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SUMMARY

Fourier analysis techniques are applied to the stabilized finite element method (FEM) recently proposed
by Codina and Blasco for the approximation of the incompressible Navier–Stokes equations, here
denoted by pressure gradient projection (SPGP) method. The analysis is motivated by spurious waves
that pollute the computed pressure in start-up flow simulation. An example of this spurious phenomenon
is reported. It is shown that Fourier techniques can predict the numerical behaviour of stabilized methods
with remarkable accuracy, even though the original Navier–Stokes setting must be significantly simpli-
fied to apply them. In the steady state case, good estimates for the stabilization parameters are obtained.
In the transient case, spurious long waves are shown to be persistent when the element Reynolds number
is large and the Courant number is small. This can be avoided by treating the pressure gradient projection
implicitly, though this implies additional computing effort. Standard extrapolation variants are unfortu-
nately unstable. Comparisons with Galerkin–least-squares (GLS) method and Chorin’s projection
method are also addressed. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the last few years a lot of effort has been devoted to the development of finite element
methods (FEMs) for incompressible flows allowing for the identical interpolation for velocity
and pressure unknowns to be used. It is well known that the usual Galerkin formulation
violates the Babuška–Brezzi (BB) stability condition for such equal-order approximations, so
that stabilization is needed. Several stabilized formulations have been developed over the years.
Some of them, such as the popular Galerkin–least-squares (GLS) method [1,2], explicitly
perturb the Galerkin formulation by mesh-dependent terms so as to improve stability. In other
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formulations, the stabilization terms are implicit within a fractional step algorithm. This is the
case, for example, of projection methods based on the early ideas of Chorin [3] and Temam [4]
(see, e.g. References [5–11]).

The equal-order method analysed in this article combines, in some sense, the two stabiliza-
tion procedures mentioned above. An explicit stabilization term is incorporated, which in turn
mimics the effect of fractional step methods. To our knowledge, the first precedent of this
method was proposed by Habashi et al. [12] as the following modification of the zero-
divergence constraint:

div u−l92p= −l div g (1)

where g=9p and l is a small parameter. Although at the continuous level the terms
containing l cancel exactly, upon finite element discretization, cancellation no longer occurs
and these terms in fact stabilize the formulation. Equivalent terms in the finite element
equations were later identified by Zienkiewicz and Codina [13] as explaining the good
behaviour of an equal-order fractional step method (in their scheme, l was in fact the time
step). Finally, Codina and Blasco [14–16] formulated and analysed theoretically an equal-
order method based on these ideas. From the convergence analysis, an elementwise estimate
l�h2 (for h being small) was derived, and optimal convergence rates obtained. We will refer
to this method hereafter as the stabilized by pressure gradient projection (SPGP) method.
Recent work by Codina [17] has shown a link between this method and the sub-grid scales
(SGS) method [18].

From the computational point of view, the main drawback of the SPGP method is the
introduction of the projection of the pressure gradient as a new unknown of the problem, thus
increasing substantially the number of nodal unknowns of the final discrete system. However,
iterative strategies may be devised to make the method efficient, with a computational cost
similar to that of other stabilized methods. On the other hand, when the transient Navier–
Stokes equations are discretized using a finite difference scheme, the projection of the pressure
gradient can be treated explicitly; that is to say, evaluated at the previous time step. In this
case, the increase of cost of the formulation with respect to the standard Galerkin method is
very low. First, a stabilization matrix must be built up, and at the end of each time step the
pressure gradient must be projected. This leads to a linear system of equations with a Gramm
system matrix, which can be solved by simple Jacobi iterations or approximated by a diagonal
system (lumped form). The number of unknowns is not increased.

Many numerical tests have recently been performed to the SPGP method, involving steady
and transient, two- and three-dimensional flows [Buscaglia G, Carrica P. Unpublished results;
19], with quite good results. A turbulent code based on the SPGP method also exhibits good
behaviour [Lew A, Buscaglia G, Carrica P. A robust equal-order finite element formulation for
the k-epsilon turbulence model. Submitted]. Most of these tests deal with the pressure gradient
projection explicitly. Comparing the SPGP and GLS methods, it was found that the former
leads to better conditioning of the system matrix and smoother temporal behaviour of the
pressure field in transients. As a drawback, spurious long-wave pressure transients in strongly
accelerated flows (such as start-up flows) were detected. One of these cases is reported below.
These spurious transients do not affect the velocity field, but render the pressure field useless
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until their extinction. Fortunately, no such phenomenon occurs in smooth flows (such as
vortex shedding flows).

Summarizing, its overall performance makes the SPGP method attractive for equal-order
finite element treatment of incompressible flows, mainly transient ones, and further work is
needed to understand and improve its properties. Stabilized methods are prone to introduce
spurious pressure wave perturbations. This is a price to be paid for avoiding the BB condition.

