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Abstract

This paper presents some advances of finite element explicit formulation for simulation of metal forming processes. Because of their

computational efficiency, finite element programs based on the explicit dynamic formulation proved to be a very attractive tool for the

simulation of metal forming processes. The use of explicit programs in the sheet forming simulation is quite common, the possibilities of

these codes in bulk forming simulation in our opinion are still not exploited sufficiently. In our paper, we will consider aspects of bulk

forming simulation.

We will present new formulations and algorithms developed for bulk metal forming within the explicit formulation. An extension of a

finite element code for the thermomechanical coupled analysis is discussed. A new thermomechanical constitutive model developed by the

authors and implemented in the program is presented.

A new formulation based on the so-called split algorithm allows us to use linear triangular and tetrahedral elements in the analysis of

large plastic deformations characteristic to forming processes. Linear triangles and tetrahedra have many advantages over quadrilateral and

hexahedral elements. Linear triangles and tetrahedra based on the standard formulations exhibit volumetric locking and are not suitable for

large plastic strain simulation. The new formulation allows to overcome this difficulty.

New formulations and algorithms have been implemented in the finite element code Stampack developed at the International Centre for

Numerical Methods in Engineering in Barcelona. Numerical examples illustrate some of the possibilities of the finite element code

developed and validate new algorithms. # 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Finite element programs based on the explicit dynamic

formulation proved to be a very attractive tool for the

simulation of metalforming processes. The explicit time

integration schemes deal with the system of discretized

equations of motion in the following form:

M�r þ D _r ¼ f � p (1)

where M and D are the mass and damping matrices, r the

nodal displacement vector, and f and p the vectors of

external and internal nodal forces, respectively. Employing

Eq. (1) for the known configuration at time tn, the solution

for the next time instant tnþ1 ¼ tn þ Dt is obtained. The

effectiveness of the explicit formulation is based on the

use of a diagonal mass matrix. There are also disadvantages,

the main one is the limitation of the time step due to the

conditional stability. The numerical efficiency, however, and

other advantages of explicit programs such as low memory

requirements and easy treatment of contact conditions make

this approach to dominate over implicit methods in indus-

trial applications.

The computation times, however, in case of large indus-

trial problems are still quite long. The implementation of

a new triangular shell element as well as the use of tech-

niques of parallel computations reduced simulation times

considerably.

The use of explicit finite element programs in the analysis

of sheet metal forming has become quite common, while the

possibilities of this approach in the simulation of bulk

forming seem not to be exploited sufficiently as yet. These

problems require taking into account the thermal effects in

the deformation process that can be achieved by the coupled

thermomechanical analysis.
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2. Explicit thermomechanical analysis

2.1. Discretized equations of the coupled

thermomechanical problem

Simulation of bulk forming processes usually requires

taking into account the thermal effects and interaction of

thermal and mechanical phenomena. The algorithm for a

coupled thermomechanical analysis has been implemented

in our explicit program, making it possible to analyse such

forming processes.

In the solution of a thermomechanical problem, the

solution of the mechanical problem (1) is coupled with

the solution of the heat conduction problem governed by

the following discretized equation:

C _T þ KT ¼ Q (2)

where C is the heat capacity matrix, K the heat conductivity

matrix, Q the heat flux and sources vector, and T the vector

of nodal temperatures. Eqs. (1) and (2) are solved under

adequate boundary conditions. Eq. (2) should be supple-

mented with thermal boundary conditions including heat

convection and radiation, thermal effects on the tool surface

should be taken into account as well. The forward Euler

explicit time integration method has been implemented for

the solution of Eq. (2) in the numerical algorithm for the

thermomechanical analysis. This combined with the central

difference time integration of Eq. (1) gives the following

fully explicit scheme for a coupled problem:

�rn ¼ M�1
D ðfn � pn � D _rnÞ; where MD ¼ diag M (3)

_rnþ1=2 ¼ _rn�1=2 þ �rnDt (4)

rnþ1 ¼ rn þ _rnþ1=2Dt (5)

Tnþ1 ¼ Tn þ C�1
D ðQn � KTnÞDt; where CD ¼ diag C

(6)

The new configuration rnþ1 is obtained from the explicit

equations of motion with the temperatures assumed fixed,

and the new temperature Tnþ1 is calculated at constant

geometry. The results are exchanged at each step and

coupling terms are calculated. Eqs. (1) and (2) for the

thermomechanical problem are coupled by considering

the following effects:

1. Heat generation by the plastic dissipation.

2. Contribution of the thermal expansion to the total

material deformation.

