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SUMMARY

A geometrically non-linear formulation for composites and the resulting explicit dynamic "nite element
algorithm are presented. The proposed formulation assumes that small elastic and large plastic strains, being
the anisotropy considered using tensors which map the model variables at each time step into an equivalent
isotropic space, where the integration of the rate constitutive equations is performed. The evolution of the
internal variables is calculated in the auxiliary spaces, taking into account the material non-linear behaviour,
and the results mapped back to the real stress space. The updating of the mapping tensors for each new
spatial con"guration allows the treatment of general anisotropic materials under large strain and can be
extended to treat multiphase composite materials using the mixing theory. The behaviour of the composite is
dictated by the mechanical response of each substance, and the resultant model allows a fully non-linear
analysis combining di!erent material models, such as damage in one compounding substance, elastoplastic
behaviour in the other, while a third substance behaves elastically. Copyright ( 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Composite structures strain and stress analysis normally involves the use of average material
mechanical properties, or the study of each composite as a completely new material. The "rst
approach is quite e!ective when all materials behave elastically, and the interaction between
di!erent phases is linearly dependent on their volumetric participation in the composite. In the
second approach, material behaviour under loading is not obtained from the isolated properties
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of the compounding substances, which implies in performing more tests for the characterization
of its material constants when, for example, a new "bre orientation or the inclusion of another
phase is considered. The authors adopt the consideration of composite material behaviour as the
combined behaviour of the di!erent compounding substances. Each material is considered
individually, allowing the plasti"cation of the matrix, for example, independently from the "bres.

Another point to be stressed is that isotropy is an exception rather than a rule when dealing
with composites. A simple, general and e!ective anisotropic model is therefore essential for an
e$cient large strain materially non-linear "nite element algorithm.

In this paper the authors use the mechanical properties of the anisotropic material to de"ne
two fourth-order tensors which establish a mapping between the real stress and strain spaces and
"ctitious, isotropic, stress and strain spaces. As an elastoplastic behaviour is assumed, the yield
surface in the "ctitious spaces is chosen so as to ful"l the requisites of convexity and invariance,
and the simple and well-proven algorithms for numerical integration of isotropic rate constitutive
equations can be used. A similar procedure can be used to study materials with damage or creep.
The proposed algorithm is implemented in the explicit dynamic code SIMPACT [1], allowing the
consideration of contact, treated with the penalty method. As the base programme is explicit, the
calculation of sti!ness matrices is not necessary. By adding an external loop for the determination
of the left-hand side of the dynamic equation, and weighting the contribution of di!erent
substances to the global behaviour, the algorithm followed by the code incorporates the analysis
of composite materials according to the mixing theory [2].

A brief discussion of the mixing theory is given in Section 2, while the basis for the proposed
approach to treat anisotropic materials is given in Section 3. The anisotropic model veri"cation
and the main steps for its implementation are given in Section 4.

2. MIXING THEORY AND AN OUTLINE OF THE PROPOSED ALGORITHM

The implemented formulation for large strains considers a multiplicative decomposition of the
strain gradient tensor such that

F"F%F1 (1)

where F is the strain gradient, F% and F1 its elastic and plastic components. In the original or
deformed con"guration the usual additive decomposition of strains in its elastic and plastic parts
is also assumed, so that, for Almansi strains

e"e%#e1 (2)

The stress and strain conjugated measures in the deformed con"guration are the Kircho!}Tre!tz
and Almansi tensors, and the constitutive model assumes an hyperelastic constitutive law

q"o
0

L(
Le%

(3)

where q are the Kircho! stresses, t (e%) the elastic free energy and o
0
, the initial mass density.

For anisotropic materials, an assumed one to one invertible transformation is performed to
map the real material into an equivalent isotropic material, which is then used in the integration
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of the rate form of constitutive equations. The inverse of the mapping tensor is used to recuperate
the anisotropic response.

The other central aspect of the proposed algorithm is the treatment of composite materials
using a mixing formulation. The model is described in [3, 4] for multiphase materials. The mixing
formulation was "rst proposed by Truesdell and Toupin [5], based on the following assumptions:

(a) Each in"nitesimal volume of the composite material is simultaneously occupied by a num-
ber n of compounding substances.

