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Abstract

The basis of the finite point method for the fully meshless solution of elasticity
problems in structural mechanics is described. A stabilization technique based on a
finite calculus procedure is used to improve the quality of the numerical solution.
The efficiency and accuracy of the stabilized finite point method in the meshless
analysis of simple linear elastic structural problems is shown in some examples of
applications.

1 INTRODUCTION

Mesh free techniques have become quite popular in computational mechanics. A family

of mesh free methods is based on smooth particle hydrodynamic procedures. [1,2]. These

techniques, also called free lagrangian methods, are typically used for problems involving

large motions of solids and moving free surfaces in fluids. A second class of mesh free

methods derive from generalized finite difference (GFD) techniques [3,4]. Here the ap-

proximation around each point is typically defined in terms of Taylor series expansions

and the discrete equations are found by using point collocation. Among a third class of

mesh free techniques we find the so called diffuse element (DE) method [5], the element

free Galerking (EFG) method [6,7], the reproducing kernel particle (RKP) method [8], the

meshless local Petrov-Galerkin (MLPG) method [9,10] and the method of finite spheres

[11]. These methods use local interpolations for defining the approximate field around a

point in terms of values in adjacent points, whereas the discretized system of equations is

typically obtained by integrating the Galerkin variational form over a suitable background

grid.

The finite point method (FPM) proposed in [12–16] is a truly meshless procedure. The

approximation around each point is obtained by using standard moving least square tech-

niques similarly as in DE and EFG methods. The discrete system of equations is obtained

by sampling the governing differential equations at each point as in GFD methods.



The basis of the success of the FPM for solid and fluid mechanics applications is the

stabilization of the discrete differential equations. The stable form found by the finite

calculus procedure presented in [18–23] corrects the errors introduced by the point col-

location procedure, mainly next to boundary segments. In addition, it introduces the

necessary stabilization for treating high convection effects and it also allows equal order

velocity-pressure interpolations in fluid flow problems [22,23]. This paper extends prelim-

inary successful work of the authors to derive a stabilized finite point method for analysis

of solid mechanics problems using the finite calculus approach [24].

The content of the paper is structured as follows. In the next section the basis of the FPM

approximation is presented. The concept of the finite calculus (FIC) procedure is detailed

next. The discretization of the equilibrium equations in solid mechanics using a stabilized

finite point method via the FIC technique is described. The efficiency of the stabilized

FPM is verified in several applications to the 2D and 3D analysis of simple linear elastic

solids.

1.1 Interpolation in the FPM

Let Ωi be the interpolation domain (cloud) of a function u(x) and let sj with j = 1, 2, · · · , n
be a collection of n points with coordinates xj ∈ Ωi. The unknown function u may be

approximated within Ωi by

u(x) ∼= û(x) =
m∑

l=1

pl(x)αl = p(x)Tαααααααααααααα (1)

where αααααααααααααα = [α1, α2, · · ·αm]
T and vector p(x) contains typically monomials, hereafter

termed “base interpolating functions”, in the space coordinates ensuring that the basis is

complete. For a 2D problem we can specify

p = [1, x, y]T for m = 3 (2)

and

p = [1, x, y, x2, xy, y2]T for m = 6 etc. (3)

Function u(x) can now be sampled at the n points belonging to Ωi giving

uh =




uh
1

uh
2
...

uh
n




∼=




û1

û2
...

ûn



=




pT
1

pT
2
...

pT
n




αααααααααααααα = Cαααααααααααααα (4)

where uh
j = u(xj) are the unknown but sought for values of function u at point j, ûj =

û(xj) are the approximate values, and pj = p(xj).
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In the FE approximation the number of points is chosen so that m = n. In this case C is

a square matrix. The procedure leads to the standard shape functions in the FEM [25].

If n > m, C is no longer a square matrix and the approximation can not fit all the uh
j

values. This problem can be simply overcome by determining the û values by minimizing

the sum of the square distances of the error at each point weighted with a function ϕ(x)

as

J =
n∑

j=1

ϕ(xj)
(
uh

j − û(xj)
)2
=

n∑
j=1

ϕ(xj)
(
uh

j − pT
j αααααααααααααα

)2
(5)

with respect to the αααααααααααααα parameters. This approximation is termed weighted least square

(WLS) interpolation. Note that for ϕ(x) = 1 the standard least square (LSQ) method is

reproduced.