In this paper, Fourier analysis techniques are applied to the SPGP method and some of its
variants. Several simplifications are introduced to render this analysis feasible. First, a
one-dimensional model problem that mimics the Navier–Stokes equations is introduced and
discretized. Second, the domain is assumed to be (−�, +�), so that all nodes are
equivalent. Finally, the convective non-linear term is linearized. From the Fourier analysis of
the discrete equations, appropriate choices of stabilization coefficients are obtained. In the
transient case (classical von Neumann’s analysis) stability is discussed. Moreover, a spurious
oscillatory behaviour is identified, which explains (both qualitatively and quantitatively)
two-dimensional numerical results for start-up flow around a circular cylinder at a Reynolds
number of 3000. In particular, it is shown that the explicit treatment of the pressure gradient
projection activates this spurious behaviour and that a high-Reynolds number stabilization
coefficient improves the results. Comparisons with the GLS and Chorin’s methods are also
addressed. Numerical results of the one-dimensional model problem in a bounded domain
without linearizing the convective term show that the conclusions from Fourier analysis apply
in more realistic situations.

2. DESCRIPTION OF THE NUMERICAL METHOD

The governing equations correspond to an incompressible, constant viscosity flow, i.e.

r
(u
(t

+r(u ·9)u−div(2mDu)+9p= f (2)

div u=0 (3)

where u is the velocity field; r is the density; m is the dynamic viscosity; D is the symmetric
gradient operator, i.e. (Du)ij= (ui, j+uj,i)/2; p is the pressure; and f is the volumetric forces.
These equations are assumed to hold in a bounded domain V, with initial solenoidal conditions
for u in V, imposed velocities on the Dirichlet boundary GD, and imposed tractions on the
Neumann boundary GN (GD@GN=(V, GDSGN=¥).

u(x, 0)=u0(x), x�V (4)

u(x, t)=g(x, t), x�GD (5)

(−p1+2mDu) ·n=F, x�GN (6)
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Now, let Th be a finite element partition of V, and let Vh¦H1(V)nsd be an associated finite
element space to approximate the velocity field, where nsd is the number of space dimensions.
We assume that Vh consists of piecewise linear, bilinear or trilinear vector fields. We define, as
usual,

VhD={6h�Vh, 6h=g on GD} (7)

Vh0={6h�Vh, 6h=0 on GD} (8)

and let Qh¦L2(V) be a finite element space for the pressure. Of most interest to us is the case
when the interpolants for the pressure coincide with those used for each component of the
velocity field. Finally, let Gh be another vector finite element space, which we take to be
generally coincident with Vh (no boundary conditions imposed). The SPGP method considered
thus reads [15]

Find (uh
n, ph

n, gh
n)�VhD×Qh×Gh such that

�
r

uh
n−uh

n−1

Dt
+r(uh* ·9)uh

n, 6h
�

+a(uh
n, 6h)− (ph

n, div 6h)− ( f n, 6h)−
&

GN

Fn ·6h dG

+ %
K�Th

�
r

uh
n−uh

n−1

Dt
+r(uh* ·9)uh

n+9ph
n− f,

tu

r
[r(uh* ·9)6h ]

�
K

=0 (9)

(qh, div uh
n)+ %

K�Th

�
9ph

n−gh
n−1+b,

tp

r
9qh

�
K

=0 (10)

(−9ph
n+gh

n, jh)=0 (11)

for all (6h, qh, jh)�Vh0×Qh×Gh.
In Equation (9), a( · , · ) is the viscous bilinear form, uh* can be taken as uh

n or uh
n−1, the latter

corresponding to the standard linearized treatment of convection, and tu is the SUPG intrinsic
time

tu=
a(ReK)hK

2�un−1� (12)

ReK=
r �un−1�hK

12m
(13)

a(ReK)=min(1, ReK) (14)

and tp is a second intrinsic time. In Reference [15], the value rhK
2 /(12m), differing just by a

factor of two from the low-Reynolds number formula for tu, is adopted. In practice, this value
is slightly too large for high-Reynolds number computations, a better choice being tp=tu.
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Simpler formulae for the stabilization parameters, justified by a convergence analysis, were
recently proposed by Codina [20]. Notice that the previous formulation is of the backward
Euler kind, except for the appearance of gh

n−1+b if bB1. For the algorithmic cost to be
competitive, the choice b=0 is mandatory.

The matrix formulation of Equations (9)–(11) is

1
Dt

MU(Un−Un−1)+ (A+K)Un−B0 Pn=F (15)

BTUn+
1
r

LPn−
1
r

DTGn−1+b=0 (16)

−CPn+MGn=0 (17)

where Un, Pn and Gn are the vectors containing the unknowns, MU, A and K are the matrices
arising from the temporal derivative, convective and viscous terms respectively (including the
stabilization terms), and

BIJ=
&

V
MJ div NI dV (18)

B0 IJ=BIJ−
&

V
tu9MJ ·(uh

n ·9)NI dV (19)

DIJ=
&

V
tp9MJ ·NI dV (20)

CIJ=
&

V
9MJ ·NI dV (21)

LIJ=
&

V
tp9MJ ·9MI dV (22)

MIJ=
&

V
MJMI dV (23)

MI and NI being respectively, the Ith basis function for pressure and velocity (NI is, thus,
vectorial). The mass matrix M can be used in consistent form or lumped form. No significant
difference was found using linear elements, so that the lumped form is adopted.
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3. FOURIER ANALYSIS OF THE STEADY STATE

