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Abstract 

In the present work a generalized streamline finite element formulation able to deal with incompressible flow problems is presented. In the 
finite element framework, this technique allows the use of equal order interpolation for the unknowns of the problem: velocity and pressure. 
In this context, stable and convergent solutions can be obtained without requiring tuning parameters defined outside this model. The tracking 
of moving surfaces is also included in the numerical model. This formulation has been checked in 21) and 3D tests. © 1999 Elsevier 
Science S.A. All rights reserved. 

1. Introduct ion 

In this paper, a new generalized streamline operator (GSO) technique is used in the numerical solution of the 
incompressible Navie r -S tokes  equations in the framework of the finite element method [1-3] .  Several authors 
have developed recent formulations to overcome the oscillations in the numerical solution when the convective 
term becomes relevant [4-12] .  As is well known, the GSO type technique circumvents the classical 
mathematical requirements imposed over the choice of the discrete approximation functions (BB conditions) 
[4-12] .  In particular, equal order interpolation functions can be used in the discretization of the primitive 
variables of  the problem: velocity and pressure. Moreover,  the standard penalization methods necessary to fulfil 
the incompressibil i ty equation are not required. In this context, the choice of  the upwinding parameters is crucial 
in order to obtain stable and convergent formulations [1-2] .  In the present work an upwinding tensor, 
formulated and extensively discussed in [1-4] ,  is used. It is important to note that this upwinding tensor does 
not require tuning parameters defined outside this model and it satisifies the design conditions defined by 
Hughes et al. [4,3]. 

The aim of  this work is to check more extensively the GSO formulation for incompressible flow problems 
with particular emphasis in the expressions of the finite element matrices involved and the analysis of 3D and 
moving surface problems. 

The governing equations for the incompressible flow problem written as a generalized convect ion-diffusion 
system are briefly described in Section 2. In Section 3, the weak form and the finite element formulation are 
presented. The SG (standard Galerkin) and GSO contributions in all the matrices and vectors involved in the 
formulation can clearly be distinguished. 

In Section 4, several numerical examples are presented. The driven cavity flow problem is analysed in 3D and 
a comparative analysis with other numerical techniques is performed. In order to check the moving surface 
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tracking algorithm [13], a two-liquid interface problem is solved in 313. using the presented methodology. 
Finally, the propagation of a solitary wave and a sloshing problem are al,;o analyzed. 

2. Governing equations 

The basic formulation for incompressible flow problems considering a Newtonian fluid are described by the 
Cauchy's equation of motion and the continuity equation. These equations can be written as a generalized 
convection-diffusion system [1-4,14]. In this way, the formal problem consists of finding U verifying this 
system of equations such that: 

~ ( U ) = - M . I ) + A : L - V . ( K : L ) - F = O  in /2  X [0, T] (1) 

subject to appropriate boundary and initial conditions, traditionally defined as [14]: 

U = (t~,, ff 2, ti3, u a) in I~ x [0, T] (2.1) 

n.  (pI - K: L) = t- in F~ X [0, T] (2.2) 

U o = U(x, 0) in ,O (2.3) 

where standard notation is used, g2 is an arbitrary open bounded domain wkh smooth boundary F, [0, T] is the 
time interval of interest, I is the Kronecker tensor, t- is the traction vector, n is the outward unit vector normal to 
the boundary F such that F and/',~ are the parts of F where the velocity and the traction forces are prescribed 
respectively (F,, U F~ = F and F, n F = 9). Besides, U is the vector of unknowns U = 1u l, u 2, u 3, u 4] where u l, 
u z and u 3 are the velocity components and u 4 = p  is the pressure; A = A~,,, :is the generalized advection tensor; 
K = ~ .... is a generalized diffusion tensor; L is the spatial gradient tensor of the unknowns; V is the gradient 
operator; M is the generalized mass tensor and F is the generalized body force vector (see [1-4,141 for more 
details). 

