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SUMMARY

The paper describes how the �nite element method and the �nite volume method can be successfully combined
to derive two new families of thin plate and shell triangles with translational degrees of freedom as the only
nodal variables. The simplest elements of the two families based on combining a linear interpolation of
displacements with cell centred and cell vertex �nite volume schemes are presented in detail. Examples of
the good performance of the new rotation-free plate and shell triangles are given. Copyright ? 2000 John
Wiley & Sons, Ltd.
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INTRODUCTION

The need for e�cient plate and shell elements is essential for solving large-scale industrial prob-
lems such as the analysis of shell structures in civil, mechanical, naval and airspace engineering,
the study of vehicle dynamics and crash-worthiness situations and the design of sheet metal form-
ing processes among others. Despite recent advances in the �eld [1–3], the derivation of simple
triangles capable of accurately representing the deformation of a plate or a shell structure under
complex loading conditions is still nowadays a challenging topic of intensive research.
The development of plate (and shell) �nite elements was initially based on the so called thin

plate theory following Kirchho�’s main assumption of preserving orthogonality of the normals to
the mid-plane [1; 4]. Indeed, most plates and shells can be classed as ‘thin’ structures and there-
fore Kirchho�’s theory can reproduce the essential features of the deformation in many practical
cases. The well known problems to derive conforming C1 continuous thin plate and shell elements
motivated a number of authors to explore the possibilities of Reissner–Mindlin theory. This theory
relaxes the normal orthogonality condition, thereby introducing the e�ect of shear deformation
which can be of practical importance in thick situations, such as the analysis of some bridge slabs
and, more important, it requires only C0 continuity for the de
ection and rotation �elds. Unfortu-
nately Reissner–Mindlin plate and shell elements su�er from the so called ‘shear locking’ de�ect
which pollutes the numerical solution in the thin limit. This de�ciency has jeopardized the full
success of Reissner–Mindlin plate=shell elements for practical engineering analysis, an exception
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558 E. OÑATE AND F. Z �ARATE

perhaps being the four node quadrilateral based on an assumed shear strain formulation developed
by Dvorkin and Bathe [5]. Thus, despite considerable e�orts [6–23] there are not yet well estab-
lished simple triangles which are currently used for solving large-scale industrial plate and shell
problems.
This paper presents a general approach to derive very simple plate and shell triangular elements

incorporating the displacements as the only nodal variables. The elements are based on Kirchho�’s
thin plate theory and as such can be viewed as a return to the origins of plate and shell �nite
elements. Indeed for the applications in mind such as the analysis of standard thin plate and shell
analysis, vehicle crash-worthiness and sheet stamping processes, Kirchho�’s theory su�ces for
practical purposes.
The idea of using the de
ection as the only nodal variable for plate bending analysis is not

new and many �nite di�erence (FD) procedures are based on this approach [24]. The obvious
di�culties of FD techniques are the treatment of boundary conditions and the problems for dealing
with non-orthogonal or unstructured grids.
Several authors have tried to derive plate and shell �nite elements with displacements as the

nodal variables. So far the methods limit their applicability to triangular shapes only. The �rst
attempt was probably due to Nay and Utku [25] who derived a rotation free thin plate triangle using
a least-square quadratic approximation to describe the de
ection �eld within the patch surrounding
a node in terms of the de
ections of the patch nodes. The sti�ness matrix of the resulting three
node plate triangle were computed by the standard minimum potential energy approach. A few
years later Barnes [26] proposed a method for deriving a three node plate triangle with the nodal
de
ections as the only degrees of freedom (d.o.f.) based on the computation of the curvatures
in terms of the normal rotations at the mid-side points determined from the nodal de
ections of
adjacent elements. This method was exploited by Hampshire et al. [27] assuming that the elements
are hinged together at their common boundaries, the bending sti�ness being represented by torsional
springs resisting the rotations about the hinge lines. Phaal and Calladine [28; 29] proposed a
similar class of rotation-free triangles for plate and shell analysis. Yang et al. [30] derived a
family of triangular elements of this type for sheet stamping analysis based on so called bending
energy augmented membrane approach which basically reproduces the hinge bending sti�ness
procedure of Hampshire et al. [27]. Brunet and Sabourin [31] proposed a di�erent approach to
compute the constant curvature �eld within each triangle in terms of the six node displacements
of a macro-element. The triangle was successfully applied to non-linear shell analysis using an
explicit dynamic approach. Rio et al. [32] have used the concept of side hinge bending sti�ness to
derive a thin shell triangle of ‘translational’ kind for explicit dynamic analysis of sheet stamping
problems.
In 1993 Oñate and Cervera [33] proposed a general procedure based on �nite volume concepts

[34–36] for deriving thin plate elements of triangular and quadrilateral shapes with the nodal de-

ection as the only degree of freedom and presented a competitive and simple three d.o.f. triangle.
In this work the ideas presented in [33] are extended to derive new rotation-free plate and shell
elements. The basic ingredients of the derivation are a mixed Hu–Washizu formulation, a standard
discretization of the plate surface into three node triangles, a linear �nite element (FE) approxi-
mation of the displacement �eld within each triangle and a �nite volume (FV) type approach for
computing the curvature and bending moment �elds within appropriate non-overlapping control
domains. Basically two modalities of control domains will be considered here, leading each to
a di�erent plate triangle: the so called ‘cell centred’ patch formed by each individual triangle,
leading to the BPT plate triangle and the BST shell triangle, and the ‘cell vertex’ domain formed

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 47, 557–603 (2000)



ROTATION-FREE TRIANGULAR PLATE AND SHELL ELEMENTS 559

Figure 1. Sign convention for the de
ection and the rotations in a plate

by the non-overlapping nodal regions, leading to the BPN and BSN plate and shell triangles,
respectively.
The layout of the paper is the following. In the next section the basic concepts of Kirchho�’s

plate theory are given and the set of governing equations emerging from the standard Hu–Washizu
formulation are described. Next, details of the combined �nite element=�nite volume approach used
in the formulation of the rotation free BPT and BPN plate triangles are described. An extension
of the BPT element based on a linear least-square interpolation of the de
ection gradients over
an element patch is also presented. The relevant matrices and vectors for each case are given in
explicit form. The formulation of the rotation-free BST and BSN shell triangles is then described
as an extension of the parent thin plate formulation. Examples of the e�ciency of the new triangles
for a wide range of plate and shell problems are �nally presented.

BASIC THEORY

Let us consider the plate of Figure 1. We will assume Kirchho�’s thin plate conditions to hold, i.e.

�x = @w=@x and �y = @w=@y (1)

The curvatures �eld and the moment–curvature relationship can be expressed in the usual manner
as

Z=Lw; m=DZ (2)

with

Z= [�x; �y; �xy]T; m= [mx; my; mxy]T

L=
[
− @2

@x2
;− @2

@y2
;−2 @2

@x@y

]T
; D=

Et3

12(1− �2)



1 � 0
� 1 0

0 0
1− �
2


 (3)

where E and � are the Young’s modulus and the Poisson’s ratio, respectively, and t is the plate
thickness.
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560 E. OÑATE AND F. Z �ARATE

The set of governing equations will be expressed in integral form starting from the standard
Hu–Washizu functional [1]

�=
1
2

∫∫
A
ZTDZ dA−

∫∫
A
[Lw − Z]Tm dA−

∫∫
A
qw dA (4)

where q is the distributed loading and A is the area of the plate. Variation of � with respect to
Z; m and w leads to the following three equations:

Constitutive equation ∫∫
A
�ZT[DZ −m] dA=0 (5a)

Curvature-de
ection equation ∫∫
A
�mT[Lw − Z] dA=0 (5b)

Equilibrium equation ∫∫
A
[L�w]Tm dA−

∫∫
A
�wq dA=0 (5c)

Equations (5a)–(5c) represent the global satisfaction over the plate of the constitutive, kinematic
and equilibrium equations, respectively. Equations (5) are the basis of the FE=FV discretization
to be presented next.