To perform the Fourier analysis, a model one-dimensional problem is introduced that retains
the main characteristics of the Navier–Stokes equations. We keep the notation u and p for the
unknowns to make the analogy evident. The proposed equations are

r
(u
(t

+ru
(u
(x

−2m
(2u
(x2+

(p
(x

= f (24)

(u
(x

=0 (25)

Let us begin omitting the SUPG terms (tu=0). Let us also linearize the problem replacing the
non-linear term ru((u/(x) by rc((u/(x). The SPGP method, with M lumped and assuming f
is continuous and piecewise linear, leads to the following stencil:

r

6Dt
(Ui−1

n +4Ui
n+Ui+1

n −Ui−1
n−1−4Ui

n−1−Ui+1
n−1)+rc

Ui+1
n −Ui−1

n

2h

−2m
Ui+1

n −2Ui
n+Ui−1

n

h2 +
Pi+1

n −Pi−1
n

2h
=

Fi−1
n +4Fi

n+Fi+1
n

6
(26)

Ui+1
n −Ui−1

n

2h
−

tp

r

Pi+1
n −2Pi

n+Pi−1
n

h2 = −
tp

r

Pi+2
n−1+b−2Pi

n−1+b+Pi−2
n−1+b

4h2 (27)

where h is the (uniform) mesh size and capital letters denote nodal values of the unknowns.
If tu\0, Equation (26) must be modified by adding

−tu
!rc
Dt

Ui+1
n −Ui−1

n −Ui+1
n−1+Ui−1

n−1

2h
+rc2 Ui+1

n −2Ui
n+Ui−1

n

h2

+c
Pi+1

n −2Pi
n+Pi−1

n

h2

"
to the left-hand side, and

−tuc
Fi+1−Fi−1

2h

to the right-hand side.
The Fourier analysis of the steady state, which is restricted to Stokes flow (r=0), roughly

follows the lines of Reference [21]. Let us consider the following stencil:

− (2m+n)
Ui+1−2Ui+Ui−1

h2 +
Pi+1−Pi−1

2h
=

Fi−1+Fi+Fi+1

6
(28)
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Ui+1−Ui−1

2h
−a

Pi+1−2Pi+Pi−1

h2 +g
Pi+2−2Pi+Pi−2

4h2 = −d
Fi+1−Fi−1

2h
(29)

This stencil, with suitable values for the constants n, a, g and d, corresponds to the steady state
formulation of the SPGP method (Ui

n=Ui
n−1=Ui, Pi

n=Pi
n−1=Pi). It also allows for the

comparison of the SPGP method (d=0, a=g) with the GLS method (d=a, g=0). Now, let

m %=2m+n, ã=
am %

h2 , g̃=
gm %

h2 , d0 =dm %

h2

and defining

V=
Um %

h2 , Gi+1/2=
Pi+1−Pi

h

the stencil becomes

− (Vi+1−2Vi+Vi−1)+
1
2

(Gi+1/2+Gi−1/2)=
Fi+1+4Fi+Fi−1

6
(30)

Vi+1−Vi−1

2
− ã(Gi+1/2−Gi−1/2)+

g̃

4
(Gi+3/2+Gi+1/2−Gi−1/2−Gi−3/2)

= −
d0
2

(Fi+1−Fi−1) (31)

Assuming now that i runs from −� to +� and inserting Fourier modes

Vi�V. e−Iikh, Gi�G. e−Iikh, Fi�F. e−Iikh

with k the Fourier variable and I=
−1, and denoting u=kh/2, the following system is
obtained:

4 sin2 uV. +cos uG. =�
1−

2
3

sin2 u
�

F. (32)

cos uV. + (g̃ cos2 u− ã)G. = −d0 cos uF. (33)

Symbolic manipulation [20] was used to get V. and G. . Its expansions around u=0 read

SV�
V.
F. = ã−d0 − g̃+

�
−4ã2−

2
3

g̃(−1+6d0 +6g̃)+ ã
�1

3
+4d0 +8g̃

�n
u2+O(u4) (34)

SG�
G.
F. =1+

�
−

1
6
+4(− ã+d0 + g̃)

n
u2+O(u4) (35)
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Notice that the exact dependencies (if u"0) are V. =0, G. =F. , or, in other terms, SV=0 and
SG=1. For the scheme to coincide with these exact expressions at u�0, the only condition is

ã− g̃−d0 =0 (36)

Both the GLS and SPGP methods satisfy this condition. Let us impose thus g̃= ã−d0 . In this
case

SV=
�

ã−
2
3

d0 �u2+O(u4) (37)

SG=1−
u2

6
+O(u4) (38)

From this we learn, on the one hand, that asymptotic accuracy (as kh�0) cannot be improved
beyond second order (which is the expected spatial accuracy), as SG is second-order accurate
for any choice of ã and d0 . On the other hand, accuracy in the velocity could be improved by
choosing a linear combination of the GLS and SPGP methods, namely ã=2

3d0 (implying
g̃= −1

3d0 ). The gain is, however, not significant, as, in general, accuracy in velocity is much
higher than in pressure.

