ch?Gya (I(Vp" ™ my) + (P qn))
<& h2G2 + Ch2Io(V ™t ) + Ch2L (p"h 1)
~N 3 +1 0 P ) nh 1(p 5 C]h) )

wherea_ was defined in (20). Moreover, due to Lemma 1 we have

(Ve ™t —wy) < |Vt olo(@ vy)
<C (Io(Vp"“, )+ L")
+ st = e+ Guna+ 2 (e e )
<w“mﬂmm+w“m+wn0<"ﬂw>

1
< C(hZIO(Ver_l,7][1)2+h211(pn+17qh)2+ —I ( n+1 vh)2>

72
1. ., > C " 5 a_h?
+ He - dHO+ 510(” -, v,)" + TG5+1
1 v!/2 1
He " ||1+C €|y fo (", vy)

n 2 n n ni2 C n
+ v(||ed+1||1+ ||ed||1+ ez 4[5 + l€?1[1) - fo(u" ", v).

We split the convective terms the following way:

C(uZ+£ uz+1 uz+1 _ vh) _ c(un+s’ un+1 u2+1 _ vh)
:C(eZJre’unJrl uz+1 )+C( n+e e?l+1 uz+1 vh)

10+l 1
=—c(ef™, e uit —v,) +c(e)™, ultyn), up ™ — vp)
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_ C(eZ+£ e;+1’ uz+1 _ vh) _ C(€Z+8, ez+1’ u2+1 _ vh)
+c(utyre), €5 uf™ —vy)
— c(eZJre’ en+1 ‘*’ZH) (eZJre’ e’c’“ un+1 _ vh)

—c(e", ultyr1), €™ +c(eh™, u(ty 1), w™™ — vy,)
+ C(eZJre eZJrl eZJrl) C(eZJre eZ+1, un+1 _ vh)
+C( n+e eZJrl eZJrl) C(en+e ez+1’un+1 vh)
—C(u(t,,+£) en+1 n+1) +C(u(tn+g) en+1,un+1 _ vh)-
Due to the continuity properties of the trilinear foumits skew symmetry in its last two arguments, the

results of Theorem 1, the regularity assumed for the continuous solitéord Young's inequality, we
have
(6’3+g, ez+1 n+1) < CHen+£H Hen+1H Hen+1H1
< CSt”ZHe”“H el

|| 2+ Corvler I,

_ C(e:}+€, e’f,“, un+1 _ vh) < C||en+£|| ||en+1||111(un+1’ vh)
< C8t1/2||e”+8|| Il(un-i-l’ vh)
<stvlleste ||+ CL ™, v,)?,

el €57 < e ol

< Clles o+ glle™ I

c(e™ u(ty, 1), "™ — v,) < Clle"* ||, ||”(tn+1)|’2]1(”n+1v v,)
< CHen+3H0+ Il(u”“, "h)z,

C(ez-i-s’ ez-i-l en+1) — 0’

—c(e™. e u" —vy) <CH6’"+EH el fa (", va)

oller 5+ cvller i

n+1
"t vy,

Hl 1

n+e _n+1 _n+1l
cepey) =0,

_C(enJre’ el}“, un+1 _ vh) < C||e’f,+€||1||efl+1||111(u”+1, vh)

:
< e+ Coller (v,

c(e

_C(u(tn+e) en+1 eZ-’_l) 0,
C(u(tn+e),ed 1, n 1—vh) <CHM(IH+€)H He +1H110( n+1 vh)

Toller s+ Clo(u™ ., vy)”
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Taking all the previous inequalities into account, and using (20), we find

les*Hlo— lleilloHllel ™ — exlly + volej s + 6:nG,

< Cét (Il(u”+1, vh) + hzll(pn+1, Qh) +h IO(VPnH, ﬂh)z
1
oo v 4+ Io(p qh)2> + Clo(w™, vy)?

n n n C n
+ 80 ([l 15 + [le I3 )% CIo(u ) + st (el + e Hl)h Io(u"*, vy)

st vHenJreHl_i_C(StH n+sHO_|_C8tV n+1

lelly To(a" "™, v1)
2

+C8tv||e”+8||1ll(u"+1,vh) +C6tv||e2’+£||ill(u"+1, v,)"

Taking the infimum with respect t@y,, gn, ,) € Vi.o X Q) x Vi, We get

n n 2 n 2
e o — [lea][o+lest™ — enlls + voe|ler |5 + sth2G2,
< C8t(E,(h))* + Ch2(E, (h))°
ntd 112 2 ntd )12 0112
+Corv(|lef 1T+ lledlls + (et |7 + [|ek]|2) Enh)
+Cst vHe”“\}lJrcatH ”+€HO+C51‘V1/2H8 |, En(h)
+Carv([lel ||+ [ler*|2) (Ea ). (34)

