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SUMMARY

Two main ingredients are needed for adaptive "nite element computations. First, the error of a given
solution must be assessed, by means of either error estimators or error indicators. After that, a new spatial
discretization must be de"ned via h-, p- or r-adaptivity. In principle, any of the approaches for error
assessment may be combined with any of the procedures for adapting the discretization. However, some
combinations are clearly preferable. The advantages and limitations of the various alternatives are dis-
cussed. The most adequate strategies are illustrated by means of several applications in solid mechanics.
Copyright ( 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Adaptive strategies are nowadays considered a standard tool in practical "nite element computa-
tions. For any problem, adaptivity is an essential tool to obtain numerical solutions with
a controlled accuracy. For some problems (typically in the non-linear domain), adaptive strat-
egies are even more fundamental: without them, a "nite element solution simply cannot be
computed. This is the case, for instance, with problems in non-linear solid mechanics involving
large strains or localization.

The two main ingredients of an adaptive procedure are (1) a tool for assessing the error of the
solution computed with a given mesh and (2) an algorithm to de"ne a new spatial discretization.

Two di!erent approaches may be used for assessing the error: error estimators or error
indicators. Error estimators approximate a measure of the actual error in a given norm. In this
paper, the term error estimator means that the estimated error can be arbitrarily close to the true
error. Other de"nitions are also standard; in some works [1}3], error estimators are required to
behave as equivalent norms of the actual error. Error indicators, on the other hand, are based on
heuristic considerations [4]. For each particular application, a readily available quantity is
chosen, in an ad hoc manner, as an indicator of error.
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Figure 1. Necking test: (a) coarse "xed mesh; (b) r-adaptivity based on an error indicator; (c) h-adaptivity based on error
estimation

The second ingredient of an adaptive procedure is the de"nition of a new spatial discretization.
The goal is to increase or decrease the richness of the interpolation according to the output of the
error assessment. Three main types of strategies may be used: h-adaptivity, p-adaptivity and
r-adaptivity. h-adaptivity [5}10] consists on changing the size of the "nite elements. In
p-adaptivity, the degree of the interpolating polynomials is increased [11}13]. r-adaptivity
consists on relocating the nodes, without changing the mesh connectivity [14, 15].

Various adaptive strategies can be devised by combining these ingredients. Consider, for
instance, the necking test of Figure 1. This is a classical benchmark test in non-linear computa-
tional mechanics [16]. A cylindrical bar is subjected to uniaxial extension. A slight geometric
imperfection induces necking in the central part of the bar. If a coarse "xed mesh (i.e. no
adaptivity) is employed, the result of Figure 1(a) is obtained (only one-fourth of the piece is used
in the computations). The elements in the neck zone become very distorted, following the large
material deformation. As a consequence, a poor de"nition of the deformed shape of the piece is
obtained. Two di!erent adaptive strategies have been used to remedy this situation: r-adaptivity
based on an error indicator and h-adaptivity based on an error estimator.

Figure 1(b) has been obtained by combining an r-adaptive technique (the arbitrary Lagrangian}
Eulerian formulation) with a very simple error indicator: the element aspect ratio [17]. The nodes
of the original coarse mesh are relocated to reduce the element distortion, and this enables
a proper description of neck. Figure 1(c), on the other hand, is obtained by combining
h-adaptivity and an error estimator [18]. A global accuracy of 2 per cent is prescribed. This
simple example illustrates the main features of the two strategies employed: the "rst one is simple
and inexpensive, but there is no objective control on the accuracy; the second one is much more
computationally involved, but a solution with a prescribed accuracy is obtained.

The goal of this paper is to discuss the advantages and limitations of various adaptive
strategies, see Section 2. The discussion focuses on the pros and cons of the various combinations
of error assessment (indicators, estimators) and new spatial discretization (h-, p-, r-adaptivity).
The capabilities of adaptive strategies are illustrated in Section 3 (r-adaptivity with error
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indicators) and Section 4 (h-adaptivity with error estimation). Finally, some concluding remarks
are made in Section 5.

2. ERROR ASSESSMENT AND ADAPTIVITY

2.1. Assessing the error

As mentioned previously, either error estimators or error indicators may be used to assess the
error.

Error estimators may be classi"ed into two groups: #ux projection (ZZ-like) estimators [6, 7]
and residual-type estimators [19}22]. Most estimators are well de"ned for linear problems but
not for non-linear problems. For instance, the popular ZZ error estimator for linear problems is
only an error indicator for non-linear problems, because it is based on superconvergence
properties that cannot be automatically extended to the non-linear regime.