The selection of ã and d0 must be made examining the accuracy when kh is far from zero, as
the behaviour in the vicinity of zero does not depend on these parameters. We have focused
on two cases: GLS (ã=r, d0 =r, g̃=0) and SPGP (ã=r, g̃=r, d0 =0). Comparison is made for
r=10−1, 10−2 and 10−3. Plots of SG versus u can be seen in Figures 1 and 2.

By direct inspection of Figures 1 and 2 it becomes clear that, for both the SPGP and GLS
methods, r=10−2 is the best choice. For r=10−1, SG is significantly lower than the exact

Figure 1. SG versus u for the GLS method with r=10−1, 10−2 and 10−3.
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Figure 2. SG versus u for the SPGP method with r=10−1, 10−2 and 10−3.

value of 1, for u as low as 0.75. For r=10−3, SG exhibits a peak near the mesh mode
(u=p/2), proving that the spurious mode of the Galerkin formulation is not properly
stabilized. From the observation that r (and thus ã) must roughly be equal to 10−2, as

tp

r
=a=

ãh2

m %

it follows that a good choice for tp/r is

tp

r
=

h2

100m %
(39)

for both methods, which is consistent with usual adopted formulae for GLS [2].

Remark
Another possibility, by inspection of Equation (35), is to put g̃+d0 − ã= 1

24. This sets the
second-order term in SG to zero, leaving a zeroth-order term in SV. Though no further
investigation has yet been performed, the increase in accuracy for the most sensitive variable
(the pressure) may prove useful. (Accuracy of order eight in G is obtained choosing g̃= ã−
d0 + 1

24, d0 =2ã− 1
48 and ã= 1

32!!!)
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4. START-UP FLOW AROUND A CYLINDER: SPURIOUS PRESSURE WAVE

To motivate the von Neumann’s analysis of the next section, we briefly report here on a
numerical test. The problem consists of the start-up flow around a circular cylinder at
Re=3000, defined as Re=rU�D/m, U� being the unperturbed flow velocity and D the
cylinder’s diameter. The domain is V= (−5, 15)× (−5, 5)¯C, with C being the cylinder of
unit diameter centred at the origin. This problem has been studied both experimentally [23]
and numerically (by the GSMAC method [24]). Starting from rest, U� is impulsively modified
to U�=1, with D=1, r=3000 and m=1. Attempts to simulate this flow starting from rest
systematically failed. Success was attained using as initial condition the inviscid solution, as
discussed by Gresho [25], i.e.

u1=1−
x1

2−x2
2

4r4 , u2= −
x1x2

2r4 , p=
r(x1

2−x2
2−1

8)
2r4 (40)

where r2=x1
2+x2

2. The flow is characterized by the formation and growth of two main
symmetric vortices downstream of the cylinder, with some secondary vortices also appearing
(see Figure 3). The simulation time is 3 units, with a time step of Dt=0.001. We do not intend
to give detailed results here. The numerical parameters were tu according to Equation (12),
tp=tu, b=0. The mesh consisted of 11518 P1 triangles, refined near the cylinder. The main
fact is that the velocity field is accurately predicted. A snapshot of the velocity field at t=3
can be seen in Figure 4, which compares well with experimental data. In Figure 5, a
quantitative comparison of the time evolution of the flow characteristic lengths a, b and L (see
Figure 3) with the experiment is shown.

The behaviour of the pressure is quite unexpected. A typical evolution of the pressure at a
point in the domain is shown in Figure 6. A spurious oscillation is observed; roughly a
sinusoidal function with decaying amplitude. This is associated with a long wavelength,
quasi-one-dimensional wave, which is shown in Figure 7 at time t=0.4. This wave persists for

Figure 3. Problem geometry and definition of a, b and L.
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Figure 4. Velocity field at t=3 and detail showing secondary vortices.
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Figure 5. Comparison of numerically obtained time evolution of L, a and b with experimental data.

approximately 1 time unit and is superposed to the correct pressure field, though it does not
affect the velocity field since its gradient is small. The decay time is empirically seen to be
almost independent of Dt. This numerical artifact motivated the von Neumann analysis
reported in the next section. It should be kept in mind, however, that for less severe transients
no spurious wave appears. The periodic vortex shedding at Re=100, 200 and 400, for
example, can be accurately simulated.

5. VON NEUMANN’S ANALYSIS OF THE TRANSIENT CASE

5.1. Stability analysis

The stability of the SPGP method has been addressed by Codina and Blasco [15] for the
Navier–Stokes problem using variational methods.