FINITE ELEMENT=FINITE VOLUME DISCRETIZATION

Let us consider an arbitrary discretization of the plate into standard three node triangles. The curva-
ture and the bending moments are described by constant �elds within appropriate non-overlapping
control domains (also termed ‘control volumes’ in the FV literature [34–36]) covering the whole
plate as

m= I3mp; �m= I3�mp (6a)

Z= I3Zp; �Z= I3�Zp (6b)

where I3 is the 3× 3 unit matrix and (·)p denotes constant values for the pth control domain.
Two modalities of control domains are considered: (a) that formed by a single triangular ele-

ment (Figure 2(a)) and (b) the control domain formed by one-third of the areas of the elements
surrounding a node (Figure 2(b)). The two options are termed in the FV literature ‘cell centred’
and ‘cell vertex’ schemes, respectively.
Note that in the cell centred scheme each control domain coincides with a standard three node

�nite element triangle. Alternatively in the cell vertex scheme a control domain is contributed by
di�erent elements, as shown in Figure 2(b).
It is also useful to de�ne the term ‘patch of elements’ associated to a control domain. In the cell

centred scheme (Figure 2(a)) this patch is always formed by four elements (except in elements
sharing a boundary segment), whereas in the cell vertex scheme the number of elements in the
patch is variable (Figure 2(b)).
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Remark 1. The name ‘Cell Centred’ (CC) indicates that the chosen variables (i.e. the curvatures
and bending moments) are ‘sampled’ at the center of the cells discretizing the analysis domain
(i.e. the three node triangles). Similarly a ‘Cell Vertex’ (CV) scheme denotes that the variables
are sampled at the corners (i.e. the nodes) of the discretizing grid. This terminology has su�ered
some controversial interpretations in the past (for instance in [33; 34] a di�erent criterion was
chosen). The meaning given here to the CC and CV schemes corresponds to above de�nition.
The constant curvature and bending moment �elds within each control domain are expressed

next in terms of the nodal de
ections associated to the corresponding element patch.
The area integrals in equations (5) can be written as sum of contributions over the di�erent

control domains taking into account equations (6) as

Constitutive equation

∑
p

∫∫
Ap
�ZTp [DZp −mp] dA=0 (7)

where Ap is the area of the pth control domain.
Recalling that the virtual curvatures are arbitrary, gives

mp=DpZp (8a)

Dp=
1
Ap

∫∫
Ap
D dA (8b)

where Dp is the average constitutive matrix over a control domain. Equation (8a) de�nes the
constant bending moment �eld over the control domain in terms of the corresponding constant
curvatures.

Curvature-de
ection equation

∑
p

∫∫
Ap
�mTp [Lw − Zp] dA=0 (9)

Taking into account that the virtual bending moments are arbitrary, gives

Zp=
1
Ap

∫∫
Ap
Lw dA (10)

A simple integration by parts of the r.h.s. of equation (10) leads to

Zp=
1
Ap

∫
�p
T∇w d� (11)

where

T=

[
−nx 0 −ny
0 −ny −nx

]T
; ∇=




@
@x
@
@y


 (12)
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Figure 2. (a) Cell centred and (b) cell vertex �nite volume schemes. BPT and BPN triangles

and n= [nx; ny]T is the outward unit normal to the boundary �p surrounding the control domain
(Figure 2).
Equation (11) de�nes the curvatures for each control volume in terms of the de
ection gradients

along its boundaries. The transformation of the area integral of equation (10) into the line integral
of equation (11) is typical of �nite volume methods [33–36].

Remark 2. The computation of the line integral in equation (11) poses a di�culty for cases
where the de
ection gradient is discontinuous at the control volume boundaries and some smooth-
ing procedure is then required. This issue is discussed in more detail in a later section.

Equilibrium equation
Equation (5c) can be expressed as

∑
p

∫∫
Ap
[L�w]Tmp dA−

∫∫
A
�wq dA=0 (13)

Integrating by parts the �rst integral in equation (13) and recalling that the bending moments
are constant within each control domain, gives

∑
p

(∫
�p
[T∇�w]T d�

)
mp −

∫∫
A
�wq dA=0 (14)

Substituting equations (8a) and (11) into equation (14) �nally gives

∑
p

(∫
�p
[T∇�w]T d�

)
1
Ap
Dp
∫
�p
T∇w d�−

∫∫
A
�wq dA=0 (15)

Equation (15) is the basis for deriving the �nal set of algebraic equations, after appropriate
discretization of the de
ection �eld as described next.
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Derivation of the discretized equations

The �nal step is to discretize the de
ection �eld. The simplest option is to interpolate linearly
the de
ection within each triangular element in terms of the nodal values in the standard �nite
element manner [1] as

w=
3∑
i=1
Niwi=N(e)w(e) (16)

with N(e) = [N1; N2; N3] and w(e) = [w1; w2; w3]T. In equation (16) wi denotes the nodal de
ection
values and Ni are the standard linear shape functions of the three node triangle [1]. Substituting
equations (16) into (11) gives

Zp=
1
Ap

∫
�p
T∇N(e)w(e) =Bpwp (17)

where vector wp lists the de
ections of the nodes linked to the pth control domain and Bp is
the curvature matrix relating the constant curvature �eld within a control domain and the nodal
de
ections associated to the control domain. The computation of matrix Bp is di�erent for cell
vertex and cell centred schemes and the details are given in next sections.
Substituting equations (16) into (15) gives the �nal system of algebraic equations as

Kw= f (18)

where vector w contains the nodal de
ections of all mesh nodes. The global sti�ness matrix K can
be obtained by assembling the sti�ness contributions from the di�erent control domains given by

Kp= [Bp]TDpBpAp (19)

The components of the nodal force vector f in equation (18) are obtained as in standard C0
linear �nite element triangles [1], i.e.

Point loading

fi=pi (20)

where pi is the point load acting on the ith node

Distributed loading

f(e)i =
∫∫

A(e)
Niq(x) dA (21)

The global nodal force component fi is obtained by assembling the element contributions f
(e)
i

in the standard �nite element manner. For a constant distributed load q this gives

fi=
∑
e

qA(e)

3
(22)

where the sum extends to all triangular elements sharing the ith node and A(e) is the area of
element e.
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Box I. Matrix Bp for the 3 d.o.f. basic plate triangle (BPT)

Bp=
1
Ap




yij �b
(b)
i + yki �b

(d)
i yij �b

(b)
j + yjk �b

(c)
j yjk �b

(c)
k + yki �b

(d)
k

−xij �c (b)i − xki �c (d)i −xij �c (b)j − xjk �c (c)j −xjk �c (c)k − xki �c (d)k[
yij �c

(b)
i − xij �b(b)i

[
yij �c

(b)
j − xjk �b(b)j

[
yjk �c

(c)
k − xjk �b(c)k

+yki �c
(d)
i − xki �b (d)i

]
+yjk �c

(c)
j − xjk �b(c)j

]
+yki �c

(d)
k − xki �b (d)k

]
yij �b

(b)
l yjk �b(c)m yki �b(d)n

−xij �c (b)l −xjk �c (c)m −xki �c (d)n
yij �c

(b)
l − xij �b(b)l yjk �c(c)m − xjk �b(c)m yki �c (d)n − xki �c (d)n




�b(e)i =
b(e)i
2A(e)p

; �c (e)i =
c (e)i
2A(e)p

; b(e)i =y(e)j − y(e)k ci= x
(e)
k − x(e)j ; etc:; Ap=A(p)

CELL CENTERED PATCH BPT ELEMENT

The evaluation of the constant curvature �eld in equation (11) requires the computation of the
de
ection gradient along the control domain boundaries. This poses a di�culty in cell cen-
tred con�gurations where each control domain coincides with an individual element. Here if the
de
ection is linearly interpolated within each triangle, then the term ∇w is discontinuous at the
element sides. A simple method to overcome this problem proposed by Oñate and Cervera [33]
is to compute the de
ection gradients at the triangle sides as the average value of the gradients
contributed by the two elements sharing the side. The constant curvature �eld for each control
domain can be expressed in this case as

Zp=
1
Ap

3∑
j=1

l(p)j

2
T(p)j

[∇N(p)w(p) +∇N(k)w(k)] =Bpwp (23a)

with

wp= [wi; wj; wk ; wl; wm; wn]T (23b)

In equation (23a) the sum extends over the three sides of element p coinciding with the pth
control domain, T(p)j is the transformation matrix of equation (12) for side j; l(p)j are the lengths
of the element sides, Ap=A(p) is the area of the fth triangle and superindex k refers to each of
the elements adjacent to element p (k = a; b; c for j=1; 2; 3. See Figure 2(a)).
The computation of the curvature matrix is simple noting that the gradients of the shape functions

are constant within each element. The explicit form of matrix Bp is given in Box I.
Note that Bp in this case is a 3× 6 matrix relating the de
ections of the six nodes of the four

element patch contributing to the control domain. Consequently the sti�ness matrix Kp is a 6× 6
matrix.
The resulting plate element is identical to that derived by Oñate and Cervera [33] and it is

termed BPT (for Basic Plate Triangle). The element can be viewed as a standard �nite element
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Figure 3. Basic plate triangle (BPT) next to a boundary line

plate triangle with one degree of freedom per node and a wider bandwidth, as each element is
linked to its neighbours through equation (23a).