Adding up (34) fromn = 0 to N, using assumption H4, the definition @&f(k) and the estimates of
Theorem 1, we get

le o+ ZHe”“ —élj[lo+ vér ZHeZ“IIl + WZ Gia
n=0 n=0

N N
C(Eh)*+C <v6t ZH"Z”H?) E(h)+C <v6t ZH‘»’Z“H?) E(h)

n=0 n=0

N
R YT R v R AR O 9 FIN D

n=0 n=0

+C <v8t S llert | + vor Zy|eg+€y|§> (E(h))?

n=0 n=0

N

<C(EM)°+C <v6t ZH‘»’Z“!ﬁ) E(h) + C81?E(h)
n=0

1/2

N
+Cv8rzzr|e"+eul+csrzr|e"+€uo+c(awzuezui) E(h)

n=0 n=0
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N
<C(Em)*+C <v8t Z||eg+1||i) E(h) + CS12E(h)
n=0

N N N

1

w3 e+ cory-ler I+ 3 (s 2l 1)
n=0 n=0 n=0

since E(h) < Ch, (E(h))? < E(h) for h small enough antiZ |1 x) < ClZ]2x, for any Z and X (see

Remark 1). For sufficiently small, the second term in the right hand side can be passed over to the left

hand side, sincé (4) tends to 0 a% tends to 0. By the discrete Gronwall inequality, this implies, for
sufficiently smallsz in the case =1,

N N N

lei g+ D llel ™ —enll+vor - llel 3 +8th* Y- G2,y < C(E(h)* +CS*E(h)  (35)
n=0 n=0 n=0

and (33) follows. O

Remark 3. For equal order interpolations of degréethe spatial error functiort (k) behaves like

h*, the worst case being that of lineaP.j and multilinear (1) elements. In general, one always has
E(h) < Ch; due to assumption (32), this result proves in particular that the discrete velocities are bounded
in [*°(H}($2)) by a constant independent &fandh, since

e 1y < sl + flee™ 3 + [leg ™l
2\ 1/2 2\ 172
<l (S5) ) <c(i+(5) )
ot ot
This is the key point to obtain improved stability estimates in the next section.

N

Remark 4. The last term in the estimate (33) for the discrete velocity is due to the presence of the
convective term in the equations (it is not present in an analysis of the linear Stokes case) and arises fromn
the estimates of the semidiscrete problem. Again, sifige) < Ch, this extra term is always smaller
thansz?, and the method remains first order accurate in time for the velocity.

3.4. Improved stability estimate

As a consequence of the convergence analysis of the previous section, the stability results of
Section 3.2 can be improved as follows:

Proposition 2. Assume(R1), (R2), (R4 and H1-H4 hold; then, there exists a constart > 0
independent ofr and such that, for small enoughand, ife = 1, small enougtsz,

N
sth?y || VpptE < C. (36)
n=0

Proof. In a similar way to [7], takingy = «/** in (8) (with 6 = 1), ¢, = p/™* in (9) andn, = a&} ™
in (10), and adding them up, we get

) |V [V = () @7
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From (36), it is found that

+1||O+Z||u”+l—uh||o+v5t2| i3 +045f2|VP"+1 &7 o
n=0

C <az SO+ 1> <C </Hf(z)y|§dt 1 1>.
n=0

Thus, the third componen®, 3(Vpith) = vpitt — *1 in the decomposition oW p/** in E, is
bounded; due to assumption (23), it only remains to boBpd 'V p; ™), which belongs tov;, o. Using
the continuity of the forma andc, the inverse estimate (22) and the result of Remark 2, we have

1Pa (Voo = (Vo Pua(V )

_ 't - uj, n+1 +1 n+1
= — T»Ph,l(Vph ) a(uh s Ph, 1(VP ))

—C(uz+8 n+1 Ph 1(Vp"+1)) + (fn+1’ Ph, (Vp"+1))

< 1Pna (Ve o ( ™ =i llg + Lo
+—|| s H il IIuh“H>

n n n n C
< Pa(TpE ) o e = g+ 157+ )

D|V|d|ng this estimate by|| Py, 1(Vp"+1)||0, squaring the result, multiplying b§#42 and adding up for
n=0,...,N,wefind

hZN
sy v o - uil 1) <

n=0
due to the assumed behaviour (32) on the time step size.