Let us review the main stability result of this reference here. For simplicity, consider the case
g=0 in Equation (5) and GN=¥. Omitting as before, the SUPG terms (tu=0) and assuming
tp to be O(h2), it can be shown that the discrete solution of problem (9)–(11) satisfies

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 65–92
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Figure 6. Typical evolution of pressure at a point.

uh
n+12+nDt %

n

k=0

9uh
k2+Dth %

n

k=0

9ph
k5CDt %

n

k=0

 f k2 (41)

where n=m/r is the kinematic viscosity, �� · �� is the L2-norm on the domain V and C is a
constant that depends on V and n but not on the mesh size h or on the time step size Dt.
According to Equation (41), {��uh

k��} is an l� sequence, {��9uh
k��} is an l2 sequence and {h ��9ph

k��}
is an l1 sequence whenever {�� f k��} is l2 (the stability for the pressure can be improved to l2

for two-dimensional flows and for the Stokes problem; see Reference [15]). Even though
Equation (41) provides all the information that one can expect from a global stability estimate,
it is silent in what concerns local temporal behaviour and possible limiting cases. To gain
insight into these points, we address here the stability analysis of the SPGP method for the
one-dimensional model problem (24) and (25) using von Neumann’s technique. The advantage
of this simplified setting (linear, one-dimensioanl, domain = (−�, +�)) is that it is possible
to scrutinize the algorithm’s temporal behaviour; but of course the assumption that the
Navier–Stokes problem will behave alike is not rigorous. However, in the next paragraphs we
show some evidence in this direction.

Consider the stencil (26) and (27). It corresponds to the SPGP method as analysed in
Reference [15]. The momentum equation is discretized using Galerkin’s method, while the
incompressibility constraint has been replaced by (from Equations (16) and (17))

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 65–92
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Figure 7. Pressure field at time t=0.4. Notice the spurious pressure wave, with wavelength of the order
of the domain size.

BTUn+
1
r

LPn=
1
r

DTM−1CPn−1+b (42)

We discuss first the effects of b and of SUPG treatment of the momentum equation (tu\0).
After the substitution

Ui
n�Arn e−Iikh (43)

Pi
n�Brn e−Iikh (44)

(r is now the amplification factor) we obtain a homogeneous linear system of two algebraic
equations for the two unknowns A and B. To avoid trivial solutions, the determinant of the
system must vanish. This condition provides a relation between r and the six free parameters
Dt, h, c, r, m, k, from which the two eigenvalues (denoted r1 and r2) were obtained by
symbolic manipulation using Mathematica [22]. The number of parameters can be conveniently
reduced to three by introducing non-dimensional quantities, such as the mesh Reynolds
number, Reh=rch/m, the Courant–Friedrich–Lewy (CFL) number, C=cDt/h and the non-
dimensional wavenumber k=kh.

By inspection of Mathematica ’s plots, and as predicted in Reference [15], the SPGP method
is stable (�r �B1) both for b=0 and b=1. Graphs of �r ��max{�r1�, �r2�} for the case b=0 are
shown in Figure 8(a) and (b). Part (a) corresponds to Reh=0.01, and three values of C are

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 65–92
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considered: 0.05, 0.5 and 5. The same is done in part (b) for Reh=100. Owing to the
incompressibility constraint (in one-dimensional domains), both eigenvalues r1 and r2 are zero
in the exact problem for any k\0. This means that waves of finite wavelength are instanta-
neously damped and only uniform (rigid) motions are allowed. However, �r � is not zero in the
discrete problem as shown in the graphs. In general, the eigenvalues are complex, so that the
uniform motion is reached after a spurious oscillatory transient in which decaying waves are
observed. For low Reh and waves with kh�2, the amplitude is multiplied by �0.1 at each
time step. Long waves, kh�0, become more persistent as the CFL decreases. This spurious
behaviour aggravates in the high-Reh regime.

Both long and short waves become very persistent (�r ��1) for small CFL values. In Figure
9 the typical decay time t of long waves relative to Dt is shown as a function of CFL (for such
long waves, �r � is independent of Reh, t is defined as the time elapsed before the amplitude of
the wave reduces to 1% of its initial value). Notice that t/Dt�� as CFL�0. This

Figure 8. Amplification factor of the SPGP method for the case b=0. Two values of Reh are considered
(0.01 and 100), and three values of the CFL number (C=0.05, 0.5, 5). Treatment of the momentum

equation: (a) and (b) Galerkin; (c) and (d) SUPG.
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phenomenon constitutes a remarkable spurious temporal behaviour of the SPGP method with
explicit treatment of the pressure gradient projection (b=0). No such behaviour is found, as
shown later on, if the pressure gradient projection is dealt with implicitly (b=1) or if GLS or
Chorin’s stabilization techniques are used, because in these cases �r ��0 when kh�0.

Figure 8(c) and (d) shows the effect of adding SUPG stabilization to the momentum
equation. The low-Reh regime remains the same as expected. For high Reh, the damping of
short waves (kh�p) is increased, but no improvement is brought to longwave damping. It has
to be remarked that convection must be taken into account in the design of tp. In fact, if the
expression tp=rh2/12m used in Reference [15] (based on the viscous-dominated case) is
adopted, the situation gets worse.

One concludes that, though the SPGP method with b=0 is indeed stable (with and without
SUPG in the momentum equation), spurious transients appear that may pollute the results
during many time steps, especially in those regions of the domain where the CFL is smallest
(because of larger mesh size or smaller velocity). Notice that this already explains the spurious
behaviour of Section 4. In fact, far from the cylinder, the mesh used had h�0.3 leading to

Figure 9. Long waves (k=0). t/Dt versus Courant’s number (t/Dt is independent of the Reynolds
number). SPGP method, b=0, no upwinding.
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Reh�900 and C�0.003, values that fall well within the expected range of longwave
persistance.