Function ϕ(x) is usually built in such a way that it takes a unit value in the vicinity of

the point i typically called “star node” where the function (or its derivatives) are to be

computed and vanishes outside a region Ωi surrounding the point (Figure 1). The region

Ωi can be used to define the number of sampling points n in the interpolation region. In

all numerical examples presented in this paper, the normalized Gaussian weight function

ϕ(x) is used. Of course n ≥ m is always required in the sampling region and if equality

occurs no effect of weighting is present and the interpolation is the same as in the LSQ

scheme. A discussion on different possibilities for selecting the weighting function ϕ(x)

can be found in [12,13,17].

Standard minimization of eq.(5) with respect to αααααααααααααα gives

αααααααααααααα = C̄−1uh , C̄−1 = A−1B (6)

A =
n∑

j=1

ϕ(xj)p(xj)p
T (xj)

B =
[
ϕ(x1)p(x1), ϕ(x2)p(x2), · · · , ϕ(xn)p(xn)

]
(7)

The final approximation is obtained by substituting αααααααααααααα from eq.(6) into (1) giving

û(x) = pT C̄−1uh = NT uh =
n∑

j=1

N i
ju

h
j (8)

where the “shape functions” are

N i
j(x) =

m∑
l=1

pl(x)C̄
−1
lj = pT (x)C̄−1 (9)

It must be noted that accordingly to the least square character of the approximation

u(xj) � û(xj) �= uh
j (10)
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Figure 1: Weighted least square procedure.

i.e. the local values of the approximating function do not fit the nodal unknown values

(Figure 1). Indeed û is the true approximation for which we shall seek the satisfaction

of the differential equation and the boundary conditions and uh
j are simply the unknown

parameters sought.

The weighted least square approximation described above depends on a great extend on

the shape and the way to apply the weighting function. The simplest way is to define a

fixed function ϕ(x) for each of the Ωi interpolation domains [13,14,17].

Let ϕi(x) be a weighting functions satisfying

ϕi(xi) = 1

ϕi(x) �= 0 x ∈ Ωi (11)

ϕi(x) = 0 x �∈ Ωi

Then the minimization of the square distance becomes

Ji =
n∑

j=1

ϕi(xj)(u
h
j − û(xj))

2 minimum (12)

The expression of matrices A and B coincide with eq.(7) with ϕ(xj) = ϕi(xj)

Note that according to (1), the approximate function û(x) is defined in each interpolation

domain Ωi. In fact, different interpolation domains can yield different shape functions N
i
j .

As a consequence a point belonging to two or more overlapping interpolation domains has

different values of the shape functions which means that N i
j �= Nk

j . The interpolation is

now multivalued within Ωi and, therefore for any useful approximation a decision must be

taken limiting the choice to a single value. Indeed, the approximate function û(x) will be

typically used to provide the value of the unknown function u(x) and its derivatives in only

specific regions within each interpolation domain. For instance by using point collocation
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we may limit the validity of the interpolation to a single point xi. It is precisely in this

context where we have found this meshless method to be more useful for practical purposes

[12–17].

The definition of the points within a cloud for 2D clouds is based on the identification of

the points within a circle surrounding each star node. The circle radius is defined so that

a minimum number of points is located within the circle domain (n > 3 and n > 6 for

linear and quadratic clouds, respectively, etc.). Obviously, the circle becomes a sphere for

3D clouds.

Figure 2: Point search procedure for 2D quadratic clouds and definition of characteristic

length distances for interior and boundary points

1.2 Discretization of governing equations

Let us assume a problem governed by the following set of differential equations

A(uj) = 0 in Ω (13a)

with boundary conditions

uj − ūj = 0 on Γu (13b)

B(uj) = 0 on Γt (13c)

In above A is a differential operator defining the governing differential equations to be

satisfied on the domain Ω with boundary Γ = Γt∪Γφ, B is the differential operator defining

the boundary conditions at the Neumann boundary Γt, uj are the unknown variables with

prescribed values ūj at the Dirichlet boundary Γu, j = 1, 2, · · · ,Nv whereNv is the number

of variables. In solid mechanics applications uj are the displacements and A and B are

the equilibrium equations to be satisfied in the domain Ω and the boundary Γt where

tractions are prescribed, respectively.
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The discretized system of equations in the FPM is found by substituting the approxima-

tion (8) into eq.(13) and collocating the differential equation at each point in the analysis

domain. This gives

[A(ûj)]p = 0 , p = 1, 2 · · ·Nr

[ûj]s − ūj = 0 , s = 1, 2 · · ·Nu (14)

[B(ûj)]r = 0 , r = 1, 2 · · ·Nt

In above Nu and Nt are the number of points located on the boundaries Γu and Γt,

respectively and Nr is rest of the points in Ω not belonging to any of the boundaries Γu

and Γt.

