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Transmission conditions with constraints in �nite element
domain decomposition methods for 
ow problems
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SUMMARY

This work presents a conservative scheme for iteration-by-subdomain domain decomposition (DD)
strategies applied to the �nite element solution of 
ow problems. The DD algorithm is based on
the iterative update of the boundary conditions on the interfaces between the subregions, the so-called
transmission conditions. The transmission conditions involve the essential and natural boundary condi-
tions of the weak form of the problem, and should ensure strong continuity of the velocity and weak
continuity of the traction. As a �rst approach, the transmission conditions are interpolated using the
classical Lagrange interpolation functions. Conservation problems might arise when two adjacent sub-
domains have a sensibly di�erent mesh spacing. In order to conserve any desired quantity of interest,
an interface constraining is introduced: continuity of the transmission conditions are constrained under
a scalar conservation equation. An example of mass conservation illustrates the algorithm. Copyright ?
2001 John Wiley & Sons, Ltd.
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1. GOVERNING EQUATIONS

1.1. The Stokes problem

Although our developments are applicable in a more general setting, for simplicity we will
restrict ourselves to the Stokes problem

−2�∇ · U(u) +∇p= f
∇ · u=0

where u is the velocity �eld, p is the pressure, f is the vector of body forces, U(u) is the
symmetrical part of the velocity gradient, and � is the viscosity of the 
uid. These equations
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have to be solved in a domain 
 of dimension ns (ns=2; 3), together with appropriate
boundary conditions on the contour �. In particular, we will consider the conditions

u= ug on �D
b · n= tn on �N
u · n= un; n · b · g1 = t1; n · b · g2 = t2 on �M

where �=�N ∪�D ∪�M, n is the exterior normal, g1 and g2 are the local basis for the tangent
space to �M and b= −pI+2�U(u) is the Cauchy stress tensor. Note that for ns=2, only the
prescription of t1 is needed.
Let Vh; s and Qh; s be appropriate �nite element spaces to approximate the velocity and the

pressure, respectively, and let Vh; t and Qh; t be their test function counterparts. It is well known
that Vh; s and Qh; s have to satisfy the inf–sup or Babu�ska–Brezzi condition. In order to avoid
this and, in particular, to be able to use equal velocity–pressure interpolations, we use the
stabilized �nite element formulation described for example in Reference [1], which can be
viewed as a subgrid scale model [2]. It consists of �nding uh ∈Vh; s and ph ∈Qh; s such that

0 = 2�
∫


U(uh) : U(vh) d
−

∫


ph∇·vh d
 +

∫


qh∇·uh d


−
∫


f ·vh d
−

∫
�N
tn·vh d�−

∫
�M
(t1g1 + t2g2)·vh d�

+
ne∑
e=1

∫

e
�(−��uh +∇ph − f)·(��vh +∇qh) d
 (1)

for all test functions vh ∈Vh; t and qh ∈Qh;t . The �rst two rows contain the Galerkin terms,
whereas the last one introduces the stabilizing e�ect. The numerical parameter � can be
computed as

�=C
h2

�

where C is a constant that depends on the element type. For linear elements we take it as
C=1=4, and for quadratics C=1=16.

2. THE DOMAIN DECOMPOSITION ALGORITHM

2.1. The coupling of the subdomains

The domain decomposition (DD) algorithm used in this work consists of solving a series
of local problems linked through transmission conditions. This solution is performed in an
iterative way, and thus ours is an iteration-by-subdomain DD formulation. Methods based
on the iterative update of the boundary conditions are computationally very attractive. The
implementation via a master-slave communication strategy enables the construction of the
iterative process with very few alterations to the original 
ow solver. A master code controls
the iterative process by performing the required operations (interpolation of the variables)
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Figure 1. Two adjacent subdomains i and j.

and by passing the data (boundary conditions) back and forth to the slaves (the processes of
the �nite element code). A complete description of the numerical strategy we follow can be
found in Reference [3]. For more information about domain decomposition methods see e.g.
References [4; 5] and the references therein. In particular, for the Dirichlet=Neumann method
see Reference [6]; for the Schwarz method see Reference [7]; for the Robin=Robin method see
References [8; 9]; for adaptive methods see References [10; 11]; for domain decomposition
methods as preconditioners see Reference [12]; for the mortar element method see Reference
[13]; for the FETI method see Reference [14].