(b) The global behaviour of the composite material results from the conjugation of the parallel
contribution of each of the substances in proportion to its volume. The resulting model
material is then homogeneous.

(c) Strain values at a given point are equal for all substances.

These assumptions allow the uncoupling of the behaviour of the compounding substances
so that

((ee )"
n
+
c/1

k
c
(

c
(ee) (4)

with k
#
the relative volume of substance c in the composite. Di!erent material models can be used

for each substance, including thermal e!ects, damage or plasticity. In the present work, large
strain elastoplastic anisotropic model is considered as the most general formulation for the
substances. An elastic predictor}plastic corrector scheme is used in the integration of the
constitutive model, and the geometric non-linearity is considered in an updated Lagrangian
framework, as described by Garino [2]. The mechanical formulation of the structural is based on
the Hu}Washizu variational principle and, for numerical integration, the "nite element technique
is used, including plane and tridimensional solid elements [6] in the framework of an explicit
dynamic code.

3. CONCEPT OF MAPPED EQUIVALENT FICTITIOUS ISOTROPIC SPACES

Anisotropic plasticity models in solid mechanics have usually been developed based on metal
plasticity, and often for the speci"c case of sheet metal forming (see, for example, [7}13]). They
involve the de"nition of a yield surface capable of reproducing the real material behaviour to
di!erent degrees of accuracy.

A simpli"ed alternative treatment consists in de"ning a "ctitious isotropic space )1 to which the
real, more complex directionally-dependent material behaviour can be mapped. The mapping is
performed by fourth-order tensors, as originally proposed by Betten [14]. The mapping tensors
should include all the information related to the directional variation of the mechanical proper-
ties. Two di!erent mapping tensors are required, one for the stresses

SM
IJ
"AS

IJKL
S
KL

(5)

with SM
ij

the mapped second Piola}Kircho! stress tensor in the "ctitious space and AS
ijkl

the
material stress transformation (or mapping) tensor, de"ned for the undeformed con"guration as

AS
IJKL

"hS1
IJ

(hS
KL

)~1"SM
IJ

(S
KL

)~1 (6)
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with hS1
IJ

and hS
KL

, the yield strength tensors in the "ctitious and real solids. Tensor hS1
IJ

can be
arbitrarily set by the user, and normally is composed of a set of strengths, which will be
considered invariant in the "ctitious space and coincident with the real properties. For example
the highest values in a given direction real material.

The use of the the mapped stress space to study the material behaviour implies in loosing part
of the material data in the analysis, as it is based on a reduced set of parameters. Nevertheless, the
simpli"ed approach allows, within its limitations, a #exible tool for the analysis of problems with
complex constitutive laws [4].

The second mapping is de"ned for the strains

EM
IJ
"AE

IJKL
E
KL

(7)

where EM
ij

is the Green Lagrange strain tensor in the "ctitious space and AE
ijkl

the material strain
transformation tensor. A description of the model for small strains is given in [14]. In the next
section the proposed algorithm for large strain analysis is explained.

4. ANISOTROPIC MODEL

In this section the concept of mapped stress and strain spaces is developed for the case of general
anisotropy. Demonstration of some of the proposed equations is given in the appendix.
A Huber}Mises yield criteria is used in the isotropic "ctitious space, where the material response
analysis is performed. The concept of mapping can, nevertheless, be used with other isotropic
yield criteria.