Boundary conditions for the BPT element

The implementation of the boundary conditions is straightforward and the main di�erence with
standard �nite elements is that the conditions on the prescribed rotations must be imposed when
the curvature matrices Bp are being built. The di�erent situations are considered next.
A BPT element with a side along a boundary edge has one of the elements contributing to the

patch missing. This is simply taken into account by ignoring this contribution when performing
the average of the de
ection gradient in equation (23a). Thus, if side 1 corresponding to nodes ij
lies on the boundary (Figure 3), the curvature �eld for the control domain is obtained by

Zp=
lij
Ap
T (p)1 ∇N(p)w(p) + 1

Ap

3∑
j=2

l(p)j

2
T (p)j [∇N(p)w(p) +∇N(k)w(k)] =Bpwp (24)

Additional conditions must be imposed in the case of boundary edges where the rotations and=or
the de
ections are constrained as explained next.

Clamped edge (w=∇w=0)
The conditions on the rotations are simply imposed by disregarding the contributions from the

clamped edges when computing the sum along the element sides in equation (23a). For instance,
if side ij is clamped this simply implies making zero the �rst term in the r.h.s. of equation (24).
The condition w=0 on the nodes laying on clamped edges is prescribed at the equation solution

level in the standard manner.

Symmetry edge (@w=@x=0 or @w=@y=0)
The condition of zero rotation is imposed by neglecting the contribution from the prescribed

rotation term (@w=@x or @w=@y) at the symmetry edge when computing equation (23a).

Simply supported edge (w= @w=@s=0)
The condition @w=@s=0, where s is the boundary direction, is simply imposed by prescribing

w=0 in the boundary nodes at the global equation solution level in the standard fashion. The
e�ect of the ‘missing’ contributing element at the boundary edge is accounted for by skipping the
averaging of the de
ection gradient for that edge as described above.
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BPT1 ELEMENT

An interesting alternative to the BPT element can be derived by de�ning a linear de
ection gradient
�eld over the four element patch. The simplest procedure is to use a least-square approximation of
the de
ection gradients computed at the centroids of the four elements contributing to the control
domain (Figure 2(a)). This avoids the averaging procedure of equation (23a) as the de
ection
gradient is now continuous over the control volume. The basic ingredients of the element, termed
BPT1, are given next.
The de
ection gradient is de�ned linearly over the four elements patch as

∇w=
{
a1
a2

}
+
{
b1
b2

}
x +

{
c1
c2

}
y= a + bx + cy (25)

The a; b and c parameters are obtained by minimizing the following quadratic form:

Jp=
4∑
i=1
[(∇w)i − (a + bxi + cyi)]2 (26)

with respect to the parameters ai; bi; ci:
In equation (26) (∇w)i are the de
ection gradients computed at the centroid (xi; yi) of each of

the four elements linked to the pth control domain. It can be easily shown that

(∇w)i= 1
2A(i)

3∑
j=1

{
�(i)j
�(i)j

}
wj (27)

with �(i)j =y
(i)
k − y(i)l ; �(i)j = x(i)l − x(i)k for an element with nodes j; k; l [1].

In equation (27) A(i) is the area of the ith element and x(i)j ; y
(i)
j ; j=1; 2; 3; are the coordinates

of the element nodes.
Minimization of Jp gives

[a1; b1; c1]T =C−1GSxwp (28a)

[a2; b2; c2]T =C−1GSywp (28b)

where wp is given by equation (23b) and the form of the matrices C;G;Sx and Sy is shown in
Box II.
Equation (25) can be used to compute the curvature vector for each control domain using

equation (11) as

Zp=
1
Ap

∫
�p
T[a + bx + cy]d�=

1
Ap

3∑
j=1
T (p)j [a + bxj + cyj]lj =Bpwp (29)

where the sum extends to the three edges of the control domain, xj; yj are the coordinates of the
mid-point of the jth edge and lj is the edge length. The expression of Bp in this case can be easily
deduced substituting equations (28) into equation (29).
The treatment of the boundary conditions follows the same procedure as for the BST element.

Naturally in a control volume sharing a boundary edge, the linear interpolation of the de
ection
�eld is then exact as only three elements are involved in the approximation. Also, the contribution
of edges where the rotation is prescribed to a zero value is neglected in the sum of equation (29).
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Box II. Matrices involved in the derivation of the BPT1 element

C=
4∑
i=1



1 xi yi
xi x2i xiyi
yi xiyi y2i


; G=



1 1 1 1

x1 x2 x3 x4
y1 y2 y3 y4




Sx =




�� (1)1 �� (1)2 �� (1)3 0 0 0

�� (2)3 �� (2)2 0 �� (2)1 0 0

0 �� (3)3 �� (3)2 0 �� (3)1 0

�� (4)2 0 �� (4)3 0 0 �� (4)1




Sy =




��
(1)
1

��
(1)
2

��
(1)
3 0 0 0

��
(2)
3

��
(2)
2 0 ��

(2)
1 0 0

0 ��
(3)
3

��
(3)
2 0 ��

(3)
1 0

��
(4)
2 0 ��

(4)
3 0 0 ��

(4)
1




with �� (i)1 =
1
A(i)

(y(i)3 − y(i)2 ); ��
(i)
1 =

1
A(i)

(x(i)2 − x(i)3 ); etc:

Remark 3. The curvature matrix for the BPT1 element can be readily derived by using the
original form of equation (10) as the second derivatives of the de
ection �eld can be directly
computed from equation (25). The result is obviously the same in both cases.

Remark 4. The interpolation of the de
ection �eld can be enhanced using weighted least-square
interpolation techniques [37].
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Figure 4. BPN element. Example of a typical control domain and numbering of nodes

Remark 5. The performance of the BPT and BPT1 elements is identical for regular structured
meshes as the sti�ness matrices are the same in both cases. In non-structured meshes the perfor-
mance of the BPT1 element is slightly superior as it will be shown in the examples.

CELL VERTEX PATCH. BPN ELEMENT

As mentioned earlier, a di�erent class of rotation-free plate triangles can be derived starting from
the so called cell vertex �nite volume scheme (Figure 2(b)). The advantage of the cell vertex
scheme is that the de
ection gradient is now continuous along the control domain boundaries.
This allows to compute directly the constant curvature vector over the control domain as

Zi=
1
Ai

∫
�i
T∇Niwi d�=Biwi (30)

where Ni contains contributions from the shape functions from all the elements participating in
the ith nodal control domain. Equation (30) can be rewritten in a simpler form taking into account
that the de
ection gradients are constant within each element, as

Zi=
1
Ai

∑
j

lj
2
Tj∇N(j)w(j) =Biwi (31)

where the sum extends over the ni elements contributing to the ith control domain (for instance
ni=5 in the patch of Figure 4), lj is the external side of element j; Tj is the transformation matrix
of equation (12) linked to the side lj, superindex j refers to element values and Ai= 1

3

∑ni
k=1 A

(k)

where A(k) is the area of element k.
The computation of the curvature matrix Bi is not so straightforward in this case as its size

depends on the variable number of nodes over the element patch contributing to a nodal control
domain (see Figure 4).
Typically