Other possibilities in the choice of the boundary conditions have been recently studied by several researchers 
[15-18]. These works presented the option to impose the traction force in its deviatoric and volumetric 
components separately, i.e.: 

U = (b/l, U2, U3, //4) in F v × [0, T] (2.4) 

n . ( K : L ) = H  i n F . × [ 0 ,  Tl (2.5) 

where H is the prescribed traction due to the deviatoric stress tensor. Besides, F e, F H are the parts of F on which 
the pressure and the deviatoric part of the stress tensor are prescribed, respectively. The intersection between F ,  

and F H is an empty set and its union is the whole boundary F [15-181. 

3. Weak form and finite element formulation 

The variatonal form of the problem expressed by Eqs. (1) and (2) is assumed to be [1-41: 

f, f, t P . [ n . ( K : L ( U ) ) - H ] d F = O  V ~ e O  (3) 
h 

where C~ is the space of the weigthing funtions chosen in agreement with the space of the unknowns U [4,14]. 
p (q t )  is the perturbation function added to the standard Galerkin weighting function is defined as in [1-4]. 

In the framework of the finite element method [14], it is assumed that the continuous field of the unknowns is 
locally approximated by polinomial functions in the standard manner as [14]: 

hU = Nk(X ,  t)/) k k = 1 . . . . .  /'/node (4) 

where hU is the approximation of the continuous vector of the unknowns U,/)'~ is the vector of nodal unknowns 



M.A. Cruchaga, E. Ohate / Comput. Methods Appl. Mech. Engrg. 173 (1~09) 241-255 243 

associated to the node k and N ~ is the typical shape function matrix for the node k used in the standard finite 
element formulations written as (3D case) [14]: 0 ] 

0 N k (5) 
3 

where the shape functions N~ are calculated in the spatial point of interest (k = 1 . . . . .  n°od~) and i indicates the 
variable to be interpolated (i = 1 . . . . .  1 + ndim). 

Considering that Eq. (3) could be satisfied for any qt, each function belonging to the canonical base of the 
discrete space of the unknowns are chosen in order to verify that expression [14]. Taking into account Eq. (4), 
the assembly of the elemental algebraic system of equations can be written as [3]: 

R(O) =- ~(J + XO - ~ ( ~ )  - ~ =  O. (6) 

The well-known element matrices for the standard Galerkin method (SG) are described in Box 1. The new terms 
obtained from the proposed generalized streamline operator methodology (GSO) are shown in Box 2. The total 
element matrices used in the definition of Eq. (6) are presented in Box 3. The boundary conditions are only 
considered in the SG formulation [4,5,14]. It should be noted, from Box 3, that the matrix K is defined 
considering different contributions: the convection effects, the diffusion term and the boundary conditions when 
they are expressed with Eq. (2.4)-(2.5). The GSO technique affects the mass matrix, the K matrix in its 
convection and diffusion parts, and the body force vector. These contributions are responsible of the stability 
and accuracy of the new GSO methodology studied for the incompressible Navier-Stokes equations. In 
particular, a very good numerical behaviour can be observed in moderated and high Reynolds's number 
problems [1-3]. Further, the numerical solution for the Stokes and low Reynolds' numbers problems show also 
a very good performance [1-3]. 

The additional notation used in Boxes 1 and 2 are 
• N =  [N I N 2 . . . .  N"""a¢], where N k con k = 1 . . . . .  nnode as in Eq. (5). 