Here the estimator presented in detail in References 23}25 is employed. This estimator has
a sound theoretical basis for both linear and non-linear applications [18].

Various choices of an error indicator can be found in the literature. From a geometrical point
of view, for instance, the element aspect ratio or, more generally, the distortion can be used [26].
In non-linear solid mechanics, some common choices are the equivalent plastic (or, more
generally, inelastic) strain or its gradient [4].

The advantages and limitations of error estimators and error indicators are summarized in
Table I. Error indicators are attractive because of their simplicity: they are based on very simple
intuitive considerations (geometrical, mechanical, etc.) and can be computed easily and e$ciently.
Quantities used as error indicators are always readily available in the "nite element computation,
so the overhead cost is minimum. The drawback is that they are heuristic: the judgement of the
user for de"ning a proper error indicator for a given problem is critical. Of course, error

Table I. Comparison of error estimators and error indicators

Indicator

Advantages

Based on intuitive considerations
Computed easily and e$ciently

¸imitations

Heuristic relative information (error not quanti"ed)
Problem-dependent (must be calibrated)

Estimator

Advantages

Objective measure of the actual error
Wide range of applications

¸imitations

Need mathematical basis
Usually more expensive to evaluate
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indicators are very speci"c of each particular application, and they must be calibrated (with the
help of either analytical solutions in simple tests or error estimators). Moreover, error indicators
only give relative information. Since the error is not quanti"ed, an error indicator only tells where
the spatial discretization must be richer, but not how much richer it should be.

Error estimators, on the other hand, must be based on "rm mathematical foundations and are
usually more expensive to evaluate than error indicators. In exchange for that, they have a major
advantage: they provide an objective and quantitative information about the error. Moreover, the
range of applicability of a certain error estimator is larger than for a given error indicator. The
error estimator presented in References 18 and 24, for instance, is valid for any linear or
non-linear elliptic problem.

2.2. Adapting the spatial discretization

Three strategies may be used to adapt the spatial discretization according to the error
assessment: h- p- and r-adaptivity. h-adaptivity consists of building a new mesh, using the same
type of elements, and adapting the element size to the requirements of the solution. That is,
reducing their size where the interpolation must be enriched (i.e. more accuracy is needed) and
enlarging the elements where it is already accurate enough. The idea of p-adaptivity is to increase
the order of the polynomials where a richer interpolation is needed, and maintain polynomials of
low order where it is already rich enough. r-adaptivity consists on relocating the nodes to adapt
the mesh to the requirements of the solution. The number of nodes and the mesh connectivity
remain constant. Nodes are concentrated in zones where they are most needed. The mesh is
allowed to coarsen in other parts of the domain, where a poorer interpolation su$ces.

The merits and drawbacks of these three approaches are summarized in Table II. r-adaptivity
is easy to implement and inexpensive, because only the initial mesh is needed. Simple algorithms
may be used to relocate the nodes. The transport of the information from the old mesh to the new
mesh can be performed in a very natural way (by solving a convection equation), because these
two meshes have the same connectivity. This intrinsic simplicity is also the cause of the limitations
of r-adaptivity. The accuracy which can be achieved with an r-adaptive strategy is limited,
because the number of degrees of freedom and the mesh topology are "xed from the beginning,
when the initial, and only, mesh is built. In fact, the initial mesh heavily in#uences the adaptive
computation. Once the node location is &optimal' (according to the error assessment), a more
accurate solution can only be achieved by increasing the number of degrees of freedom (i.e. via
h- or p-adaptivity).

h-adaptivity is also a conceptually simple strategy, which basically relies on the mesh generator.
The computational cost is considerably higher than for r-adaptivity, because a new mesh must be
generated at each step. After that, there are two alternatives: either restart the computation from
scratch or project all the information from the old mesh to the new mesh. This transport is quite
more involved than for r-adaptivity, because the two meshes may have very di!erent topologies
and numbers of elements. In exchange for this high cost, h-adaptivity is a very general approach:
the number of degrees of freedom can change arbitrarily to meet a prescribed accuracy, and the
initial mesh does not drastically in#uence the adaptive process, because a new mesh is rebuilt at
each step.