As said above, let us now show that this phenomenon is linked to the choice b=0. In
Figure 10 we show similar plots for b=1. SUPG stabilization has been applied to the
momentum equation to damp the short waves (velocity wiggles). In the low-Reh regime all
wavelengths are strongly damped (�r �B0.01). For high Reh and low CFL some persistence of
waves in the range 0.1BkhBp is predicted, but �r � is small enough (�r ��0.8 or lower) to damp
perturbations after a few (�30) time steps.

A cure for long spurious transients is thus to take b=1 in Equation (42). This is, however,
not practical as the computational cost becomes prohibitive. An alternative may come from
extrapolation. We have considered two possibilities

EXTRAP1

DTM−1CPn�DTM−1C(2Pn−1−Pn−2) (45)

EXTRAP2

DTM−1CPn�2DTM−1CPn−1−LPn−2 (46)

Unfortunately, both are unstable. Plots of �r � are shown in Figure 11. Irrespective of Reh and
C there exist waves with �r �\1. Notice that, as the scheme now involves three time levels, �r �
is the maximum of the moduli of four eigenvalues. In agreement with these predictions, when
these extrapolation schemes were programmed into the Navier–Stokes code, exponential
instability was found.

Figure 10. Amplification factor of the SPGP method for the case b=1. Two values of Reh are
considered (0.01 and 100), and three values of the CFL number (C=0.05, 0.5, 5). Treatment of the

momentum equation: SUPG.
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5.2. Comparison with the GLS and Chorin’s methods

It is interesting to compare the results above with those corresponding to the GLS and
Chorin’s methods (see stencils in Appendix A). The amplification factors �r � for these methods
are plotted as functions of kh for the high-Re and low-Re regimes in Figure 12. Both have
�r ��0 as kh�0. Both are stable and lead to some (in fact small) persistence of waves only if
Reh is large and C small, as does the SPGP method, with b=1. Least prone to this
phenomenon is Chorin’s method (the short waves with kh�p can be damped by introducing
upwinding in the momentum equation, which was not done). The predictions are, however,
comparable for the three methods.

Figure 11. Amplification factor of the SPGP method for extrapolations EXTRAP1 and EXTRAP2. Two
values of Reh are considered (0.01 and 100), and three values of the CFL number (C=0.05, 0.5, 5).

Treatment of the momentum equation: SUPG.
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5.3. One more 6ariant: stabilization by residual projection

The SPGP method, in the case of Stokes flow, can be regarded as a modification of the GLS
method as follows. Let the residual of (uh, ph)�Vh×Qh as regards the momentum equation be
defined by

R(uh, ph)= −2 div (mDuh)+9ph− f=L(uh, ph)− f (47)

then the GLS equations are

Figure 12. Amplification factor of Chorin’s and the GLS methods. Two values of Reh are considered
(0.01 and 100), and three values of the CFL number (C=0.05, 0.5, 5).
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a(uh, 6h)− (ph, div 6h)− ( f, 6h)−
&

GN

F ·6h dG+ (qh, div uh)

+ %
K�Th

�
R(uh, ph),

tu

r
L(6h, qh)

�
K

=0 (48)

On the other hand, for linear elements, piecewise linear f and Stokes flow, the SPGP method
can be written as

a(uh, 6h)− (ph, div 6h)− ( f, 6h)−
&

GN

F ·6h dG+ (qh, div uh)

+ %
K�Th

�
R(uh, ph)−PhR(uh, ph),

t

r
L(6h, qh)

�
K

=0 (49)

It is evident that the only difference with the GLS equations is that the projection of the
residual, PhR, onto Vh has been subtracted from the residual itself within the stabilization
term. Consistency has not been lost, since for the exact solution the residual vanishes. With
this interpretation one could proceed analogously for the transient Navier–Stokes problem,
arriving at a variant of the SPGP method. In this case, the residual is

R(uh, ph)=r
(uh

(t
+r(uh ·9)uh−2 div(mDuh)+9ph− f (50)

For non-zero Re, the residual of the incompressibility constraint also enters the GLS
formulation [1], times a mesh-dependent constant

dK=r �uh �2tu (51)

and thus, assuming linear elements, the stabilization terms are

%
K�Th

�
(r(uh ·9)uh+9ph)−Ph(r(uh ·9)uh+9ph),

tu

r
(r(uh ·9)6h+9qh)

�
K

+ %
K�Th

dK(div uh−Ph div uh, div 6h)K (52)

An almost equivalent formulation is proposed in Codina [17], where it is shown that it is in
fact a SGS method [18] with a particular choice for the space of sub-scales.

von Neumann’s analysis of this method yields results that resemble those of the SPGP
method. In this case, the possibility also appears of dealing with the residual projection either
implicitly (b=1 in the SPGP method) or explicitly (b=0), and again the only reasonable
choice (from the computational point of view) is the latter. The results are shown in Figure 13.
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Figure 13. Amplification factor of full-residual projection variant of the SPGP method. Two values of
Reh are considered (0.01 and 100), and three values of the CFL number (C=0.05, 0.5, 5).