1 2 : : : pn
Bi
3×n

= [Bi Ba; : : : ; Br] (32)
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Box III. Example of derivation of the curvature matrix for the
BPN control domain of Figure 4

Bi= [Bi ;B j;Bk ;Bl;Bm;Bn]

Bi=
1
2Ai

[
laTaG

(a)
1 + lbTbG

(b)
1 + lcTcG

(c)
1 + ldTdG

(d)
1 + leTeG

(e)
1

]

B j =
1
2Ai

[
laTaG

(a)
2 + leTeG

(e)
3

]

Bk =
1
2Ai

[
laTaG

(a)
3 + lbTbG

(b)
2

]

Bl=
1
2Ai

[
lbTbG

(b)
3 + lcTcG

(c)
2

]

Bm=
1
2Ai

[
lcTcG

(c)
3 + ldTdG

(d)
2

]

Bn=
1
2Ai

[
ldTdG

(d)
3 + leTeG

(e)
2

]

G(k)i =∇N (k)i =
1

2A(k)

{
bi
ci

}(k)
; b(k)i =y(k)j − y(k)k ; c(k)i = xk − x(k)j

where pn is the number of nodes in the patch (i.e. pn=6 in the patch of Figure 4) and superindexes
i; a; : : : ; r refer to global node numbers. An explicit expression of the nodal curvature matrix Bi

can be found as

Bi
3×1

=
1
2Ai

∑
k
lkTk∇N (k)j (33)

where the sum extends now over the elements sharing node i within the patch and j is the local
number of node i within element k. An example of matrix Bi for a typical control domain is
shown in Box III.
It is important to note that Bi is in this case the global curvature matrix for the central ith node.

Thus, the product BTi DiBiAi provides the ith row of the global sti�ness matrix. This simpli�es the
assembly and solution process as the global sti�ness equations for a node can be elliminated once
they are computed.
Indeed the standard ‘element’ sti�ness matrix can be found by adding the contribution of the

three internal domains participating into each triangular element as shown in Figure 5. This,
however, has been found not useful for practical purposes and the direct assembly of the control
domain contributions as explained above is recommended.
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Figure 5. Contribution of control domains to a BPN tri-
angular element in the cell vertex scheme

Figure 6. BPN element. Control domain sharing a boundary
line. Integration path for computation of curvature matrix

This plate element is termed BPN (for Basic Plate Nodal patch). Note that the concept of
‘element’ here is generalized as the BPN element combines a standard �nite element interpolation
with non-standard integration domains.

Boundary conditions for the BPN element

The method for imposing the boundary conditions in the BPN element follows the lines pre-
viously explained for the BPT element. The procedure is now simpler as the de
ection gradient
now is continuous along the control domain boundary which intersects the central node in this
case (Figure 6). As usual, the conditions on nodal de
ections are imposed at the global solution
level while the prescribed rotations must be treated when building the curvature matrix.

Clamped and symmetry edges
Zero rotation conditions at clamped and symmetry edges are simply imposed by elliminating

the contributions from these rotation terms in the sum of equation (31).

Simple supported edges
The condition @w=@s=0 along an edge direction is simple accounted for by prescribing the

de
ections of the edge nodes to a zero value at the global solution level.

Free edges
No special treatment for the rotations is required at free edges. Advantage can be taken from

the mixed formulation in this case by prescribing the edge bending moments Mn and Msn to a
zero value. This can be simply done by eliminating the contributions from these moments at free
edge patches by making zero the appropriate rows in the constitutive matrix D. Indeed if the
free edge is not parallel to one of the cartesian axes a transformation of the constitutive equation
to edge axes is then necessary.
This procedure can also be applied to impose the condition Mn=0 at simply supported edges.
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Figure 7. BST element. Control domain and four elements patch

BASIC SHELL TRIANGLE (BST)

The BPT element of previous section can be combined with the standard Constant Strain Trian-
gle (CST) [1] to model membrane behaviour. The resulting rotation-free shell element is called
Basic Shell Triangle (BST). The nodal degrees of freedom of the BST element are the three
displacements. Thus, the computational cost of the BST element is equivalent to that of a standard
membrane element, while it incorporates full bending e�ects. Details of the derivation of the BST
element are given below.

BST element. Bending sti�ness matrix

Figure 7 shows the patch of four shell triangles typical of the Cell Centered (CC) �nite volume
scheme. As usual in the CC scheme the control domain coincides with an individual element. Also
in Figure 7 the local and global node numbering scheme chosen is shown. A clear de�nition of
local and global node numbers is essential for the derivation of the BST element sti�ness matrix
as shown next.
Figure 8 shows the local element axes x′y′z′ where x′ is parallel to side 1–2 (or i–j) and in

the direction of increasing local node numbers, z′ is a direction orthogonal to the element de�ning
the unit normal vector n and y′ is obtained by cross product of vectors along z′ and x′. A side
co-ordinate system is also de�ned (see Figures 8 and 9) including side unit vectors s; t and n.
Vector s is aligned along the side following the directions of increasing global node numbers, n
is the normal vector parallel to the z′ local axis and t= n ∧ s.
Let us now express the local rotations �x′ ; �y′ along each side in terms of the tangential and

normal side rotations �s and �n. The sign for the rotations follows the criterion of Figures 8 and 9.
The transformation relating local and side rotations is written as

X′(e) =
{
�x′
�y′

}(e)
=
[
cij −sij
sij cij

](e){
�sij
�nij

}(e)
= T̂ijX̂

′
ij (34)

where �sij and �nij are the tangential and normal rotations along side ij of element e, �x′ = @w
′=@x′;

�y′ = @w′=@y′ and c(e)ij ; s
(e)
ij are the components of side vector s(e)ij , i.e. s

(e)
ij = [c

(e)
ij ; s

(e)
ij ]

T.
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Figure 8. BST element. De�nition of global, local and side co-ordinate systems

Figure 9. BST element. Transformation from side to local rotations

The de�nition of curvatures follows the lines given for the BPT element. The local curvatures
over the control domain formed by the triangle ijk are given by (see equation (11))

Z′p=
1
A(p)

∫
�p
T∇′w′ d� (35)

where

Z′=
[
−@

2w′

@x′2
;−@

2w′

@y′2
;−2 @

2w′

@x′@y′

]
(36a)
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T=
[−tx′ 0 −ty′
0 −ty′ −tx′

]T
and ∇′=




@
@x′
@
@y′


 (36b)

where tx′ ; ty′ are the components of vector t in the x′; y′ co-ordinate system, respectively.
Recalling that X′= [�x′ ; �y′ ]T =∇′w′ and substituting equation (34) into (35), the curvature over

the triangular control domain can be written as

Z′p=
1
A(p)

[T (p)ij T̂
(p)
ij X̂

′
ijlij + T

(p)
jk T̂

(p)
jk X̂

′
jk ljk + T

(p)
k i T̂

(p)
k i X̂

′
k ilk i ] (37)

In the derivation of equation (37) it has been assumed that the local rotations are constant over
each element side. This is a consequence of the linear interpolation chosen for the displacement
�eld.
The tangential side rotations can be directly expressed in terms of the local de
ections along

the sides. For instance, for side jk

�(p)sjk =
w′(p)
k − w′(p)

j

ljk
for k¿j (38)

where ljk is the length of side jk.
Equation (38) introduces an approximation as the tangential rotation vectors of adjacent element

sharing a side are not parallel. Therefore the tangential rotation are discontinuous along element
sides, i.e. (see Figure 8)

�(p)sjk =
w′(p)
k − w′(p)

j

ljk
6= w

′(b)
k − w′(b)

j

ljk
= �(b)sjk (39)

The authors have found that this error has little relevance in practice. Note that the error
diminishes for smooth shells as the mesh is re�ned. Thus, for quasi-coplanar sides w′(p)

k 'w′(b)
k ,

w′(p)
j 'w′(b)

j and �(p)sjk ' �(b)sjk .
An alternative to ensure a continuous tangential side rotation is to de�ne its value as the average

of the tangential side rotations contributed by the two adjacent elements to the side, i.e.