2.2. The transmission conditions

The transmission conditions are the essential and natural boundary conditions of the weak
formulation of the governing equations; they ensure the continuity of the primary and se-
condary variables of the weak formulation. In the framework of the Stokes equations, they
are the velocity and the traction components.
Let i and j denote two adjacent subdomains, possibly overlapping (see Figure 1). The

velocity and traction continuities are expressed as

ui= uj
bi · ni=−bj · nj

and should be imposed in some way on the interfaces. The �rst condition is a Dirichlet (D)
condition. The second one is a Neumann (N) condition. The coupling of two subdomains i
and j is performed by imposing one of these two conditions on the interface of i with j,
namely �ij, and another on the interface of j with i, namely �ji. If the subdomains are disjoint,
i.e. if �ij=�ji, the transmission conditions on both sides must be di�erent. If the subdomains
are overlapping, these two conditions can be the same. The possible methods are

(i) a Dirichlet=Neumann coupling with disjoint subdomains,
(ii) a Dirichlet=Dirichlet coupling with overlapping subdomains,
(iii) a Dirichlet=Neumann coupling with overlapping subdomains.

The �rst method was �rst presented in the framework of the �nite element method in
Reference [15], and is extensively studied in Reference [4]. The second method is the clas-
sical Schwarz method, which was put back to the limelight in Reference [7]. The third one
is presently under study by the authors, and is aimed to be applied to Chimera-type
couplings [3].
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Figure 2. Classical interpolation from the under-
lying mesh.

Figure 3. Interpolation from a �ne grid to a
coarse grid.

3. CONSERVATION

3.1. Classical interpolation

The update of the transmission conditions on the interface can simply be performed by inter-
polating the required unknown on the interface (involved in the interface boundary condition).
Now, let us assume we want to update the interface transmission condition of subdomain i
knowing the solution on subdomain j. The most straightforward strategy is the following (see
Figure 2):

1. Loop over the interface nodes ipoin of i.
2. Find the host element jelem in the underlying subdomain j.
3. Interpolate the required transmission condition at ipoin from the solution in jelem using
Lagrange interpolation functions.

This strategy is simple but non-conservative. Figure 3 illustrates the importance of using
a conservative algorithm when interpolating a variable from a �ne grid to a coarse grid.
Although the continuity of the interpolated variable is assured on each node of the coarse
grid, the global information is not necessarily well captured. High frequency modes may be
�ltered out if the variable exhibits strong variations along the interpolation domain. Several
techniques are available to overcome the lack of conservation of classical interpolations; e.g.
Cebral and L�ohner [16] apply a weighted residual method to conserve the force when solving
coupled 
uid-structure problems. Di�erent grid sizes are not the only reason for applying a
conservative scheme; it can also be needed if the interpolated data are not compatible with
the numerical formulation, as will be illustrated with the second numerical example.
The interface constraining presented in this work enables one to make a compromise

between the continuity of the variable and the global information it carries. The general
framework of the method will now be presented.

3.2. A conservative scheme

Let us assume we want to update the interface boundary condition of a scalar or vector
variable a of subdomain i using the information of subdomain j. Denote by I ij the continuous
interpolation operator from mesh j to mesh i and by ak the variable a referred to subdomain
k (k= i or j). As pointed out before, the idea of the interface constraining is to impose the
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continuity of a variable via a classical interpolation and to relax it by the conservation of a
global quantity. Therefore, we propose to �nd ai from aj by solving the following system:

minimize
∫
�ij
|ai − I ij(aj)|2 d�

under the constraint f(ai)=0

where f(ai) is a function of the unknown ai that determines the quantity to be conserved.
For example, one can conserve the 
ux of a across the interface by choosing

f(ai)=
∫
�ij
∇ai·ni d�−

∫
�ij
∇aj·ni d�

Let N be the matrix of the classical Lagrange interpolation functions for the boundary
elements of the interface and assume that f is an a�ne function. We can re-express the latter
system in a matrix form as

minimize
∫
�ij
|Nai −NIij(aj)|2 d�

under the constraint Rtai= r

where R and r are the vector and scalar representing the function f, respectively, ai is
the nodal vector of ai and Iij the discrete counterpart of I ij. This system can be solved by
introducing the Lagrange multiplier � of the constraint. The Lagrangian is

L(ai ; �)=
∫
�ij
|Nai −NIij(aj)|2 d�− �(Rtai − r)

Searching for the optimal point of the Lagrangian, and de�ning �0 = �=2, leads to solving
the following system: [

M −R
Rt 0

] [
ai
�0

]
=
[
MIij(aj)

r

]
(2)

where

M=
∫
�ij
NTN d�

Solving (2) for ai, we �nally �nd

ai= Iij(aj) + (M−1R)(RtM−1R)−1(r −RtIij(aj))
Using a closed quadrature rule (for which the integration points are located on the nodes)

to compute M, this equation is trivial since the resulting approximation to M is diagonal.
Obviously, if instead of only one scalar constraint there are nc of them, exactly the same
procedure can be applied. Matrix RtM−1R will then have nc × nc components.
In the next section, three examples will illustrate the method. The second numerical example

presented will show that this conservation scheme not only enables to treat conservation
problems due to di�erent grids sizes but it can be necessary to conserve the mass when one
of the subdomain is con�ned.
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Figure 4. Example 1: coarse and �ne meshes.