3. Influence of the temperature on the yield stress of the

material.

The rate of heat generation q due to the plastic dissipation

(contributing to the vector Q) can be calculated as

q ¼ wr : dp (7)

where r is the Cauchy stress tensor, dp the rate of plastic

deformation tensor, and w the fraction of plastic work

converted to heat. The method of accounting for the thermal

effects in the constitutive model developed is presented in

the next section.

2.2. Thermo-elastoplastic constitutive model

A new thermo-elastoplastic model has been developed

and implemented in the explicit dynamic code Stampack.

The model employs the concept of hyperelasticity. The main

advantage of hyperelastic models compared to hypoelastic

formulations is that there is no need for calculation of

derivatives satisfying the criteria of objectivity and no need

for integration of the constitutive equations [2,7].

Formulation of the constitutive model for the thermo-

elastoplastic material is an extension of the elastoplastic

model presented in [2] to the thermo-elastoplastic problems.

In the description of large thermo-elastoplastic deforma-

tions, we assume the multiplicative decomposition (see

Fig. 1) of the deformation gradient tensor F into its elastic,

thermal and plastic parts, Fe, Fy and Fp, respectively:

F ¼ FeFyFp (8)

Fig. 1. Multiplicative decomposition of the deformation gradient tensor.
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with

det Fp ¼ 1 (9)

Fy ¼ JyI; where Jy ¼ e3aðT�T0Þ (10)

The Almansi strain tensor e can be expressed by means of

the deformation gradient tensor F as

e ¼ 1
2
ðI � F�TF�1Þ (11)

Analogical to Eq. (11), we define the elastic Almansi tensor

ee (in the spatial configuration) and the thermal Almansi

tensor ey (in the intermediate configuration):

ee ¼ 1
2
ðI � Fe�T

Fe�1Þ (12)

ey ¼ 1
2
ðI � Fy�T

Fy�1Þ (13)

After transforming the thermal Almansi tensor to the spatial

configuration (the push-forward operation):

ey ¼ 1
2

Fe�TðI � Fy�T

Fy�1ÞFe�1

(14)

we can introduce the following additive relation:

e ¼ ee þ ey þ ep (15)

defining the plastic Almansi tensor ep. Applying the Lie

derivative Lv to all the components of the Almansi tensor in

Eq. (15), we obtain the additive decomposition of the

deformation rate tensor

d ¼ de þ dy þ dp (16)

The stress response is characterised by means of the elastic

free energy function of the form

ce ¼ 1
2
l tr ðeeÞ þ mðee : eeÞ (17)

where l and m are the Lamé constants. With this form of the

elastic potential the constitutive relation obtained for the

Cauchy stresses is following:

r ¼ @cðeeÞ
@ee

¼ l tr ee þ 2mee (18)

The stresses are calculated in a two-step algorithm, the first

step is the elastic predictor, and the second one the plastic

corrector employing the radial return. For the plastic defor-

mation, the associated flow rule is assumed:

dp ¼ LuðepÞ ¼ _l
@f

@s
(19)

with the Von Mises yield condition:

f ¼
ffiffiffi
3

2

r
t : t� sYðep;TÞ � 0 (20)

that accounts for the isotropic hardening and thermal

softening:

sY ¼ ½s0 þ ðs1 � s0Þð1 � e�depÞ þ Hep	½1 � HyðT � T0Þ	
(21)

where t is the deviatoric Cauchy stress, tensor s0 and s1 the

initial and the final yield stresses, d the saturation constant,

H the hardening modulus and Hy the thermal softening

modulus.