From a theoretical standpoint, p-adaptivity has the advantage that it provides the fastest rate
of convergence as the number of degrees of freedom increases. Moreover, it is the only strategy
that can reach very high accuracies. However, the implementation is tedious: special care is
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Table II. Comparison of r-, h- and p-adaptivity

r-adaptivity

Advantages

Easy to implement
Inexpensive (only one mesh is needed)
Information transported in a natural way

¸imitations

Number of degrees of freedom is "xed
Depends on initial mesh (topology of mesh cannot change)

h-adaptivity

Advantages

Easy to implement
Number of degrees of freedom can change
General applicability (initial mesh easily adapted)

¸imitations

Expensive (must generate a new mesh each time)
Must project all information onto the new mesh

p-adaptivity

Advantages

Number of degrees of freedom can change
Faster rate of convergence

¸imitations

Tedious implementation
Expensive
Depends on initial mesh (must be implemented with h-adaptivity)

needed to match two adjacent elements of di!erent order. Moreover, this strategy is heavily
dependent on the initial mesh. In practice, p-adaptivity is typically combined with h-adaptivity
[12, 27].

2.3. Adaptive strategies based on error assessment

In principle, any of the approaches for error assessment (Table I) can be combined with any of
the procedures for adapting the spatial discretization (Table II) to produce an adaptive strategy
for "nite element computations. However, some combinations are clearly to the preferred, as
illustrated in Table III.

Combining r-adaptivity and an error indicator provides a very simple adaptive strategy. As
mentioned previously, an error indicator only gives relative information about the error. This is
clearly a disadvantage of error indicators with respect to error estimators. However, relative
information (i.e. where the error is larger and where it is smaller) is exactly what is needed for
relocating the nodes. Since no new degrees of freedom can be added in r-adaptivity, the error
indicator is used to decide where to put the available nodes. By doing so, an &optimal' use is made
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Table III. A global rating of adaptive strategies

Error indicator Error estimator

r-Adaptivity (ALE)

h/p-Adaptivity

of the given mesh. Of course, the global accuracy of the solution cannot be prescribed a priori,
because the number of degrees of freedom is "xed.

The conjunction of h-/p-adaptivity and error estimation is also a valid strategy. In fact, it is the
only approach that allows to obtain a solution with an (objective) accuracy prescribed a priori.
The price to pay is a high computational cost. Note, however, that an extra ingredient is needed:
an optimality criterion that relates the error at each point of the domain with the new element size
of degree of the polynomial [28].

The combination of r-adaptivity and error estimation is clearly not an adequate strategy. All
the e!ort in estimating the error in a quantitative and objective manner is wasted, because the
information obtained cannot be fully exploited. In fact, using an error estimator to relocate the
nodes overkills the problem, because only relative information can be accounted for when
deciding the new nodal position.

Finally, h-/p-adaptivity based on error indicators is a common choice in the literature [4].
However, it has one important drawback: an expensive adaptive procedure (h, p or h}p) is based
on heuristic information about the error. Moreover, extra information is required: the size of the
smallest element in h-adaptivity, or the maximum degree of the interpolating polynomial in
p-adaptivity. In consequence, this approach can only be recommended if the error indicator can
be properly calibrated for the given application.

In conclusion, the two best approaches consist on combining either simple ingredients
(r-adaptivity and error indicators) or more sophisticated ingredients (h-/p-adaptivity and
error estimators). The capabilities of these two strategies will be highlighted in the rest of the
paper by means of some numerical examples. With the other two combinations, there is a clear
unbalance between the tool used for assessing the error and the tool for adapting the spatial
discretization.

3. r-ADAPTIVITY BASED ON ERROR INDICATORS

r-adaptivity based on error indicators is employed here for the prediction of yield line patterns in
plates [29, 30]. Figure 2 shows a simply supported rectangular plate, with an eccentric hole and
5 cm thickness. The plate is subjected to a uniform load of 125 kN/m2. A bilinear elastoplastic
behavior is assumed, with Young's modulus E"2]108 kN/m2, Poisson's ratio l"0)2, initial
yield stress p6

0
"2]105 kN/m2, and hardening modulus h"E/200.

If a "nite element analysis is performed on a "xed mesh, the results of Plate 1(a) are obtained.
Due to the coarseness of the mesh, the spatial discretization is too poor and the yield line pattern
(unknown a priori) is not properly captured. Of course, the solution can be improved by using
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Figure 2. Rectangular plate with square hole

a much "ner mesh, see Plate 1(b). However, the computational cost is too high, because
small elements are used everywhere (and not only in the yield lines, where they are really
needed).