Eqs.(14) lead to a system of algebraic equations of the form

Kuh = f (15)

whereK is the stiffness matrix, uh is the vector collecting the point parameters uh
i and f is

a vector of known forces acting at the points. Note that, in general, the point collocation

procedure leads to a non symmetric stiffness matrix [12–16].

In addition, the collocation technique usually leads to an ill-conditioned system of equa-

tions and the solution of eq.(15) produces unstable and non accurate results. This is

mainly due to the incapacity of the point collocation method to satisfy precisely the equi-

librium equations over a cloud of points of finite size, just by sampling the equations at

the star node in the cloud. Indeed, these deficiencies are more pronounced in clouds next

to a boundary segment due to the usual lack of symmetry of the clouds in boundary

regions.

The defficiencies of the point collocation procedure can be overcome by using some kind

of stabilization procedure. This requires the modification of the system of equations (15)

in a clever form to avoid the ill-conditioning mentioned above. Most stabilization methods

derived for collocation schemes are based on adding to the original equations new terms

which are residual-based, i.e. terms which are a function of the governing equations them-

selves, thus ensuring consistency of the approach. The selection of these terms is somehow

heuristic and there is lack of a general stabilization procedure [26].

In our work we have used a stabilized form of the governing equations derived from the

Finite Calculus (FIC) procedure described in [18–24]. The FIC method is based on impos-

ing the typical balance laws of mechanics over a domain of finite size. The unknown fields

are then approximated within the finite domain using a Taylor series expansion, retaining

higher order terms than those used in the standard infinitesimal approach. This intro-

duces naturally new terms in the governing differential equations which have stabilization

features. The stabilized form of eqs.(13) using the FIC method reads [18]

A− 1

2
hk

∂A

∂xk
= 0 in Ω (16a)
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uj − ūj = 0 on Γu (16b)

B − 1

2
hknkA = 0 on Γt (16c)

where nk are the components of the unit normal to the boundary Γt and hk are the

dimensions of the balance domain (also called characteristic length parameters) with

k = 1, 2, 3 for 3D problems. The underlined terms in eqs.(16a and 16c) introduce the

necessary stabilization in the governing equations at discrete level. It is interesting to

note that eqs.(16) are the starting point for deriving stabilized finite element methods

for advection-diffusion and fluid dynamic problems. Here the new stabilization terms

introduced by the FIC technique also account for the instabilities due to convection effects

and the incompressibility requirement [18,22,23]. The stabilized equations (16) have also

been found useful for enhanced application of the FPM in advective-diffusive transport

and fluid flow problems [14–16]. Initial applications of the FIC method for the solution of

solid mechanics problems using the FPM were reported in [24]. The underlying ideas of

the FIC method have been recently used by Bonet and Kulasegaram to derive stabilized

point integrated meshless methods for elliptic equations using SPH techniques [27]. The

efficiency of the FIC stabilization procedure for the application of the FPM in elasticity

problems is shown in this paper.

The discretized system of stabilized equations in the FPM is found by substituting the

approximation (8) into eqs.(16) and collocating the differential equations at each point in

the analysis domain. This gives

[
A(ûj)− 1

2
hk

∂

∂xk
A(ûj)

]
p

= 0 , p = 1, 2 · · ·Nr

[ûj]s − ūj = 0 , s = 1, 2 · · ·Nu (17)[
B(ûj)− 1

2
hknkA(ûj)

]
r

= 0 , r = 1, 2 · · ·Nt

The discretized system of equations (17) can be written in the standard matrix form

(K+Ks(hk))u
h = f (18)

from where the values of the nodal parameters uh
i can be found.

Matrix K in eq.(18) denotes the stiffness matrix of eq.(15) excluding the stabilization

terms. The effect of these terms is accounted for in the new stabilization stiffness matrix

Ks which is a function of the characteristic length parameters.

The Dirichlet boundary conditions (16b) are introduced in the solution of eq.(18) sim-

ply by prescribing the values of the nodal parameters to the fixed displacement values.

Indeed this is an approximation as the WLS interpolation does not match the nodal dis-

placement values (Figure 1). A more accurate although expensive procedure can be based

in modifying the WLS approximation at the boundary clouds so that the displacement
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values at the boundary points satisfy exactly the Dirichlet condition. Further details on

the implementation of the Dirichlet boundary conditions can be found in [14,15].