3.3. Example 1: analytical solution

We present a simple two-dimensional domain decomposition problem involving two dis-
joint subdomains. Figure 4 shows the nomenclature of both meshes on the interface, a
one-dimensional line. The letters identify the coarse mesh nodes while the �gures identify
the �ne mesh nodes; the capital letters refer to the coarse mesh solution while the small
letters refer to the �ne mesh solution. We propose to update the solution A of the coarse
mesh, knowing the solution a of the �ne mesh, imposing as a constraint the conservation of
the integral of the solution. The corresponding problem is

minimize
∫ 2h

0
|A− I(a)|2 dx

under the constraint
∫ 2h

0
A dx=

∫ 2h

0
a dx

(3)

We introduce A and a as the discrete vectors of unknowns of A and a, respectively. Using
linear interpolation, the solution of the system is

A= I(a) + (M−1R)(RtM−1R)−1(r −RtI(a))
with

I(a) = [a1; a3; a5]t

M=diag(h=2; h; h=2)

R= [h=2; h; h=2]t

r = h=2[a1=2 + a2 + a3 + a4 + a1=2]

All the integrals have been computed using a closed quadrature rule. Further calculations give

AA
AB
AC


=



a1
a3
a5


+ 14

(
−a1
2
+ a2 − a3 + a4 − a5

2

)
1
1
1




Now let us compare these results with those obtained with the classical interpolation, for
the three triangle solutions shown in Figure 5. The solutions using the classical and con-
strained interpolations are drawn together with the �ne mesh triangle solutions. Table I gives
the results for the integration of the function along the interface. Obviously, only the con-
strained interpolation gives the right integral of the solution, the quantity conserved by solving
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Figure 5. Example 1: interpolation of three triangle solutions.

Table I. Example 1: integration of triangle solutions.

Solution Fine mesh Classical Constrained

a3 = 1 h=2 h h=2
a4 = 1 h=2 0 h=2
a5 = 1 h=4 h=2 h=4

system (3). Observe that in this case the nodal quadrature rule is exact, and therefore the
integral of the unknown is exactly conserved.
In the next example, a similar constraint will be applied to the velocity �eld. We will see

that under some numerical conditions, the conservation is necessary although the mesh nodes
at the interfaces coincide and the meshes are of the same size.

3.4. Example 2: mass conservation

The second example presented involves mass conservation when one of the transmission
conditions is of Dirichlet type and the Dirichlet subdomain is con�ned (�M =�N = ∅). Let
us �rst tackle the origin of the need for conserving mass. The weak form of the continuity
equation using the stabilized �nite element method is derived taking vh=0 in Equation (1):

ne∑
e=1

∫

e
�∇qh·[−��uh +∇ph] d
 +

∫


qh∇·uh d
=0

which must hold for all qh ∈Qh; t . Taking qh=1 in 
, which is an admissible pressure test
function, and integrating by parts, we obtain the following compatibility equation:∮

�
uh·n d�=0 (4)

Consider two overlapping subdomains i and j. We want to update the interface �ij boundary
condition of i using a Dirichlet transmission condition. We assume Equation (4) is satis�ed
for subdomain j across the whole domain; however, zero mass 
ow rate across any interior
section, and therefore across the interface �ij, is not guaranteed. Therefore, we have

Copyright ? 2001 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2001; 17:179–190



186 G. HOUZEAUX AND R. CODINA

Figure 6. Example 2: a con�ned subdomain with Dirichlet condition on its interface.

generally that ∫
�ij
I ij(uj)·ni d� 6=0 (5)

Furthermore, if subdomain i is con�ned, the non-zero mass 
ow rate passing through the
interface �ij remains inside the subdomain and, therefore, the boundary condition of i does not
verify the compatibility equation. This is illustrated by Figure 6. Note that for discontinuous
pressure spaces, qh can be taken piecewise constant and if �ij coincides with some element
boundaries of subdomain j, the net 
ux across �ij is zero.