The Arbitrary Lagrangian}Eulerian (ALE) formulation [14, 31}33] has been chosen as the
r-adaptive technique. The nodes of the coarse mesh of Plate 1(a) are relocated during the
computation in order to concentrate them along the yield lines. An error indicator is used for
selecting the new nodal position.

For this particular application, the level of plasti"cation provides a good indication of error
[29, 30]. The level of plasti"cation is proportional to (1) the ratio of equivalent stress to the initial
yield stress in elastic zones and to (2) the current yield stress in plastic zones. With this de"nition
of the error indicator, the mesh is adapted in zones where yielding is taking place, and in zones
that are about to yield.

It is important to note that this error indicator has the advantages and limitations stated in
Table I. It is based on a very intuitive assumption (error is larger where the non-linearity*that is,
plasti"cation*is more important) and is simple to compute (because yield stresses are already
computed in an analysis with a "xed mesh). However, the actual error of the solution is not
quanti"ed, and the indicator cannot be extended to other applications in a straightforward
manner.

After the error indicator is computed, a criterion is needed for node relocation. Element size
times the error indicator is prescribed to be constant for all the elements. This means that small
elements are needed where the error indicator is large, and vice versa. With this criterion, new
nodal co-ordinates are obtained by solving a di!usion equation [34]. When the nodes are
relocated, the information must be transported from the old mesh to the new mesh. Since the two
meshes share the same topology, this can be done by solving a convection equation. Here
a Godunov-like technique is chosen [17, 35].

With the adaptive strategy just discussed, the solution of Plate 1(c) is obtained. The same
coarse mesh of Plate 1(a) is chosen at the beginning of the analysis. Instead of keeping it
"xed, however, the mesh is continuously adapted during the computation, by relocating the nodes
after each load step. This enables a correct description of the yield line pattern (cf. Plates 1(b)
and 1(c)).

A more quantitative comparison of the three solutions (coarse and "ne "xed meshes, coarse
adaptive mesh) is o!ered by Plate 2. Thanks to the node relocation, the pro"le of the equivalent
plastic strain along the yield line with the coarse adaptive mesh is properly described. With the
coarse "xed mesh, on the contrary, it is signi"cantly underestimated.
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4. h-ADAPTIVITY BASED ON ERROR ESTIMATION

As previously said, h-remeshing strategies allow to enrich the discretization as much as needed
and attain any prescribed accuracy, provided that the problem is well-posed. Once the accuracy is
prescribed, the adaptive procedure must indicate not only where the elements must be concen-
trated but also how many elements are required. That is, the zones where the mesh must be re"ned
have to be identi"ed, and the required size of the mesh in every zone of the domain must be
speci"ed. Consequently, error estimators are required to obtain reliable information concerning
the quantity of error and not only about its relative distribution.

h-adaptivity processes consist on an iterative loop. For some mesh, the approximate solution is
computed and the error is estimated. If the error is too large, the solution is considered
unacceptable and the error distribution is used to de"ne the element size for a new mesh in every
zone of the domain. The new mesh is built up verifying the size prescriptions and the computa-
tions are resumed using this new mesh.

Two basic ingredients of h-adaptive procedures are the acceptability criterion and the remesh-
ing strategy. The acceptability criterion is used as a stopping criterion for the iterative procedure.
The remeshing strategy is the tool that allows to compute the prescribed element size from the
estimated error distribution. Although the goal of the remeshing strategy is to provide a mesh
that gives a solution verifying the acceptability criterion, the derivation of the remeshing
strategies requires some additional assumptions, see Reference 28. These additional assumptions
are called optimality criteria because they state the optimality properties of a "nite element mesh
by prescribing some uniformity of the error. Di!erent optimality criteria lead to di!erent
remeshing strategies even if the acceptability criterion is the same.

The following examples of application of h-adaptivity to "nite element computations are
presented to illustrate three di!erent topics.

1. The example of Section 4.1 shows the crucial role of the remeshing strategies in the resulting
optimal mesh: under the same acceptability criterion but using remeshing strategies with
di!erent underlying optimality criteria, the adaptive process yields very di!erent meshes.

2. The example of Section 4.2 stresses the importance of using a suitable error estimation tool.
The error assessment must be able to account for all the sources of error. This is especially
important in the case of shell problems where the discretization errors a!ect both the
approximation of the geometry and the functional approximation.

3. Section 4.3 shows that in some problems even the general aspect of the mesh cannot be
predicted a priori. The example analyses the behaviour of a plane strain compression
specimen exhibiting strain localization. In this case the collapse mechanism is quite surpris-
ing. Consequently, the obtained solution is not intuitive and the optimal mesh is not trivial.
The collapse mechanism is captured by a re"ned mesh but it cannot be predicted by a "rst
guess of a mesh.