The computation of the characteristic length parameters is a critical issue in order to

increase the accuracy of the stabilized solution. An optimum choice of the characteristic

length values following a diminishing residual technique can lead to quasi-exact nodal

solutions as shown in the FEM analysis of advective-diffusive problems [18–20]. However,

for practical purposes stable results can be always found simply selecting the values of

the characteristic length distances in terms of the element (or cloud) geometry features.

In the examples shown in the paper, the value hi = dmaxi has been chosen where dmaxi

is the largest distance along the ith coordinate axis from a star node in a cloud to its

neighbours (Figure 2).

1.3 Stabilized FPM for elasticity problems

Following the ideas presented in the previous section the stabilized equations for elasticity

problems can be written as

∂σij

∂xj

+ bi − 1

2
hk

∂

∂xk

(
∂σij

∂xj

+ bi

)
= 0 in Ω (19a)

uj − ūj = 0 in Γu (19b)

σijnj + ti − 1

2
hknk

(
∂σij

∂xj
+ bi

)
= 0 in Γt (19c)

with i, j, k = 1, 2, 3 for 3D problems. The precise derivation of eqs.(19) can be found in

[18].

In above, ui are the displacements along the cartesian coordinate directions, ūj are pre-

scribed displacement values over the Dirichlet boundary Γu, bi and ti are prescribed body

forces and tractions over the domain Ω and the Neumann boundary Γt, respectively and

σij are the stresses which are related to the displacements by the standard Hook’s law. In

matrix form

σσσσσσσσσσσσσσ = Dεεεεεεεεεεεεεε (20)

where D is the elastic constitutive matrix and the stress and strain vectors are defined in

3D problems as

σσσσσσσσσσσσσσ = [σ11, σ22, σ33, σ12, σ13, σ23]
T (21)

εεεεεεεεεεεεεε = [ε11, ε22, ε33, 2ε12, 2ε13, 2ε23]
T (22)

The strains εij are related to the displacements by

εij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(23)
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As earlier mentioned hk are the characteristic length parameters affecting the stabilization

terms in eqs.(19a) and (19c). As usual nk are the components of the unit normal to the

boundary.

Note that the stabilization terms require the computation of the third and second deriva-

tives of the displacements in eqs.(19a) and (19c), respectively. This must be taken into

account when choosing the order of the interpolation for the displacements.

In our work we have tested the efficiency of the stabilized FPM using quadratic interpo-

lations for the displacement field (i.e. stabilization term in eq.(19a) are zero). The same

good results were obtained with the cubic interpolation neglecting the stabilization terms

in eq.(19a). This supports the fact that the key stabilization terms are those emanating

from the Neumann boundary conditions (eq.(19c)) whereas the stabilization terms in the

equilibrium equation on the domain Ω can be neglected for practical purposes. This is

also consistent with the nature of the ill-conditioning of the equations due mainly to the

lack of symmetry of the points in clouds next to boundary segments.

Examples of the performance of the stabilized FPM in a number of 2D and 3D elasticity

problems using quadratic WLS interpolations are shown next.

Example 1. Patch test

The first patch test consists in solving the plane stress equations on a square domain of

2×2 units discretized with 9 points uniformly distributed (Figure 3). A value of E = 1000

and ν = 0.3 was taken for the analysis. A prescribed displacement u = v = x + y is

assigned to the eight boundary nodes. A quadratic displacement interpolation (m = 6) was

chosen for the analysis. The displacements and the stresses computed at the central node

coincide precisely with the exact solution. Identical accuracy was obtained by changing

the coordinates of the central node as shown in Table 1.

Figure 3: Patch test with regular grid of 9 points
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Coordinates of point 5

(1.0,1.0)

(1.2,0.35)

(0.22,0.15)

(1.87,1.9)

Exact values are obtained for the displacements

and the stresses at node 5

Table 1: Coordinates of point 5 for the patch test with regular grid of 9 points

The same problem was solved using an irregular grid of 14 points distributed as shown

in Figure 4. Again, the exact analytical values for the linear displacement field and the

constant stress field are obtained at all the internal nodes (see Table 2).