3.4.1. Constraining of the interface. One solution to circumvent the incompatibility of the
transmission boundary condition and the weak formulation is to decrease the mass 
ux in
subdomain i by means of constraining. We propose to obtain the boundary data ui by solving
the problem

minimize
∫
�ij
|ui − I ij(uj)|2 d�

under the constraint
∮
�i
ui · ni d� = 0

The system is solved using the strategy de�ned in Section 3.2, with the constraint
re-expressed as ∫

�ij
ui · ni d� = −

∫
�i\�ij

ui · ni d� (=0 in the case of Figure 6)

Note that the integral on the right-hand side of the constraint only involves the solution
of i on �i\�ij, which is known; the integral can therefore be calculated accurately using the
same closed quadrature than that used to compute the boundary mass matrix M. In the next
example, a special integration rule will have to be designed as the right-hand side of the
constraint will depend on the solution of the �ne mesh.

3.4.2. Results. We solve the Stokes cavity 
ow using the Q1=Q1 element (piecewise bilinear
velocities and pressures) on two subdomains. The DD method used to couple the subdomains
is the Schwarz method. Figure 7 shows the pressure contours obtained.
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Figure 7. Example 2: pressure contours of the right-hand side subdomain.
(Left) Classical interpolation. (Right) Constrained interpolation.

Table II. Mass 
ow rates (× 10−3).
Subdomain Classical Constrained

Left-hand side 1.5 −0:1
Right-hand side −3:0 0.1

The contours are only shown for the right-hand side subdomain. Figure 7(a) shows the
inconsistency in the pressure �eld induced by the non-conservation of mass in the two sub-
domains. The wriggles appear precisely where the pressure is prescribed, i.e. at the top left
corner. Figure 7(b) shows the pressure contours obtained using the zero mass 
ow rate con-
straint on the interface. The last solution corrects the zone of pressure instabilities in the upper
left corner, where the value of the pressure is imposed (remember that the 
ow is con�ned
and therefore, the pressure must be prescribed at one point in the subdomain). This is directly
related to the fact that the algorithm enables to reduce the mass 
ow rate. This is con�rmed
by Table II which gives the net mass 
ow rates in the two parts of the cavity. Since the nodal
quadrature rule employed is not exact in this case, a certain mass 
ow rate still remains.
Finally, Figure 8 shows details of the velocity module in the centre of the cavity. In the

region of overlapping, the mass 
ow rate constraining method gives the best results. It should
be also pointed out that the convergence of the problem is not a�ected by the constraining.
The mass conservation was illustrated for a simple 
ow because it enables to estimate

clearly the e�ects of the constraining. However, the problem of incompatibility of the data is
very likely to occur when using a Chimera method because it uses a Dirichlet transmission
condition for the interface of patch meshes with the background mesh.

3.5. Example 3: force conservation

We will now present a strategy to conserve the components of the force (or traction) acting
on the interface; see Figure 9. We propose to update the stress bi from the known stress bj

Copyright ? 2001 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2001; 17:179–190
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Figure 8. Example 2: detail of the velocity module contours of the two subdomains. (Left) Classical
interpolation. (Right) Constrained interpolation.

Figure 9. Components of the force on
the interface.

Figure 10. Integration strategy. (•) nodes of i,
(4) integration points.

by solving the following problem in two dimensions:

minimize
∫
�ij
|bi · ni − I ij(bj · ni)|2 d�

under the constraints∫
�ij
(bi · ni) · ni d�=

∫
�ij
(bj · ni) · ni d�∫

�ij
(bi · ni) · g1i d�=

∫
�ij
(bj · ni) · g1i d�

By introducing two Lagrange multipliers for the constraints, this problem leads to the
solution of a matrix system of the form


M −R −S
RT 0 0
ST 0 0





ti
�R
�S


 =



MIij(tj)
r
s




where t is the nodal vector of the traction components, R and r are the vector and scalar
representing the normal force constraint, and S and s are the vector and scalar representing
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the tangential force constraint. The calculations of R and S are straightforward. However, the
success of the conservation stems from calculating accurately the total force contribution of
the adjacent subdomain j. In the example discussed previously, the constraint depended only
on the solution in subdomain i. In the present problem, the force is known from j and if the
mesh of i is too coarse with respect to the mesh in j, a special integration strategy has to
be found to integrate r and s. In order to take into account the possible loss of conservation,
the calculation of r and s will be performed by injecting a su�cient number of integration
points on �ij. The strategy is illustrated in Figure 10.
Note that an e�cient element search strategy is therefore necessary in order to �nd a host

element for each of these integration points. For example, the number of integration points
to be chosen by element boundary could be related to the ratio of the local density of nodes
of i to that of j.

4. CONCLUSION

We have developed a method for constraining the interface boundary conditions, in the frame-
work of domain decomposition methods. As a �rst application, we have constrained Dirichlet
interfaces with the zero mass 
ow rate equation and good results have been obtained. The
method is general and can be applied to the conservation of any quantity involving the variable
of the transmission condition.
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