6. NUMERICAL TESTS

The predictions of the previous section are based on the linearized version of the model
problem (24) and (25), and disregarding boundary effects. It is important to check that the
conclusions are not overruled as soon as these simplifying hypotheses are dropped.

6.1. Comparison for a one-dimensional model problem

Considering first the full (non-linear) one-dimensional model problem (24) and (25), to be
solved for t\0 in V= (0, 1) with f=0 and initial and boundary conditions

u(x, t=0)=0, u(0, t\0)=1, p(1, t\0)=0 (53)

the exact solution is

u(x, t)=1 (54)

p(x, t)=0 (55)

A series of numerical experiments on this problem were performed using the SPGP method.
Linear one-dimensional finite elements were used. Experiences were made with r=1, m=
1/45000, for different values of h and Dt. The computed pressure is seen to oscillate around
zero with an amplitude that decays to zero. This is a spurious pressure transient that is
activated by the sudden imposition of u=1 on the left boundary. The period of the
oscillations, and the decay behaviour, are not predictable a priori due to the non-linearity of
the problem. Our aim here is to compare them with the predictions from von Neumann’s
analysis (which rigorously apply just to the linearized model with no boundary).
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In Figure 14 we present results for some selected cases. Plotted is the value of the pressure
at x=0. The solid lines correspond to the numerical experiments and the dashed ones to von
Neumann’s analysis predictions. To be precise, the dashed lines correspond to (the real part of)
the functions

u(x=0, nDt)=Arn, p(x=0, nDt)=Brn

where r is the (complex) amplification factor of the method. As von Neumann’s analysis does
not predict the initial magnitudes and phases of u and p (i.e. A and B), these have been
adjusted so that they coincide with the numerical result at the first positive peak. The value of
r was obtained with Mathematica for the values of h, Dt, m and r used in each simulation. The
wavenumber k was assigned the value zero, since long waves are the most persistent ones for
the cases considered, and c was set to 1.

The values of Dt and h are shown in the inserts of each graph. Except for a short initial
transient (probably dominated by non-linear effects), the computed pressure exhibits practi-
cally the same temporal behaviour as the one predicted by von Neumann’s analysis. Both the
oscillation period and the decay time are in good agreement. This supports the use of the
results of the previous section to draw conclusions about the temporal behaviour of the SPGP
method in a broader class of cases than that to which the von Neumann’s analysis rigorously
applies.

6.2. Comparison with two-dimensional start-up flow results

Finally, let us analyse the more interesting situation of the two-dimensional start-up flow
around a cylinder solved by finite elements, as described in Section 4. Parameters for this case
were taken from the two-dimensional problem: h=0.3, C=cDt/h=3.33×10−3, Reh=900.
As in this case we have again a high Reh and a low C, von Neumann’s analysis predicts that
the most persistent wave would correspond to k=0. In Figure 15 the full line represents the
computed pressure value behind the cylinder. The dashed line is the real part of Arn, with
n= t/Dt and r being the amplification factor corresponding to the parameters listed above.
This time, the continuous and dashed curves were put into coincidence (by adjusting A) at the
second positive peak because during the first period of the simulation a second mode can be
observed, superimposed to the most persistent, longwave one.

It can be appreciated that both extinction time and period of oscillation compare well with
(though being slightly larger than) those of the finite element calculation. In spite of the
differences between both situations (two-dimensional versus one-dimensional, non-linearity
versus linearity, irregular versus regular meshes, different geometries and boundary conditions,
etc.), the qualitative and quantitative coincidences are quite acceptable. The simple model
correctly captures the basic features of this spurious wave propagation phenomenon.

It is worth pointing out that this kind of ghost pressure waves, which during a simulation
can be activated by different unexpected causes, are quite sensitive to iteration stopping
tolerances in either the non-linear or the linear solver. The simulation reported here used very
stringent convergence criteria (relative tolerances of 10−7). If these are relaxed, the numerical
system becomes ‘softer’ and the spurious waves tend to persist even longer.
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Figure 14. Pressure at x=0 versus time. Numerical experiments with the explicit SPGP method in the
unit one-dimensional interval (r=c=1, m=45000). Solid line: numerical experiment; dashed line:

theoretical prediction. Both curves have been made to coincide near the first positive peak.
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7. CONCLUDING REMARKS

A detailed Fourier analysis and several numerical tests have been reported on the recent SPGP
method. These come to complement and extend previous theoretical results by Codina and
Blasco [15]. Unconditional stability is predicted, irrespective of the choice of b. SUPG
treatment of the momentum equation has no deleterious effect on stability and damps, as
expected, velocity wiggles. In fact, a better choice of the stabilization parameter tp is the SUPG
intrinsic time tu as given by expression (12). An alternative way of incorporating convection in
the design of the intrinsic time can be found in Codina [20].