The form of the elastic potential (17) is based on the

assumption that the elastic part of the strains ee is small,

which is fully justified for metals. It is assumed for the

reasons of simplicity and efficiency. Some authors starting

from the same basic assumption expressed by Eq. (8), cf.

[8–10], have developed more general models, considering

the possibility of large elastic deformations. Our formulation

is simpler in implementation and no loss of accuracy in the

considered class of problems is expected. A good behaviour of

this model in the problems of metal forming without account-

ing for thermal effects has been confirmed earlier, cf. [2,3].

2.3. Finite element implementation

The developed thermo-elastoplastic model has been

implemented in the program Stampack with a 4-node plane

strain and axisymmetric element and with an 8-node hex-

ahedral element for three-dimensional analysis. In both the

elements, the mixed formulation (with constant pressure)

has been used to avoid element locking. These elements are

typically used in all the dynamic codes in the problems

involving large plastic deformations. Linear triangles and

tetrahedra experience volumetric locking in the problems

with incompressible or nearly incompressible deformations

like those in bulk forming processes. This introduces serious

limitations on meshing a complex geometry. Until now

meshing programs work better with triangular and tetrahe-

dral elements. To overcome this problem, we have adapted

the so-called split allowing us to use linear triangles and

tetrahedra [13]. The formulation of the split algorithm is

presented below.

3. Linear triangles and tetrahedra within
the split algorithm

3.1. Finite element formulations for incompressible

problems

Finite elements based on the standard displacement for-

mulation are vulnerable to volumetric locking in the analysis

of problems with incompressible deformations. This poses

serious problems in the simulation of elasto-plastic cases.

Introduction of a small compressibility does not yield a

solution, elements that do not perform well in an incom-

pressible state do not give good results in nearly incom-

pressible state either.

Different methods have been developed to overcome this

problem. Some of them employ the mixed finite element

formulation in which we split the stresses r into the devia-

toric part s and pressure p:

r ¼ tþ Ip (22)
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Then using independent interpolations for displacements

r ¼ Ndr and pressure p ¼ Npp (Nd and Np are shape func-

tions, r and p the nodal values of displacements and

pressure), we obtain the following set of mixed equations

cf. [9,10]:

K Q
QT G

� �
r
p

� �
¼ fd

fp

� �
(23)

In compressible case G 6¼ 0 and p can be eliminated:

ðK � QG�1Q�TÞr ¼ fd � QG�1fp (24)

If pressure is discontinuous between elements, p can be

eliminated at the element level.

In incompressible state G ¼ 0, the following equation for

pressure can be obtained:

ðQTK�1QÞp ¼ QTK�1fd � fp (25)

Not all combinations of displacement and pressure inter-

polations (Nd and Np) are allowed since some of them render

the coefficient matrix QTK�1Q singular. Then the effect of

volumetric locking appears. This happens in case of linear

triangles and tetrahedra with equal order interpolation of

displacement and pressure. A mathematical theory has been

established for mixed elements [4]. This theory is funda-

mental of the Babuska–Brezzi stability condition [4].

Special techniques have been developed to avoid locking

in elements not satisfying Babuska–Brezzi condition. One of

the methods is the so-called selective integration in which

thevolumetric components are integrated in someof theGauss

points only. For economy, selective integration is often repla-

ced by the so-called reduced integration. Hughes [5] devel-

oped a stabilization procedure consisting in adding of the

equilibrium equation suitably weighted by the shape func-

tions to the mass conservation equation. Bonet [1] derived for

explicit dynamic applications a linear tetrahedron free of

volumetric locking using the idea of averaging nodal pressure.

Our stabilising procedure is based on the split algorithms

developed in fluid mechanics [11,12]. Appropriate splitting

of the equations of motion allows equal order interpolation

to be used in incompressible flows. Adapting this method to

solid mechanics and explicit dynamic program, we have

obtained 3-node triangular and 4-node tetrahedral elements

that can be used in nearly incompressible problems of bulk

metal forming. The basic equations of the split algorithm are

presented below, more details has been given by Zienkiewicz

et al. [13].