3.5. Error estimates for the pressure
We begin this section with an estimate for the discrete pressure gradient:

Proposition 3. AssumgR1), (R2), (R3), (R4)and H1-H4 hold; then, there exists a constaat > 0
independent oft and/ such that, for small enoughand, ife = 1, small enouglsz,

N
sth2 Y |[Vratt|s < C((E))? + E(h)sr?). (38)
n=0
Proof. From Lemma 1, we have
n 2
||Vrd+1||0

n 2 n n n 2 v n 2
<c{Ua(Tp )+ (1" a0)) o+ e = bl + el + (G}
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Thus,

N N N
11239 < c{amzzuo(vwa )+ 8002 S (", 1))’
n=0 n=0 n=0

hz al
He”“ — || + v ZHe”Hﬂl + 8th? Z(G”H)Z}.
n=0 n=0
Taking the infimum with respect tp, andg, and using (32), this implies

N N
5thZHVr”“Ho< { DCAC) +ZH6”“—edHo+v5fZH€”“!I1+5thZ<Gn+1)2}’

n=0 n=0 n=0 n=0
and (38) follows from (35) and the definition &f(%), (29). O

Since we have obtained error estimates for the fully discrete pressure gradient and the semidiscrete
pressure itself, we now present some estimates for the fully discrete pressure solution, which are baset
on a classical duality argument:

Proposition 4. AssumdgR1)—(R4)and H1-H4 hold; then, there exists a consta@it> 0 independent of
8t and h such that, for small enoughand, ife = 1, small enougtdz,

5;22Hr”+ly|0 C((E(h))*+ 81). (39)
n=0

Proof. Letz e H},(Q) and& e L3(£2) be the solution of the following Stokes problem:
—Az+VE=0 ing,

V.z=r1"t in $2,
z=0 onr. (40)
Standard results for this problem vyield
Izl < Cllrit g HENo < Cl|ri ™o (41)
If z, € V0 NOw satisfies
Iz = zallm < CH* ™|z ]2 (42)
form =0, 1, we have
i tlo = (4L i) = (V2,5 = — (2, Vgt
—(z =z, V™) = (20, VG ™)
eZJrl en

= —(z—z1, Vi) + (T,zh>+v(wg+1, Vzy)

C(uz+s n+1 )+C( n+8 n+1’zh)‘
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Furthermore,

—(z -2z, VIt < ||z—zh||oHVrd+1HO Chl|Vri™|ohzlle < Ch||Vry ol ™,

’

eZ-’_l - eZ n+1 n+1
<T,zh) = ey —edHouzhno\—He — o1z = zallo + lzllo)

1
L5+t — exllo(Chllzls + Clizlh) < e — exffry

V(Y6 V) < CoM el < €07 14,
—c(uzﬂ n+1 Zh) +C( n-+e n Zh) _ (unJrs n+1 Zh) +C( n+e n+1 Zn )
Hu”“H HeZ“HlJrHe’”gH Huh“H )izl
C(lleg™ I+ lles 1l 1z = zalla + lizl)

CoV2(|leq I + [led M) 7o

<

o

N //\ //\

Estimate (39) is obtained dividing by ™ ||o throughout, squaring the result, multiplying By and
adding up frorm =0 to N, due to (35) and (38).

3.6. Global error behaviour
As a consequence of the previous results, we have:

Corolary 1. AssumgR1)—(R4)and H1-H4 hold; assume also that, for =0, ..., N, u"** € H" (R2),
r>2andp*l e H*(£2), s > 1, and that they are uniformly bounded in these spaces. Then, there exists
a constantC > O independent ofr and such that, for small enough and, ife = 1, small enougls:,

N N
e 215+ var D e 5+ 8573 g < C o+ %), *
n=0 n=0

wherek = min(r — 1,5, k,, k, + 1).

Proof. This estimate follows from Theorems 1 and 3, Propositions 1 and 4, assumption (32), the
regularity assumed of the semidiscrete solutief™, p"*1) and the approximating properties of the
finite element spaces considereda

Remark 5. The conditionss > Ch? arises due to the proof technique employed, which deals with the
temporal error first and then the spatial error. However, according to the results of Corollary 1, accuracy
considerations indicate that, when equal order interpolation of dégsegsed s¢ should be of ordeh;

for linear (P,) and bilinear ) elements, one hads= 1, so that assumption H4 is fulfilled. Even for
guadratic ¢,) and biquadratic @) elements, one still hads= 2, making H4 acceptable.
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