Box 1 
Element matrices of the standard Galerkin method 

Mass matrix 

"4tsc = fo~ N JMN d(l 

Convection generalized matrix 

Diffusion generalized matrix 

x~oW) :/" V(N/X,~V (U)dO~ + 
j ~1 e n J/~, 

Pressure term matrix 

I(s~ ~ = ( (N°) ~n ~N" dF 
,11 h 

Generalized vector of body forces 

= foe AT-~F d J')~, 

Generalized vector of imposed surface forces 

~ =  f, hN~HdF + f~;,N"~nra~,,fdF 

V,,(N)TA'~N " d$2 

(N~) "nJ(~.V,,(N) dF 
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Box 2 
Element matrices of the GSO proposed 

Mass matrix 

Generalized convection matrix 

K'¢;so(l) ) = f~, P(N) JA,V,,(N) d,(2 

Generalized diffusion matrix 

( f V K~so(D) = -j,,~ P(N) V Kj,, .(N) dO. 

Generalized vector of body forces 

~;¢;so = f~,~ P(N) ~F d~, 

Perturbation function 

P(N ) = "rA ,,V,, (N ) 

Box 3 
Total element matrix 

K - K '  + K  ~' + K  ~ 

where 

~ =  ~ 

• N" are the N previously described in which the shape function associated to the pressure degrees of  freedom 
are neglected. 

• N p are the N previously described in which all the shape function are neglected except that associated to the 
pressure degrees of freedom. 

It should be noted that N" + N p = N. 
• A,, are the generalized convection tensor defined for each fixed direction n as in [1-41. 
• the AI' , are the A,, where the columns associated with the pressure degrees of freedom are neglected. 
• the AZ, ', are the A,, where all the components are neglected except that corresponding to the pressure degrees 

of freedom. 
It should be noted that All +A~,~ =A,, .  
• 4, ,  are the generalized diffusion tensor written for each pair of  fixed directions j n  [ I -4 ] .  
• V~ = O l i ~ x , .  

• 7 is the 'upwinding tensor' [1-3].  
A Newton-type incremental-iterative formulation is used for solving the nonlinear semidiscrete system (6) 

and the convergence criterion is written in terms of the norm of the residual vector where the admissible 
tolerance is taken in the range of  [10 ~0, 10-4]  throughout this work. 
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Fig. 1. 3D cavity flow problem at Re = 400. Velocity vectors (a) Guj et al. [19]; (b) present work. 
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4. Numerical examples 

4.1. Cavity f low problem in 3D 

The behaviour  o f  this me thodo logy  is checked  in a 3D analysis.  To this end, a 3D cavi ty f low prob lem at 

Re = 400 descr ibed by Guj et al. [19] is analyzed.  The geomet ry  is a cubic  domain  o f  unitary side. The  veloci ty  

are prescr ibed to zero in the walls. In the upper face the veloic ty  field takes the values  Ux = 1.0, Uy = 0.0 and 

Uz = 0.0. In the edges  o f  this upper face the veloci ty  is fixed to Ux = 0.0. Due  to symmet ry  considerat ions in 

the third direction, the analysis is pe r fo rmed  over  a half  domain.  A regular  mesh  with 20 × 20 × 10 e ight -noded 

isoparametr ic  e lements  in the x, y and z direct ions are used for the computat ion.  The  initial value for the 

:,..~ 

+,) 

' ' ' ' ' ' ' ' ~ ' ~ ' ' ' ' ' ' ' ~ ' ' ' ~ ' ' ` ' ` ~ ' ' ' ' ' ' ' ' ' ~ ' ~ ' ' ' ' ' ' ' ~ ' ' ' ' ' ' ' ' ' ~ ' ' ' ' ' ' ' + ' ~ ' ' ' ' ' ' ' ' ' ~ ' ~ ' ' ' ' ' ' ' ~ ' ' ' ' ' ' ' ~  ~ 

0.I 0.2 0.3 0.4 0.$ 0.6 0.7 0.I 0.9 I. 
x 

.0., 4.2 0. o.2 0.4 u 0.8 t. 
tlx 

Fig. 2. 3D cavity flow problem at Re = 400. (a) Horizontal component of the velocity at x = 0.5 of the X-Y plane; (b) vertical component of 
the velocity at y = 0.5 of the X-Y plane. • Guj et al. [19].--Present work. 