�(p)sjk =
1
2(�

(p)
sjk + �

(b)
sjk ) (40)

The normal rotation vector has the same direction for the two elements sharing a side
(Figure 8). A continuous value of the normal rotation along the side can be enforced by de�ning
an average normal side rotation as

�(p)njk =
1
2(�

(p)
njk + �

(b)
njk ) (41)

Using equation (34) the average normal rotation along the side can be expressed in terms of
the normal de
ections as

�(p)njk =
1
2([

(p)
jk ∇′w′(p) + [(b)jk ∇′w′(b)) (42)

where

[(p)jk = [−s(p)jk ; c(p)jk ] (43)
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Box IV. BST element. Local curvature matrix for the control domain of Figure 7

Z′p=Spw′
p

w′
p =

[
w′(p)
i ; w′(p)

j ; w′(p)
k ; w′(a)

j ; w′(a)
i ; w′(a)

l ; w′(b)
k ; w′(b)

j ; w′(b)
m ; w′(c)

i ; w′(c)
k ; w′(c)

n

]T

Sp = [S(p)ij ;S
(p)
jk ;S

(p)
ki ]; S(p)ij =

lij
A(p)

T(p)ij T̂
(p)
ij A

(p)
ij

A(p)ij =

[
�=lij �=lij 0 0 0 0

03 03

(p)iji 
(p)ijj 
(p)ijk 
(a)ijj 
(a)iji 
(a)ijl

]
; �=−1; �=1; j¿i
�=1; �=−1; j¡i

A(p)jk =

[
0 �=ljk �=ljk 0 0 0

03 03

(p)jki 
(p)jkj 
(p)jkk 
(b)jkk 
(b)jkj 
(b)jkm

]
; �=−1; �=1; k¿j
�=1 �=−1; k¡j

A(p)k i =

[
�=lk i 0 �=lk i 0 0 0

03 03

(p)k ii 
(p)kij 
(p)kik 
(c)kii 
(c)kik 
(c)kin

]
; �=1; �=−1; k¿i
�=−1; �=1; k¡i


(p)ijk =
1
2
[(p)ij ∇N (p)k ; [(p)ij = [−s(p)ij ; c(p)ij ]; 03 =

[
0 0 0
0 0 0

]

∇N (p)k =



@Nk
@x′

@Nk
@y′



(p)

=
1

2A(p)

{
bi
ci

}(p)
; b(p)i =y′(p)j − y′(p)k ; c(p)i = x′(p)k − x′(p)j

Substituting equations (38) and (42) into (37) and choosing a standard linear interpolation for
the displacement �eld within each triangle, the curvatures for the control domain can be expressed
in terms of the normal de
ection values of patch nodes as

Z′p = Spw′
p (44)

Sp = [S
(p)
ij ;S

(p)
jk ;S

(p)
k i ] (45)

w′
p = [w

′(p)
i ; w′(p)

j ; w′(p)
k ; w′(a)

j ; w′(a)
i ; w′(a)

l ; w′(b)
k ; w′(b)

j ; w′(b)
m ; w′(c)

i ; w′(c)
k ; w′(c)

n ]T (46)

The form of the di�erent S(p)ij matrices is given in Box IV. Note also that the de�nition of vector
w′
p depends on the convenion chosen for the local and global node numbers for the element patch
(Figure 7).
The normal nodal de
ections are related to the global nodal displacements by the following

transformation:

w′
p=Cpap (47)

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 47, 557–603 (2000)



ROTATION-FREE TRIANGULAR PLATE AND SHELL ELEMENTS 575

where

Cp=




i j k l m n

C(p)i 0 0 0 0 0

0 C(p)i 0 0 0 0

0 0 C(p)i 0 0 0

0 C(a)i 0 0 0 0

C(a)i 0 0 0 0 0

0 0 0 C(a)i 0 0

0 0 C(b)i 0 0 0

0 C(b)i 0 0 0 0

0 0 0 0 C(b)i 0

C(c)i 0 0 0 0 0

0 0 C(c)i 0 0 0

0 0 0 0 0 C(c)i




; ap=




ui
uj
uk
ul
um
un




(48)

with

C(p)i = [c(p)z′x ; c
(p)
z′y ; c

(p)
z′z ]; ui=



ui
vi
wi


 (49)

In the above c(p)z′x is the cosine of the angle between the local z
′ axis of element p and the

global x axis, etc.
Substituting equation (47) into (44) gives �nally

Z′p=Bbpap (50)

where

Bbp =SpCp (51)

is the curvature matrix of the control pth domain. In equations (47) and (50) ap is the vector
containing the eighteen nodal displacement variables of the six nodes belonging to the patch of
elements associated to the pth control domain. Recall that in the BST element control domains
coincide with triangles.
The bending sti�ness matrix associated to the pth control domain is obtained by

Kbp =A
(p)BTbpDpBbp (52)

where Dp is the bending constitutive matrix for the patch (see equation (8)).

BST element. Membrane sti�ness matrix

The membrane contribution to the BST element is simply provided by the Constant Strain
Triangle (CST) under plane stress conditions. The local membrane strains are de�ned within each
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element in terms of the nodal displacements as

U′m=
3∑
i=1
B′(p)
mi u

′(p)
i =B′(p)

m a′(p)m (53)

where

U′m =
[
@u′

@x′
;
@v′

@y′
;
@u′

@y′
+
@v′

@x′

]T
(54)

B′(p)
mi =




@N (p)i

@x′
0

0
@N (p)i

@y′

@N (p)i

@y′
@N (p)i

@x′



=

1
2A(p)


 bi 0
0 ci
ci bi



(p)

(55)

a′(p)m =



u′(p)i

u′(p)j

u′(p)k


 and u′(p)i = [u′(p)i ; v′(p)i ]T

In the above u′(p)i and v′(p)i are the local in plane displacements along x′; y′ axis (Figure 8) and
b(p)i ; c(p)i are de�ned in Box IV.
The membrane strains within a control domain (coinciding with a triangle) are expressed now

in terms of the eighteen global nodal displacements of the four elements patch as follows

U′m=B′(e)
m Lpap=Bmpap (56)

where

Bmp =B
′(e)
m Lp (57)

The transformation matrix Lp is given by

Lp=



L(p) 0 0

0 L(p) 0 0

0 0 L(p) 6× 9


 ; L(p) =

[
cx′x cx′y cx′z
cy′x cy′y cy′z

](p)
(58)

The membrane sti�ness matrix associated to the pth control domain is obtained as

Kmp =A
(p)BTmpDmBmp (59)

where for an isotropic homogeneous material

Dm=
Et

(1− �2)



1 � 0
� 1 0

0 0
1− �
2


 (60)
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BST element. Full sti�ness matrix and nodal force vector

The sti�ness matrix for the BST element is obtained by adding the membrane and bending
contributions, i.e.

Kp=Kbp + Kmp (61)

where Kbp and Kmp are given by equations (52) and (59), respectively.
Recall that the dimensions of the sti�ness matrix Kp is 18× 18 as it links the eighteen displace-

ments of the six nodes contributing to the control domain. The assembly of the sti�ness matrices
Kp into the global equation system follows the standard procedure, i.e. a control domain is treated
as a macro-triangular element with six nodes.
The equivalent nodal force vector is obtained similarly as for standard C0 shell triangular ele-

ments. Thus, the contribution of a uniformly distributed load over an element is splitted into three
equal parts among the three element nodes. As usual nodal point loads are directly asigned to a
node.

Boundary conditions for the BST element

The procedure for prescribing the boundary conditions for the BST element follows the same
lines explained for the BPT plate triangle.
The process is simpli�ed as the side rotations are formulated in terms of the normal and tan-

gential values. This allows to treat naturally all boundary condition types found in practice.
Thus, the conditions on the normal rotations are introduced when forming the curvature matrix,

whereas the conditions on the nodal displacements and the tangential rotations are prescribed at
the solution equation level.

Clamped edge (ui= uj = �nij = �sij =0)
The condition ui= uj =0 is prescribed when solving the global system of equations. Note that,

the condition �sij =0 is automatically satis�ed by prescribing the side displacements to a zero
value.
The condition �nij =0 is imposed by making zero the second row of matrix A

(p)
ij (see Box IV)

as this naturally enforces the condition of zero normal side rotations in equation (42).
Note that the control domain in this case has the element adjacent to the boundary side missing.