Figure 4: Patch test with irregular grid of 14 points

Points Coordinates
Displacements

(u = v)
σx σy τxy

4 (0.5,0.25) 0.75 0.142857× 104 0.142857× 104 0.76923× 103

6 (1.4,0.45) 1.85 0.142857× 104 0.142857× 104 0.76923× 103

7 (0.38,0.7) 1.08 0.142857× 104 0.142857× 104 0.76923× 103

8 (1.5,1.0) 2.5 0.142857× 104 0.142857× 104 0.76923× 103

10 (0.55,1.5) 2.05 0.142857× 104 0.142857× 104 0.76923× 103

11 (1.38,1.6) 2.98 0.142857× 104 0.142857× 104 0.76923× 103

Table 2: Coordinates and numerical results for a patch test with an irregular grid of 14

points. All numerical results coincide with the analytical values
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Example 2. Rectangular domain under prescribed boundary trac-

tions

Figure 5 shows the geometry of the domain, the boundary conditions, the material prop-

erties and the discretization into a uniform grid of 28 points. The plane stress assumption

was chosen with a unit thickness and values of E = 1 and ν = 0.25. The problem was

solved for the cases of uniform and linear tractions at the boundary for x = 6. The results

for the nodal displacements and stresses using the stabilized FPM with quadratic clouds

coincide with the analytical values for both loading cases. The horizontal displacement

contours for the uniform traction case and the σx stress contours for the linear traction

case obtained with the stabilized FPM are shown in Figure 6.

a) b)

Figure 5: Points arrangement of rectangular domain under prescribed boundary tractions.

a) Uniform tractions; b) Linear tractions

a) b)

Figure 6: a) Horizontal displacement contours for the uniform traction case; b) σx stress

contours for the linear traction case

Example 3. Simple supported thick beam under uniform loading

Figure 7 shows the geometry of the beam, the mechanical properties and the uniform

distribution of 51 points. A uniform load acting on the upper edge is considered. The

problem was solved under plane stress conditions. Once again, a quadratic interpolation
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for the displacement variables was chosen. Numerical results for the beam deflection and

the horizontal stress distribution are shown in Figure 7.

(a)

(b)

(c) (d)

Figure 7: Simple supported beam analyzed with FPM and CST finite elements. (a) Beam

geometry, loading and regular grid of 51 points; b) Horizontal stress contours; c) Conver-

gence of the maximum horizontal stress and d) Convergence of the central deflection with

the number of degrees of freedom (DOF). Exact solution refers to classical beam theory

[28]
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The same problem was analyzed with the FEM using a structured mesh of 68 linear plane

stress triangles (CST element) [25] based on the same point distribution. Nodal stresses

have been obtained by standard nodal averaging of element values. Comparison of the

errors for the central deflection and the maximum σx stress gives some advantage to the

stabilized FPM results (see Table 3).

Numerical results for grid of 51 points (68 CST finite elements)

Central deflection error Error in maximum σx stress

FPM+S FEM FPM+S FEM

19% 21% 19% 38%

Table 3: Simple supported beam. Numerical results for grid of 51 points (68 CST finite

elements)

The convergence of the maximum horizontal stress and the maximum deflection value with

the number of degrees of freedom is shown in the lower part of Figure 7, respectively. Re-

sults, labelled as FPM+S, correspond to those obtained with the stabilized FPM described

in the paper, whereas those listed as FPM were obtained neglecting the stabilization terms

(i.e. the terms involving the characteristic lenght parameters in eq.(17)). Note the benefi-

tial effect of the stabilization terms leading to results which are more accurate than those

obtained by the standard FEM in this case.

Example 4. Square domain with circular hole under tension

Figure 8 shows the geometry of the domain and the loading. One quater of the domain

is analyzed only due to symmetry. Plane strain conditions were assumed for the analysis.

The problem has been solved with the quadratic FPM using two unstructured grids of

36 and 60 points. Contours of the horizontal stress obtained with the stabilized FPM are

shown for the two grids. Results for the maximum horizontal stress at the upper tip of the

hole obtained with the stabilized FPM compare well with the analytical value of σx = 3.0

[28]. The FPM results also compare very favourably with those obtained with the FEM

using an unstructured mesh of CST elements (Table 4). The distribution of the maximum

horizontal stress along the line x = 0 is also shown in Figure 8 for the two grids studied.

Note the greater accuracy of the stabilized FPM solution versus the standard FPM and

FEM solutions.