For a given time increment *t, and known displacements tu and t#*tu, the incremental
displacements u are given by

u"t`*tu!tu (8)

and the deformed con"guration by

t`*tx"tx#u (9)

The incremental strain gradient can be found as

t`*tF~1"I!
Lu

Lx K
t`*t

(10)

Using the Finger strain tensor tb%~1, the predicted strains for time t#*t are given by

( t`*tbe~1)PR"F~T tbe~1F~1 (11)

The predicted elastic Almansi strains and corresponding Kircho! stresses are then

t`*tee
"1

2
( t`*tg!t`*tbe~1) (12)

t`*tq"o
0

L(
Lee K

t`*t

(13)
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Figure 1. Stress and strain measures in the di!erent con"gurations

As the Huber}Mises yield function is used in the isotropic "ctitious space, only the deviatoric
part of the stresses t`*tqN is considered. The mapping of the deviatoric part of the stresses to an
equivalent isotropic space is done using tensor t`*taS where, using index notation

t`*taS
ijkl

"'o3 AS
IJKL

"F
Ii
F
Jj

AS
IJKL

F~1
Kk

F~1
Ll

(14)

with /33 the push-forward operation for the fourth-order tensor. Note that AS
IJKL

, de"ned in the
original con"guration, does not change with time, while aS

ijkl
, the spatial mapping tensor for

stresses, is dependent on time through F
IJ

. Figure 1 shows, schematically, in the real and "ctitious
spaces involved, the four di!erent stresses, their corresponding strain and the mapping tensors
between them.

In Figure 1, 0) is the initial or reference con"guration, 0)1 the corresponding iso-
tropic con"guration, t) the deformed con"guration and t)1 the "ctitious deformed con"g-
uration.

The mapping tensor for strain in the initial con"guration, AE
IJKL

, can be obtained as follows:

AE
IJKL

"EM
IJ

(E
KL

)~1 (15)

From equations (7) and (15), and relating the strains E
IJ

to the corresponding stresses
S
IJ

through the constitutive fourth-order tensor CS
IJKL

(CS1
IJKL

in SM ]EM ):

AS
IJKL

"(CS1
IJRS

EM
RS

) (CS
KLMN

E
MN

)~1"CS1
IJRS

AE
RSMN

(CS
KLMN

)~1 (16)

AE
RSMN

"(CS1
IJRS

)~1AS
IJKL

CS
KLMN

(17)
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A push forward is applied on AE, resulting, as shown in the appendix, in

ae
ijlk

"'oo AE
IJKL

"F~1
Ii

F~1
Jj

AE
IJKL

F
Kk

F
Ll

(18)

The tensor ae
ijkl

performs the mapping for the "ctitious strain space in the deformed con"gura-
tion.

After calculating ae
ijkl

and aS
ijkl

, the deviatoric part of the Kircho! stresses in equation (13) is
mapped into space S1 . The strain and stress transformations in the spatial con"guration described
in equations (19) and (20) are derived in the appendix

t`*tq6 "t`*taS t`*tq (19)

t`*teN"t`*tae t`*te (20)

The yield condition is then veri"ed for t`*tq6 , and if the stresses are outside the de"ned yield
surface f (q6 ), a plastic correction is performed. The integration of the constitutive equation uses
the standard radial return algorithm, and the corrected stresses and corresponding Finger strains
are mapped back to spaces S and E. Otherwise, the elastic (and eventually anisotropic) response
calculated in equation (14) is assumed and no correction is necessary.

The plastic correction is done on the "ctitious space S1 , and the adopted #ow rule is non-
associative. The #ow vector n is taken as normal to the yield surface in space S, to assure that it
expands in the correct direction [14]. This is re#ected in equations (21)} (23), where the plastic
#ow is rotated by the product a%(Lg/Lq)aS"LgN /Lq6 due to anisotropy (Figure 2)

e5 p"jQ
Lg(q)
Lq

"jQ
Lg (q)
LqN

Lq6
Lq

(21)

(ae )~1 eR 1"j0
Lg

LqN
aS (22)

e5 p"jQ ae Lg(q6 )
Lq6

aS (23)

Figure 2. Yield surfaces and #ow rule for spaces S and S1
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Then, denoting c as the incremental plastic multiplier, the elastic part of the Finger strain in the
"ctitious space results from

t`*tb1 e~1"( t`*tb1 e~1)PR#2c t`*tn (24)

Finally, the corrected stresses q6 are found as

t`*tq6 "o
LtM (e6 e)
Le6 e K

t`*t

(25)

Di!erent choices of the free energy function tM can be made. In the present version of the
program, a von Mises yield surface is used, with the option to include linear or non-linear
isotropic hardening.