In all the examples the error is estimated using the technique introduced in References 18, 24
and 25 and the quadrilateral meshes are generated following [36].

4.1. Comparison of di+erent remeshing strategies

A 2-D plane strain analysis of a dam is presented, see Figure 3. This example is a benchmark
test since it was introduced by Zienkiewicz and Zhu [6, 7]. In the adapted meshes, elements

1810 A. HUERTA E¹ A¸.

Copyright ( 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 46, 1803}1818 (1999)



Figure 3. Plane strain dam example: "nal mesh of the adaptive procedure using di!erent remeshing strategies

Table IV. Summary of the results for the plane strain dam

Remeshing strategy Num. steps Num. elts. % Error

Original mesh * 193 11)48
LB 2 685 4)62
ZZ 4 602 4)93
OB 3 3885 4)55

are concentrated around the corners of the semi-circular cavity, where the solution is singular.
However, the number of elements and the mesh density are very di!erent from one remeshing
strategy to another.

Here three remeshing strategies found in the literature are used.

1. The underlying optimality criterion used in the Li and Bettess (LB) remeshing strategy
[37, 38] states that, in the optimal mesh, elementary errors are equal. The LB remeshing
strategy has been proved to be optimal in the sense that yields meshes that minimize the
number of elements for a given acceptability criterion.

2. The Zienkiewicz and Zhu (ZZ) remeshing strategy introduced in Reference 6 is based in
a simpli"cation of the optimality criterion used by Li and Bettess.

3. The On8 ate and Bugeda (OB) remeshing strategy is introduced in Reference 39 and imple-
ments an optimality criterion based on engineering considerations. The mesh is assumed to
be optimal if the density of error (ratio of the squared error norm over every element and its
measure) is constant over the whole mesh.
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Figure 4. Semi-spherical dome: description of the geometry and the loading conditions

For each one of these remeshing strategies an adaptive computation is carried out. The "nal
meshes yielding acceptable solutions are shown in Figure 3. The number of required remeshing
steps, the number of elements in the "nal mesh and the attained error are shown in Table IV. The
distribution of a elements in the "nal meshes yield by the LB and ZZ remeshing strategies are
similar because the underlying optimality criteria are inspired by the same idea. On the other
hand, the OB remeshing strategy leads to a very dense mesh (with more than "ve times the
number of elements of the LB or ZZ strategies). This reveals that the condition imposed in the
optimality criterion used in the OB strategy is much more demanding.

4.2. h-adaptivity for shell problems

The semi-spherical dome of Figure 4 is computed using thin shell elements. The structure is
loaded by a vertical force uniformly distributed in the upper ring. The supports are distributed in
the base as shown in Figure 4. This example is presented in Reference 40. The mechanical
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Plate 1. Equivalent plastic strain: (a) coarse fixed mesh; (b) fine fixed mesh; and (c) adaptive coarse mesh
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Plate 2. Profiles of equivalent plastic strain along y = x + 3. Fine fixed mesh (solid line), coarse fixed mesh (dotted line) 
and adaptive coarse mesh (dashed line)

Plate 3. Semispherical dome: Von Mises stress distribution



Plate 4. Remeshing process using Li-Bettess strategy for a prescribed accuracy of 1.5%: sequence of meshes and estimated error distributions

Copyright © 1999 John Wiley & Sons, Ltd.   Int. J. Numer. Meth. Engng.46 (1999)



Figure 5. Semi-spherical dome: deformed shape

Figure 6. Semi-spherical dome: sequence of meshes

behaviour is described by the deformed shape ampli"ed 5]104 times, see Figure 5, and the Von
Mises stresses distribution shown in Plate 3. In this example and in the remainder, the LB
remeshing strategy is used because of its optimality from the viewpoint of computational economy.
The sequence of meshes leading to a solution with a 5 per cent of error is shown in Figure 6.
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Notice that, as expected and found by other authors [40], the elements are concentrated in the
zones of the boundaries.

In standard plane or 3-D elasticity the discretization of the geometry a!ects only the boundary.
On the contrary, in shell problems, this a!ects the whole domain. In fact, for the "rst mesh
(mesh 0 in Figure 6) the in#uence of the actual geometry in the error estimation is signi"cant: the
error estimate varies in the order of 10 per cent depending on whether the actual geometry is
accounted for or not. This source of errors may also be assessed if residual-type error estimators
are used. Flux projection error estimators are based on the analysis of discontinuities in the "nite
element approximate solution and, consequently, they do not use any information on the actual
geometry. This means that, in shell analysis, standard #ux projection error estimators are not able
to take into account the e!ects of the geometry discretization in the computational error.