¢,O 

Fig. 3. Two-liquid interface problem in 3D. Geometry and finite element mesh. 
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velocity and pressure fields are zero in the whole domain and a steady state analysis is performed. In Fig. 1 the 
velocity vectors are plotted in the symmetry plane X - Y and the midplanes x =- 0.5 and y = 0.5. The results are 
in good agreement with those reported in [19] with a mesh of  67 × 67 X 27 points (also with symmetry 
conditions). The x and y velocity components are shown in Fig. 2 along the lines x = 0.5 and y = 0.5 belonging 
to the X - Y plane. In this figure the results are compared with the solutions presented in [19]. The profiles show 
a very good agreement with the velocity contours published by Guj et al. [19]. 
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Fig. 4. Two-liquid interface problem in 3D. Interface position at diffent time steps. 
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4.2. Two-liquid interface problem in 3D 

This problem is the 3D extension of  the two-liquid interface problem in 2D analyzed in [2,3,20]. Two liquids 
with the same dynamic viscosity and different densities equal to 1.0 and 2.0, respectively, occupy a closed tank 
with dimensions 0.8 × 0.6 × 0.4 (see Fig. 3). The initial interface position is linear with a slope of  0.25 and 
average height of  0.3. The lighter liquid is on the top of  the heavier one and the gravity is 0.294 (all in consistent 
units). The geometry and the eight-noded finite element mesh used are shown in Fig. 3. The normal velocity is 
prescribed to zero in all faces of  the tank while the tangential component is set to zero at the top and bottom 

iil;;)i'i iiiii 
t =  5 ~ , j  

Fig. 5. Two-liquid interface problem in 3D. Velocity vectors at different time steps. 
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faces. The pressure is taken equal to zero at the top right line. The interface position is obtained using the 
methodology developed in [13], consisting in tracking the interface by means of an arbitrary Lagrangian mesh 
using the total velocity of the fluid particles belonging to it. The transient analysis has been done using the time 
step considered in the 2D case (0.5) [Z&3,20]. The 3D mesh in the X- Y plane is more coarse than the mesh 
used in the 2D analysis [2,3,20]. The interface position, the velocity vectors and the isopressure planes at 
different time steps are plotted in Figs. 4, 5 and 6, respectively. A good approximation to the 2D results [2,3,20] 
is obtained. 

Fig. 6. Two-liquid interface problem in 3D. hopressure planes at different time steps. 
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4.3. Solitary wave problem 

The propagation of a solitary wave over a constant depth has been studied by several authors [21,22]. It is a 
very interesting test in order to verify the temporal behaviour of the numerical algorithm proposed. In [21,22] 
the numerical solution is computed over a unique medium. The method used in the present work to track the 
moving surface [13] needs the definition of two media to identify the interface position. This fact adds additional 
difficulties to the problem. However, this problem description is more realistic if the two media involved in a 
physical wave propagation want to be considered. Fig. 7 shows the geometry used in the analysis. The sliding 
condition is assumed over the walls and the velocity is prescribed in the left side (inlet face) as [3,21]: 

r/c [sech ( - ~ , -  u x = -  ~-  4 ) ]  z 

where: c = [g(D + fi)]1/2 and k = [3~14D] 1/2 [21]. The values for g and r/;ire 1.0 and 0.86, respectively [21]. 
The exit velocity for the upper fluid in the outlet face is neglected when its value are nearly zero (exactly when 
the wave have been completely formed). The transient analysis is done taking a time step of 1.7888 [21] and it 
is stopped before the wave reaches the right side. Two different sets of properties are analized considering that 
the fluid is inviscid in the original problem [21]. The results obtained wilt  properties p~ = 10 -6, /.tq = 1 0  - 4 ,  

p: = l and/z  z = 10 -4 (case A) are shown in Figs. 8 and 9. The wave positions at different time steps are plotted 
in Fig. 8. The pressure history along the vertical line x = L / 2  is presented in Fig. 9. In this figure the wave path 
over the section L/2  is registrated as a pressure increment. The wave positions at different time steps when the 
analysis is done with/z 2 = 0 (case B) (the lower fluid is inviscid) are plotted in Fig. 10. The results published in 
[21] and [22] are shown in Fig. 11 for comparison purposes. We can obselwe a good agreement in the peak 
position at different times and in the wave peak values. 