The new corrected stress and strain tensors are mapped back to the spaces s and e using the
inverse transformations

t`*tq"( t`*tas )~1 t`*tq6 (26)

t`*tbe~1"( t`*tae )~1 t`*tb1 e~1 (27)

When using the mixing theory for the analysis of composites, at this stage new iterations are
performed for the analysis of each individual material, which are then grouped so that

t`*tq"
n
+
c/1

t`*t
c
q ) k

c
(28)

with c the substance in the composite material being considered. The subscript c has been
intentionally suppressed in this section, but the described anisotropic model can be taken as one
(or more) of the substances in a particular composite material.

Aiming to verify the dynamic equilibrium condition with the new stresses, the internal forces
p
i
at time t#*t can be calculated using the element-based strain}displacement matrix B

t`*tpi"Pt)
BT t`*tq d) (29)

5. EXAMPLE PROBLEMS

Three examples of applications are shown in this item. The "rst is a two-phase material with an
isotropic matrix and long "bres; the second a laminated plate submitted to an impulsive load. The
third example shows an application of the mapped anisotropy.

5.1. Two-phase bar

In this example, a bar, modeled with 40 brick eight-node elements is submitted to an axial
displacement. The two materials are described below

Matrix: E
x
"E

y
"E

z
"7)24 tf/mm2

f
x
"0)036 tf/mm2

l"0)33, k
c
"80%
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Figure 3. Stress}strain curve for composite material with isotropic matrix and "bres oriented along the longitudinal axis
of the bar

Figure 4. Stress}strain curve for isotropic matrix and "bres oriented along the axis. Negative stress values correspond to
transversal direction

Material 2: E
x
"84)4 tf/mm2

f
x
"0)2283 tf/mm2

l"0)30, k
c
"20%

The resulting response is shown in Figures 3 and 4. In the latter, the "bres are oriented
transversally to the direction of the extension, therefore reducing the amount of resisting material
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Figure 5. Model for impact problem with 1/4 of simply supported composite plate with hexahedral solid element
discretization

Figure 6. Schematic lay up

and increasing the stress values at the matrix. The "bres are compressed in the transversal
direction due to Poisson's e!ect.

5.2. ¸ayered plate submitted to dynamic loading

In the second example, the plate shown in Figure 5 is submitted to an impulsive distributed
load of 100 psi. The plate is made of layers of epoxy matrix and carbon "bres, as shown in
Figure 6.

For comparison, an equivalent isotropic homogenized material is considered, obtained from
the volume participation of the "bre and matrix. The considered materials are

Epoxy resin: E"1]106 psi, p
y
"5)8]103 psi, l"0)4, o"0)04 lb/in3

Carbon "bre: E"4]107 psi, p
y
"3)04]104 psi, l"0)2, o"0)082 lb/in3

Homogenized material: E"2)05]107 psi, p
y
"1)81]104 psi, l"0)3, o"0)061 lb/in3

Figure 7 shows the obtained response for the centre point of the composite using the described
model. In Figure 8, the displacement versus time graphic of the plate is given. Notice that the
capability of detecting yielding in each of the materials provides a deviation from the considera-
tion of a single, equivalent material model. The fact that yield limits are considerably di!erent
causes the non-linear behaviour to be detected at the time the matrix reaches its yield stress, while
the "bres still behave elastically.

5.3. Spherical cap under impulsive loading

In this example, an anisotropic spherical cap, shown in Figure 9, is submitted to an impulsive
distributed load of 600 psi. Forty-eight four-noded axisymmetric elements were used in the
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Figure 7. Displacements in inches for elastic and elastoplastic material models

Figure 8. De#ections in inches of the plate with di!erent material models

analysis, which is performed with and without updating the mapping tensor to account for large
strains.