4.3. Simulation of strain localization via adaptive remeshing

This example is used to show the ability of adaptive strategies to capture unexpected solutions
(complex failure mechanisms) [41, 42]. The example reproduces the compression of a plane strain
rectangular specimen. The test is driven by imposing the velocity at the top of the specimen. In
order to induce the strain localization, circular openings are introduced, playing the role of
imperfections. In this case, the specimen has two circular openings symmetric with respect to the
centre. That allows to study only one half of the domain, see Figure 7.

Plate 4 shows the sequence of meshes in this case. It is worth noting that, in the "nal mesh,
according to the concentration of elements, two bands are developed. In fact, the resulting bands
are not aligned with the imperfections, as it could be expected, but have an opposite inclination.
Meshes 0 and 1 are not able to reproduce the behaviour of the actual ("nal) solution because the
elements in the zone of the second band (which develops in a further stage of the loading process)
are too large and, consequently, the discretization is too sti!. Then, the size of the elements in this

Figure 7. Rectangular specimen with two symmetric imperfections
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zone does not allow the inception of softening. However, the error estimator indicates that the
elements must be reduced in the zone of the second band. Thus, once the remeshing process
introduces small enough elements along the second band, in meshes 2}5, a second mechanism can
also be captured. Plate 4 shows also the distribution of the error along the remeshing process,
which tends to be uniform, as expected. In the "rst meshes, the error is larger along the bands and,
consequently, the successive discretizations concentrate elements in these zones. Notice that the
elements are, in fact, concentrated along the edges of the bands, where the gradients of the
displacements are large.

The evolution of the meshes in the remeshing sequence of Plate 4 suggest that the actual
complex failure mechanism is ignored by the "rst discretizations and can only be captured using
the adapted meshes. This is con"rmed comparing the deformation patterns and the force}
displacement curves obtained with di!erent meshes.

Figure 8 shows how the computed equivalent inelastic strain and the deformation evolve along
the remeshing process. Only after two remeshing steps the mesh captures two bands. In the
previous meshes the discretization is not accurate enough and only one band is completely
developed. Since large deformations are considered, once the "rst band evolves enough, the
kinematic mechanism associated with this band locks. Then a second band appears as a new
deformation mode with less energy. Figure 8 shows also how the force}displacement curves for
meshes 0 and 1 are qualitatively di!erent from those of meshes 2}5. In fact, the shapes of the
force}displacement curves for meshes 2}5 are practically identical and have two in#ections in the
descending branch. The solution given by the last mesh is obviously more accurate than the
original one because the energy of deformation (area under the force}displacement curve) is
lower. In fact, since the error is controlled in energy norm, one can be sure that the actual curve,
associated with the exact solution, is not too far from the obtained curve (the error in energy norm
is less than 1)5 per cent and, consequently the di!erence of the area under the curves is less than
1)5 per cent).

Thus, this example demonstrates that adaptivity based on error estimation is an essential tool
for the determination of a priori unpredictable "nal solutions. Without this adaptive strategy, the
initial mesh (mesh 0 in Plate 4) and the resulting solution could be regarded as correct, and the
second mechanism would not be detected.

5. CONCLUDING REMARKS

The merits and limitations of various adaptive "nite element strategies have been discussed. First,
the two basic ingredients*namely, a tool for error assessment and a procedure for adapting the
spatial discretization*have been analysed separately. After that, various combinations of these
techniques have been assessed.

The best approaches consist on combining ingredients of similar complexity. If r-adaptivity is
combined with error indicators, a very simple and computationally e$cient adaptive strategy is
obtained. The conjunction of h-/p-adaptivity and error estimators, on the other hand, results in
a more sophisticated and costly strategy, which allows to obtain a solution with a prescribed
accuracy.

The other two combinations (r-adaptivity with error estimators, or h-/p-adaptivity with
error indicators) are less attractive, because there is a clear unbalance between the tools
combined.
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Figure 8. Numerical bifurcation in the "rst meshes: mesh deformation ampli"ed 40 times and equivalent inelastic strain
contours
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The two adequate strategies have been illustrated by means of several numerical examples in
linear and non-linear solid mechanics.
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