Numerical tests on start-up flow around a cylinder at Re=3000 show that the velocity field
is accurately predicted. However, a spurious pressure transient appears, which pollutes the
pressure field during about half of the simulated time. This phenomenon, not previously
reported, should be considered when using the SPGP method for, e.g. drag calculations or
fluid–structure interaction, where accuracy in the pressure field is needed. Though not
discussed here, less demanding calculations such as vortex shedding at lower Re (5400) have
not shown this problem.

Fourier analysis clearly identifies these spurious transients as coming from explicit treatment
of the pressure gradient projection (b=0). It is predicted to be most critical when Reh is large
and CFL small. This situation is typical of regions within the computational domain where the
mesh is coarse or the velocity small (stagnant regions). No cure was found by means of
extrapolation, since the scheme becomes unstable.

Figure 15. Start-up flow around a cylinder. Pressure behind the cylinder versus time. A comparison with
theoretical one-dimensional values (dashed line). Both curves have been made to coincide at the second

positive peak.
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Finally, it should be remarked that all predictions coming from Fourier analysis made above
do not account for finite domain size and boundary conditions. Notice that trigonometric
functions are not eigenfunctions of the exact problem in bounded domains unless periodicity
is assumed. Heuristically, our approach has been to draw conclusions from the infinite-domain
case and consider them applicable to more realistic situations. The numerical tests reported in
the previous sections (especially those in Figure 14) support our approach, as remarkable
coincidences between the predictions from von Neumann’s analysis and actual computations
have been obtained.
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APPENDIX A

A.1. Stencil of GLS method

r

6Dt
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n +4Ui
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n −Ui−1
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n−1)+rc
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A.2. Stencil of Chorin’s method

This is the usual decoupled projection method, with the intermediate velocity eliminated
through lumping of the velocity mass matrix
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Ui+1
n −Ui−1

n

2h
+

Dt
r

�Pi+2
n −2Pi

n+Pi−2
n

(2h)2 −
Pi+1

n −2Pi
n+Pi−1

n

h2

�
=0 (59)

APPENDIX B

Here we briefly describe the main commands used to obtain the results of Section 6 concerning
von Neumann’s analysis, with the help of the symbolic manipulator Mathematica 3.0. First, it
is convenient to independently describe the method’s stencil and the obtention of the discriminant
matrix in an ASCII file containing the corresponding commands, to be read and executed later
by Mathematica. As an example, a possible organization of this file for SPGP method with
vanishing source term is (the variables’ names have been kept as intuitive as possible)

taup=dx/(2c)
spls=E � (+Ikdx)
smin=E � (−Ikdx)

uni=1
unim1=smin
unip1=spls
unp1i=rpls
unp1ip1=rpls �spls
unp1im1=rpls �smin

pni=1
pnip2=spls �2
pnim2=smin �2
pnp1i=rpls
pnp1ip1=rpls �spls
pnp1im1=rpls �smin

ut=1/6(unp1im1−unim1)/dt+2/3(unp1i−uni)/dt+1/6(unp1ip1−unip1)/dt
cuxa=c(unp1ip1−unp1im1)/(2dx)
LAPua=(unp1ip1−2unp1i+unp1im1)/dx �2
uu=ut+cuxa−2 nu LAPua

GRADpa=(pnp1ip1−pnp1im1)/(2dx)
up=1/rhoGRADpa

DIVua=(unp1ip1−unp1im1)/(2dx)
pu=DIVua

LAPpa=(pnp1ip1−2pnp1i+pnp1im1)/dx �2
LAP2pr=(pnip2−2pni+pnim2)/(2dx) �2
pp=delta taup/rho(LAP2pr−LAPpa)
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Let the name of this file be spgp.mat. Then, the essential commands for Mathematica ’s session
defining all the necessary explicit functions are

BB ‘‘spgp.mat’’
matr={{uu,up},{pu,pp}}
det=Det[matr]/.{nu− \1/Reynolds,c− \1,rho− \1,dx− \DX,dt− \C}
roots=rpls/.Solve[det= =0,rpls]
omega[n – ,delt – ,Rey – ,kk – ,dx – ,dt – ] �

I/dtLog[root[[n]]
/.{delta− \delt,Reynolds− \Rey,k− \kk,DX− \dx,C− \dt}]
romega[n –,delt –,Rey – ,kk – ,dx – ,dt – ] �Re[omega[n,delt,Rey,kk,dx,dt]]
iomega[n –,delt –,Rey – ,kk – ,dx – ,dt – ] �Im[omega[n,delt,Rey,kk,dx,dt]]
period[n –,delt –,Rey –,kk –,dx –,dt – ] �2Pi/romega[n,delt,Rey,kk,dx,dt]
perrel[n –,delt –,Rey – ,kk – ,dx – ,dt – ] �period[n,delt,Rey,kk,dx,dt]/dt
tau [n – ,delt – ,Rey – ,kk – ,dx – ,dt – ] �−4.6/iomega[n,delt,Rey,kk,dx,dt]
taurel[n – ,delt – ,Rey – ,kk – ,dx – ,dt – ] � tau[n,delt,Rey,kk,dx,dt]/dt

For the preceding commands, n=1, 2 stands for root’s number. ‘omega’ (v) is defined by
r=e−IvDt.
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