The considered material data is:

E"10)5]106 psi, H"0)21]106 psi, o"2)45]10~4 lb s2/in2, l"0)30

p
00
"24]104 psi, p

90
"4]104 psi, p

45
"24]104 psi
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Figure 9. Spherical cap

Figure 10. Results from [15], and present with and without updating of mapping tensors

The results indicate a good agreement with these described by Huang [15], who used Hill's
criterion for yielding. The e!ect of considering the push forward of the mapping tensors does not
a!ect signi"cantly the response, as expected due to the small physical non-linearity.

6. CONCLUSIONS

The examples indicate that the proposed analysis procedure is valid and quite general alter-
native for composite structures, as well as for anisotropy. Further tests and comparison
with experimental results should be performed to access its range of applicability and limita-
tions.
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APPENDIX

Some of the expressions in item 4 are demonstrated in this appendix. The "rst equation (14),
detailing the push-forward operation of tensor AE

IJKL
, is derived. The pull-back operation is

given by

EM
IJ
"F

Ii
F
Jj

eN
ij

(32)

E
IJ
"F

Ii
F

J+
e
ij

(33)

Inverting (33)

E~1
JI

"e~1
ij

F~1
Jj

F~1
Ii

(34)

Substituting the expressions in (32) and (33) in (15)

AE
IJKL

"F
Ii
F

Jj
eN
ij
e~1
kl

F~1
Ll

F~1
Kk

(35)

Taking ae
ijkl

"eN
ij
e~1
kl

AE
IJKL

"F
Ii
F
Jj

aE
ijkl

F~1
Ll

F~1
Kk

(36)

The push-forward of AE
IJKL

is then given by

t`*tae
ijkl

"'o3 AE
IJKL

"F~1
Ii

F~1
Jj

AE
IJKL

F
Kk

F
Ll

(37)

Next, the expression in (14) for the push-forward of the mapping tensor AS
IJKL

is obtained. The
push-forward of the contravariant second-order Kircho! stress tensor is derived as follows:

q6
ij
"F

Ii
F

Jj
SM
IJ

(38)

SM
IJ
"F~1

Jj
F~1

Ii
q6
ij

(39)

SM ~1
LK

"q6 ~1
lk

F
Kk

F
Ll

(40)

From the de"nition in (5), and using (39) and (40)

AS
IJKL

"F~1
Jj

F~1
Ii

q6
ij
q~1
lk

F
Kk

F
Ll
"F~1

Jj
F~1

Ii
aS
ijlk

F
Kk

F
Ll

(41)

aS
ijkl

"F
Ii
F
Jj

AS
IJKL

F~1
Kk

F~1
Ll

(42)

Another point that can be veri"ed is the equivalence between equations (17) and (41).
The constitutive tensors in the initial and deformed con"gurations are related by

cS
ijkl

"F
iI
F
jJ

F
kK

F
lL

CS
IJKL

(43)

CSM
IJKL

"F~1
Ll

F~1
Kk

F~1
Jj

F~1
Ii

cSM
ijkl

(44)

(CS
KLMN

)~1"(cS
klmn

)~1F
kK

F
lL

F
mM

F
nN

(45)

Substituting equations (44), (45) and (36) into (16)

AS
IJKL

"F~1
Jj

F~1
Ii

cSM
ijrs

aE
rsmn

(cS
klmn

)~1F
kK

F
lL
"F~1

Jj
F~1

Ii
aS
ijkl

F
kK

F
lL

(46)

where aS
ijkl

"cSM
ijrs

aE
rsmn

(cS
klmn

)~1.
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Equation (46) corresponds to the previously obtained expression in equation (42) for aS
IJKL

.
The mapping of Kircho! stresses expressed by equation (19) is shown in the next lines. Starting

from (5), using equation (39) on both sides of the equation, we obtain

F~1
Jj

F~1
Ii

q6
ij
"AS

IJKL
F~1
Ll

F~1
Kk

q
kl

(47)

q6
ij
"F

Ii
F

Jj
AS

IJKL
F~1
Ll

F~1
Kk

q
kl

(48)

Using (14)

q6
ij
"aS

ijkl
q
kl

(49)

Similarly, equation (20) can be demonstrated.
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