Initial Front Position 

' L i-~, L = 9 4 9 . 0 9 5  

Fig. 7. Solitary wave problem. Geometry. 
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Fig. 8. Solitary wave problem. Wave position at different time 
steps (present work--Case A). 
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Fig. 10. Solitary wave problem• Wave position at different time steps (present work--Case B). 
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Fig. 11. Solitary wave problem. Wave position at different time steps. (a) Hughes et al. [22]; (b) Huerta et al. [211. 

4.4, Sloshing problem 

The well-known practical application of  this problem, for example the sloshing response of  a liquid confined 
in a rigid-wall recipient or the overflow liquid during an earthquake, and the difficulties in the numerical 
modelization make of  it a very challenging test for flows including a moving surface [20,21]. A closed tank 
filled with two liquids (Fig. 12) of  properties: p~ = 10 6, /z~ = 0.0, P2 = 1.0 and ~ = 0.002, initially in rest is 
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Fig. 12. Sloshing problem. (a) Geometry; (b) finite element mesh. 
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Fig. 13. Sloshing problem+ Interface position at different time steps during the tenth cycle of charge. 

253 

considered for the numerical analysis of  the problem. It is subjected to the gravity action (G, = - 1 . 0 )  and to 
horizontal cyclical forces of  the type G, = 0.01 sin(0.978t) [20,21]. The mesh discretization consist of  2320 
four-noded elements (see (Fig. 12). A time step of 0.107 equivalent to 60 time steps per cycle is used in the 
transient analysis [21 ]. The interface positions at different time steps of the tenth cycle are plotted in Fig. 13. It 
is interesting to note that the vertical motion of the middle point of the interface approaches its physical 
behaviour [21 ]. The time-history positions of the interface contact points with the wall tank at the left and right 
sides (points A and B in Fig, 12) are presented in Fig. 14. A relative length H = (H - 1.0)/1.0) is plotted in this 
figure. This diagram shows a cualitative agreement with that presented in 120]. 

o," 
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S t e p s  

Fig. 14. S losh ing  p rob lem.  T i m e - h i s t o r y  pos i t ion  f o r  points A and B (F ig ,  1). Side A : - - ~  side B : -  . 
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5. Conclusions 

A generalized streamline finite element formulation for solving the incompressible Navier-Stokes flow 
equations has been presented. In this context, the element matrices have been explicitly defined. In this 
methodology the upwinding tensor does not require input tuning parameters and the velocity and pressure are 
interpolated using equal polinomial functions. Besides, the penalization methods are not needed in order to 
satisfy the imcompressibility condition. 

Particular emphasis has been done in the tridimensional numerical solution of the Navier-Stokes equations 
and in the analysis of moving interface problems. The numerical examples show a good agreement between the 
results obtained using the present formulation with other numerical result,~ reported by different authors. 

The methodology proposed presents a very good behaviour in structured and unstructured meshes, as well as 
in coarse meshes. Moreover, the results computed with four-noded or three-noded 2D-elements are in a good 
agreement between them. A very good numerical performance can be observed in moderated and high 
Reynolds' number problems. Besides, the Stokes and low Reynolds' numbers problems present a very good 
behaviour too. 

On the other hand, in moving surface problems, the refined mesh, reqetired in the zone where the front is 
expected to move, is a limitation in the choice of the meshes. However, the meshes used in the numerical 
examples are similar to those proposed by other authors and the time steps are exactly those reported in the 
literature. 
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