3.2. The split algorithm

The split operator will be applied to the Stokes equations

for nearly incompressible flow:

r0

@ui

@t
¼ @tij

@xj

� @p

@xi

þ gi (26)

1

c2

@p

@t
¼ �r0

@ui

@xi

(27)

where r0 is the density, ui the velocity in the ith direction, tij

the deviatoric stress component, p the pressure (or mean

stress), gi the ith component of body force, and c the speed of

sound given by the relation c ¼
ffiffiffiffi
K

p
=r0, K being the bulk

modulus. After discretization the Stokes equation can be

written in the following form [9,10]:

M 0
0 eM

� �
d

dt

v
p

� �
þ K Q

QT 0

� �
v
p

� �
¼ fd

fp

� �
(28)

In the above, the standard finite element notation is used

[9,10].

A clear analogy between Eqs. (23) and (28) can be noted

here. Similarly like in case of Eq. (23) for incompressible

problem, the zero diagonal term in the second matrix of

Eq. (28) leads to volumetric locking. The splitting algorithm

removes this problem.

In the described algorithm, Eq. (28) is split into parts in

such a way, however, that the sum of the parts gives the original

equation (28). Let us rewrite Eq. (28) in the following form:

M _v ¼ fu � Kv � Qp (29)

eMp ¼ �QTv (30)

In the explicit split algorithm, the time integration schemes

(3) and (4) is modified in the following way:

1. Approximate velocity determination (from the momen-

tum conservation equation (29) omitting pressure terms):

v� ¼ vn�1=2 þ DtM�1ðfu � Kvn�1=2Þ (31)

2. The pressure evaluation (from the mass conservation

equation (30)):

pnþ1 ¼ pn � Dt eM�1ðQv� � DtHpnÞ (32)

where H is the standard discretization of the Laplacian

operator.

3. The velocity correction (from the momentum conserva-

tion equation (29) taking into account step 1):

vnþ1=2 ¼ v� � DtM�1Qpn (33)

The described explicit split algorithm implemented for

linear triangles and tetrahedra has been successfully

applied to thermomechanical analysis. Test examples of

bulk forming are included in the paper.

3.3. Why is the Babuska–Brezzi condition circumvented?

When steady state conditions are reached, we have

vnþ1=2 ¼ vn�1=2 ¼ v; pnþ1¼ pn¼ p (34)

After substituting relations (34) into Eqs. (30)–(32) and

eliminating v � we obtain the system of the following form

K Q
QT DtðH � QMQÞ

� �
v
p

� �
¼ fd

0

� �
(35)

The term on the diagonal involving the variable p is no

longer zero. This illustrates the stabilizing effect of the split
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algorithm. The proof that the equation set (35) is well

conditioned can be found in [11].

4. Numerical examples

4.1. Impact of a cylindrical bar

The example studied here is that of an impact with a rigid

surface of a cylindrical rod moving with a high speed. This

problem is frequently studied by explicit dynamics codes.

This example is aimed to show the correctness of the split

formulation with linear triangles and tetrahedra that will be

used for metal forming simulation.

The material properties for an elasto-plastic model are:

modulus of elasticity, 117 GPa; Poisson ratio, n ¼ 0:35,

initial uniaxial yield stress, s0 ¼ 0:4 GPa; and hardening

modulus, H ¼ 0:1 GPa. The initial length of the bar is

32.4 mm and the initial radius is 3.2 mm. A solution is

obtained for an initial velocity of 227 m/s. The interval of

80 ms has been analysed which allows the body to reach a

steady state. The final deformed shapes obtained using dif-

ferent formulations are shown in Fig. 2. The results of the

mixed formulation with Q1/P0 8-node elements are shown in

Fig. 2a. The cases (b) and (c) show wrong solutions with the

effect of locking. The solutions (d) and (e) are obtained using

the split algorithm and linear triangles and tetrahedra. As

it can be noted, these solutions are practically identical with

the solution (a). The effect of locking has been eliminated.