The distribution of the horizontal stress along the line x = 0 for the two unstructured

grids studied is shown in Figure 9.
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c)

Figure 8: Square plate with a circular hole under tension analyzed with FPM and FEM

(CST elements) (E = 1000, ν = 0.3). a) Plate geometry and loading. Unstructured grids

of 36 and 60 points; b) σx stress contours displayed over the deformed shapes obtained for

the two grids studied; c) Distribution of maximum horizontal stress along the line x = 0

for the two unstructured grids of 36 and 60 points
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36 points - 50 CST Triangles 60 points - 94 CST Triangles

FPM+S FEM FPM+S FEM

6% 38% 1,5% 21%

Table 4: Square plate with circular hole. Error in the maximum horizontal stress obtained

with the stabilized finite point method (FPM+S) and the finite element method (FEM)
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σx
at

 x
=

0

36 points
60 points

exact

Figure 9: Square plate with circular hole. Distribution of the horizontal stress along the

line x = 0 for the grids of 36 and 60 points. The exact distribution is also plotted [28]

Example 5. Thick cantilever under end point load

Figure 10 shows the geometry of the cantilever beam and the material properties. The

end load of P = 1.0 was applied as a parabolic tangential stress acting at the boundary

for x = 8.0. Plane stress conditions were assumed.

The problem was solved with regular and irregular grids of 55, 165 and 333 points using

quadratic clouds. The distribution of points for the regular and irregular grids of 55

points are shown in Figure 10. The contours of the vertical displacement and the σx stress

obtained with the regular grid of 333 points are plotted in Figure 11. Very similar results

were obtained using an irregular grid.

Figure 12 shows a plot of the shear stress distribution at the beam center obtained with

the different regular grids. The convergence of the displacement and the σx stress using

regular and irregular grids is plotted in Figures 13 and 14. The error was measured by the

quadratic norm of the differences between point values and the exact solution. Distance h

in Figures 13 and 14 denotes to the average radial distance for all the clouds in a grid. The

slope of the convergence curves for the displacements u and v are found to be uniform and

15



Figure 10: Cantilever beam. Regular and irregular grids of 55 points

a)

b)

Figure 11: Cantilever beam analyzed with a regular grid of 333 points. a) Contours of the

vertical displacement; b) Contours of the σx stress

� 2 for regular grids and � 3 for irregular grids. It is remarkable that similar convergence

rates are obtained for the σx stress for both regular and irregular grids.

Example 6. 3D prismatic solid under end bending moments

Figure 15 shows the geometry of the prismatic solid and the material properties. The end

bending moments were modelled by an equivalent linear traction acting at the ends. An

eight of the solid was analyzed only due to symmetry. A regular grid of 6× 5 × 4 points
was chosen as shown in Figure 15. Figure 16 shows contours of the displacement along the

longitudinal z axis and the σz stress. A comparison of relevant displacement and stress

values with the analytical solution obtained from [28] is presented in Table 5.
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Figure 12: Cantilever beam. Convergence of the shear stress distribution at x = L/2 for
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Figure 13: Cantilever beam with regular point distribution. Convergence of displacements

and σx stress with the average radial distance for all clouds

Finally, Figure 17 shows the contours of the displacement along the z axis and the σz stress

obtained without the stabilization terms. Note that the solution drastically deteriorates in

this case, as expected.
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Figure 14: Cantilever beam with irregular distribution of points. Convergence of displace-

ments and σx stress with the average radial distance for all clouds

Figure 15: Prismatic solid under end bending moment. Geometry, loading and arrange-

ment of points E = 1000, ν = 0.25

u w σz

FPM 120 points (regular grid) -0.0138 0.015 3.0066

FPM 271 points (irregular grid) -0.0139 0.014991 3.0086

Analytical [28] -0.013625 0.015 3.0

Table 5: Numerical and analytical results for prismatic solid under end bending moment.

Figures show maximum displacement and maximum stress values
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a) b)

Figure 16: Prismatic solid under end bending moment analyzed with the stabilized FPM.

a) Contours of z displacement; b) Contours of σz stress

a) b)

Figure 17: Prismatic solid under end bending moment analyzed with the FPM without

the stabilization procedure. a) Contours of z displacement; b) Contours of σz stress

CONCLUSIONS

The stabilized FPM using the finite calculus procedure is a promising numerical method

for the meshless solution of problems in solid mechanics. The stabilization terms were

found to be crucial to obtain a smooth solution in all cases studied. Results for the

2D and 3D elasticity problems analyzed with the stabilized quadratic FPM yielded a

higher accuracy than those obtained with standard FEM. The accuracy was remarkably

higher for the stress values. The optimal selection of the stabilization parameters and

the validation of the stabilized FPM for problems involving heterogeneous materials and

complex 3D geometries are the main challenges in the extension and validation of the new

meshless procedure.
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