This has to be properly taken into account in the assembly process.

Simply supported edge (ui= uj = �sij =0)
This condition is simply imposed by prescribing ui= uj =0 at the global equation solution level.

Symmetry edge (�nij =0)
The condition of zero normal side rotation is imposed by making zero the second row of matrix

A(p)ij as described above.

Free edge
Matrix A(p)ij is modi�ed by ignoring the contribution from the missing adjacent element to the

boundary side ij. This simply involves making 
(a)ijj = 

(a)
iji = 


(a)
ijl =0 and changing the 1=2 in the

de�nition of 
(p)ijk to a unit value (see Box IV).
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Figure 10. BSN element. Control domain and coordinate systems

BASIC SHELL NODAL ELEMENT (BSN)

The BPN plate element described in a previous section is extended now to shell analysis. The
derivation of the bending and membrane sti�ness matrices is described next.

BSN element. Bending sti�ness matrix
Figure 10 shows a typical vertex centred control domain surrounding a node and the corre-

sponding patch of BPN shell triangles. The following co-ordinate systems are de�ned:

Global system: x; y; z, de�ning the global displacements u; v; w.

Local element system: x′; y′; z′, de�ning the element curvatures. Vector x′ is de�ned along the
direction of the external side of each element in the patch, z′ is the normal direction to the element
and the y′ axis is obtained by cross product of unit vectors along the z′ and x′ directions.

Nodal system: �x; �y; �z, de�ning the constant curvatures �eld over the control domain. Here �z is
the average normal direction at the node, �x is de�ned as orthogonal to �z and lying on the global
plane x; z (if �z coincides with the global y axis, then �x= z) and the �y direction is taken as cross
product of unit vectors in the �z and �x directions.
A constant curvatures �eld is de�ned over each control domain. For convenience the curvatures

are de�ned in the nodal co-ordinate system. From simple transformation rules for each triangular
element we can write

�Z=R1Z=R1R2Z′ (62)

In the above

�Z=
[
−@

2 �w

@ �x2
;−@

2 �w

@ �y2
;−2 @

2 �w
@ �x@ �y

]T
(63)
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is the nodal curvature vector

Z′=
[
−@

2w′

@x′2
;−@

2w′

@y′2
;−2 @

2w′

@x′@y′

]T
(64)

is the element curvature vector and Z is an auxiliary ‘global’ curvature vector used to simplify
the transformation from element to nodal (local) curvatures. Recall that w′ is the de
ection in the
direction of the z′ axis. The transformation matrices R1 and R2 are given by

R1 =




c2�xx c2�xy c2�xz c �xxc �xy c �xxc �xz c �xyc �xz
c2�yx c2�yy c2�yz c�yxc�yy c�yxc�yz c�yyc�yz

2c �xx2c�yx 2c �xyc�yy 2c �xzc�yz c �xyc�yx + c �xxc�yy c �xzc�yx + c �xxc�yz c �xzc�yy + c �xyc�yz




(65)

R2 =




c2x′x c2y′x cx′xcy′x

c2x′y c2y′y cx′ycy′y

c2x′z c2y′z cx′zcy′z

2cx′xcx′y 2cy′xcy′y cx′ycy′x + cx′xcy′y
2cx′xcx′z 2cy′xcy′z cx′zcy′x + cx′xcy′z
2cx′ycx′z 2cy′ycy′z cx′zcy′y + cx′ycy′z




(66)

where as usual c �xx is the cosine of the angle between �x and x axes, etc.
Let us write equation (62) in integral form using the weighted residual method with unit weight

functions [1] as ∫
Ai
[ �Z − R1R2Z′]dA=0 (67)

where Ai is the area of the ith control domain surrounding node i. A simple integration by parts
gives (noting that the curvatures �Z and the transformation matrix R1 are constant within the control
domain)

�Zi=
1
Ai
R(i)1

∫
�i
R2T∇′w′ d� (68)

where T is given by equation (36b). In the derivation of equation (68) the changes of the trans-
formation matrix R2 across the element sides have been neglected. Note that these changes tend
to zero as the mesh is re�ned.
Equation (68) can be computed by performing the boundary integral over the di�erent elements

which contribute to the control domain of node i, i.e.

�Zi=
1
Ai
R(i)1
∑
j

lj
2
R( j)2 Tj∇′w′ (69)

where the sum extends over the number of elements contributing to the ith control domain, lj
is the external side of element j (see Figure 10) and Ai is the area of the ith control domain
Ai= 1

3

∑ni
j=1 A

(i)
j , where A

(i)
j is the area of the jth triangular element contributing to the control

domain.
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Substituting in equation (69) the standard linear interpolation for the normal de
ection w′ within
each triangle gives

�Zi=Siw′
i (70)

with

1 2 : : : ni

Si=
[
S(a)i ; S

(b)
i ; : : : ; S

(r)
i

] (71)

where ni is the number of elements in the ith patch (for instance ni=6 in the patch shown in
Box V) and superindexes a; b; : : : ; r refer to global element numbers. Matrix S(k)i is given by

S(k)i =F(k)i
[
G(k)1 ;G

(k)
2 ;G

(k)
3

]
(72)

with

F(k)i =
lk
2Ai
R(i)1 R

(k)
2 Tk (73)

and

G(k)i =∇′N (k)i =
1

2A(k)

{
b(k)i
c(k)i

}
; b(k)i = x′(k)j − x′(k)k ; c(k)i =y′(k)k − y′(k)j (74)

Vector w′
i is given by

w′
i =



w′(a)

w′(b)
...

w′(r)




1
2

pn

; w′(k) = [w′(k)
1 ; w′(k)

2 ; w′(k)
3 ]

T
(75)

The �nal step is to transform the local nodal de
ection vector w′
i to global axes. The process

follows the transformations explained for the BST element (see equations (47)–(49)), i.e.

w′
i =Ciai (76)

with

aTi =
[
uTi ; u

T
j ; u

T
k ; : : : ; u

T
pn

]
; ui= [ui; vi; wi]T (77)

In equations (75) and (77) pn is the number of nodes in the patch linked to the ith control
domain (i.e. pn=7 for the patch shown in Box V).
The form of the transformation matrix Ci depends naturally on the numbering of nodes in the

patch. A simple numbering scheme can be derived by taking the central node as the �rst node
for each element and the remaining two edge nodes in anticlockwise order as nodes 2 and 3. An
example of this numbering scheme is shown in Box V.
The curvature matrix is �nally obtained by substituting equation (76) into (70) giving

�Zi=Bbiai (78)
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Box V. Example of computation of the curvature matrix for the BSN element

�Zi =Siw′
i Si = [S

(a)
i ;S

(b)
i ;S

(c)
i ;S

(d)
i ;S

(e)
i ;S

(f)
i ]; S(k)i =F(k)i [G(k)1 ;G

(k)
2 ;G

(k)
3 ]

F(k)i =
lk
2Ai
R(i)1 R

(k)
2 Tk ; G(k)i =∇′N (k)i =

1
2A(k)

{
b(k)i
c(k)i

}
;

b(k)i = x′(k)j −x′(k)k ; c(k)i =y(k)k −y(k)j
w′
i =

[
w′(a)
i ; w′(a)

j ; w′(a)
k ; w′(b)

i ; w′(b)
k ; w′(b)

l ; w′(c)
i ; w′(c)

l ; w′(c)
m ; w′(d)

i ; w′(d)
m ; w′(d)

n ;

w′(e)
i ; w′(e)

n ; w′(e)
p ; w′(f)

i ; w′(f)
p ; w′(f)

j

]T
w′
i =Ciai ⇒ �Zi =SiCiai =Biai

Ci =

i j k l m n p


C(a)i 0 0 0 0 0 0
0 C(a)j 0 0 0 0 0
0 0 C(a)k 0 0 0 0
C(b)i 0 0 0 0 0 0
0 0 C(b)k 0 0 0 0
0 0 0 C(b)l 0 0 0
C(c)i 0 0 0 0 0 0
0 0 0 C(c)l 0 0 0
0 0 0 0 C(c)m 0 0
C(d)i 0 0 0 0 0 0
0 0 0 0 C(d)m 0 0
0 0 0 0 0 C(d)n 0
C(e)i 0 0 0 0 0 0
0 0 0 0 0 C(e)n 0
0 0 0 0 0 0 C(e)p
C(f)i 0 0 0 0 0 0
0 0 0 0 0 0 C(f)p

0 C(f)j 0 0 0 0 0




; ai =




ui
uj
uk
ul
um
un
up



; ui =

{
ui
vi
wi

}
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with the curvature matrix given for the ith control domain given by

Bbi =SiCi (79)

The bending sti�ness matrix for the ith control domain is �nally obtained by

Kbi =AiB
T
biDiBbi (80)

where Di is given by equation (8b).
Box V shows an example of computation of the curvature matrix for a typical BSN element.