4.2. Upsetting of a cylindrical billet

This example was used to verify the new thermo-

elastoplastic constitutive model and to test the algorithm

of thermomechanical analysis implemented in the program

Stampack. A cylindrical billet, 30 mm high and with a radius

of 10 mm, is compressed along its axis between two rigid

and rough plates. All the surfaces are assumed to be fully

insulated. The problem has been defined originally by

Lippmann [6] and was analysed in [14]. The analysis

was carried out to 60% upsetting. The mechanical and

thermal properties were the following: Young’s modulus:

E ¼ 2  105 MPa, Poisson’s coefficient: n ¼ 0:3, density:

r ¼ 7830 kg=m
3
, yield stress: s0 ¼ s1 ¼ 700 MPa, hard-

ening modulus: H ¼ 300 MPa, thermal softening modulus:

Hy ¼ 0:002 �C�1, specific heat: c ¼ 586 J=kg �C, conduc-

tivity: k ¼ 52 W=m �C. The material properties were basi-

cally the same as those used in [14] except that thermal

softening was considered and rate-independent plasticity

was assumed in our models. The final deformation was

obtained in 0.1 s.

Both two- and three-dimensional simulation were carried

out. In 2D two models were studied, a half of the billet was

discretized with 144 quadrilateral and 288 triangular axi-

symmetric elements, the latter case was analysed using the

split algorithm. The results of the analysis for both cases are

shown in Fig. 3. Fig. 3 shows the final deformed shapes with

the temperature distribution. Similar results have been

obtained with quadrilateral and triangular mesh. The results

coincide with the results obtained with the implicit ABA-

QUS [14]. Three-dimensional solution obtained using tetra-

hedra with the split algorithm is given in Fig. 4. The results

of this example confirm the accuracy and correctness of the

thermomechanical model and algorithm implemented in our

explicit dynamic program. This example shows a good

behaviour of linear triangles and tetrahedra within the split

algorithm in the thermomechanical coupled analysis.

4.3. Sidepressing of a cylinder

A cylinder 100 mm long with a radius of 100 mm is

subjected to sidepressing between two plane dies. It is

Fig. 2. Deformed shapes of the bar after impact. Different solutions: (a) Q1/P0 hexahedral elements, mixed algorithm; (b) linear triangles, displacement

formulation (locking); (c) tetrahedral elements, displacement formulation (locking); (d) linear triangles, split algorithm; (e) tetrahedral elements, split algorithm.
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compressed to 100 mm. The material properties are the

following: E ¼ 217 GPa, n ¼ 0:3, r ¼ 7830 kg=m
3
, s0 ¼

170 MPa, H ¼ 30 MPa, c ¼ 586 J=kg �C, k ¼ 52 W=m �C,

friction coefficient ¼ 0:2. The die velocity is assumed to

be 2 m/s. A quarter of a cylinder was discretized. Initial

set-up is shown in Fig. 4a. This example demonstrates the

agreement between the explicit dynamic solution with

STAMPACK (Fig. 4c) and quasistatic implicit solution with

Fig. 3. Upsetting of a cylindrical billet — deformed shape at 60% upsetting with the temperature distribution: (a) quadrilaterals, mixed formulation; (b)

triangles; (c) tetrahedra, split algorithm.

Fig. 4. Sidepressing of a cylinder: (a) initial mesh; (b) temperature distribution — implicit solution (ABAQUS); (c) temperature distribution — explicit

solution (STAMPACK).
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ABAQUS (Fig. 4b). Far more efficient is the explicit solu-

tion, it took 18 min CPU on Pentium II 350 MHz, while the

implicit analysis took about 8 h CPU on Cray J916. Unfor-

tunately, we do not have the comparisons for the same

platform, but this demonstrates the computational efficiency

of the explicit solution in comparison with the implicit one.

5. Concluding remarks

The explicit thermomechanical algorithm and the split

algorithm, implemented in the finite element explicit pro-

gram STAMPACK have given good results for benchmark

examples of bulk forming. A good agreement between

implicit quasistatic and explicit dynamic results have been

observed, at the same time in 3D analysis a considerable

advantage of explicit program has been seen. This allows us

to see good perspectives in the use of our explicit code in the

simulation of industrial problems of bulk forming. For this

purpose, further development of the software, including

adaptive remeshing, is planned.
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