BSN element. Membrane sti�ness matrix

The membrane contribution to the BSN element can be obtained from the sti�ness matrix of
the CST element following the lines explained for the Basic Shell Triangle (BST) in previous
section. A di�culty however arises in the assembly of the bending and membrane sti�nesses in
this case as cell vertex control domains do not coincide with triangles as in the BST element. This
assembly is however possible by identifying the membrane sti�ness contribution to each nodal
control domain.
An alternative and simpler assembly scheme can be devised by obtaining directly the mem-

brane sti�ness matrix for each control domain following a similar procedure as for the bending
case.
For this purpose a constant membrane �eld �Um is assumed over the control domain. For conve-

nience the membrane �eld �Um is de�ned in the nodal co-ordinate system. The relationship between
nodal and element membrane strains can be obtained from

�Um =R1R2U′m (81)

where R1 and R2 are the transformation matrices given by equations (65) and (66) and

�Um =
[
@ �u
@ �x
;
@ �v
@ �y
;
@ �u
@ �y
+
@ �v
@ �x

]T
(82a)

U′m =
[
@u′

@x′
;
@v′

@y′
;
@u′

@y′
+
@v′

@x′

]T
(82b)

From equation (81) the following expression for the membrane strains in the ith control domain
is readily obtained

�Umi =
1
Ai
R(i)1

∫∫
Ai
R2U′m dA=

1
Ai
R(i)1
∑
j

A( j)

3
R( j)2 U

′( j)
m (83)

where the sum extends over the elements contributing to the ith control domain, U′( j)m are the local
strains over the jth triangular element, A( j) is the area of this triangle and the rest of the terms
have the same meaning as in equation (69). Note that in the derivation of equation (83) the local
strain �eld U′m has assumed to be constant over each element in the patch.
The local membrane strains within each element are now readily expressed in terms of the

nodal displacements by equation (53). Substituting this equation into (83) the following matrix
expression can be found

�Umi =B′
miu

′
i (84)

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 47, 557–603 (2000)



ROTATION-FREE TRIANGULAR PLATE AND SHELL ELEMENTS 583

where

1 2 · · · ni
B′
mi =

[
M(a)
i ; M

(b)
i ; : : : ; M

(r)
i

] (85)

with

M(k)
i =H

(k)
i

[
B′(k)
m1 ;B

′(k)
m2 ;B

′(k)
m3

]
(86a)

H(k)i =
A(k)

3Ai
R(i)1 R

(k)
2 (86b)

and the expression of B′(k)
mi is given by equation (55).

In equation (84) u′(k)i is the vector of nodal in-plane displacements for each element in the patch
given by

u′i =



u′(a)

u′(b)
...
u′(r)



1
2
...
ni

; u′(a) =



u′(a)1

u′(a)2

u′(a)3


 with u′(a)j =

{
u′(a)j

v′(a)j

}
(87)

The next step is to transform vector u′i to global axes. The transformation reads

u′i = Liai (88)

where ai is the global nodal displacement vector for the ith control domain given by equation
(77) and Li is the local–global transformation matrix. This matrix is obtained by assembling the
nodal contributions L(e) given by equation (58). The structure of Li is identical to that of matrix
Ci (see Box V).
Substitution of equation (88) into (84) gives

�Um i = B
′
m i
Liai = Bm iai (89)

with

Bm i = B
′
m i
Li (90)

The membrane sti�ness matrix for the ith control domain is �nally given by

Km i = AiB
T
m i
Dm iBm i (91)

where Dm i is given by equations (60) and (8b).

BSN element. Full sti�ness matrix and nodal force vector

The sti�ness matrix for a control domain characterizing a control domain for the BSN element
is obtained by adding the membrane and bending contributions as

Ki = Kbi + Km i (92)

where Kbi and Km i are given by equations (80) and (90), respectively.
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Recall that in the BSN formulation control domains do not coincide with individual elements
as in the BST case. The sti�ness matrix Ki of equation (91) assembles all the contributions to a
single node and therefore it is already a global sti�ness matrix. The sti�ness assembly process is
therefore not necessary as in the case of the BPN element.
The equivalent nodal force vector for the BSN element can be obtained in identical form as for

the BST element, i.e. a uniformly distributed load is splitted into three equal parts and assigned
to each element node and nodal point loads are directly assigned to the node at global level.

Boundary conditions for the BSN element

The conditions of prescribed displacements are imposed as usual at the equation solution level
after the global assembly process.
The conditions on prescribed rotations at edges follow a process similar to that explained for

the BPN plate element. Thus, free boundary edges are naturally modelled simply by noting that
the free boundary edge is now part of the control domain boundary (see Figure 6). On the other
hand the condition of zero rotation along an edge is imposed when forming the curvature matrix
by making zero the appropriate row in matrix G(k)j of equation (74).
It is worth noting that the nodal de�nition of curvatures and membrane strains allows to impose

the conditions of zero bending and=or axial forces at free and simply supported boundaries by
making zero the appropriate rows of the constitutive matrix as explained for the BPN element.

EXAMPLES

Square plates under uniform and point loads

A number of examples of thin square plates have been studied to test the e�ciency of the BPT,
BPT1 and BPN rotation free plate elements. The examples analysed are the following:

• Simple supported square plate under uniform load (Figure 12)
• Simple supported square plate under central point load (Figure 13)
• Clamped square plate under uniform load (Figure 14)
• Clamped square plate under central point load (Figure 15)
Figure 11 shows the geometry of the plate and the material properties. Results shown in

Figures 12–15 have been obtained for structured meshes using the two di�erent mesh orienta-
tions shown in Figure 11. Numerical results for the central de
ection obtained with the BPT,
BPT1 and BPN elements are compared with the standard thin plate solutions [4] and with results
obtained with the standard 9 d.o.f. DKT plate element [7; 16] and the 6 d.o.f. Morley plate trian-
gle [6]. Results obtained with the new rotation free plate triangles compare very favourably with
those obtained with the DKT element. As expected, the Morley triangle yielded a higher error for
the same degrees of freedom in all cases due to the presence of mid-side normal rotations. This
substantially increases the numbers of nodal variables in the Morley triangle for the same type of
meshes.
Note also that the BPN gave in most cases more accurate results than the BPT and BPT1

elements. However, a good feature of these two elements is that they seem to be insensitive to
mesh orientation, a property not shared by the BPN and the DKT triangles.
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Figure 11. (a) square plate: L = 10, structured mesh, orientation A; (b) square plate: structured mesh, orientation B;
(c) circular plate: structured mesh. E = 10·92; � = 0·3 and t = 0·01 in all cases

Note that results for the BPT and BPT1 elements are identical in both cases as expected for
regular meshes.
The performance of the new rotation free triangles in non-structured meshes was also found to

be remarkable [38]. Results for the central de
ection for a clamped plate under a central point
load using a non-structured mesh are shown in Figure 16(a).

Circular plates under uniform and central point loads

Figure 11(c) shows the geometry of the plate and the material properties. Again a number of
tests using the BPT, BPT1 and BPN rotation free plate triangles was performed using structured
and non-structured meshes.
Numerical results for the central de
ection using structured meshes are shown in Figures 17

and 18 for the following cases:

(1) Simple supported circular plate under uniform load and a central point load (Figure 17);
(2) Clamped circular plate under a uniform load and a central point load (Figure 18).

The performance of the three rotation free plate elements is excellent. Numerical results were
in all cases (with exception of the example of Figure 17(a)) more accurate than those provided
by the DKT and the Morley triangles.
Note that results for the BPT and BPT1 di�er slightly in this case as the mesh is not regular. No

particular trend in the comparison between the results obtained with the two elements is observed.
This favours the use of the BPT element for practical purposes due to its simplicity.
Again the performance of all rotation-free plate elements for non-structured meshes was found

to be excellent [38]. A typical example is shown in Figure 16(b).

Skew thin plates under uniform load

Figure 19 shows the typical geometry of the skew plates analysed and the material properties.
The following cases are considered.

(1) Bi-clamped 30◦ skewed plate under uniform load (Figure 20)
(2) 60◦, 40◦ and 20◦ cantilever skewed plates under uniform load (Figures 21–23).
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Figure 12. Central point de
ection of a simple supported square plate under uniform load: (a) mesh orientation A; (b) mesh
orientation B
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Figure 13. Central point de
ection of a simple supported square plate under central point load: (a) mesh orientation A,
(b) mesh orientation B

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 47, 557–603 (2000)
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Figure 14. Central point de
ection of a clamped square plate under uniform load: (a) mesh orientation A; (b) mesh
orientation B
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Figure 15. Central point de
ection of a clamped square plate under central point load: (a) mesh orientation A; (b) mesh
orientation B

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 47, 557–603 (2000)



590 E. OÑATE AND F. Z �ARATE

Figure 16. Central point de
ection of clamped square and circular plates under a central point load. Percentage error
in central de
ection values obtained with BPT, BPT1 and BPN elements using the non-structured meshes shown.

Geometry and material properties as in Figure 11

Numerical results obtained with BPT, BPT1, BPN, DKT and Morley triangles using structured
meshes are compared with a �nite di�erence solution reported in [39] and with �nite element
solutions obtained with the DRM and ELM1 Reissner–Mindlin triangles [13, 20] (Figures 21–23).
The performance of the new rotation-free plate elements is also good in all these examples. The

maximum error for a 1000 d.o.f. mesh did not exceed 2·5 per cent in all cases. Obviously the
solution can be improved using mesh adaptivity as shown in [38].

Cylindrical shell under central point load

Figure 24 shows the geometry of the shell, the material properties and the loading. The problem
has been studied with the BST and BSN rotation-free shell triangles using structured and non-
structured meshes [38].
Figure 24 shows the convergence of the central de
ection obtained using structured meshes.

The reference solutions were obtained from [40; 41]. Numerical results for the three rotation-free
shell triangles compare well with those obtained with the DKT-15 [7; 16] element also shown.
A plot of the distribution of the bending moment My′ along the central edge AB is shown in

Figure 25.

Cylindrical shell under uniform load

The geometry of the dome known Scordelis–Lo shell [42; 43] is shown in Figure 26. The
convergence of numerical results for the vertical displacement of the free point B using structured
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Figure 17. Central point de
ection of a simple supported circular plate: (a) Uniform load, (b) central point load
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Figure 18. Central point de
ection of a clamped circular plate: (a) Uniform load; (b) central point load
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Figure 19. (a) Bi-clamped skewed plate under uniform load; (b) skew cantilever plates under uniform load

Figure 20. Bi-clamped 30◦ skewed plate under uniform load. Convergence of central de
ection

meshes is shown in the same �gure. The results obtained with the new rotation-free BST and
BSN triangles compare favourably with those obtained with the DKT-15 [7; 16] element. Further
results for this problem using non-structured meshes can be found in [38].

Open spherical dome under opposite diametral point loads

The geometry of the dome, the material properties and the mesh is shown in Figure 27. Again the
solution reported here has been obtained using structured meshes. A non-structured mesh analysis
can be found in [38].
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Figure 21. 60◦ skew cantilever plate under uniform load: (a) Convergence of de
ection of corner point 1; (b) convergence of
de
ection of corner point 2
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Figure 22. 40◦ skew cantilever plate under uniform load: (a) Convergence of de
ection of corner point 1; (b) convergence
of de
ection of corner point 2
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Figure 23. 20◦ skew cantilever plate under uniform load: (a) Convergence of de
ection of corner point 1; (b) convergence
of de
ection of corner point 2
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Figure 24. Cylindrical shell under central point load. Error in vertical displacement of point A for di�erent structured meshes
of BST, BSN and DKT-15 elements

Figure 25. Cylindrical shell under point load. Distribution of My1 bending moment along side B-A for BST, BSN and
DKT-15 elements

Figure 27 shows the convergence for the radial displacement of point A obtained with the BPT,
BSN and DKT-15 elements. Numerical results converge in all cases to a sti�er solution than the
reference value of 0·093 [11; 43]. This well-known defect is due to the appearance of strain energy
causing an over sti� 
exural response commonly known as membrane locking [44]. Methods to
elliminate this de�ciency are presented in [8].
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Figure 26. Cylindrical shell under uniform load. Convergence of vertical displacement of point B for di�erent structured
meshes of BST, BSN and DKT-15 elements

Figure 27. Open spherical dome under point load. Error in radial displacement of point A for di�erent structured meshes
of BST, BSN and DKT-15 elements

Table I. Open spherical dome. Radial displacement of point A obtained with a structured mesh of 2048
triangles using BST, BSN and DKT-15 elements

Rotation-free shell triangles DKT-15

BST BSN
No. of d.o.f wA Error wA Error No. of d.o.f. wA error
triangles triangles

2048 3200 0·0835 10·2 Per cent 0·0821 11·7 2048 5312 0·0798 14·2 Per cent

Some numerical results are shown in Table I. Note that the behaviour of the BST and BSN
elements is more accurate than the DKT-15 element for a considerably smaller number of degrees
of freedom.
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Figure 28. Hyperbolic shell under uniform load. Convergence of vertical displacement of central point for di�erent
structured meshes of BST, BSN and DKT-15 elements

Figure 29. Spherical cup under uniform impulse loading. Geometry, material properties and triangular mesh for analysis with
BST, BSN and DKT elements

Hyperbolic shell under uniform load

The geometry of the shell and the material properties are shown in Figure 28. A comparison
of the central de
ection values obtained with di�erent structured meshes using BST, BSN and
DKT-15 elements is shown in Figure 28 where a reference solution is also shown [45]. Note the
accuracy of less than ' 10 per cent error obtained in all cases for meshes with more than 100
d.o.f.

Spherical cap under uniform impulse loading

The last example shows the e�ciency of the new BST and BSN rotation-free shell triangles for
explicit dynamic analysis of shell structures.
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Figure 30. (a) Spherical cup under uniform impulse loading. Evolution of central displacement; elastic solution;
(b) Elastoplastic solution. Results obtained with BST, BSN, and DKT elements are compared with those obtained

by Bathe [48] and using the explicit dynamic code WHAMS [47]

The problem description and the mesh of 800 triangles (1082 d.o.f.) used to discretize the
spherical cap are shown in Figure 29. Fourfold symmetry was used. A uniform load of 600 psi
was applied over the cap as shown. Both elastic and elasto-plastic materials with the material
properties given in Figure 28 were considered. The results for the central de
ection obtained with
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the BST and BSN elements are compared in Figures 30(a) and 30(b) to those obtained with the
DKT-15 element [46] and with results reported in references [47; 48]. Note the accuracy of the
new rotation-free triangles for both the linear and non-linear solutions.
Other examples of the performance of the new rotation-free shell triangles for non-linear dynamic

analysis problems including frictional contact conditions are reported in [49–52].

CONCLUDING REMARKS

A general methodology for deriving rotation-free plate and shell triangles has been described.
The two element families here presented result from combining cell centred and cell vertex �nite
volume schemes with �nite element interpolations over triangular elements. The simplest elements
of these two families, i.e. those corresponding to a linear displacement interpolation, have been
described in some detail. The resulting plate and shell triangles are simple and inexpensive as they
only involve translational degrees of freedom as nodal variables.
The performace of the new rotation-free plate and shell triangles has been found to be very good

in all cases studied. The elements seen particularly promising for competitive analysis of large-scale
non-linear shell problems typical of sheet metal forming and crash-worthiness situations.
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in �nite element analysis, Hughes TJR, Oñate E, Zienkiewicz OC (eds), CIMNE, Barcelona, 1999.
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